1
|
Barman P, Chakraborty P, Guha S, Kaja A, Bhaumik R, Bhaumik SR. TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195077. [PMID: 39855624 DOI: 10.1016/j.bbagrm.2025.195077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications. Here, we have adopted a proteome-wide approach via TAP (Tandem affinity purification)-mediated pull-down of FACT and its interactors from the soluble and insoluble cellular fractions followed by MS (Mass-spectrometry) analysis. We find distinct interactors of FACT in the soluble and insoluble fractions in addition to a common set in both. While a set of all these interactors overlaps with previously known FACT partners, many are new, which are involved in different cellular processes such as transcription, DNA repair and chromatin regulation. Further, an intrinsically disordered ubiquitin ligase, San1, that ubiquitylates the Spt16 component of FACT for proteasomal degradation to regulate chromatin, transcription and genome integrity is found to influence the interactions of FACT with a set of proteins including epigenetic, transcription and DNA repair factors. Collectively, our results unveil proteome-wide FACT interactions and regulation by a ubiquitin ligase, hence shedding much light on FACT networks with functional and mechanistic implications.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
2
|
Dupouy G, Dong Y, Herzog E, Chabouté ME, Berr A. Nuclear envelope dynamics in connection to chromatin remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:963-981. [PMID: 37067011 DOI: 10.1111/tpj.16246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
The nucleus is a central organelle of eukaryotic cells undergoing dynamic structural changes during cellular fundamental processes such as proliferation and differentiation. These changes rely on the integration of developmental and stress signals at the nuclear envelope (NE), orchestrating responses at the nucleo-cytoplasmic interface for efficient genomic functions such as DNA transcription, replication and repair. While in animals, correlation has already been established between NE dynamics and chromatin remodeling using last-generation tools and cutting-edge technologies, this topic is just emerging in plants, especially in response to mechanical cues. This review summarizes recent data obtained in this field with more emphasis on the mechanical stress response. It also highlights similarities/differences between animal and plant cells at multiples scales, from the structural organization of the nucleo-cytoplasmic continuum to the functional impacts of NE dynamics.
Collapse
Affiliation(s)
- Gilles Dupouy
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Etienne Herzog
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS- Université de Strasbourg, 12 rue du Général Zimmer,, F-67084, Strasbourg, France
| |
Collapse
|
3
|
Nakayama K, Shachar S, Finn EH, Sato H, Hirakawa A, Misteli T. Large-scale mapping of positional changes of hypoxia-responsive genes upon activation. Mol Biol Cell 2022; 33:ar72. [PMID: 35476603 PMCID: PMC9635277 DOI: 10.1091/mbc.e21-11-0593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chromosome structure and nuclear organization are important factors in the regulation of gene expression. Transcription of a gene is influenced by local and global chromosome features such as chromatin condensation status. The relationship between the 3D position of a gene in the nucleus and its activity is less clear. Here we used high-throughput imaging to perform a large-scale analysis of the spatial location of nearly 100 hypoxia-responsive genes to determine whether their location and activity state are correlated. Radial distance analysis demonstrated that the majority of Hypoxia-Inducible Factor (HIF)- and CREB-dependent hypoxia-responsive genes are located in the intermediate region of the nucleus, and some of them changed their radial position in hypoxia. Analysis of the relative distances among a subset of HIF target genes revealed that some gene pairs altered their relative location to each other on hypoxic treatment, suggesting higher-order chromatin rearrangements. While these changes in location occurred in response to hypoxic activation of the target genes, they did not correlate with the extent of their activation. These results suggest that induction of the hypoxia-responsive gene expression program is accompanied by spatial alterations of the genome, but that radial and relative gene positions are not directly related to gene activity.
Collapse
Affiliation(s)
- Koh Nakayama
- Oxygen Biology Laboratory, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan.,Department of Pharmacology, School of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan.,Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| | - Sigal Shachar
- Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| | - Elizabeth H Finn
- Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| | - Hiroyuki Sato
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tom Misteli
- Cell Biology of Genomes Group, Center for Cancer Research, National Cancer Institute NIH, Bethesda, 20892
| |
Collapse
|
4
|
Ptak C, Saik NO, Premashankar A, Lapetina DL, Aitchison JD, Montpetit B, Wozniak RW. Phosphorylation-dependent mitotic SUMOylation drives nuclear envelope-chromatin interactions. J Cell Biol 2021; 220:212843. [PMID: 34787675 PMCID: PMC8641411 DOI: 10.1083/jcb.202103036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, chromatin binding to the inner nuclear membrane (INM) and nuclear pore complexes (NPCs) contributes to spatial organization of the genome and epigenetic programs important for gene expression. In mitosis, chromatin–nuclear envelope (NE) interactions are lost and then formed again as sister chromosomes segregate to postmitotic nuclei. Investigating these processes in S. cerevisiae, we identified temporally and spatially controlled phosphorylation-dependent SUMOylation events that positively regulate postmetaphase chromatin association with the NE. Our work establishes a phosphorylation-mediated targeting mechanism of the SUMO ligase Siz2 to the INM during mitosis, where Siz2 binds to and SUMOylates the VAP protein Scs2. The recruitment of Siz2 through Scs2 is further responsible for a wave of SUMOylation along the INM that supports the assembly and anchorage of subtelomeric chromatin at the INM and localization of an active gene (INO1) to NPCs during the later stages of mitosis and into G1-phase.
Collapse
Affiliation(s)
- Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Natasha O Saik
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Diego L Lapetina
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.,Department of Viticulture and Enology, University of California Davis, Davis, CA
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Cliff ER, Kirkpatrick RL, Cunningham-Bryant D, Fernandez B, Harman JL, Zalatan JG. CRISPR-Cas-Mediated Tethering Recruits the Yeast HMR Mating-Type Locus to the Nuclear Periphery but Fails to Silence Gene Expression. ACS Synth Biol 2021; 10:2870-2877. [PMID: 34723510 DOI: 10.1021/acssynbio.1c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the relationship between genome structure and function, we have developed a programmable CRISPR-Cas system for nuclear peripheral recruitment in yeast. We benchmarked this system at the HMR and GAL2 loci, both of which are well-characterized model systems for localization to the nuclear periphery. Using microscopy and gene silencing assays, we demonstrate that CRISPR-Cas-mediated tethering can recruit the HMR locus but does not detectably silence reporter gene expression. A previously reported Gal4-mediated tethering system does silence gene expression, and we demonstrate that the silencing effect has an unexpected dependence on the properties of the protein tether. The CRISPR-Cas system was unable to recruit GAL2 to the nuclear periphery. Our results reveal potential challenges for synthetic genome structure perturbations and suggest that distinct functional effects can arise from subtle structural differences in how genes are recruited to the periphery.
