1
|
Shih CC, Chen CY, Chuu CP, Huang CY, Lu CJ, Lu HY. Transcriptome Insights into Protective Mechanisms of Ferroptosis Inhibition in Aortic Dissection. Int J Mol Sci 2025; 26:4338. [PMID: 40362577 PMCID: PMC12072690 DOI: 10.3390/ijms26094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Aortic dissection (AD) is a life-threatening vascular condition with limited pharmacological options, and shared risk factors with cardiac disease include hypertension, atherosclerosis, smoking, and dyslipidemia. This study investigated Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, in a BAPN/Ang-II-induced mouse model of AD, revealing significant therapeutic potential. Fer-1 significantly reduced AD incidence and mortality by preserving aortic wall integrity. RNA sequencing identified 922 differentially expressed genes, with 416 upregulated and 506 downregulated. Bioinformatics analysis revealed that Fer-1 modulates key regulators, such as MEF2C and KDM5A, impacting immune responses, oxidative stress, apoptosis, and lipid metabolism. Additionally, Fer-1 alters miRNA expression, with the upregulation of miR-361-5p and downregulation of miR-3151-5p, targeting pathways involved in inflammation, oxidative stress, and smooth muscle cell (SMC) phenotypic stability. Functional pathway analysis highlighted the inhibition of actin cytoskeleton, ILK, and IL-17 signaling, essential for SMC differentiation and extracellular matrix remodeling. Gene interaction network analysis identified 21 central molecules, including CXCR3, ACACA, and BPGM, associated with lipid metabolism, inflammation, and vascular remodeling. This research elucidates the mechanism of ferroptosis in AD pathogenesis and establishes Fer-1 as a promising therapeutic intervention. AD and cardiac diseases share molecular mechanisms, risk factors, and pathological processes, positioning AD within the broader scope of cardiovascular pathology. By attenuating lipid peroxidation, oxidative stress, and inflammation, Fer-1 may have cardioprotective effects beyond AD, providing a foundation for future translational research in cardiovascular medicine.
Collapse
Affiliation(s)
- Chun-Che Shih
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan; (C.-C.S.); (C.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Chun-Yang Huang
- Department of Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 11221, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, National Yang-Ming Chiao-Tung University Hospital, Yilan 26058, Taiwan
| | - Chia-Jung Lu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan; (C.-C.S.); (C.-J.L.)
| | - Hsin-Ying Lu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan; (C.-C.S.); (C.-J.L.)
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
Mine H, Sugimoto K, Kobayashi M, Takagi H, Okabe N, Muto S, Kobayashi Y, Hashimoto Y, Suzuki H, Chiba H. Abnormal phosphorylation of human LRH1 at Ser510 predicts poor prognosis and promotes cell viability in lung squamous cell carcinoma. BMC Cancer 2025; 25:764. [PMID: 40269773 PMCID: PMC12016208 DOI: 10.1186/s12885-025-14160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The nuclear receptor liver receptor homolog 1 (LRH1)/NR5A2 is aberrantly expressed in diverse cancer types, including liver and lung cancers. Since we previously showed that excessive phosphorylation of human LRH1 at S510 (hLRH1pS510-high) is predictable of hepatocellular carcinoma recurrence, we here clarified the clinicopathological and biological significance of hLRH1pS510-high in lung cancer. By immunohistochemistry using an anti-hLRH1pS510 monoclonal antibody, we evaluated the hLRH1pS510 signals in 151 and 150 cases of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues, respectively, and performed clinicopathological analysis. hLRH1pS510 was localized in the nucleus of tumor cells in LUAD and LUSC tissues with different intensity and proportions among the patients. Of note, the strong hLRH1pS510 signal was occasionally detectable in LUAD and LUSC cells at the expanding tumor edges. A semi-quantitative analysis revealed that 28 (18.4%) and 36 (24.0%) of LUAD and LUSC cases, respectively, exhibited hLRH1pS510-high. Kaplan-Meier plots showed significant differences in the disease-free survival (DFS) between the hLRH1pS510-high and hLRH1pS510-low groups in LUSC, but not in LUAD patients. hLRH1pS510-high was also significantly correlated with recurrence in LUSC patients. Additionally, by multivariate analysis, hLRH1pS510-high represented an independent biomarker for the DFS of LUSC patients. Furthermore, the impact of hLRH1pS510 on the viability of LUSC cells was evaluated by comparing phenotypes among two distinct LUSC cell lines expressing wild-type LRH1, LRH1S510A, and LRH1S510E. Consequently, we demonstrated that phosphorylation of hLRH1S510 accelerates the viability of LUSC cells. Thus, hLRH1pS510 is attractive not only as the predictive biomarker for LUSC but also as the potential therapeutic target.
