1
|
Vasu M, Ahlawat S, Arora R, Sharma R. Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review. Mamm Genome 2025; 36:162-182. [PMID: 39904908 DOI: 10.1007/s00335-025-10109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
2
|
Yamashita AMS, Garay BI, Kim H, Bosnakovski D, Abrahante JE, Azzag K, Abreu P, Ahlquist A, Perlingeiro RCR. Effect of Notch1 signaling on muscle engraftment and maturation from pluripotent stem cells. Stem Cell Reports 2025; 20:102396. [PMID: 39889709 PMCID: PMC11864150 DOI: 10.1016/j.stemcr.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025] Open
Abstract
Pax3-induced pluripotent stem cell-derived myogenic progenitors display an embryonic molecular signature but become postnatal upon transplantation. Because this correlates with upregulation of Notch signaling, here we probed whether NOTCH1 is required for in vivo maturation by performing gain- and loss-of-function studies in inducible Pax3 (iPax3) myogenic progenitors. Transplantation studies revealed that Notch1 signaling did not change the number of donor-derived fibers; however, the NOTCH1 overexpression cohorts showed enhanced satellite cell engraftment and more mature fibers, as indicated by fewer fibers expressing the embryonic myosin heavy-chain isoform and more type IIX fibers. While donor-derived Pax7+ cells were detected in all transplants, in the absence of Notch1, secondary grafts exhibited a high fraction of these cells in the interstitial space, indicating that NOTCH1 is required for proper satellite cell homing. Transcriptional profiling of NOTCH1-modified donor-derived satellite cells suggests that this may be due to changes in the extracellular matrix organization, cell cycle, and metabolism.
Collapse
Affiliation(s)
- Aline M S Yamashita
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Bayardo I Garay
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Phablo Abreu
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Ahlquist
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Niu Y, Li Y, Gao C, Li W, Li L, Wang H, Shen W, Ge W. Melatonin promotes hair regeneration by modulating the Wnt/β-catenin signalling pathway. Cell Prolif 2024; 57:e13656. [PMID: 38773710 PMCID: PMC11503254 DOI: 10.1111/cpr.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Melatonin (MLT) is a circadian hormone that reportedly influences the development and cyclic growth of secondary hair follicles; however, the mechanism of regulation remains unknown. Here, we systematically investigated the role of MLT in hair regeneration using a hair depilation mouse model. We found that MLT supplementation significantly promoted hair regeneration in the hair depilation mouse model, whereas supplementation of MLT receptor antagonist luzindole significantly suppressed hair regeneration. By analysing gene expression dynamics between the MLT group and luzindole-treated groups, we revealed that MLT supplementation significantly up-regulated Wnt/β-catenin signalling pathway-related genes. In-depth analysis of the expression of key molecules in the Wnt/β-catenin signalling pathway revealed that MLT up-regulated the Wnt/β-catenin signalling pathway in dermal papillae (DP), whereas these effects were facilitated through mediating Wnt ligand expression levels in the hair follicle stem cells (HFSCs). Using a DP-HFSCs co-culture system, we verified that MLT activated Wnt/β-catenin signalling in DPs when co-cultured with HFSCs, whereas supplementation of DP cells with MLT alone failed to activate Wnt/β-catenin signalling. In summary, our work identified a critical role for MLT in promoting hair regeneration and will have potential implications for future hair loss treatment in humans.
Collapse
Affiliation(s)
- Yi‐Lin Niu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Yu‐Kang Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Chen‐Xi Gao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Wen‐Wen Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Li Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of ShandongQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
4
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
6
|
Alotaibi G, Alharthi S, Basu B, Ash D, Dutta S, Singh S, Prajapati BG, Bhattacharya S, Chidrawar VR, Chitme H. Nano-Gels: Recent Advancement in Fabrication Methods for Mitigation of Skin Cancer. Gels 2023; 9:gels9040331. [PMID: 37102943 PMCID: PMC10137892 DOI: 10.3390/gels9040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
In the 21st century, melanoma and non-melanoma skin cancers have become an epidemic outbreak worldwide. Therefore, the exploration of all potential preventative and therapeutic measures based on either physical or bio-chemical mechanisms is essential via understanding precise pathophysiological pathways (Mitogen-activated protein kinase, Phosphatidylinositol 3-kinase Pathway, and Notch signaling pathway) and other aspects of such skin malignancies. Nano-gel, a three-dimensional polymeric cross-linked porous hydrogel having a diameter of 20-200 nm, possesses dual properties of both hydrogel and nanoparticle. The capacity of high drug entrapment efficiency with greater thermodynamic stability, remarkable solubilization potential, and swelling behavior of nano-gel becomes a promising candidate as a targeted drug delivery system in the treatment of skin cancer. Nano-gel can be either synthetically or architectonically modified for responding to either internal or external stimuli, including radiation, ultrasound, enzyme, magnetic, pH, temperature, and oxidation-reduction to achieve controlled release of pharmaceuticals and several bio-active molecules such as proteins, peptides, genes via amplifying drug aggregation in the active targeted tissue and reducing adverse pharmacological effects. Several drugs, such as anti-neoplastic biomolecules having short biological half-lives and prompt enzyme degradability capacity, must be appropriate for administration employing either chemically bridged or physically constructed nano-gel frameworks. The comprehensive review summarizes the advancement in the preparation and characterization methods of targeted nano-gel with enhanced pharmacological potential and preserved intracellular safety limits for the mitigation of skin malignancies with a special emphasize on skin cancer inducing pathophysiological pathways and prospective research opportunities for skin malignancy targeted nano-gels.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Biswajit Basu
- Department of Pharmaceutical Technology, Global College of Pharmaceutical Technology, Krishnagar 741102, West Bengal, India
| | - Dipanjana Ash
- Department of Pharmaceutics, BCDA College of Pharmacy & Technology, Kolkata 700127, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology, Ranchi 835215, Jharkhand, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-Be University, Shirpur 425405, Maharashtra, India
| | - Vijay R Chidrawar
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Ananthapuramu 515721, Andhra Pradesh, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
7
|
Umair M, Younus M, Shafiq S, Nayab A, Alfadhel M. Clinical genetics of spondylocostal dysostosis: A mini review. Front Genet 2022; 13:996364. [PMID: 36506336 PMCID: PMC9732429 DOI: 10.3389/fgene.2022.996364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Spondylocostal dysostosis is a genetic defect associated with severe rib and vertebrae malformations. In recent years, extensive clinical and molecular diagnosis advancements enabled us to identify disease-causing variants in different genes for such severe conditions. The identification of novel candidate genes enabled us to understand the developmental biology and molecular and cellular mechanisms involved in the etiology of these rare diseases. Here, we discuss the clinical and molecular targets associated with spondylocostal dysostosis, including clinical evaluation, genes, and pathways involved. This review might help us understand the basics of such a severe disorder, which might help in proper clinical characterization and help in future therapeutic strategies.