Collapse
|
6
|
Skupien-Jaroszek A, Walczak A, Czaban I, Pels KK, Szczepankiewicz AA, Krawczyk K, Ruszczycki B, Wilczynski GM, Dzwonek J, Magalska A. The interplay of seizures-induced axonal sprouting and transcription-dependent Bdnf repositioning in the model of temporal lobe epilepsy. PLoS One 2021; 16:e0239111. [PMID: 34086671 PMCID: PMC8177504 DOI: 10.1371/journal.pone.0239111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Karolina Pels
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
7
|
Asfare S, Eldabagh R, Siddiqui K, Patel B, Kaba D, Mullane J, Siddiqui U, Arnone JT. Systematic Analysis of Functionally Related Gene Clusters in the Opportunistic Pathogen, Candida albicans. Microorganisms 2021; 9:microorganisms9020276. [PMID: 33525750 PMCID: PMC7911571 DOI: 10.3390/microorganisms9020276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
The proper balance of gene expression is essential for cellular health, organismal development, and maintaining homeostasis. In response to complex internal and external signals, the cell needs to modulate gene expression to maintain proteostasis and establish cellular identity within its niche. On a genome level, single-celled prokaryotic microbes display clustering of co-expressed genes that are regulated as a polycistronic RNA. This phenomenon is largely absent from eukaryotic microbes, although there is extensive clustering of co-expressed genes as functional pairs spread throughout the genome in Saccharomyces cerevisiae. While initial analysis demonstrated conservation of clustering in divergent fungal lineages, a comprehensive analysis has yet to be performed. Here we report on the prevalence, conservation, and significance of the functional clustering of co-regulated genes within the opportunistic human pathogen, Candida albicans. Our analysis reveals that there is extensive clustering within this organism-although the identity of the gene pairs is unique compared with those found in S. cerevisiae-indicating that this genomic arrangement evolved after these microbes diverged evolutionarily, rather than being the result of an ancestral arrangement. We report a clustered arrangement in gene families that participate in diverse molecular functions and are not the result of a divergent orientation with a shared promoter. This arrangement coordinates the transcription of the clustered genes to their neighboring genes, with the clusters congregating to genomic loci that are conducive to transcriptional regulation at a distance.
Collapse
|
8
|
Saik NO, Park N, Ptak C, Adames N, Aitchison JD, Wozniak RW. Recruitment of an Activated Gene to the Yeast Nuclear Pore Complex Requires Sumoylation. Front Genet 2020; 11:174. [PMID: 32211027 PMCID: PMC7067905 DOI: 10.3389/fgene.2020.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 01/10/2023] Open
Abstract
In addition to their role in regulating transport across the nuclear envelope, increasing evidence suggests nuclear pore complexes (NPCs) function in regulating gene expression. For example, the induction of certain genes (e.g., yeast INO1) is accompanied by their movement from the nuclear interior to NPCs. As sumoylation has been linked to the regulation of chromatin spatial organization and transcriptional activity, we investigated the role of sumoylation in the expression and NPC recruitment of the INO1 gene. We observed that induction of INO1 is accompanied by both increased and decreased sumoylation of proteins associated with specific regions along the INO1 locus. Furthermore, we show that the E3 ligase Siz2/Nfi1 is required for targeting the INO1 locus to the NPC where it interacts with the SUMO isopeptidase Ulp1. Our data suggest that this interaction is required for both the association of INO1 with the NPC and for its normal expression. These results imply that sumoylation is a key regulator of INO1 targeting to the NPC, and a cycle of sumoylation and NPC-associated desumoylation events contribute to the regulation of INO1 expression.
Collapse
Affiliation(s)
- Natasha O Saik
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Nogi Park
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.,Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Christopher Ptak
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Neil Adames
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.,New Culture, San Francisco, CA, United States
| | - John D Aitchison
- Seattle Children's Research Institute, Seattle, WA, United States
| | - Richard W Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Brickner DG, Randise-Hinchliff C, Lebrun Corbin M, Liang JM, Kim S, Sump B, D'Urso A, Kim SH, Satomura A, Schmit H, Coukos R, Hwang S, Watson R, Brickner JH. The Role of Transcription Factors and Nuclear Pore Proteins in Controlling the Spatial Organization of the Yeast Genome. Dev Cell 2020; 49:936-947.e4. [PMID: 31211995 DOI: 10.1016/j.devcel.2019.05.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
Loss of nuclear pore complex (NPC) proteins, transcription factors (TFs), histone modification enzymes, Mediator, and factors involved in mRNA export disrupts the physical interaction of chromosomal sites with NPCs. Conditional inactivation and ectopic tethering experiments support a direct role for the TFs Gcn4 and Nup2 in mediating interaction with the NPC but suggest an indirect role for factors involved in mRNA export or transcription. A conserved "positioning domain" within Gcn4 controls interaction with the NPC and inter-chromosomal clustering and promotes transcription of target genes. Such a function may be quite common; a comprehensive screen reveals that tethering of most yeast TFs is sufficient to promote targeting to the NPC. While some TFs require Nup100, others do not, suggesting two distinct targeting mechanisms. These results highlight an important and underappreciated function of TFs in controlling the spatial organization of the yeast genome through interaction with the NPC.
Collapse
Affiliation(s)
- Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | | | - Marine Lebrun Corbin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Julie Ming Liang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Stephanie Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Bethany Sump
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Seo Hyun Kim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Atsushi Satomura
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Heidi Schmit
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Subin Hwang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Raven Watson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
10
|
McColloch A, Rabiei M, Rabbani P, Bowling A, Cho M. Correlation between Nuclear Morphology and Adipogenic Differentiation: Application of a Combined Experimental and Computational Modeling Approach. Sci Rep 2019; 9:16381. [PMID: 31705037 PMCID: PMC6842088 DOI: 10.1038/s41598-019-52926-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells undergo drastic morphological alterations during differentiation. While extensive studies have been performed to examine the cytoskeletal remodeling, there is a growing interest to determine the morphological, structural and functional changes of the nucleus. The current study is therefore aimed at quantifying the extent of remodeling of the nuclear morphology of human mesenchymal stem cells during biochemically-induced adipogenic differentiation. Results show the size of nuclei decreased exponentially over time as the lipid accumulation is up-regulated. Increases in the lipid accumulation appear to lag the nuclear reorganization, suggesting the nuclear deformation is a prerequisite to adipocyte maturation. Furthermore, the lamin A/C expression was increased and redistributed to the nuclear periphery along with a subsequent increase in the nuclear aspect ratio. To further assess the role of the nucleus, a nuclear morphology with a high aspect ratio was achieved using microcontact-printed substrate. The cells with an elongated nuclear shape did not efficiently undergo adipogenesis, suggesting the cellular and nuclear processes associated with stem cell differentiation at the early stage of adipogenesis cause a change in the nuclear morphology and cannot be abrogated by the morphological cues. In addition, a novel computational biomechanical model was generated to simulate the nuclear shape change during differentiation and predict the forces acting upon the nucleus. This effort led to the development of computational scaling approach to simulate the experimentally observed adipogenic differentiation processes over 15 days in less than 1.5 hours.