Collapse
Affiliation(s)
- Hayato Mine
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan.
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan
| | - Hironori Takagi
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan
| | - Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan
| | - Yasuyuki Kobayashi
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960- 1295, Japan.
| |
Collapse
|
3
|
Lang A, Ildefeld N, Lillich FF, Kaiser A, Busch R, Marschner JA, Proschak E, Heering J, Schubert-Zsilavecz M, Merk D. Fragment-Based Discovery of Drug-like LRH-1 Agonists. ACS Med Chem Lett 2025; 16:575-582. [PMID: 40236550 PMCID: PMC11995229 DOI: 10.1021/acsmedchemlett.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
The phospholipid sensing transcription factor liver receptor homologue 1 (LRH-1) participates in the transcriptional regulation of metabolic balance and inflammation in liver, pancreas, and other tissues. It is an emerging target for metabolic dysfunction, fatty liver disease, and cancer, but LRH-1 modulators are rare and lack drug-like properties. We discovered new LRH-1 ligands with improved physicochemical features in a fragment-based approach and optimized a venlafaxine-related lead for LRH-1 activation. Despite a strict structure-activity relationship, systematic structural variation resulted in a new LRH-1 agonist scaffold with strong activation efficacy, validated direct and cellular target engagement, and anti-inflammatory and ER-stress-resolving properties in functional cellular settings.
Collapse
Affiliation(s)
- Alisa Lang
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt, Germany
| | - Niklas Ildefeld
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt, Germany
| | - Felix F. Lillich
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Astrid Kaiser
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt, Germany
| | - Romy Busch
- Department
of Pharmacy, Ludwig-Maximilians-Universität
(LMU) München, 81377 Munich, Germany
| | - Julian A. Marschner
- Department
of Pharmacy, Ludwig-Maximilians-Universität
(LMU) München, 81377 Munich, Germany
| | - Ewgenij Proschak
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | | | - Daniel Merk
- Institute
of Pharmaceutical Chemistry, Goethe University
Frankfurt, 60438 Frankfurt, Germany
- Department
of Pharmacy, Ludwig-Maximilians-Universität
(LMU) München, 81377 Munich, Germany
| |
Collapse
|
4
|
Lee KJ, Wang HM, Kim M, Park JH, Kim J, Jang S, Im D, Goh B, Shin MH, Shim JH, Kim S, Seo J, Lim HS. Encoded Display of Chemical Libraries on Nanoparticles as a Versatile Selection Tool To Discover Protein Ligands. J Am Chem Soc 2025; 147:11726-11740. [PMID: 40011448 DOI: 10.1021/jacs.4c13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
DNA-encoded library (DEL) technology is a powerful tool for discovering potent ligands for biological targets but constrained by limitations, including the insolubility of DNA in organic solvents and its instability under various reaction conditions, which restrict the reactivity scope and structural diversity achievable in library synthesis. Here, we present a new strategy called nanoDEL, where library molecules and DNA tags are displayed on the surface of nanoparticles. Since nanoparticles disperse well in both organic solvents and aqueous solutions, DEL synthesis can be accomplished using well-established organic solvent-based conditions, eliminating the need for aqueous conditions. Moreover, nanoDEL enables air-sensitive reactions that are inaccessible with conventional DEL methods relying on aqueous conditions. Notably, in nanoDEL, multiple copies of a DNA tag are attached to an individual nanoparticle to encode a single compound, significantly enhancing tolerance to DNA-damaging conditions. Even when most DNA tags are damaged, sequence analysis remains feasible via amplification of intact tags. Consequently, nanoDEL facilitates the convenient use of existing organic reactions without the necessity to develop DNA-compatible reactions. The potential of nanoDEL was validated by affinity selection against streptavidin as a model system and successfully applied to the discovery of potent small-molecule inhibitors for a kinase and stapled peptide inhibitors targeting a protein-protein interaction, exhibiting dissociation constants in the nanomolar range. Furthermore, we demonstrated that a large combinatorial library can be efficiently synthesized on nanoparticles using a synthetic scheme including moisture-sensitive reaction steps, which are not feasible with conventional DELs.