Collapse
Affiliation(s)
- Muhammad Umair
- Medical Genomics Research Department, Ministry of National Guard Health Affairs (MNGH), King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,*Correspondence: Muhammad Umair, ,
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Anam Nayab
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Majid Alfadhel
- Medical Genomics Research Department, Ministry of National Guard Health Affairs (MNGH), King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Genetics and Precision Medicine Department, King Abdullah Specialized Children Hospital (KASCH), King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Mittal V, Reid RW, Machado DJ, Mashanov V, Janies DA. EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms. BMC Genom Data 2022; 23:75. [PMID: 36274129 PMCID: PMC9590158 DOI: 10.1186/s12863-022-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Here we release a new version of EchinoDB, EchinoDB v2.0 ( https://echinodb.uncc.edu ). EchinoDB is a database of genomic and transcriptomic data on echinoderms. The initial database consisted of groups of 749,397 orthologous and paralogous transcripts arranged in orthoclusters by sequence similarity. RESULTS The updated version of EchinoDB includes two new major datasets: the RNA-Seq data of the brittle star Ophioderma brevispinum and the high-quality genomic assembly data of the green sea urchin Lytechinus variegatus. In addition, we enabled keyword searches for annotated data and installed an updated version of Sequenceserver to allow Basic Local Alignment Search Tool (BLAST) searches. The data are downloadable in FASTA format. The first version of EchinoDB appeared in 2016 and was implemented in GO on a local server. The new version has been updated using R Shiny to include new features and improvements in the application. Furthermore, EchinoDB now runs entirely in the cloud for increased reliability and scaling. CONCLUSION EchinoDB serves a user base drawn from the fields of phylogenetics, developmental biology, genomics, physiology, neurobiology, and regeneration. As use cases, we illustrate the function of EchinoDB in retrieving components of signaling pathways involved in the tissue regeneration process of different echinoderms, including the emerging model species Ophioderma brevispinum. Moreover, we use EchinoDB to shed light on the conservation of the molecular components involved in two echinoderm-specific phenomena: spicule matrix proteins involved in the formation of stereom endoskeleton and the tensilin protein that contributes to the capacity of the connective tissues to quickly change its mechanical properties. The genes involved in the former had been previously studied in echinoids, while gene sequences involved in the latter had been previously described in holothuroids. Specifically, we ask (a) if the biomineralization-related proteins previously reported only in sea urchins are also present in other, non-echinoid, echinoderms and (b) if tensilin, the protein responsible for the control of stiffness of the mutable collagenous tissue, previously described in sea cucumbers, is conserved across the phylum.
Collapse
Affiliation(s)
- Varnika Mittal
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA.
| | - Robert W Reid
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| | - Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 91 Technology Way NE, Winston-Salem, NC, 27101, USA
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd, Charlotte, NC, 28223, USA
| |
Collapse
|
9
|
Fechner J, Ketelhut M, Maier D, Preiss A, Nagel AC. The Binding of CSL Proteins to Either Co-Activators or Co-Repressors Protects from Proteasomal Degradation Induced by MAPK-Dependent Phosphorylation. Int J Mol Sci 2022; 23:ijms232012336. [PMID: 36293193 PMCID: PMC9604145 DOI: 10.3390/ijms232012336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The primary role of Notch is to specify cellular identities, whereby the cells respond to amazingly small changes in Notch signalling activity. Hence, dosage of Notch components is crucial to regulation. Central to Notch signal transduction are CSL proteins: together with respective cofactors, they mediate the activation or the silencing of Notch target genes. CSL proteins are extremely similar amongst species regarding sequence and structure. We noticed that the fly homologue suppressor of hairless (Su(H)) is stabilised in transcription complexes. Using specific transgenic fly lines and HeLa RBPJKO cells we provide evidence that Su(H) is subjected to proteasomal degradation with a half-life of about two hours if not protected by binding to co-repressor hairless or co-activator Notch. Moreover, Su(H) stability is controlled by MAPK-dependent phosphorylation, matching earlier data for RBPJ in human cells. The homologous murine and human RBPJ proteins, however, are largely resistant to degradation in our system. Mutating presumptive protein contact sites, however, sensitised RBPJ for proteolysis. Overall, our data highlight the similarities in the regulation of CSL protein stability across species and imply that turnover of CSL proteins may be a conserved means of regulating Notch signalling output directly at the level of transcription.
Collapse
|
10
|
Mashanov V, Machado DJ, Reid R, Brouwer C, Kofsky J, Janies DA. Twinkle twinkle brittle star: the draft genome of Ophioderma brevispinum (Echinodermata: Ophiuroidea) as a resource for regeneration research. BMC Genomics 2022; 23:574. [PMID: 35953768 PMCID: PMC9367165 DOI: 10.1186/s12864-022-08750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
Background Echinoderms are established models in experimental and developmental biology, however genomic resources are still lacking for many species. Here, we present the draft genome of Ophioderma brevispinum, an emerging model organism in the field of regenerative biology. This new genomic resource provides a reference for experimental studies of regenerative mechanisms. Results We report a de novo nuclear genome assembly for the brittle star O. brevispinum and annotation facilitated by the transcriptome assembly. The final assembly is 2.68 Gb in length and contains 146,703 predicted protein-coding gene models. We also report a mitochondrial genome for this species, which is 15,831 bp in length, and contains 13 protein-coding, 22 tRNAs, and 2 rRNAs genes, respectively. In addition, 29 genes of the Notch signaling pathway are identified to illustrate the practical utility of the assembly for studies of regeneration. Conclusions The sequenced and annotated genome of O. brevispinum presented here provides the first such resource for an ophiuroid model species. Considering the remarkable regenerative capacity of this species, this genome will be an essential resource in future research efforts on molecular mechanisms regulating regeneration. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08750-y).
Collapse
Affiliation(s)
- Vladimir Mashanov
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, 27101, NC, USA. .,University of North Florida, Department of Biology, 1 UNF Drive, Jacksonville, 32224, FL, USA.
| | - Denis Jacob Machado
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Robert Reid
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Cory Brouwer
- University of North Carolina at Charlotte, College of Computing and Informatics, North Carolina Research Campus, 150 Research Campus Drive, Kannapolis, 28081, NC, USA
| | - Janice Kofsky
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| | - Daniel A Janies
- University of North Carolina at Charlotte, College of Computing and Informatics, Department of Bioinformatics and Genomics, 9201 University City Blvd, Charlotte, 28223, NC, USA
| |
Collapse
|
11
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
12
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
13
|
Long Non-Coding RNA-Based Functional Prediction Reveals Novel Targets in Notch-Upregulated Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14061557. [PMID: 35326706 PMCID: PMC8946805 DOI: 10.3390/cancers14061557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Notch signaling is a druggable target in high-grade serous ovarian cancers; however, its complexity is not clearly understood. Recent revelations of the biological roles of lncRNAs have led to an increased interest in the oncogenic action of lncRNAs in various cancers. In this study, we performed in silico analyses using The Cancer Genome Atlas data to discover novel Notch-related lncRNAs and validated our transcriptome data via NOTCH1/3 silencing in serous ovarian cancer cells. The expression of novel Notch-related lncRNAs was down-regulated by a Notch inhibitor and was upregulated in high-grade serous ovarian cancers, compared to benign or borderline ovarian tumors. Functionally, Notch-related lncRNAs were tightly linked to Notch-related changes in diverse gene expressions. Notably, genes related to DNA repair and spermatogenesis showed specific correlations with Notch-related lncRNAs. Master transcription factors, including EGR1, CTCF, GABPα, and E2F4 might orchestrate the upregulation of Notch-related lncRNAs, along with the associated genes. The discovery of Notch-related lncRNAs significantly contributes to our understanding of the complex crosstalk of Notch signaling with other oncogenic pathways at the transcriptional level.