Collapse
Affiliation(s)
- Andrew McColloch
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Manoochehr Rabiei
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Parisa Rabbani
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA
| | - Alan Bowling
- University of Texas at Arlington, Department of Mechanical and Aerospace Engineering, Arlington, TX, 76010, USA
| | - Michael Cho
- University of Texas at Arlington, Department of Biomedical Engineering, Arlington, 76010, USA.
| |
Collapse
|
11
|
Federico C, Owoka T, Ragusa D, Sturiale V, Caponnetto D, Leotta CG, Bruno F, Foster HA, Rigamonti S, Giudici G, Cazzaniga G, Bridger JM, Sisu C, Saccone S, Tosi S. Deletions of Chromosome 7q Affect Nuclear Organization and HLXB9Gene Expression in Hematological Disorders. Cancers (Basel) 2019; 11:cancers11040585. [PMID: 31027247 PMCID: PMC6521283 DOI: 10.3390/cancers11040585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
The radial spatial positioning of individual gene loci within interphase nuclei has been associated with up- and downregulation of their expression. In cancer, the genome organization may become disturbed due to chromosomal abnormalities, such as translocations or deletions, resulting in the repositioning of genes and alteration of gene expression with oncogenic consequences. In this study, we analyzed the nuclear repositioning of HLXB9 (also called MNX1), mapping at 7q36.3, in patients with hematological disorders carrying interstitial deletions of 7q of various extents, with a distal breakpoint in 7q36. We observed that HLXB9 remains at the nuclear periphery, or is repositioned towards the nuclear interior, depending upon the compositional properties of the chromosomal regions involved in the rearrangement. For instance, a proximal breakpoint leading the guanine-cytosine (GC)-poor band 7q21 near 7q36 would bring HLXB9 to the nuclear periphery, whereas breakpoints that join the GC-rich band 7q22 to 7q36 would bring HLXB9 to the nuclear interior. This nuclear repositioning is associated with transcriptional changes, with HLXB9 in the nuclear interior becoming upregulated. Here we report an in cis rearrangement, involving one single chromosome altering gene behavior. Furthermore, we propose a mechanistic model for chromatin reorganization that affects gene expression via the influences of new chromatin neighborhoods.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Temitayo Owoka
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Denise Ragusa
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Valentina Sturiale
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Domenica Caponnetto
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Claudia Giovanna Leotta
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Helen A Foster
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
- College of Health and Life Science, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Silvia Rigamonti
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Giovanni Giudici
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Giovanni Cazzaniga
- Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP), Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Joanna M Bridger
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Cristina Sisu
- College of Health and Life Science, Brunel University London, Kingston Lane UB8 3PH, UK.
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, via Androne 81, 95124 Catania CT, Italy.
| | - Sabrina Tosi
- Genome Engineering and Maintenance Network, Institute of Environment, Health and Societies, Brunel University London, Kingston Lane UB8 3PH, UK.
| |
Collapse
|
12
|
Choi J, Strickler SR, Richards EJ. Loss of CRWN Nuclear Proteins Induces Cell Death and Salicylic Acid Defense Signaling. PLANT PHYSIOLOGY 2019; 179:1315-1329. [PMID: 30696746 PMCID: PMC6446779 DOI: 10.1104/pp.18.01020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/18/2019] [Indexed: 05/09/2023]
Abstract
Defects in the nuclear lamina of animal cell nuclei have dramatic effects on nuclear structure and gene expression as well as diverse physiological manifestations. We report that deficiencies in CROWDED NUCLEI (CRWN), which are candidate nuclear lamina proteins in Arabidopsis (Arabidopsis thaliana), trigger widespread changes in transcript levels and whole-plant phenotypes, including dwarfing and spontaneous cell death lesions. These phenotypes are caused in part by ectopic induction of plant defense responses via the salicylic acid pathway. Loss of CRWN proteins induces the expression of the salicylic acid biosynthetic gene ISOCHORISMATE SYNTHASE1, which leads to spontaneous defense responses in crwn1 crwn2 and crwn1 crwn4 mutants, which are deficient in two of the four CRWN paralogs. The symptoms of ectopic defense response, including pathogenesis marker gene expression and cell death, increase in older crwn double mutants. These age-dependent effects are postulated to reflect an increase in nuclear dysfunction or damage over time, a phenomenon reminiscent of aging effects seen in animal nuclei and in some human laminopathy patients.
Collapse
Affiliation(s)
- Junsik Choi
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Boyce Thompson Institute, Ithaca, New York 14853
| | | | | |
Collapse
|
13
|
Abstract
Recent advances in both the technologies used to measure chromatin movement and the biophysical analysis used to model them have yielded a fuller understanding of chromatin dynamics and the polymer structure that underlies it. Changes in nucleosome packing, checkpoint kinase activation, the cell cycle, chromosomal tethers, and external forces acting on nuclei in response to external and internal stimuli can alter the basal mobility of DNA in interphase nuclei of yeast or mammalian cells. Although chromatin movement is assumed to be necessary for many DNA-based processes, including gene activation by distal enhancer–promoter interaction or sequence-based homology searches during double-strand break repair, experimental evidence supporting an essential role in these activities is sparse. Nonetheless, high-resolution tracking of chromatin dynamics has led to instructive models of the higher-order folding and flexibility of the chromatin polymer. Key regulators of chromatin motion in physiological conditions or after damage induction are reviewed here.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
- Current affiliation: Harvard Center for Advanced Imaging, Cambridge, MA 02138, USA
| | - Michael H. Hauer
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Misale MS, Witek Janusek L, Tell D, Mathews HL. Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction. Brain Behav Immun 2018; 67:279-289. [PMID: 28911980 PMCID: PMC5696065 DOI: 10.1016/j.bbi.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells.
Collapse
Affiliation(s)
- Michael S Misale
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Linda Witek Janusek
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Dina Tell
- Marcella Niehoff School of Nursing, Department of Health Promotion, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States
| | - Herbert L Mathews
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Health Science Division, 2160 South First Ave., Maywood, IL 60153, United States.
| |
Collapse
|
15
|
Ooi FK, Prahlad V. Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Sci Signal 2017; 10:10/501/eaan4893. [PMID: 29042483 DOI: 10.1126/scisignal.aan4893] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning, a process by which animals modify their behavior as a result of experience, enables organisms to synthesize information from their surroundings to acquire resources and avoid danger. We showed that a previous encounter with only the odor of pathogenic bacteria prepared Caenorhabditis elegans to survive exposure to the pathogen by increasing the heat shock factor 1 (HSF-1)-dependent expression of genes encoding molecular chaperones. Experience-mediated enhancement of chaperone gene expression required serotonin, which primed HSF-1 to enhance the expression of molecular chaperone genes by promoting its localization to RNA polymerase II-enriched nuclear loci, even before transcription occurred. However, HSF-1-dependent chaperone gene expression was stimulated only if and when animals encountered the pathogen. Thus, learning equips C. elegans to better survive environmental dangers by preemptively and specifically initiating transcriptional mechanisms throughout the whole organism that prepare the animal to respond rapidly to proteotoxic agents. These studies provide one plausible basis for the protective role of environmental enrichment in disease.
Collapse
Affiliation(s)
- Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building East, 338 BBE, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Lherbette M, Dos Santos Á, Hari-Gupta Y, Fili N, Toseland CP, Schaap IAT. Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei. Sci Rep 2017; 7:8116. [PMID: 28808261 PMCID: PMC5556037 DOI: 10.1038/s41598-017-08517-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus.