Collapse
Affiliation(s)
- Kang Ju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hee Myeong Wang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Minkyung Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jun Hyung Park
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungyeon Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Seungyoon Jang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Dahye Im
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Beomjoon Goh
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Hoon Shim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sungjee Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jongcheol Seo
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
- Carmel Biosciences, Pohang 37673, South Korea
| |
Collapse
|
5
|
Li J, Zhang Y, Gan X, Li J, Xia G, He L, Xia C, Zhang W, Akhtar Ali K, Zhu M, Huang H. Blocking the LRH-1/LCN2 axis by ML-180, an LRH-1 inverse agonist, ameliorates osteoarthritis via inhibiting the MAPK pathway. Biochem Pharmacol 2025; 237:116922. [PMID: 40194607 DOI: 10.1016/j.bcp.2025.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/28/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
Osteoarthritis (OA) is a chronic and degenerative disease marked by inflammation and extracellular matrix (ECM) degeneration, contributing to synovial inflammation and cartilage destruction. Accumulating evidence has demonstrated that Liver receptor homolog-1 (LRH-1), an orphan nuclear receptor, mediates inflammatory response. However, there is a lack of evidence regarding the regulatory role of LRH-1 in OA pathogenesis. In this study, we confirmed that chondrocytes expressed LRH-1, and observed its upregulation in both IL-1β-treated chondrocytes and cartilage of destabilization of the medial meniscus (DMM)-operated mice. Overexpression of LRH-1 promoted inflammation and dysregulation of ECM metabolism in IL-1β-induced chondrocytes, reversed by inhibition of LRH-1 with ML-180 or gene silencing to protect chondrocytes. Moreover, ML-180 treatment in vivo improved the deteriorated OA phenotypes in mouse models, alleviating OA development. Mechanistically, RNA sequencing revealed that Lipocalin-2 (LCN2), a member of the lipocalin family associated with inflammation, is located downstream of LRH-1 and is positively regulated by it. Furthermore, the LRH-1/LCN2 axis mainly relied on activating the mitogen-activated protein kinase (MAPK) signaling pathway to promote inflammation and dysregulation of ECM metabolism, ultimately damaging chondrocytes. Our findings demonstrate that LRH-1 positively modulates LCN2,activating the MAPK pathway, indicating that targeting the LRH-1/LCN2/MAPK axis may represent a potential therapeutic strategy for OA.
Collapse
Affiliation(s)
- Jianwen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yayun Zhang
- Department of Traumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junhong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ganqing Xia
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Lingxiao He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chengyan Xia
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weikai Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Khan Akhtar Ali
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Meipeng Zhu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Lang A, Stiller T, Ildefeld N, Heitel P, Isigkeit L, Proschak E, Heering J, Schubert-Zsilavecz M, Merk D. Fatty Acid Mimetic Fragments as Liver Receptor Homologue-1 Modulators. ACS Pharmacol Transl Sci 2025; 8:673-678. [PMID: 40109748 PMCID: PMC11915031 DOI: 10.1021/acsptsci.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025]
Abstract
The phospholipid-sensing transcription factor liver receptor homologue-1 (LRH-1) is mainly found in the liver, intestine, and pancreas where it participates in the transcriptional regulation of genes involved in cholesterol and glucose metabolism, inflammation, and endoplasmic reticulum stress. It holds promise as a target in metabolic disease and hepatic/intestinal inflammation treatment, and preliminary evidence suggests potential of LRH-1 modulation for contraception, but LRH-1 modulators are very rare. Based on phospholipid binding to LRH-1, we hypothesized potential for fatty acid mimetics as LRH-1 modulators and discovered new ligand chemotypes by focused fragment screening. Preliminary SAR elucidation, orthogonal activity validation, and target engagement studies highlighted two fragment-like leads for LRH-1 agonist development.