Collapse
|
14
|
The histone methyltransferase DOT1L is a new epigenetic regulator of pulmonary fibrosis. Cell Death Dis 2022; 13:60. [PMID: 35039472 PMCID: PMC8763868 DOI: 10.1038/s41419-021-04365-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with increasing occurrence, high death rates, and unfavorable treatment regimens. The pathogenesis underlying IPF is complex and the epigenetic contributions to IPF are largely unknown. Recent studies have shown that DOT1L (Disruptor of telomeric silencing-1 like), a histone H3K79 methyltransferase, contributes to fibrosis response, but its role in IPF remains unclear. DOT1L, H3K79me3, and the profibrotic proteins levels were upregulated in the pulmonary fibrosis models both in vivo and in vitro. Lentivirus-mediated DOT1L knockdown or DOT1L-specific inhibitor EPZ5676 alleviated the pathogenesis of bleomycin-induced mouse pulmonary fibrosis. Furthermore, heterozygous DOT1L-deficient mice (Dot1l+/−) showed less sensitive to pulmonary fibrosis, as shown by decreased lung fibrosis phenotypes in vivo. Mechanically, DOT1L regulated TGF-β1-induced fibroblasts fibrosis by increasing enrichments of H3K79me3 on the promoter of Jag1 gene (encoding the Notch ligand Jagged1), enhancing the expression of Jagged1, which in turn stimulated exuberant Notch signaling and actuated the fibrosis response. In conclusion, our study confirmed DOT1L to be an epigenetic modifier in the pathogenesis of lung fibrosis, revealed a counterbalancing mechanism governing Jag1 transcription by modulating H3K79 trimethylation at the Jag1 promoter, activating the Notch signaling, and affecting the expression of profibrotic proteins to accelerate the lung fibrosis.
Collapse
|
15
|
Vandermeulen MD, Cullen PJ. Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genet 2022; 18:e1009988. [PMID: 34982769 PMCID: PMC8759647 DOI: 10.1371/journal.pgen.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/14/2022] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Phenotypes can change during exposure to different environments through the regulation of signaling pathways that operate in integrated networks. How signaling networks produce different phenotypes in different settings is not fully understood. Here, Gene by Environment Interactions (GEIs) were used to explore the regulatory network that controls filamentous/invasive growth in the yeast Saccharomyces cerevisiae. GEI analysis revealed that the regulation of invasive growth is decentralized and varies extensively across environments. Different regulatory pathways were critical or dispensable depending on the environment, microenvironment, or time point tested, and the pathway that made the strongest contribution changed depending on the environment. Some regulators even showed conditional role reversals. Ranking pathways' roles across environments revealed an under-appreciated pathway (OPI1) as the single strongest regulator among the major pathways tested (RAS, RIM101, and MAPK). One mechanism that may explain the high degree of regulatory plasticity observed was conditional pathway interactions, such as conditional redundancy and conditional cross-pathway regulation. Another mechanism was that different pathways conditionally and differentially regulated gene expression, such as target genes that control separate cell adhesion mechanisms (FLO11 and SFG1). An exception to decentralized regulation of invasive growth was that morphogenetic changes (cell elongation and budding pattern) were primarily regulated by one pathway (MAPK). GEI analysis also uncovered a round-cell invasion phenotype. Our work suggests that GEI analysis is a simple and powerful approach to define the regulatory basis of complex phenotypes and may be applicable to many systems.
Collapse
Affiliation(s)
- Matthew D. Vandermeulen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
16
|
Deng Y, Xia B, Chen Z, Wang F, Lv Y, Chen G. Stem Cell-based Therapy Strategy for Hepatic Fibrosis by Targeting Intrahepatic Cells. Stem Cell Rev Rep 2021; 18:77-93. [PMID: 34668120 DOI: 10.1007/s12015-021-10286-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
The whole liver transplantation is the most effective treatment for end-stage fibrosis. However, the lack of available donors, immune rejection and total cost of surgery remain as the key challenges in advancing liver fibrosis therapeutics. Due to the multi-differentiation and low immunogenicity of stem cells, treatment of liver fibrosis with stem cells has been considered as a valuable new therapeutic modality. The pathological progression of liver fibrosis is closely related to the changes in the activities of intrahepatic cells. Damaged hepatocytes, activated Kupffer cells and other inflammatory cells lead to hepatic stellate cells (HSCs) activation, further promoting apoptosis of damaged hepatocytes, while stem cells can work on fibrosis-related intrahepatic cells through relevant transduction pathways. Herein, this article elucidates the phenomena and the mechanisms of the crosstalk between various types of stem cells and intrahepatic cells including HSCs and hepatocytes in the treatment of liver fibrosis. Then, the important influences of chemical compositions, mechanical properties and blood flow on liver fibrosis models with stem cell treatment are emphasized. Clinical trials on stem cell-based therapy for liver fibrosis are also briefly summarized. Finally, continuing challenges and future directions of stem cell-based therapy for hepatic fibrosis are discussed. In short, stem cells play an important advantage and have a great potential in treating liver fibrosis by interacting with intrahepatic cells. Clarifying how stem cells interact with intrahepatic cells to change the progression of liver fibrosis is of great significance for a deeper understanding of liver fibrosis mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Yaxin Deng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan District, Chongqing, 400054, People's Republic of China. .,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| |
Collapse
|
17
|
Tsedeke AT, Allanki S, Gentile A, Jimenez-Amilburu V, Rasouli SJ, Guenther S, Lai SL, Stainier DY, Marín-Juez R. Cardiomyocyte heterogeneity during zebrafish development and regeneration. Dev Biol 2021; 476:259-271. [DOI: 10.1016/j.ydbio.2021.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
|
18
|
Strashilov S, Yordanov A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int J Mol Sci 2021; 22:6395. [PMID: 34203771 PMCID: PMC8232613 DOI: 10.3390/ijms22126395] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Melanoma develops from malignant transformations of the pigment-producing melanocytes. If located in the basal layer of the skin epidermis, melanoma is referred to as cutaneous, which is more frequent. However, as melanocytes are be found in the eyes, ears, gastrointestinal tract, genitalia, urinary system, and meninges, cases of mucosal melanoma or other types (e.g., ocular) may occur. The incidence and morbidity of cutaneous melanoma (cM) are constantly increasing worldwide. Australia and New Zealand are world leaders in this regard with a morbidity rate of 54/100,000 and a mortality rate of 5.6/100,000 for 2015. The aim of this review is to consolidate and present the data related to the aetiology and pathogenesis of cutaneous melanoma, thus rendering them easier to understand. In this article we will discuss these problems and the possible impacts on treatment for this disease.
Collapse
Affiliation(s)
- Strahil Strashilov
- Department of Plastic Restorative, Reconstructive and Aesthetic Surgery, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Angel Yordanov
- Clinic of Gynecologic Oncology, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
19
|
Abstract
Background: Several mechanisms likely cooperate with the mitogen-activated protein (MAP)-kinase pathway to promote cancer progression in the thyroid. One putative pathway is NOTCH signaling, which is implicated in several other malignancies. In thyroid cancer, data regarding the role of the NOTCH pathway are insufficient and even contradictory. Methods: A BRAFV600E-driven papillary thyroid carcinoma (PTC) mouse model was subjected to NOTCH pathway genetic alterations, and the tumor burden was followed by ultrasound. Further analyses were performed on PTC cell lines or noncancerous cells transfected with NOTCHIC or BRAFV600E, which were then subjected to pharmacological treatment with MAP-kinase or NOTCH pathway inhibitors. Results: The presence of the BRAFV600E mutation coupled with overexpression of the NOTCH intracellular domain led to significantly bigger thyroid tumors in mice, to a more aggressive carcinoma, and decreased overall survival. Although more cystic, the tumors did not progress into anaplastic thyroid carcinomas. On the contrary, the deletion of RBP-jκ (a major cofactor involved in NOTCH signaling) did not alter the phenotype in mice. BRAFV600E-mutated PTC cell lines were resistant to pharmacological inhibition of the NOTCH pathway. Inhibition of MEK1/2 uncovered a predominant effect on Hes1/Hey1 transcription compared with NOTCH inhibition in BRAFV600E-mutated cell lines. Finally, γ-secretase activity and γ-secretase subunit transcription levels were dependent on ERK activation. Our findings suggest that MAP-kinase activity overrides the NOTCH pathway in the context of thyroid cancer. Conclusions: The interaction between the BRAF and NOTCH pathways demonstrates that the BRAFV600E mutation might bypass NOTCH and exert a strong positive effect on NOTCH downstream targets in thyroid carcinoma.