Collapse
Affiliation(s)
- Michael Lherbette
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ália Dos Santos
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Natalia Fili
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Iwan A T Schaap
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. .,SmarAct GmbH, D26135, Oldenburg, Germany.
| |
Collapse
|
17
|
Fišerová J, Efenberková M, Sieger T, Maninová M, Uhlířová J, Hozák P. Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. J Cell Sci 2017; 130:2066-2077. [PMID: 28476938 DOI: 10.1242/jcs.198424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/02/2017] [Indexed: 12/28/2022] Open
Abstract
The nuclear periphery (NP) plays a substantial role in chromatin organization. Heterochromatin at the NP is interspersed with active chromatin surrounding nuclear pore complexes (NPCs); however, details of the peripheral chromatin organization are missing. To discern the distribution of epigenetic marks at the NP of HeLa nuclei, we used structured illumination microscopy combined with a new MATLAB software tool for automatic NP and NPC detection, measurements of fluorescent intensity and statistical analysis of measured data. Our results show that marks for both active and non-active chromatin associate differentially with NPCs. The incidence of heterochromatin marks, such as H3K27me2 and H3K9me2, was significantly lower around NPCs. In contrast, the presence of marks of active chromatin such as H3K4me2 was only decreased very slightly around the NPCs or not at all (H3K9Ac). Interestingly, the histone demethylases LSD1 (also known as KDM1A) and KDM2A were enriched within the NPCs, suggesting that there was a chromatin-modifying mechanism at the NPCs. Inhibition of transcription resulted in a larger drop in the distribution of H1, H3K9me2 and H3K23me2, which implies that transcription has a role in the organization of heterochromatin at the NP.
Collapse
Affiliation(s)
- Jindřiška Fišerová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Michaela Efenberková
- Microscopy Centre - LM and EM, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Tomáš Sieger
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, 121 35, Czech Republic
| | - Miloslava Maninová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Jana Uhlířová
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics CAS, v.v.i., Vídeňská 1083, Prague 142 00, Czech Republic.,Division BIOCEV, Institute of Molecular Genetics CAS, v.v.i., Průmyslová 595, Vestec, Prague 252 50, Czech Republic
| |
Collapse
|
18
|
Arbona JM, Herbert S, Fabre E, Zimmer C. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations. Genome Biol 2017; 18:81. [PMID: 28468672 PMCID: PMC5414205 DOI: 10.1186/s13059-017-1199-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
Background The structure and mechanical properties of chromatin impact DNA functions and nuclear architecture but remain poorly understood. In budding yeast, a simple polymer model with minimal sequence-specific constraints and a small number of structural parameters can explain diverse experimental data on nuclear architecture. However, how assumed chromatin properties affect model predictions was not previously systematically investigated. Results We used hundreds of dynamic chromosome simulations and Bayesian inference to determine chromatin properties consistent with an extensive dataset that includes hundreds of measurements from imaging in fixed and live cells and two Hi-C studies. We place new constraints on average chromatin fiber properties, narrowing down the chromatin compaction to ~53–65 bp/nm and persistence length to ~52–85 nm. These constraints argue against a 20–30 nm fiber as the exclusive chromatin structure in the genome. Our best model provides a much better match to experimental measurements of nuclear architecture and also recapitulates chromatin dynamics measured on multiple loci over long timescales. Conclusion This work substantially improves our understanding of yeast chromatin mechanics and chromosome architecture and provides a new analytic framework to infer chromosome properties in other organisms. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1199-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Unité Imagerie et Modélisation, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,UMR 3691, CNRS; C3BI, USR 3756, IP CNRS, Paris, France
| | - Sébastien Herbert
- Unité Imagerie et Modélisation, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France.,UMR 3691, CNRS; C3BI, USR 3756, IP CNRS, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75015, Paris, France
| | - Emmanuelle Fabre
- Chromosome Biology and Dynamics, Hôpital Saint Louis, Paris, France
| | - Christophe Zimmer
- Unité Imagerie et Modélisation, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France. .,UMR 3691, CNRS; C3BI, USR 3756, IP CNRS, Paris, France.
| |
Collapse
|
19
|
Abstract
The eukaryotic nucleus is enclosed by the nuclear envelope, which is perforated by the nuclear pores, the gateways of macromolecular exchange between the nucleoplasm and cytoplasm. The nucleoplasm is organized in a complex three-dimensional fashion that changes over time and in response to stimuli. Within the cell, the nucleus must be viewed as an organelle (albeit a gigantic one) that is a recipient of cytoplasmic forces and capable of morphological and positional dynamics. The most dramatic reorganization of this organelle occurs during mitosis and meiosis. Although many of these aspects are less well understood for the nuclei of plants than for those of animals or fungi, several recent discoveries have begun to place our understanding of plant nuclei firmly into this broader cell-biological context.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| | | | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
20
|
Pederson T, King MC, Marko JF. Forces, fluctuations, and self-organization in the nucleus. Mol Biol Cell 2016; 26:3915-9. [PMID: 26543199 PMCID: PMC4710223 DOI: 10.1091/mbc.e15-06-0357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We address several processes and domains in the nucleus wherein holding the perspective of physics either reveals a conundrum or is likely to enable progress.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
21
|
Kaur S, Coulombe Y, Ramdzan ZM, Leduy L, Masson JY, Nepveu A. Special AT-rich Sequence-binding Protein 1 (SATB1) Functions as an Accessory Factor in Base Excision Repair. J Biol Chem 2016; 291:22769-22780. [PMID: 27590341 DOI: 10.1074/jbc.m116.735696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/01/2016] [Indexed: 01/19/2023] Open
Abstract
Base excision repair is initiated by DNA glycosylases that recognize specific altered bases. DNA glycosylases for oxidized bases carry both a glycosylase activity that removes the faulty base and an apyrimidinic/apurinic lyase activity that introduces a single-strand DNA incision. In particular, the CUT domains within the CUX1 and CUX2 proteins were recently shown to interact with the 8-oxoguanine (8-oxoG) DNA glycosylase and stimulate its enzymatic activities. SATB1, which contains two CUT domains, was originally characterized as a T cell-specific genome organizer whose aberrant overexpression in breast cancer can promote tumor progression. Here we investigated the involvement of SATB1 in DNA repair. SATB1 knockdown caused a delay in DNA repair following exposure to H2O2, an increase in OGG1-sensitive oxidized bases within genomic DNA, and a decrease in 8-oxoG cleavage activity in cell extracts. In parallel, we observed an increase in phospho-CHK1 and γ-H2AX levels and a decrease in DNA synthesis. Conversely, ectopic expression of SATB1 accelerated DNA repair and reduced the levels of oxidized bases in genomic DNA. Moreover, an enhanced GFP-SATB1 fusion protein was rapidly recruited to laser microirradiation-induced DNA damage. Using purified proteins, we showed that SATB1 interacts directly with OGG1, increases its binding to 8-oxoG-containing DNA, promotes Schiff base formation, and stimulates its glycosylase and apyrimidinic/apurinic lyase enzymatic activities. Structure/function analysis demonstrated that CUT domains, but not the homeodomain, are responsible for the stimulation of OGG1. Together, these results identify another CUT domain protein that functions both as a transcription factor and an accessory factor in base excision repair.