Collapse
Affiliation(s)
- Alisa Lang
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438 Frankfurt, Germany
| | - Tanja Stiller
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, 81377 Munich, Germany
| | - Niklas Ildefeld
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438 Frankfurt, Germany
| | - Pascal Heitel
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438 Frankfurt, Germany
| | - Laura Isigkeit
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | | | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, 60438 Frankfurt, Germany
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, 81377 Munich, Germany
| |
Collapse
|
7
|
Lin L, Huang Y, Qian S, Chen L, Sun H. Genetically predicted causal link between the plasma lipidome and pancreatic diseases: a bidirectional Mendelian randomization study. Front Nutr 2025; 11:1466509. [PMID: 39882037 PMCID: PMC11774697 DOI: 10.3389/fnut.2024.1466509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Background Recent studies have increasingly emphasized the strong correlation between the lipidome and the risk of pancreatic diseases. To determine causality, a Mendelian randomization (MR) analysis was performed to identify connections between the lipidome and pancreatic diseases. Methods Statistics from a genome-wide association study of the plasma lipidome, which included a diverse array of 179 lipid species, were obtained from the GeneRISK cohort study with 7,174 participants. Genetic associations with four types of pancreatitis and pancreatic cancer were sourced from the R11 release of the FinnGen consortium. Two pancreatitis datasets from UK Biobank were employed as the validation cohort. MR analysis was conducted to assess the relationship between the genetically predicted plasma lipidome and these pancreatic diseases. Inverse variance weighted was adopted as the main statistical method. Bayesian weighted MR was employed for further verification. The MR-Egger intercept test for pleiotropy and Cochrane's Q statistics test for heterogeneity were performed to ensure the robustness. Results MR analysis yielded significant evidence that 26, 25, 2, and 19 lipid species were correlated with diverse outcomes of pancreatitis, and 8 lipid species were correlated with pancreatic cancer. Notably, sterol ester (27:1/20:2) levels (OR: 0.84, 95% CI: 0.78-0.90, P = 5.79 × 10-7) were significantly associated with acute pancreatitis, and phosphatidylcholine (17:0_20:4) levels (OR: 0.89, 95% CI: 0.84-0.94, P = 1.78 × 10-4) and sterol ester (27:1/20:4) levels (OR: 0.90, 95% CI: 0.86-0.95, P = 2.71 × 10-4) levels were significantly associated with chronic pancreatitis after the Bonferroni-corrected test. As for validation, 14 and 9 lipid species were correlated with acute and chronic pancreatitis of UK Biobank. Some lipid classes showed significant effects both in the FinnGen consortium and UK Biobank datasets. Conclusions The findings of this study indicate a potential genetic predisposition linking the plasma lipidome to pancreatic diseases and good prospects for future pancreatic disease clinical trials.
Collapse
Affiliation(s)
- Liaoyi Lin
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingbao Huang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songzan Qian
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifang Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Houzhang Sun
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Song L, Hou Y, Xu D, Dai X, Luo J, Liu Y, Huang Z, Yang M, Chen J, Hu Y, Chen C, Tang Y, Rao Z, Ma J, Zheng M, Shi K, Cai C, Lu M, Tang R, Ma X, Xie C, Luo Y, Li X, Huang Z. Hepatic FXR-FGF4 is required for bile acid homeostasis via an FGFR4-LRH-1 signal node under cholestatic stress. Cell Metab 2025; 37:104-120.e9. [PMID: 39393353 DOI: 10.1016/j.cmet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
Bile acid (BA) homeostasis is vital for various physiological processes, whereas its disruption underlies cholestasis. The farnesoid X receptor (FXR) is a master regulator of BA homeostasis via the ileal fibroblast growth factor (FGF)15/19 endocrine pathway, responding to postprandial or abnormal transintestinal BA flux. However, the de novo paracrine signal mediator of hepatic FXR, which governs the extent of BA synthesis within the liver in non-postprandial or intrahepatic cholestatic conditions, remains unknown. We identified hepatic Fgf4 as a direct FXR target that paracrinally signals to downregulate Cyp7a1 and Cyp8b1. The effect of FXR-FGF4 is mediated by an uncharted intracellular FGF receptor 4 (FGFR4)-LRH-1 signaling node. This liver-centric pathway acts as a first-line checkpoint for intrahepatic and transhepatic BA flux upstream of the peripheral FXR-FGF15/19 pathway, which together constitutes an integral hepatoenteric control mechanism that fine-tunes BA homeostasis, counteracting cholestasis and hepatobiliary damage. Our findings shed light on potential therapeutic strategies for cholestatic diseases.