Collapse
Affiliation(s)
- Florian Traversi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Amandine Stooss
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | | | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Frankenreiter L, Gahr BM, Schmid H, Zimmermann M, Deichsel S, Hoffmeister P, Turkiewicz A, Borggrefe T, Oswald F, Nagel AC. Phospho-Site Mutations in Transcription Factor Suppressor of Hairless Impact Notch Signaling Activity During Hematopoiesis in Drosophila. Front Cell Dev Biol 2021; 9:658820. [PMID: 33937259 PMCID: PMC8079769 DOI: 10.3389/fcell.2021.658820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.
Collapse
Affiliation(s)
- Lisa Frankenreiter
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Bernd M Gahr
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Hannes Schmid
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Mirjam Zimmermann
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Sebastian Deichsel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| | - Philipp Hoffmeister
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig University of Giessen, Giessen, Germany
| | - Franz Oswald
- Department of Internal Medicine 1, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | - Anja C Nagel
- Department of General Genetics (190g), Institute of Biology (190), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
21
|
Zhou D, Stobdan T, Visk D, Xue J, Haddad GG. Genetic interactions regulate hypoxia tolerance conferred by activating Notch in excitatory amino acid transporter 1-positive glial cells in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab038. [PMID: 33576765 PMCID: PMC8022968 DOI: 10.1093/g3journal/jkab038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is a critical pathological element in many human diseases, including ischemic stroke, myocardial infarction, and solid tumors. Of particular significance and interest of ours are the cellular and molecular mechanisms that underlie susceptibility or tolerance to low O2. Previous studies have demonstrated that Notch signaling pathway regulates hypoxia tolerance in both Drosophila melanogaster and humans. However, the mechanisms mediating Notch-conferred hypoxia tolerance are largely unknown. In this study, we delineate the evolutionarily conserved mechanisms underlying this hypoxia tolerant phenotype. We determined the role of a group of conserved genes that were obtained from a comparative genomic analysis of hypoxia-tolerant D.melanogaster populations and human highlanders living at the high-altitude regions of the world (Tibetans, Ethiopians, and Andeans). We developed a novel dual-UAS/Gal4 system that allows us to activate Notch signaling in the Eaat1-positive glial cells, which remarkably enhances hypoxia tolerance in D.melanogaster, and, simultaneously, knock down a candidate gene in the same set of glial cells. Using this system, we discovered that the interactions between Notch signaling and bnl (fibroblast growth factor), croc (forkhead transcription factor C), or Mkk4 (mitogen-activated protein kinase kinase 4) are important for hypoxia tolerance, at least in part, through regulating neuronal development and survival under hypoxic conditions. Becausethese genetic mechanisms are evolutionarily conserved, this group of genes may serve as novel targets for developing therapeutic strategies and have a strong potential to be translated to humans to treat/prevent hypoxia-related diseases.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tsering Stobdan
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - DeeAnn Visk
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel G Haddad
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
22
|
Gajić D, Saksida T, Koprivica I, Šenerović L, Morić I, Šavikin K, Menković N, Pejnović N, Stojanović I. Immunomodulatory activity and protective effects of chokeberry fruit extract on Listeria monocytogenes infection in mice. Food Funct 2020; 11:7793-7803. [PMID: 32808624 DOI: 10.1039/d0fo00946f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chokeberry (Aronia melanocarpa) fruit extracts (CE) are rich in polyphenols and usually exhibit immunomodulatory, anti-viral and anti-bacterial effects. We have previously shown that the CE used in this study activated macrophages and stimulated effector T cell differentiation in vitro. When applied orally to healthy mice, CE increased the proportion of CD11c+ dendritic cells in the gut-associated lymphoid tissue. CE-pretreated BALB/c mice readily eradicated orally ingested Listeria monocytogenes as evidenced by a slighter decrease in body weight and number of bacteria recovered from the spleen and reduced spleen size compared to the control infected mice. CE pretreatment in infected mice resulted in higher proportions of CD11b+ macrophages and CD8+ cytotoxic T cells both in the gut and the spleen. Phagocytosis, reactive oxygen species production and the proportions of activated CD86+ macrophages (CD11b+) and dendritic cells (CD11c+) were also enhanced in CE-pretreated infected mice. Furthermore, the expression of inducible nitric oxide synthase and IL-6 was increased in CE-pretreated infected mice and similar results were obtained in peritoneal macrophages in vitro. This effect of CE was associated with increased phosphorylation of IκB and Notch1 production. Finally, CE pretreatment elevated the proportion of perforin-producing cells in the spleen compared to control infected mice. This study demonstrates that prophylactic treatment with CE leads to more rapid eradication of bacterial infection with L. monocytogenes predominantly through increased activity of myeloid cells in the gut and in the spleen.
Collapse
Affiliation(s)
- Dragica Gajić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Lidija Šenerović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ivana Morić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nebojša Menković
- Institute for Medicinal Plants Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
23
|
Zhao R, Yihan W, Zhao Y, Li B, Han H, Mongke T, Bao T, Wang W, Dugarjaviin M, Bai D. Hair follicle regional specificity in different parts of bay Mongolian horse by histology and transcriptional profiling. BMC Genomics 2020; 21:651. [PMID: 32962644 PMCID: PMC7510135 DOI: 10.1186/s12864-020-07064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background Different morphological structures of hairs having properties like defense and camouflage help animals survive in the wild environment. Horse is one of the rare kinds of animals with complex hair phenotypes in one individual; however, knowledge of horse hair follicle is limited in literature and their molecular basis remains unclear. Therefore, the investigation of horse hair follicle morphogenesis and pigmentogenesis attracts considerable interest. Result Histological studies revealed the morphology and pigment synthesis of hair follicles are different in between four different parts (mane, dorsal part, tail, and fetlock) of the bay Mongolian horse. Hair follicle size, density, and cycle are strongly associated with the activity of alkaline phosphatase (ALP). We observed a great difference in gene expression between the mane, tail, and fetlock, which had a greater different gene expression pattern compared with the dorsal part through transcriptomics. The development of the hair follicle in all four parts was related to angiogenesis, stem cells, Wnt, and IGF signaling pathways. Pigmentogenesis-related pathways were involved in their hair follicle pigment synthesis. Conclusions Hair follicle morphology and the activity of ALP differ among four body parts in bay Mongolian horse. Hair follicles of the different body parts of the are not synchronized in their cycle stages. GO terms show a regional specificity pattern between different skin parts of the bay Mongolian horse. These results provide an insight into the understanding of the biological mechanism of the hair follicle in other mammals.
Collapse
Affiliation(s)
- Ruoyang Zhao
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China
| | - Wu Yihan
- Inner Mongolia Center for Disease Comprehensive Control and Prevention, Hohhot, 010030, China
| | - Yiping Zhao
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China
| | - Bei Li
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China
| | - Haige Han
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China
| | - Togtokh Mongke
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China
| | - Tugeqin Bao
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China
| | - Wenxing Wang
- Inner Mongolia Zhong Yun Horse Industry Group, Xilinhot, 026000, China
| | - Manglai Dugarjaviin
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China
| | - Dongyi Bai
- lnner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Equine Research Center, College of animal science, Inner Mongolia Agricultural University, Zhao Wu Da Road, Hohhot, 306 010018, Inner Mongolia, China.
| |
Collapse
|
24
|
Goruganthu MUL, Shanker A, Dikov MM, Carbone DP. Specific Targeting of Notch Ligand-Receptor Interactions to Modulate Immune Responses: A Review of Clinical and Preclinical Findings. Front Immunol 2020; 11:1958. [PMID: 32922403 PMCID: PMC7456812 DOI: 10.3389/fimmu.2020.01958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding and targeting Notch signaling effectively has long been valued in the field of cancer and other immune disorders. Here, we discuss key discoveries at the intersection of Notch signaling, cancer and immunology. While there is a plethora of Notch targeting agents tested in vitro, in vivo and in clinic, undesirable off-target effects and therapy-related toxicities have been significant obstacles. We make a case for the clinical application of ligand-derived and affinity modifying compounds as novel therapeutic agents and discuss major research findings with an emphasis on Notch ligand-specific modulation of immune responses.