Collapse
Affiliation(s)
- Simran Kaur
- From the Goodman Cancer Research Centre and.,Departments of Biochemistry
| | - Yan Coulombe
- the Genome Stability Laboratory, CHU de Québec Research Center, Québec City, Québec G1R 2J6, Canada, and.,the Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Québec G1V 0A6, Canada
| | | | - Lam Leduy
- From the Goodman Cancer Research Centre and
| | - Jean-Yves Masson
- the Genome Stability Laboratory, CHU de Québec Research Center, Québec City, Québec G1R 2J6, Canada, and.,the Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Québec G1V 0A6, Canada
| | - Alain Nepveu
- From the Goodman Cancer Research Centre and .,Departments of Biochemistry.,Oncology, and.,Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
22
|
Brickner DG, Sood V, Tutucci E, Coukos R, Viets K, Singer RH, Brickner JH. Subnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms. Mol Biol Cell 2016; 27:2980-93. [PMID: 27489341 PMCID: PMC5042583 DOI: 10.1091/mbc.e16-03-0174] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
“DNA zip codes” control positioning and interchromosomal clustering of GAL1-10 in yeast. However, these two phenomena have distinct molecular mechanisms, requiring different nuclear pore proteins, and are regulated differently by transcription and the cell cycle. On activation, the GAL genes in yeast are targeted to the nuclear periphery through interaction with the nuclear pore complex. Here we identify two cis-acting “DNA zip codes” from the GAL1-10 promoter that are necessary and sufficient to induce repositioning to the nuclear periphery. One of these zip codes, GRS4, is also necessary and sufficient to promote clustering of GAL1-10 alleles. GRS4, and to a lesser extent GRS5, contribute to stronger expression of GAL1 and GAL10 by increasing the fraction of cells that respond to the inducer. The molecular mechanism controlling targeting to the NPC is distinct from the molecular mechanism controlling interchromosomal clustering. Targeting to the nuclear periphery and interaction with the nuclear pore complex are prerequisites for gene clustering. However, once formed, clustering can be maintained in the nucleoplasm, requires distinct nuclear pore proteins, and is regulated differently through the cell cycle. In addition, whereas targeting of genes to the NPC is independent of transcription, interchromosomal clustering requires transcription. These results argue that zip code–dependent gene positioning at the nuclear periphery and interchromosomal clustering represent interdependent phenomena with distinct molecular mechanisms.
Collapse
Affiliation(s)
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Evelina Tutucci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Kayla Viets
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
23
|
Meaburn KJ. Spatial Genome Organization and Its Emerging Role as a Potential Diagnosis Tool. Front Genet 2016; 7:134. [PMID: 27507988 PMCID: PMC4961005 DOI: 10.3389/fgene.2016.00134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022] Open
Abstract
In eukaryotic cells the genome is highly spatially organized. Functional relevance of higher order genome organization is implied by the fact that specific genes, and even whole chromosomes, alter spatial position in concert with functional changes within the nucleus, for example with modifications to chromatin or transcription. The exact molecular pathways that regulate spatial genome organization and the full implication to the cell of such an organization remain to be determined. However, there is a growing realization that the spatial organization of the genome can be used as a marker of disease. While global genome organization patterns remain largely conserved in disease, some genes and chromosomes occupy distinct nuclear positions in diseased cells compared to their normal counterparts, with the patterns of reorganization differing between diseases. Importantly, mapping the spatial positioning patterns of specific genomic loci can distinguish cancerous tissue from benign with high accuracy. Genome positioning is an attractive novel biomarker since additional quantitative biomarkers are urgently required in many cancer types. Current diagnostic techniques are often subjective and generally lack the ability to identify aggressive cancer from indolent, which can lead to over- or under-treatment of patients. Proof-of-principle for the use of genome positioning as a diagnostic tool has been provided based on small scale retrospective studies. Future large-scale studies are required to assess the feasibility of bringing spatial genome organization-based diagnostics to the clinical setting and to determine if the positioning patterns of specific loci can be useful biomarkers for cancer prognosis. Since spatial reorganization of the genome has been identified in multiple human diseases, it is likely that spatial genome positioning patterns as a diagnostic biomarker may be applied to many diseases.
Collapse
Affiliation(s)
- Karen J. Meaburn
- Cell Biology of Genomes Group, National Cancer Institute, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
24
|
Randise-Hinchliff C, Brickner JH. Transcription factors dynamically control the spatial organization of the yeast genome. Nucleus 2016; 7:369-74. [PMID: 27442220 PMCID: PMC5039007 DOI: 10.1080/19491034.2016.1212797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In yeast, inducible genes such as INO1, PRM1 and HIS4 reposition from the nucleoplasm to nuclear periphery upon activation. This leads to a physical interaction with nuclear pore complex (NPC), interchromosomal clustering, and stronger transcription. Repositioning to the nuclear periphery is controlled by cis-acting transcription factor (TF) binding sites located within the promoters of these genes and the TFs that bind to them. Such elements are both necessary and sufficient to control positioning of genes to the nuclear periphery. We have identified 4 TFs capable of controlling the regulated positioning of genes to the nuclear periphery in budding yeast under different conditions: Put3, Cbf1, Gcn4 and Ste12. In each case, we have defined the molecular basis of regulated relocalization to the nuclear periphery. Put3- and Cbf1-mediated targeting to nuclear periphery is regulated through local recruitment of Rpd3(L) histone deacetylase complex by transcriptional repressors. Rpd3(L), through its histone deacetylase activity, prevents TF-mediated gene positioning by blocking TF binding. Many yeast transcriptional repressors were capable of blocking Put3-mediated recruitment; 11 of these required Rpd3. Thus, it is a general function of transcription repressors to regulate TF-mediated recruitment. However, Ste12 and Gcn4-mediated recruitment is regulated independently of Rpd3(L) and transcriptional repressors. Ste12-mediated recruitment is regulated by phosphorylation of an inhibitor called Dig2, and Gcn4-mediated gene targeting is up-regulated by increasing Gcn4 protein levels. The ability to control spatial position of genes in yeast represents a novel function for TFs and different regulatory strategies provide dynamic control of the yeast genome through different time scales.
Collapse
Affiliation(s)
| | - Jason H Brickner
- a Department of Molecular Biosciences , Northwestern University , Evanston , IL , USA
| |
Collapse
|
25
|
A model for coordinating nuclear mechanics and membrane remodeling to support nuclear integrity. Curr Opin Cell Biol 2016; 41:9-17. [PMID: 27031045 DOI: 10.1016/j.ceb.2016.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
Abstract
A polymer network of intranuclear lamin filaments underlies the nuclear envelope and provides mechanical stability to the nucleus in metazoans. Recent work demonstrates that the expression of A-type lamins scales positively with the stiffness of the cellular environment, thereby coupling nuclear and extracellular mechanics. Using the spectrin-actin network at the erythrocyte plasma membrane as a model, we contemplate how the relative stiffness of the nuclear scaffold impinges on the growing number of interphase-specific nuclear envelope remodeling events, including recently discovered, nuclear envelope-specialized quality control mechanisms. We suggest that a stiffer lamina impedes these remodeling events, necessitating local lamina remodeling and/or concomitant scaling of the efficacy of membrane-remodeling machineries that act at the nuclear envelope.
Collapse
|
26
|
Sec13 Regulates Expression of Specific Immune Factors Involved in Inflammation In Vivo. Sci Rep 2015; 5:17655. [PMID: 26631972 PMCID: PMC4668385 DOI: 10.1038/srep17655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022] Open
Abstract
The Sec13 protein functions in various intracellular compartments including the nuclear pore complex, COPII-coated vesicles, and inside the nucleus as a transcription regulator. Here we developed a mouse model that expresses low levels of Sec13 (Sec13H/−) to assess its functions in vivo, as Sec13 knockout is lethal. These Sec13 mutant mice did not present gross defects in anatomy and physiology. However, the reduced levels of Sec13 in vivo yielded specific immunological defects. In particular, these Sec13 mutant mice showed low levels of MHC I and II expressed by macrophages, low levels of INF-γ and IL-6 expressed by stimulated T cells, and low frequencies of splenic IFN-γ+CD8+ T cells. In contrast, the levels of soluble and membrane-bound TGF-β as well as serum immunoglobulin production are high in these mice. Furthermore, frequencies of CD19+CD5-CD95+ and CD19+CD5-IL-4+ B cells were diminished in Sec13H/− mice. Upon stimulation or immunization, some of the defects observed in the naïve mutant mice were compensated. However, TGF-β expression remained high suggesting that Sec13 is a negative modulator of TGF-β expression and of its immunosuppressive functions on certain immune cells. In sum, Sec13 regulates specific expression of immune factors with key functions in inflammation.