Collapse
Affiliation(s)
- Lintao Song
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yushu Hou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Da Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xijia Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianya Luo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhuobing Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Miaomiao Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yue Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuchu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuli Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiheng Rao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianjia Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongde Luo
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhifeng Huang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
9
|
Korenfeld N, Gorbonos T, Romero Florian MC, Rotaro D, Goldberg D, Radushkevitz-Frishman T, Charni-Natan M, Bar-Shimon M, Cummins CL, Goldstein I. LXR-dependent enhancer activation regulates the temporal organization of the liver's response to refeeding leading to lipogenic gene overshoot. PLoS Biol 2024; 22:e3002735. [PMID: 39241209 PMCID: PMC11379474 DOI: 10.1371/journal.pbio.3002735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/04/2024] [Indexed: 09/08/2024] Open
Abstract
Transitions between the fed and fasted state are common in mammals. The liver orchestrates adaptive responses to feeding/fasting by transcriptionally regulating metabolic pathways of energy usage and storage. Transcriptional and enhancer dynamics following cessation of fasting (refeeding) have not been explored. We examined the transcriptional and chromatin events occurring upon refeeding in mice, including kinetic behavior and molecular drivers. We found that the refeeding response is temporally organized with the early response focused on ramping up protein translation while the later stages of refeeding drive a bifurcated lipid synthesis program. While both the cholesterol biosynthesis and lipogenesis pathways were inhibited during fasting, most cholesterol biosynthesis genes returned to their basal levels upon refeeding while most lipogenesis genes markedly overshoot above pre-fasting levels. Gene knockout, enhancer dynamics, and ChIP-seq analyses revealed that lipogenic gene overshoot is dictated by LXRα. These findings from unbiased analyses unravel the mechanism behind the long-known phenomenon of refeeding fat overshoot.
Collapse
Affiliation(s)
- Noga Korenfeld
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Gorbonos
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria C Romero Florian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Dan Rotaro
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Wu T, Lu ZF, Yu HN, Wu XS, Liu Y, Xu Y. Liver receptor homolog-1: structures, related diseases, and drug discovery. Acta Pharmacol Sin 2024; 45:1571-1581. [PMID: 38632319 PMCID: PMC11272790 DOI: 10.1038/s41401-024-01276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Liver receptor homolog-1 (LRH-1), a member of the nuclear receptor superfamily, is a ligand-regulated transcription factor that plays crucial roles in metabolism, development, and immunity. Despite being classified as an 'orphan' receptor due to the ongoing debate surrounding its endogenous ligands, recent researches have demonstrated that LRH-1 can be modulated by various synthetic ligands. This highlights the potential of LRH-1 as an attractive drug target for the treatment of inflammation, metabolic disorders, and cancer. In this review, we provide an overview of the structural basis, functional activities, associated diseases, and advancements in therapeutic ligand research targeting LRH-1.
Collapse
Affiliation(s)
- Tong Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Zhi-Fang Lu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Hao-Nan Yu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Xi-Shan Wu
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yong Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- State Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory of Biomedicine and Health, Guangdong Provincial Key Laboratory of Biocomputing, Center for Chemical Biology and Drug Discovery, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Chapagain P, Haratipour Z, Malabanan MM, Choi WJ, Blind RD. Bilirubin is a new ligand for nuclear receptor Liver Receptor Homolog-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592606. [PMID: 38853895 PMCID: PMC11160564 DOI: 10.1101/2024.05.05.592606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The nuclear receptor Liver Receptor Homolog-1 (LRH-1, NR5A2 ) binds to phospholipids that regulate important LRH-1 functions in the liver. A recent compound screen unexpectedly identified bilirubin, the product of liver heme metabolism, as a possible ligand for LRH-1. Here, we show unconjugated bilirubin directly binds LRH-1 with apparent K d =9.3uM, altering LRH-1 interaction with all transcriptional coregulator peptides tested. Bilirubin decreased LRH-1 protease sensitivity, consistent with MD simulations predicting bilirubin stably binds LRH-1 within the canonical ligand binding site. Bilirubin activated a luciferase reporter specific for LRH-1, dependent on co-expression with the bilirubin membrane transporter SLCO1B1 , but bilirubin failed to activate ligand-binding genetic mutants of LRH-1. Gene profiling in HepG2 cells shows bilirubin selectively regulated transcripts from endogenous LRH-1 ChIP-seq target genes, which was significantly attenuated by either genetic knockdown of LRH-1, or by a specific chemical competitor of LRH-1. Gene set enrichment suggests bilirubin and LRH-1 share roles in cholesterol metabolism and lipid efflux, thus we propose a new role for LRH-1 in directly sensing intracellular levels of bilirubin.