Collapse
Affiliation(s)
- Mounika U. L. Goruganthu
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Mikhail M. Dikov
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - David P. Carbone
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
25
|
Thymus Inception: Molecular Network in the Early Stages of Thymus Organogenesis. Int J Mol Sci 2020; 21:ijms21165765. [PMID: 32796710 PMCID: PMC7460828 DOI: 10.3390/ijms21165765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
The thymus generates central immune tolerance by producing self-restricted and self-tolerant T-cells as a result of interactions between the developing thymocytes and the stromal microenvironment, mainly formed by the thymic epithelial cells. The thymic epithelium derives from the endoderm of the pharyngeal pouches, embryonic structures that rely on environmental cues from the surrounding mesenchyme for its development. Here, we review the most recent advances in our understanding of the molecular mechanisms involved in early thymic organogenesis at stages preceding the expression of the transcription factor Foxn1, the early marker of thymic epithelial cells identity. Foxn1-independent developmental stages, such as the specification of the pharyngeal endoderm, patterning of the pouches, and thymus fate commitment are discussed, with a special focus on epithelial–mesenchymal interactions.
Collapse
|
26
|
Lin N, Yao Z, Xu L, Xu M, Yuan L, Zhuang H, Lin Y, Xu R. Bone marrow-derived mesenchymal stem cells utilize the notch signaling pathway to induce apoptosis of hepatic stellate cells via NF-κB sensor. Biol Chem 2020; 401:505-515. [PMID: 31527287 DOI: 10.1515/hsz-2019-0248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/13/2019] [Indexed: 01/26/2023]
Abstract
The present study aimed at evaluating the mechanism by which functionality of hepatic stellate cells (HSCs) is modulated by bone marrow stromal cells (BMSCs). Induction of apoptosis in HSCs was found to be caused by directly co-culturing HSCs with BMSCs, where the expression of α-smooth muscle actin (α-SMA) increased significantly in HSCs, along with an increase in their proliferation rate. Additionally, expression of Hes1 and Notch1 in HSCs co-cultured with BMSCs increased significantly at both protein and mRNA levels. Blocking of the notch signaling pathway (NSP) either by Notch1 siRNA or by DAPT treatment increased the proliferation rate while decreasing apoptosis and led to activation of the NF-κB signaling pathway in HSCs co-cultured with BMSCs. These effects were found to be reversed in HSCs overexpressing IκB S32/S36 mutants. The Notch signaling-mediated cell-cell contact was partially involved in the significant inhibition of proliferation of HSCs by BMSCs. Additionally, the NF-κB pathway was found to be responsible for NSP-mediated inhibition of growth of HSCs in the co-culture system. Thus, BMSCs might have a potential therapeutic significance in treating hepatic fibrosis.
Collapse
Affiliation(s)
- Nan Lin
- Department of Hepatobilliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou 510630, Guangdong, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linan Xu
- Department of Reproductive Medicine Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mingxin Xu
- Department of Hepatobilliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou 510630, Guangdong, China
| | - Lin Yuan
- Department of Hepatobilliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou 510630, Guangdong, China
| | - Haiyun Zhuang
- Department of Hepatobilliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou 510630, Guangdong, China
| | - Yang Lin
- Department of Hepatobilliary Surgery, The Kashi Affiliated Hospital of Sun Yat-sen University, Kashi, Xinjiang, China
| | - Ruiyun Xu
- Department of Hepatobilliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou 510630, Guangdong, China
| |
Collapse
|
27
|
Kim MY, Park JY, Park HS. Akt1-Mediated Phosphorylation of RBP-Jk Controls Notch1 Signaling. BIOCHEMISTRY (MOSCOW) 2020; 84:1537-1546. [PMID: 31870258 DOI: 10.1134/s0006297919120137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Notch1 signaling pathway plays a crucial role in determining cell fate, including cell growth and differentiation. In this study, we demonstrated that the antagonistic action of RTK (receptor tyrosine kinase) signaling pathway on the Notch1 signaling pathway is mediated via Ras-PI3K-Akt1. The PI3K-Akt1 signaling pathway was shown to inhibit Notch1 signaling via phosphorylation of RBP-Jk. We observed not only reduced association between Notch1 and RBP-Jk, but also suppression of the Notch1 transcriptional activity. Our results demonstrated that Akt1 functions as a natural inhibitor of the Notch1 signaling pathway via phosphorylation of RBP-Jk.
Collapse
Affiliation(s)
- M-Y Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - J Y Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - H-S Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
28
|
Hubbard N, Prasasya RD, Mayo KE. Activation of Notch Signaling by Oocytes and Jag1 in Mouse Ovarian Granulosa Cells. Endocrinology 2019; 160:2863-2876. [PMID: 31609444 PMCID: PMC6850001 DOI: 10.1210/en.2019-00564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
The Notch pathway plays diverse and complex roles in cell signaling during development. In the mammalian ovary, Notch is important for the initial formation and growth of follicles, and for regulating the proliferation and differentiation of follicular granulosa cells during the periovulatory period. This study seeks to determine the contribution of female germ cells toward the initial activation and subsequent maintenance of Notch signaling within somatic granulosa cells of the ovary. To address this issue, transgenic Notch reporter (TNR) mice were crossed with Sohlh1-mCherry (S1CF) transgenic mice to visualize Notch-active cells (EGFP) and germ cells (mCherry) simultaneously in the neonatal ovary. To test the involvement of oocytes in activation of Notch signaling in ovarian somatic cells, we ablated germ cells using busulfan, a chemotherapeutic alkylating agent, or investigated KitWv/Wv (viable dominant white-spotting) mice that lack most germ cells. The data reveal that Notch pathway activation in granulosa cells is significantly suppressed when germ cells are reduced. We further demonstrate that disruption of the gene for the Notch ligand Jag1 in oocytes similarly impacts Notch activation and that recombinant JAG1 enhances Notch target gene expression in granulosa cells. These data are consistent with the hypothesis that germ cells provide a ligand, such as Jag1, that is necessary for activation of Notch signaling in the developing ovary.
Collapse
Affiliation(s)
- Nisan Hubbard
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Rexxi D Prasasya
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Kelly E Mayo
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
- Correspondence: Kelly E. Mayo, PhD, Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, 1115 Pancoe Pavilion, Evanston, Illinois 60208. E-mail:
| |
Collapse
|
29
|
Lobo-Pecellín M, Marín-Menguiano M, González-Reyes A. mastermind regulates niche ageing independently of the Notch pathway in the Drosophila ovary. Open Biol 2019; 9:190127. [PMID: 31744422 PMCID: PMC6893403 DOI: 10.1098/rsob.190127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023] Open
Abstract
Proper stem cell activity in tissues ensures the correct balance between proliferation and differentiation, thus allowing tissue homeostasis and repair. The Drosophila ovary develops well-defined niches that contain on average 2-4 germline stem cells (GSCs), whose maintenance depends on systemic signals and local factors. A known player in the decline of tissue homeostasis is ageing, which correlates with the waning of resident stem cell populations. In Drosophila, ovaries from old females contain fewer GSCs than those from young flies. We isolated niche cells of aged ovaries, performed a transcriptomic analysis and identified mastermind (mam) as a factor for Drosophila ovarian niche functionality during ageing. We show that mam is upregulated in aged niche cells and that we can induce premature GSC loss by overexpressing mam in otherwise young niche cells. High mam levels in niche cells induce reduced Hedgehog amounts, a decrease in cadherin levels and a likely increase in reactive oxygen species, three scenarios known to provoke GSC loss. Mam is a canonical co-activator of the Notch pathway in many Drosophila tissues. However, we present evidence to support a Notch-independent role for mam in the ovarian germline niche.