Collapse
|
27
|
Morano KA. Groupthink: chromosomal clustering during transcriptional memory. MICROBIAL CELL 2015; 2:454-457. [PMID: 28357270 PMCID: PMC5354603 DOI: 10.15698/mic2015.12.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Kevin A Morano
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030 USA
| |
Collapse
|
28
|
Light-regulated gene repositioning in Arabidopsis. Nat Commun 2015; 5:3027. [PMID: 24390011 DOI: 10.1038/ncomms4027] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022] Open
Abstract
Plant genomes are extremely sensitive to, and can be developmentally reprogrammed by environmental light cues. Here using rolling-circle amplification of gene-specific circularizable oligonucleotides coupled with fluorescence in situ hybridization, we demonstrate that light triggers a rapid repositioning of the Arabidopsis light-inducible chlorophyll a/b-binding proteins (CAB) locus from the nuclear interior to the nuclear periphery during its transcriptional activation. CAB repositioning is mediated by the red/far-red photoreceptors phytochromes (PHYs) and is inhibited by repressors of PHY signalling, including COP1, DET1 and PIFs. CAB repositioning appears to be a separate regulatory step occurring before its full transcriptional activation. Moreover, the light-inducible loci RBCS, PC and GUN5 undergo similar repositioning behaviour during their transcriptional activation. Our study supports a light-dependent gene regulatory mechanism in which PHYs activate light-inducible loci by relocating them to the nuclear periphery; it also provides evidence for the biological importance of gene positioning in the plant kingdom.
Collapse
|
29
|
Abstract
To accommodate genomes in the limited space of the cell nucleus and ensure the correct execution of gene expression programs, genomes are packaged in complex fashion in the three-dimensional cell nucleus. As a consequence of the extensive higher-order organization of chromosomes, distantly located genomic regions on the same or distinct chromosomes undergo long-range interactions. This article discusses the nature of long interactions, mechanisms of their formation, and their emerging functional roles in gene regulation and genome maintenance.
Collapse
Affiliation(s)
- Job Dekker
- University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
30
|
Jost KL, Bertulat B, Rapp A, Brero A, Hardt T, Domaing P, Gösele C, Schulz H, Hübner N, Cardoso MC. Gene repositioning within the cell nucleus is not random and is determined by its genomic neighborhood. Epigenetics Chromatin 2015; 8:36. [PMID: 26388944 PMCID: PMC4574441 DOI: 10.1186/s13072-015-0025-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/01/2015] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Heterochromatin has been reported to be a major silencing compartment during development and differentiation. Prominent heterochromatin compartments are located at the nuclear periphery and inside the nucleus (e.g., pericentric heterochromatin). Whether the position of a gene in relation to some or all heterochromatin compartments matters remains a matter of debate, which we have addressed in this study. Answering this question demanded solving the technical challenges of 3D measurements and the large-scale morphological changes accompanying cellular differentiation. RESULTS Here, we investigated the proximity effects of the nuclear periphery and pericentric heterochromatin on gene expression and additionally considered the effect of neighboring genomic features on a gene's nuclear position. Using a well-established myogenic in vitro differentiation system and a differentiation-independent heterochromatin remodeling system dependent on ectopic MeCP2 expression, we first identified genes with statistically significant expression changes by transcriptional profiling. We identified nuclear gene positions by 3D fluorescence in situ hybridization followed by 3D distance measurements toward constitutive and facultative heterochromatin domains. Single-cell-based normalization enabled us to acquire morphologically unbiased data and we finally correlated changes in gene positioning to changes in transcriptional profiles. We found no significant correlation of gene silencing and proximity to constitutive heterochromatin and a rather unexpected inverse correlation of gene activity and position relative to facultative heterochromatin at the nuclear periphery. CONCLUSION In summary, our data question the hypothesis of heterochromatin as a general silencing compartment. Nonetheless, compared to a simulated random distribution, we found that genes are not randomly located within the nucleus. An analysis of neighboring genomic context revealed that gene location within the nucleus is rather dependent on CpG islands, GC content, gene density, and short and long interspersed nuclear elements, collectively known as RIDGE (regions of increased gene expression) properties. Although genes do not move away/to the heterochromatin upon up-/down-regulation, genomic regions with RIDGE properties are generally excluded from peripheral heterochromatin. Hence, we suggest that individual gene activity does not influence gene positioning, but rather chromosomal context matters for sub-nuclear location.
Collapse
Affiliation(s)
- K Laurence Jost
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Alessandro Brero
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tanja Hardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Petra Domaing
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Claudia Gösele
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Herbert Schulz
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
31
|
Guilherme RS, Moysés-Oliveira M, Dantas AG, Meloni VA, Colovati ME, Kulikowski LD, Melaragno MI. Position effect modifying gene expression in a patient with ring chromosome 14. J Appl Genet 2015; 57:183-7. [PMID: 26315457 DOI: 10.1007/s13353-015-0311-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/29/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
The clinical phenotype of patients with ring chromosomes usually reflects the loss of genomic material during ring formation. However, phenotypic alterations can also be found in the presence of complete ring chromosomes, in which the breakage and rejoining in terminal regions of both chromosome arms result in no gene loss. Here, we present a patient with a ring chromosome 14 that lost nothing but the telomeres. Since he and other patients with a similar chromosome abnormality present certain abnormal characteristics, we investigated the gene expression of eight chromosome 14 genes to find out whether the configuration of the ring had changed it, possibly producing some of these clinical features. The expression of these eight genes was studied by quantitative real-time polymerase chain reaction (qPCR) in the patient and in seven controls matched for gender and age. Two of them were found to be downregulated in the patient compared to the controls, indicating that his phenotype might be related to alterations in the expression of genes located in the abnormal chromosome, even when the copy number is normal. Thus, the phenotypic alterations found in the presence of complete ring chromosomes may be related to changes in the chromatin architecture, bringing about a change of expression by position effect. These results may explain some of the characteristics presented by our patient.
Collapse
Affiliation(s)
- Roberta Santos Guilherme
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900, São Paulo, Brazil
| | - Mariana Moysés-Oliveira
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900, São Paulo, Brazil
| | - Anelisa Gollo Dantas
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900, São Paulo, Brazil
| | - Vera Ayres Meloni
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900, São Paulo, Brazil
| | - Mileny Esbravatti Colovati
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900, São Paulo, Brazil
| | - Leslie Domenici Kulikowski
- Department of Pathology, Laboratório de Citogenômica, Universidade de São Paulo, Avenida Dr. Eneas Carvalho de Aguiar 647, 05403-000, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu, 740, 04023-900, São Paulo, Brazil.
| |
Collapse
|
32
|
Mattout A, Cabianca DS, Gasser SM. Chromatin states and nuclear organization in development--a view from the nuclear lamina. Genome Biol 2015; 16:174. [PMID: 26303512 PMCID: PMC4549078 DOI: 10.1186/s13059-015-0747-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The spatial distribution of chromatin domains in interphase nuclei changes dramatically during development in multicellular organisms. A crucial question is whether nuclear organization is a cause or a result of differentiation. Genetic perturbation of lamina–heterochromatin interactions is helping to reveal the cross-talk between chromatin states and nuclear organization.