Collapse
|
12
|
Ashton AW, Dhanjal HK, Rossner B, Mahmood H, Patel VI, Nadim M, Lota M, Shahid F, Li Z, Joyce D, Pajkos M, Dosztányi Z, Jiao X, Pestell RG. Acetylation of nuclear receptors in health and disease: an update. FEBS J 2024; 291:217-236. [PMID: 36471658 DOI: 10.1111/febs.16695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.
Collapse
Affiliation(s)
- Anthony W Ashton
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Benjamin Rossner
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Huma Mahmood
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Vivek I Patel
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Mohammad Nadim
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Manpreet Lota
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Farhan Shahid
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
| | - Zhiping Li
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - David Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Xuanmao Jiao
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
| | - Richard G Pestell
- Xavier University School of Medicine at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA, USA
- The Wistar Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
13
|
Nishimagi A, Kobayashi M, Sugimoto K, Kofunato Y, Sato N, Haga J, Ishigame T, Kimura T, Kenjo A, Kobayashi Y, Hashimoto Y, Marubashi S, Chiba H. Aberrant phosphorylation of human LRH1 at serine 510 is predictable of hepatocellular carcinoma recurrence. Clin Exp Med 2023; 23:4985-4995. [PMID: 37285077 PMCID: PMC10725388 DOI: 10.1007/s10238-023-01098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023]
Abstract
We previously identified the AKT-phosphorylation sites in nuclear receptors and showed that phosphorylation of S379 in mouse retinoic acid γ and S518 in human estrogen receptor α regulate their activity independently of the ligands. Since this site is conserved at S510 in human liver receptor homolog 1 (hLRH1), we developed a monoclonal antibody (mAb) that recognized the phosphorylation form of hLRH1S510 (hLRH1pS510) and verified its clinicopathological significance in hepatocellular carcinoma (HCC). We generated the anti-hLRH1pS510 mAb and assessed its selectivity. We then evaluated the hLRH1pS510 signals in 157 cases of HCC tissues by immunohistochemistry because LRH1 contributes to the pathogenesis of diverse cancers. The developed mAb specifically recognized hLRH1pS510 and worked for immunohistochemistry of formalin-fixed paraffin-embedded tissues. hLRH1pS510 was exclusively localized in the nucleus of HCC cells, but the signal intensity and positive rates varied among the subjects. According to the semi-quantification, 45 cases (34.9%) showed hLRH1pS510-high, and the remaining 112 cases (65.1%) exhibited hLRH1pS510-low. There were significant differences in the recurrence-free survival (RFS) between the two groups, and the 5-year RFS rates in the hLRH1pS510-high and hLRH1pS510-low groups were 26.5% and 46.1%, respectively. In addition, high hLRH1pS510 was significantly correlated with portal vein invasion, hepatic vein invasion, and high levels of serum alpha-fetoprotein (AFP). Furthermore, multivariable analysis revealed that hLRH1pS510-high was an independent biomarker for HCC recurrence. We conclude that aberrant phosphorylation of hLRH1S510 is a predictor of poor prognosis for HCC. The anti-hLRH1pS510 mAb could provide a powerful tool to validate the relevance of hLRH1pS510 in pathological processes such as tumor development and progression.