Collapse
Affiliation(s)
| | | | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| |
Collapse
|
30
|
Ho DM, Artavanis-Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e358. [PMID: 31502763 DOI: 10.1002/wdev.358] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
Abstract
The role of the Notch signaling pathway in neural development has been well established over many years. More recent studies, however, have demonstrated that Notch continues to be expressed and active throughout adulthood in many areas of the central nervous system. Notch signals have been implicated in adult neurogenesis, memory formation, and synaptic plasticity in the adult organism, as well as linked to acute brain trauma and chronic neurodegenerative conditions. NOTCH3 mutations are responsible for the most common form of hereditary stroke, the progressive disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Notch has also been associated with several progressive neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Although numerous studies link Notch activity with CNS homeostasis and neurodegenerative diseases, the data thus far are primarily correlative, rather than functional. Nevertheless, the evidence for Notch pathway activity in specific neural cellular contexts is strong, and certainly intriguing, and points to the possibility that the pathway carries therapeutic promise. This article is categorized under: Nervous System Development > Flies Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience and Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
31
|
Murata A, Hikosaka M, Yoshino M, Zhou L, Hayashi SI. Kit-independent mast cell adhesion mediated by Notch. Int Immunol 2019; 31:69-79. [PMID: 30299470 DOI: 10.1093/intimm/dxy067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
32
|
Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer. Oncotarget 2018; 7:48011-48026. [PMID: 27384993 PMCID: PMC5216996 DOI: 10.18632/oncotarget.10333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/12/2016] [Indexed: 12/22/2022] Open
Abstract
Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer.
Collapse
|
33
|
Zheng L, Conner SD. Glycogen synthase kinase 3β inhibition enhances Notch1 recycling. Mol Biol Cell 2018; 29:389-395. [PMID: 29237816 PMCID: PMC6014177 DOI: 10.1091/mbc.e17-07-0474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 11/11/2022] Open
Abstract
The Notch signaling pathway is essential throughout development and remains active into adulthood, where it performs a critical role in tissue homeostasis. The fact that defects in signaling can lead to malignancy illustrates the need to control Notch activity tightly. GSK3β is an established regulator of the Notch signaling pathway, although its mechanism of action remains unclear. Given the emerging role for GSK3β in receptor trafficking, we tested the idea that GSK3β controls signaling by regulating Notch transport. Consistent with published reports, we find that GSK3β inhibition enhances Notch1 signaling activity. Immunolocalization analysis reveals that Notch1 localization within a tubulovesicular compartment is altered when GSK3β activity is disrupted. We also find that receptor cell surface levels increase following acute GSK3β inhibition. This is followed by elevated Notch intra-cellular domain (NICD) production and a corresponding increase in signaling activity. Moreover, Notch transport assays reveal that receptor recycling rates increase when GSK3β activity is inhibited. Collectively, results presented here support a model where GSK3β regulates signaling by controlling postendocytic transport of Notch1. Given that GSK3β activity is suppressed following stimulation by multiple signal transduction pathways, our findings also suggest that cells can modulate Notch1 activity in response to extracellular signals by mobilizing Notch1 from endosomal stores.
Collapse
Affiliation(s)
- Li Zheng
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, MN 55455
| | - Sean D Conner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
34
|
Puigserver P. Signaling Transduction and Metabolomics. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
36
|
Li H, Zhu Z, Liu J, Wang J, Qu C. MicroRNA-137 regulates hypoxia-induced retinal ganglion cell apoptosis through Notch1. Int J Mol Med 2017; 41:1774-1782. [PMID: 29286063 DOI: 10.3892/ijmm.2017.3319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The apoptosis of retinal ganglion cells (RGCs) is a hallmark of several optic neuropathies. MicroRNAs (miRNAs) are recently identified regulators of various biological processes. However, the role of miRNAs in regulating RGC apoptosis remains largely unknown. We herein aimed to demonstrate that miR-137 acts as a hypoxia-responsive gene in RGCs that is downregulated under hypoxic conditions. It was observed that overexpression of miR-137 markedly aggravated hypoxia-induced cell apoptosis, whereas inhibition of miR-137 effectively protected RGCs against hypoxia-induced apoptosis. Hypoxia induced Notch1 expression and signaling activation, while blocking Notch signaling significantly aggravated hypoxia-induced cell apoptosis. Further data revealed that the pro-survival Akt signaling pathway was involved in miR-137-Notch signaling pathway-mediated RGC protection. Knockdown of Notch significantly reversed the effect of anti‑miR-137 on RGC protection and Akt signaling activation. In addition, blocking Akt signaling also significantly abrogated the protective effect of anti-miR-137 on hypoxia-induced cell injury. Overall, the results of the present study demonstrated that miR-137 targets Notch1 expression, revealing a novel link between miR-137 and Notch signaling, and suggesting that a miR-137/Notch1 axis may serve as a potential molecular target for the treatment of hypoxia-induced retinal diseases.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongqiao Zhu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianrong Liu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianzhou Wang
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chaoyi Qu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
37
|
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol 2017; 7:rsob.160242. [PMID: 28148821 PMCID: PMC5356439 DOI: 10.1098/rsob.160242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable ‘toolkit’ nature.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Quentin I B Lemaître
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
38
|
Nagel AC, Auer JS, Schulz A, Pfannstiel J, Yuan Z, Collins CE, Kovall RA, Preiss A. Phosphorylation of Suppressor of Hairless impedes its DNA-binding activity. Sci Rep 2017; 7:11820. [PMID: 28928428 PMCID: PMC5605572 DOI: 10.1038/s41598-017-11952-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signalling activity governs cellular differentiation in higher metazoa, where Notch signals are transduced by the transcription factor CSL, called Suppressor of Hairless [Su(H)] in Drosophila. Su(H) operates as molecular switch on Notch target genes: within activator complexes, including intracellular Notch, or within repressor complexes, including the antagonist Hairless. Mass spectrometry identified phosphorylation on Serine 269 in Su(H), potentially serving as a point of cross-regulation by other signalling pathways. To address the biological significance, we generated phospho-deficient [Su(H)S269A] and phospho-mimetic [Su(H)S269D] variants: the latter displayed reduced transcriptional activity despite unaltered protein interactions with co-activators and -repressors. Based on the Su(H) structure, Ser269 phosphorylation may interfere with DNA-binding, which we confirmed by electro-mobility shift assay and isothermal titration calorimetry. Overexpression of Su(H)S269D during fly development demonstrated reduced transcriptional regulatory activity, similar to the previously reported DNA-binding defective mutant Su(H)R266H. As both are able to bind Hairless and Notch proteins, Su(H)S269D and Su(H)R266H provoked dominant negative effects upon overexpression. Our data imply that Ser269 phosphorylation impacts Notch signalling activity by inhibiting DNA-binding of Su(H), potentially affecting both activation and repression. Ser269 is highly conserved in vertebrate CSL homologues, opening the possibility of a general and novel mechanism of modulating Notch signalling activity.