Collapse
Affiliation(s)
- Anna Mattout
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | - Daphne S Cabianca
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland. .,University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
33
|
Promoter-Autonomous Functioning in a Controlled Environment using Single Molecule FISH. Sci Rep 2015; 5:9934. [PMID: 26017315 PMCID: PMC4446897 DOI: 10.1038/srep09934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/11/2015] [Indexed: 11/09/2022] Open
Abstract
Transcription is a highly regulated biological process, initiated through the assembly of complexes at the promoter that contain both the general transcriptional machinery and promoter-specific factors. Despite the abundance of studies focusing on transcription, certain questions have remained unanswered. It is not clear how the transcriptional profile of a promoter is affected by genomic context. Also, there is no single cell method to directly compare transcriptional profiles independent of gene length and sequence. In this work, we employ a single genetic site for isolating the transcriptional kinetics of yeast promoters. Utilizing single molecule FISH, we directly compare the transcriptional activity of different promoters, considering both synthesis and cell-to-cell variability. With this approach, we provide evidence suggesting promoters autonomously encode their associated transcriptional profiles, independent of genomic locus, gene length and gene sequence.
Collapse
|
34
|
Tran EJ, King MC, Corbett AH. Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2784-2795. [PMID: 25116306 PMCID: PMC4161953 DOI: 10.1016/j.bbamcr.2014.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 01/08/2023]
Abstract
Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18 to 23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field.
Collapse
Affiliation(s)
- Elizabeth J Tran
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA.
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, 4117 Rollins Research Center, 1510 Clifton Road, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Chen M, Gartenberg MR. Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast. Genes Dev 2014; 28:959-70. [PMID: 24788517 PMCID: PMC4018494 DOI: 10.1101/gad.236729.113] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along budding yeast chromosomes. Here, Chen and Gartenberg examined the spatial and temporal aspects of tRNA gene expression. Unexpectedly, they found that tRNA genes are transcribed in a periodic manner during cell cycle progression. Moreover, tRNA genes migrate to nuclear pore complexes when transcription peaks in M phase. This study demonstrates how RNA polymerase III-transcribed genes are gated to nuclear pore complexes in yeast. tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC–tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs.
Collapse
Affiliation(s)
- Miao Chen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
36
|
Jani D, Valkov E, Stewart M. Structural basis for binding the TREX2 complex to nuclear pores, GAL1 localisation and mRNA export. Nucleic Acids Res 2014; 42:6686-97. [PMID: 24705649 PMCID: PMC4041426 DOI: 10.1093/nar/gku252] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The conserved Sac3:Thp1:Sem1:Sus1:Cdc31 (TREX2) complex binds to nuclear pore complexes (NPCs) and, in addition to integrating mRNA nuclear export with preceding steps in the gene expression pathway, facilitates re-positioning of highly regulated actively transcribing genes (such as GAL1) to NPCs. Although TREX2 is thought to bind NPC protein Nup1, defining the precise role of this interaction has been frustrated by the complex pleiotropic phenotype exhibited by nup1Δ strains. To provide a structural framework for understanding the binding of TREX2 to NPCs and its function in the gene expression pathway, we have determined the structure of the Nup1:TREX2 interaction interface and used this information to engineer a Sac3 variant that impairs NPC binding while not compromising TREX2 assembly. This variant inhibited the NPC association of both de-repressed and activated GAL1 and also produced mRNA export and growth defects. These results indicate that the TREX2:Nup1 interaction facilitates the efficient nuclear export of bulk mRNA together with the re-positioning of GAL1 to NPCs that is required for transcriptional control that is mediated by removal of SUMO from repressors by NPC-bound Ulp1.
Collapse
Affiliation(s)
- Divyang Jani
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Eugene Valkov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
37
|
Ledoux MS, Dauer WT, Warner TT. Emerging common molecular pathways for primary dystonia. Mov Disord 2014; 28:968-81. [PMID: 23893453 DOI: 10.1002/mds.25547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/23/2022] Open
Abstract
The dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at 1 or more interconnected nodes of the motor system. The study of genes and proteins that cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction, which disrupts the motor pathways at the systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions that appear to be involved in the pathogenesis of dystonia. A review of the literature published in English-language publications available on PubMed relating to the genetics and cellular pathology of dystonia was performed. Numerous potential pathogenetic mechanisms have been identified. We describe those that fall into 3 emerging thematic groups: cell-cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Mark S Ledoux
- Department of Neurology, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
38
|
Sood V, Brickner JH. Nuclear pore interactions with the genome. Curr Opin Genet Dev 2014; 25:43-9. [PMID: 24480294 DOI: 10.1016/j.gde.2013.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
Abstract
Within the nucleus, chromatin is functionally organized into distinct nuclear compartments. The nuclear periphery, containing Nuclear Pore Complexes (NPCs), plays an important role in the spatial organization of chromatin and in transcriptional regulation. The role of Nuclear Pore Proteins (Nups) in transcription and their involvement in leukemia and viral integration has renewed interest in understanding their mechanism of action. Nups bind to both repressed and active genes, often in a regulated fashion. Nups can associate with chromatin both at the NPC and inside the nucleoplasm. These interactions are guided by evolutionarily conserved mechanisms that involve promoter DNA elements and trans-acting factors. These interactions can also lead to interchromosomal clustering of co-regulated genes. Nups affect gene expression by promoting stronger transcription, by limiting the spread of repressed chromatin or by altering chromatin structure. Nups can promote epigenetic regulation by establishing boundary elements and poising recently repressed genes for faster reactivation.
Collapse
Affiliation(s)
- Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
39
|
Egecioglu DE, D'Urso A, Brickner DG, Light WH, Brickner JH. Approaches to studying subnuclear organization and gene-nuclear pore interactions. Methods Cell Biol 2014; 122:463-85. [PMID: 24857743 DOI: 10.1016/b978-0-12-417160-2.00021-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many genes in budding yeast Saccharomyces cerevisiae associate with the nuclear pore complex (NPC), which impacts their location within the nucleus and their transcriptional regulation. To understand how eukaryotic genomes are spatially organized, we have used multiple approaches for analyzing the localization and transcription of genes. We have used these approaches to study the role of DNA elements in targeting genomic loci to the NPC and how these interactions regulate transcription, chromatin structure and the spatial organization of the yeast genome. These studies combine yeast molecular genetics with live-cell microscopy and biochemistry. Here, we present detailed protocols for these cytological and molecular approaches.