Collapse
Affiliation(s)
- Anja C Nagel
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Jasmin S Auer
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Adriana Schulz
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit University of Hohenheim, 70599, Stuttgart, Germany
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Courtney E Collins
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anette Preiss
- Institut für Genetik (240), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| |
Collapse
|
39
|
Li A, Peng W, Xia X, Li R, Wang Y, Wei D. Endothelial-to-Mesenchymal Transition: A Potential Mechanism for Atherosclerosis Plaque Progression and Destabilization. DNA Cell Biol 2017; 36:883-891. [PMID: 28920704 DOI: 10.1089/dna.2017.3779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. EndMT is associated with fibroproliferative diseases, such as cancer progression and metastasis and cardiac and kidney fibrosis, and this condition has been extensively investigated over the past decade. Recently, studies showed that EndMT contributes to the initiation and progression of atherosclerotic lesion and plaque destabilization. Unstable atherosclerotic plaque rupture and subsequent thrombosis are the main pathological causes of acute cardiovascular events. EndMT is plastic and reversible. Therefore, our enhanced understanding on the mechanisms controlling EndMT and its roles in the atherosclerosis plaque progression and instability may provide a basis for the development of novel therapeutic strategies to stabilize and reverse atherosclerotic plaques.
Collapse
Affiliation(s)
- Afang Li
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| | - Wenxi Peng
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| | - Xiaodan Xia
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China .,2 Affiliated Nanhua Hospital of University of South China , Hengyang, China
| | - Rongqing Li
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| | - Yu Wang
- 3 Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Dangheng Wei
- 1 Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China , Hengyang, China
| |
Collapse
|
40
|
The role of Notch signaling in gastric carcinoma: molecular pathogenesis and novel therapeutic targets. Oncotarget 2017; 8:53839-53853. [PMID: 28881855 PMCID: PMC5581154 DOI: 10.18632/oncotarget.17809] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/17/2017] [Indexed: 12/14/2022] Open
Abstract
Notch signaling, an evolutionarily conserved signaling cascade system, is involved in promoting the progression of different types of cancers. Within the past decades, the Notch signaling pathway has increasingly been shown to have a primary role in deciding the fate of cancer cells and cancer stem cells in the stomach. Most components of Notch signaling are strongly expressed at different levels in gastric carcinoma tissue samples and are associated with a considerable number of clinical parameters. Moreover, crosstalk signaling between the Notch pathway and the Wnt, Ras, and NF-κB pathways promotes the process of gastric carcinogenesis. Consequently, this increases proliferation and prevents apoptosis in gastric cancer cells, and it contributes to the induction of angiogenesis and accelerates the progression of the epithelial-to-mesenchymal transition. Although the Notch signaling pathway presents novel therapeutic targets for cancer therapeutic intervention, there is still a dearth of in-depth understanding of the molecular mechanisms of Notch signaling in gastric carcinoma. In this review, we summarize the landscape of the Notch signaling pathway and recent findings on Notch signaling in gastric cancer. Furthermore, advanced studies and clinical treatments targeting the Notch signaling pathway arediscussed.
Collapse
|
41
|
Abstract
Notch3 and TGF-β1 signaling play a key role in the pathogenesis and progression of chronic cardiovascular disease. However, whether Notch3 protects against myocardial infarction (MI) and the underlying mechanisms remains unknown. C57BL/6 mice were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) before coronary artery ligation. Four weeks after constructing MI model, cardiac function and fibrosis were compared between groups. The cardiac fibroblast cells (CFs) were isolated from newborn C57BL/6 mice (1-3 days old) and transfected with lentivirus carrying Notch3 cDNA. TGF-β1 (5 ng/ml), a well-known pro-fibrotic factor, was administered 72 h after Notch3 cDNA administration in CFs. The related proteins of fibrosis such as a-smooth muscle actin (a-SMA), Type I collagen, metalloprotease (MMP)-9 and the tissue inhibitor of metalloproteinases (TIMP)-2 were examined by western blot analysis. Notch3 cDNA treatment attenuated cardiac damage and inhibited fibrosis in mice with MI. Meanwhile, Notch3 siRNA administration aggravated cardiac function damage and markedly enhanced cardiac fibrosis in mice with MI. Overexpression of Notch3 inhibited TGF-β1-induced fibroblast-myofibroblast transition of mouse cardiac fibroblast cells, as evidenced by down-regulating a-SMA and Type I collagen expression. Notch3 cDNA treatment also increased MMP-9 expression and decreased TIMP-2 expression in the TGF-β1-stimulated cells. This study indicates that Notch3 is an important protective factor for cardiac fibrosis in a MI model, and the protective effect of Notch3 is attributable to its action on TGF-β1/Smad3 signaling.
Collapse
|
42
|
Magalhães LG, Morais ER, Machado CB, Gomes MS, Cabral FJ, Souza JM, Soares CS, Sá RG, Castro-Borges W, Rodrigues V. Uncovering Notch pathway in the parasitic flatworm Schistosoma mansoni. Parasitol Res 2016; 115:3951-61. [PMID: 27344453 DOI: 10.1007/s00436-016-5161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/01/2016] [Indexed: 01/19/2023]
Abstract
Several signaling molecules that govern development in higher animals have been identified in the parasite Schistosoma mansoni, including the transforming growth factor β, protein tyrosine kinases, nuclear hormone receptors, among others. The Notch pathway is a highly conserved signaling mechanism which is involved in a wide variety of developmental processes including embryogenesis and oogenesis in worms and flies. Here we aimed to provide the molecular reconstitution of the Notch pathway in S. mansoni using the available transcriptome and genome databases. Our results also revealed the presence of the transcripts coded for SmNotch, SmSu(H), SmHes, and the gamma-secretase complex (SmNicastrin, SmAph-1, and SmPen-2), throughout all the life stages analyzed. Besides, it was observed that the viability and separation of adult worm pairs were not affected by treatment with N-[N(3,5)-difluorophenacetyl)-L-Alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch pathway inhibitor. Moreover, DAPT treatment decreased the production of phenotypically normal eggs and arrested their development in culture. Our results also showed a significant decrease in SmHes transcript levels in both adult worms and eggs treated with DAPT. These results provide, for the first time, functional validation of the Notch pathway in S. mansoni and suggest its involvement in parasite oogenesis and embryogenesis. Given the complexity of the Notch pathway, further experiments shall highlight the full repertoire of Notch-mediated cellular processes throughout the S. mansoni life cycle.
Collapse
Affiliation(s)
- Lizandra G Magalhães
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil.
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Enyara R Morais
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Carla B Machado
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Matheus S Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Fernanda J Cabral
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Julia M Souza
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Avenida, Dr Armando Salles de Oliveira, 201 Franca, SP, Brazil
| | - Cláudia S Soares
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata G Sá
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
43
|
Sandhu GK, Milevskiy MJG, Wilson W, Shewan AM, Brown MA. Non-coding RNAs in Mammary Gland Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:121-153. [PMID: 26659490 DOI: 10.1007/978-94-017-7417-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.
Collapse
Affiliation(s)
- Gurveen K Sandhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Wesley Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
44
|
|
45
|
Pigment Epithelium-Derived Factor (PEDF) is a Determinant of Stem Cell Fate: Lessons from an Ultra-Rare Disease. J Dev Biol 2015; 3:112-128. [PMID: 27239449 PMCID: PMC4883593 DOI: 10.3390/jdb3040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PEDF is a secreted glycoprotein that is widely expressed by multiple organs. Numerous functional contributions have been attributed to PEDF with antiangiogenic, antitumor, anti-inflammatory, and neurotrophic properties among the most prominent. The discovery that null mutations in the PEDF gene results in Osteogenesis Imperfecta Type VI, a rare autosomal recessive bone disease characterized by multiple fractures, highlights a critical developmental function for this protein. This ultra-rare orphan disease has provided biological insights into previous studies that noted PEDF’s effects on various stem cell populations. In addition to bone development, PEDF modulates resident stem cell populations in the brain, muscle, and eye. Functional effects on human embryonic stem cells have also been demonstrated. An overview of recent advances in our understanding by which PEDF regulates stem cells and their potential clinical applications will be evaluated in this review.