Collapse
Affiliation(s)
- Defne Emel Egecioglu
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Donna Garvey Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - William H Light
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
40
|
Floch AG, Palancade B, Doye V. Fifty years of nuclear pores and nucleocytoplasmic transport studies: multiple tools revealing complex rules. Methods Cell Biol 2014; 122:1-40. [PMID: 24857723 DOI: 10.1016/b978-0-12-417160-2.00001-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are multiprotein assemblies embedded within the nuclear envelope and involved in the control of the bidirectional transport of proteins and ribonucleoparticles between the nucleus and the cytoplasm. Since their discovery more than 50 years ago, NPCs and nucleocytoplasmic transport have been the focus of intense research. Here, we review how the use of a multiplicity of structural, biochemical, genetic, and cell biology approaches have permitted the deciphering of the main features of this macromolecular complex, its mode of assembly as well as the rules governing nucleocytoplasmic exchanges. We first present the current knowledge of the ultrastructure of NPCs, which reveals that they are modular and repetitive assemblies of subunits referred to as nucleoporins, associated into stable subcomplexes and composed of a limited set of protein domains, including phenylalanine-glycine (FG) repeats and membrane-interacting domains. The outcome of investigations on nucleocytoplasmic trafficking will then be detailed, showing how it involves a limited number of molecular factors and common mechanisms, namely (i) indirect association of cargos with nuclear pores through receptors in the donor compartment, (ii) progression within the channel through dynamic hydrophobic interactions with FG-Nups, and (iii) NTPase-driven remodeling of transport complexes in the target compartment. Finally, we also discuss the outcome of more recent studies, which indicate that NPCs and the transport machinery are dynamic and versatile devices, whose biogenesis is tightly coordinated with the cell cycle, and which carry nonconventional duties, in particular, in mitosis, gene expression, and genetic stability.
Collapse
Affiliation(s)
- Aurélie G Floch
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud-11, Orsay, France
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Valérie Doye
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
41
|
Abstract
Biological functions including gene expression and DNA repair are affected by the 3D architecture of the genome, but the underlying mechanisms are still unknown. Notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular DNA sequences. The budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and DNA contact frequencies. We recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. This model ignores the DNA sequence information except for specific constraints at the centromeres, telomeres, and the ribosomal DNA (rDNA). Despite its simplicity, the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromosomal and subchromosomal scales. Here, we also illustrate the model's ability to reproduce observed features of chromatin movements. Our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of DNA-specific factors or epigenetic modifications. In addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture.
Collapse
Affiliation(s)
- Hua Wong
- Institut Pasteur; Unité Imagerie et Modélisation; CNRS URA 2582; Paris, France
| | | | | |
Collapse
|
42
|
Waters JT, Kim HD. Equilibrium Statistics of a Surface-Pinned Semiflexible Polymer. Macromolecules 2013. [DOI: 10.1021/ma4011704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James T. Waters
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Harold D. Kim
- School of
Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Kuss SK, Mata MA, Zhang L, Fontoura BMA. Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export. Viruses 2013; 5:1824-49. [PMID: 23872491 PMCID: PMC3738964 DOI: 10.3390/v5071824] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.
Collapse
Affiliation(s)
- Sharon K Kuss
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
44
|
Gonzalez-Sandoval A, Towbin BD, Gasser SM. The formation and sequestration of heterochromatin during development. FEBS J 2013; 280:3212-9. [DOI: 10.1111/febs.12319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research; Basel Switzerland
| |
Collapse
|
45
|
Dahan-Pasternak N, Nasereddin A, Kolevzon N, Pe'er M, Wong W, Shinder V, Turnbull L, Whitchurch CB, Elbaum M, Gilberger TW, Yavin E, Baum J, Dzikowski R. PfSec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J Cell Sci 2013; 126:3055-69. [PMID: 23687383 DOI: 10.1242/jcs.122119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium falciparum, the deadliest form of human malaria, the nuclear periphery has drawn much attention due to its role as a sub-nuclear compartment involved in virulence gene expression. Recent data have implicated components of the nuclear envelope in regulating gene expression in several eukaryotes. Special attention has been given to nucleoporins that compose the nuclear pore complex (NPC). However, very little is known about components of the nuclear envelope in Plasmodium parasites. Here we characterize PfSec13, an unusual nucleoporin of P. falciparum, which shows unique structural similarities suggesting that it is a fusion between Sec13 and Nup145C of yeast. Using super resolution fluorescence microscopy (3D-SIM) and in vivo imaging, we show that the dynamic localization of PfSec13 during parasites' intra-erythrocytic development corresponds with that of the NPCs and that these dynamics are associated with microtubules rather than with F-actin. In addition, PfSec13 does not co-localize with the heterochormatin markers HP1 and H3K9me3, suggesting euchromatic location of the NPCs. The proteins associated with PfSec13 indicate that this unusual Nup is involved in several cellular processes. Indeed, ultrastructural and chromatin immunoprecipitation analyses revealed that, in addition to the NPCs, PfSec13 is found in the nucleoplasm where it is associated with chromatin. Finally, we used peptide nucleic acids (PNA) to downregulate PfSec13 and show that it is essential for parasite proliferation in human erythrocytes.
Collapse
Affiliation(s)
- Noa Dahan-Pasternak
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dion V, Gasser SM. Chromatin movement in the maintenance of genome stability. Cell 2013; 152:1355-64. [PMID: 23498942 DOI: 10.1016/j.cell.2013.02.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 11/24/2022]
Abstract
Mechanistic analyses based on improved imaging techniques have begun to explore the biological implications of chromatin movement within the nucleus. Studies in both prokaryotes and eukaryotes have shed light on what regulates the mobility of DNA over long distances. Interestingly, in eukaryotes, genomic loci increase their movement in response to double-strand break induction. Break mobility, in turn, correlates with the efficiency of repair by homologous recombination. We review here the source and regulation of DNA mobility and discuss how it can both contribute to and jeopardize genome stability.
Collapse
Affiliation(s)
- Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | |
Collapse
|
47
|
Abstract
In fungi, nuclear pore complexes are free to move through the nuclear envelope; however, little is known about how movement is regulated. New evidence reveals roles for molecular motors and potential impacts on genomic organization.
Collapse
Affiliation(s)
- Amanda K Casey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
48
|
Rohner S, Kalck V, Wang X, Ikegami K, Lieb JD, Gasser SM, Meister P. Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. ACTA ACUST UNITED AC 2013; 200:589-604. [PMID: 23460676 PMCID: PMC3587839 DOI: 10.1083/jcb.201207024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hsp-16.2 promoter is sufficient for recruitment of hsp-16.2 to nuclear pore complexes in a manner dependent on RNA pol II and ENY-2, but not on full-length mRNA production. Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.
Collapse
Affiliation(s)
- Sabine Rohner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
50
|
Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 2013; 20:290-9. [PMID: 23463314 PMCID: PMC6320674 DOI: 10.1038/nsmb.2474] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/20/2012] [Indexed: 01/21/2023]
Abstract
Although genomes are defined by their sequence, the linear arrangement of nucleotides is only their most basic feature. A fundamental property of genomes is their topological organization in three-dimensional space in the intact cell nucleus. The application of imaging methods and genome-wide biochemical approaches, combined with functional data, is revealing the precise nature of genome topology and its regulatory functions in gene expression and genome maintenance. The emerging picture is one of extensive self-enforcing feedback between activity and spatial organization of the genome, suggestive of a self-organizing and self-perpetuating system that uses epigenetic dynamics to regulate genome function in response to regulatory cues and to propagate cell-fate memory.
Collapse
Affiliation(s)
- Giacomo Cavalli
- Institut de Génétique Humaine, UPR 1142, Centre National de la Recherche Scientifique, Montpellier, France.
| | | |
Collapse
|