Collapse
|
46
|
Zeng C, Xing R, Liu J, Xing F. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis. Apoptosis 2015; 21:1-12. [DOI: 10.1007/s10495-015-1188-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Ho DM, Pallavi SK, Artavanis-Tsakonas S. The Notch-mediated hyperplasia circuitry in Drosophila reveals a Src-JNK signaling axis. eLife 2015. [PMID: 26222204 PMCID: PMC4517436 DOI: 10.7554/elife.05996] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Notch signaling controls a wide range of cell fate decisions during development and disease via synergistic interactions with other signaling pathways. Here, through a genome-wide genetic screen in Drosophila, we uncover a highly complex Notch-dependent genetic circuitry that profoundly affects proliferation and consequently hyperplasia. We report a novel synergistic relationship between Notch and either of the non-receptor tyrosine kinases Src42A and Src64B to promote hyperplasia and tissue disorganization, which results in cell cycle perturbation, JAK/STAT signal activation, and differential regulation of Notch targets. Significantly, the JNK pathway is responsible for the majority of the phenotypes and transcriptional changes downstream of Notch-Src synergy. We previously reported that Notch-Mef2 also activates JNK, indicating that there are commonalities within the Notch-dependent proliferation circuitry; however, the current data indicate that Notch-Src accesses JNK in a significantly different fashion than Notch-Mef2. DOI:http://dx.doi.org/10.7554/eLife.05996.001 The cells within animals are organized into tissues and organs that perform particular roles. To develop and maintain these structures, the ability of individual cells to divide and grow is strictly controlled by the activities of many proteins, including one called Notch. This protein is found in all multicellular organisms and allows cells to communicate with each other. Mutations in the gene that encodes Notch can cause cells to divide excessively and lead to cancer and other diseases. Notch regulates the growth and division of cells by interacting with many other proteins. For example, Mef2 works with Notch to activate a communication system called the JNK pathway. This pathway is involved in controlling cell division, cell death, and cell movement. However, it is thought that Notch may also interact with other proteins that have not yet been identified. Now, Ho et al. have conducted a genome-wide screen in fruit flies to find proteins that interact with Notch. The experiments used flies that develop abnormally large eyes because they have an over-active Notch protein. Ho et al. identified hundreds of fruit fly genes that could increase or decrease the size of the flies' eyes in the presence of Notch activity. Many of these genes are known to be involved in development, cell division, or in controlling the activity of other genes. Ho et al. found that two of these genes encode similar proteins called Src42A and Src64B, which are similar to the Src proteins that are involved in many types of human cancers. The experiments show that both proteins interact with Notch to promote uncontrolled cell division and lead to tissues in the flies becoming more disorganized. The JNK pathway is also activated by Notch working with Src42A or Src64B, but in a different manner to how it is activated by Mef2 and Notch, and with different consequences for cells. This study provides new insights into how genes work together in order to influence cell division and other events in development. Also, it suggests that Notch activity may regulate the growth of cancers linked with defects in the Src proteins. DOI:http://dx.doi.org/10.7554/eLife.05996.002
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - S K Pallavi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
48
|
Itatani Y, Sonoshita M, Kakizaki F, Okawa K, Stifani S, Itoh H, Sakai Y, Taketo MM. Characterization of Aes nuclear foci in colorectal cancer cells. J Biochem 2015; 159:133-40. [PMID: 26229111 DOI: 10.1093/jb/mvv077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/20/2015] [Indexed: 11/14/2022] Open
Abstract
Amino-terminal enhancer of split (Aes) is a member of Groucho/Transducin-like enhancer (TLE) family. Aes is a recently found metastasis suppressor of colorectal cancer (CRC) that inhibits Notch signalling, and forms nuclear foci together with TLE1. Although some Notch-associated proteins are known to form subnuclear bodies, little is known regarding the dynamics or functions of these structures. Here, we show that Aes nuclear foci in CRC observed under an electron microscope are in a rather amorphous structure, lacking surrounding membrane. Investigation of their behaviour during the cell cycle by time-lapse cinematography showed that Aes nuclear foci dissolve during mitosis and reassemble after completion of cytokinesis. We have also found that heat shock cognate 70 (HSC70) is an essential component of Aes foci. Pharmacological inhibition of the HSC70 ATPase activity with VER155008 reduces Aes focus formation. These results provide insight into the understanding of Aes-mediated inhibition of Notch signalling.
Collapse
Affiliation(s)
- Yoshiro Itatani
- Department of Pharmacology and Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | - Katsuya Okawa
- Drug Discovery Research Laboratories, Kyowa Hakko Kirin Co., Ltd, 1188 Shimotogari Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Stefano Stifani
- Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Quebec H3A 2B4, Canada; and
| | - Hideaki Itoh
- Department of Life Science, Faculty of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuen Town, Akita, 010-0852 Akita, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - M Mark Taketo
- Department of Pharmacology and Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida Konoé-cho, Sakyo-ku, Kyoto 606-8501, Japan;
| |
Collapse
|
49
|
Schrader L, Simola DF, Heinze J, Oettler J. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior. Mol Biol Evol 2015; 32:1474-86. [PMID: 25725431 PMCID: PMC4615751 DOI: 10.1093/molbev/msv039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging.
Collapse
Affiliation(s)
- Lukas Schrader
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Daniel F Simola
- Department of Cell and Developmental Biology, University of Pennsylvania
| | - Jürgen Heinze
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Jan Oettler
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
50
|
Gude N, Joyo E, Toko H, Quijada P, Villanueva M, Hariharan N, Sacchi V, Truffa S, Joyo A, Voelkers M, Alvarez R, Sussman MA. Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Res Cardiol 2015; 110:29. [PMID: 25893875 DOI: 10.1007/s00395-015-0488-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 12/12/2022]
Abstract
Phase I clinical trials applying autologous progenitor cells to treat heart failure have yielded promising results; however, improvement in function is modest, indicating a need to enhance cardiac stem cell reparative capacity. Notch signaling plays a crucial role in cardiac development, guiding cell fate decisions that underlie myocyte and vessel differentiation. The Notch pathway is retained in the adult cardiac stem cell niche, where level and duration of Notch signal influence proliferation and differentiation of cardiac progenitors. In this study, Notch signaling promotes growth, survival and differentiation of cardiac progenitor cells into smooth muscle lineages in vitro. Cardiac progenitor cells expressing tamoxifen-regulated intracellular Notch1 (CPCeK) are significantly larger and proliferate more slowly than control cells, exhibit elevated mTORC1 and Akt signaling, and are resistant to oxidative stress. Vascular smooth muscle and cardiomyocyte markers increase in CPCeK and are augmented further upon ligand-mediated induction of Notch signal. Paracrine signals indicative of growth, survival and differentiation increase with Notch activity, while markers of senescence are decreased. Adoptive transfer of CPCeK into infarcted mouse myocardium enhances preservation of cardiac function and reduces infarct size relative to hearts receiving control cells. Greater capillary density and proportion of vascular smooth muscle tissue in CPCeK-treated hearts indicate improved vascularization. Finally, we report a previously undescribed signaling mechanism whereby Notch activation stimulates CPC growth, survival and differentiation via mTORC1 and paracrine factor expression. Taken together, these findings suggest that regulated Notch activation potentiates the reparative capacity of CPCs in the treatment of cardiac disease.
Collapse
Affiliation(s)
- Natalie Gude
- Heart Institute, and Biology Department, SDSU Integrated Regenerative Research Institute, Life Sciences North, Room 426, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|