Collapse
Affiliation(s)
- Atsushi Nishimagi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Makoto Kobayashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| | - Yasuhide Kofunato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Naoya Sato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Junichiro Haga
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Teruhide Ishigame
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Takashi Kimura
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Akira Kenjo
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yasuyuki Kobayashi
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Shigeru Marubashi
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
14
|
Cato ML, D'Agostino EH, Spurlin RM, Flynn AR, Cornelison JL, Johnson AM, Fujita RA, Abraham SM, Jui NT, Ortlund EA. Comparison of activity, structure, and dynamics of SF-1 and LRH-1 complexed with small molecule modulators. J Biol Chem 2023; 299:104921. [PMID: 37328104 PMCID: PMC10407255 DOI: 10.1016/j.jbc.2023.104921] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Steroidogenic factor-1 (SF-1) is a phospholipid-sensing nuclear receptor expressed in the adrenal glands, gonads, and hypothalamus which controls steroidogenesis and metabolism. There is significant therapeutic interest in SF-1 because of its oncogenic properties in adrenocortical cancer. Synthetic modulators are attractive for targeting SF-1 for clinical and laboratory purposes due to the poor pharmaceutical properties of its native phospholipid ligands. While small molecule agonists targeting SF-1 have been synthesized, no crystal structures have been reported of SF-1 in complexes with synthetic compounds. This has prevented the establishment of structure-activity relationships that would enable better characterization of ligand-mediated activation and improvement in current chemical scaffolds. Here, we compare the effects of small molecules in SF-1 and its close homolog, liver receptor homolog-1 (LRH-1), and identify several molecules that specifically activate LRH-1. We also report the first crystal structure of SF-1 in complex with a synthetic agonist that displays low nanomolar affinity and potency for SF-1. We use this structure to explore the mechanistic basis for small molecule agonism of SF-1, especially compared to LRH-1, and uncover unique signaling pathways that drive LRH-1 specificity. Molecular dynamics simulations reveal differences in protein dynamics at the pocket mouth as well as ligand-mediated allosteric communication from this region to the coactivator binding interface. Our studies, therefore, shed important insight into the allostery driving SF-1 activity and show potential for modulation of LRH-1 over SF-1.
Collapse
Affiliation(s)
- Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Autumn R Flynn
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | | | - Alyssa M Johnson
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Rei A Fujita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah M Abraham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nathan T Jui
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Klatt KC, Petviashvili EJ, Moore DD. LRH-1 induces hepatoprotective nonessential amino acids in response to acute liver injury. J Clin Invest 2023; 133:168805. [PMID: 37009899 PMCID: PMC10065065 DOI: 10.1172/jci168805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Acute hepatic injury is observed in response to various stressors, including trauma, ingestion of hepatic toxins, and hepatitis. Investigations to date have focused on extrinsic and intrinsic signals required for hepatocytes to proliferate and regenerate the liver in response to injury, though there is a more limited understanding of induced stress responses promoting hepatocyte survival upon acute injury. In this issue of the JCI, Sun and colleagues detail a mechanism by which local activation of the nuclear receptor liver receptor homolog-1 (LRH-1; NR5A2) directly induces de novo asparagine synthesis and expression of asparagine synthetase (ASNS) in response to injury and show that this response restrains hepatic damage. This work opens up several avenues for inquiry, including the potential for asparagine supplementation to ameliorate acute hepatic injury.
Collapse
|
16
|
Meng L, Dong F, Deng J. NR5A2 as a potential target for exercise to improve metabolic syndrome. Aging (Albany NY) 2023; 15:2485-2502. [PMID: 37053002 PMCID: PMC10120892 DOI: 10.18632/aging.204606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/04/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Metabolic syndrome is a syndrome of a variety of metabolic disorders. Exercise is beneficial to the human body. However, the association of NR5A2 and exercise with metabolic syndrome remains unclear. METHODS Download the GSE10540 and GSE12385 from GEO database. Bioinformatics analysis was used to screen the hub molecular of the metabolic syndrome. Forty 3-week-old C57BL/6J male mice were used in this study. The mean body weight was (17.5 ± 2.1) g. After 10 days of adaptive feeding, they were randomly divided into 4 groups according to the random number table method: Model + Exercise (n = 10), Model (n = 10), Model/NR5A2-OE (n = 10), Model/NR5A2-KO (n = 10). Western Blotting was performed to detect the expression of hub genes and signaling pathway. RESULTS There were 349 DEGs in GSE10540 and 49 DEGs in GSE12385. 10 core genes were obtained. GO showed that differentially expressed genes were mainly enriched in vascular morphogenesis, contractile fiber fraction, chemotaxis, and MAPK cascade regulation. KEGG showed that MAPK signaling pathway was a significant section in the metabolic syndrome. PIK3R2, STRA8, FLT1, DMRT1, FGF22, NR5A2, and FLT were up-regulated and PRDM14, POU5F1, and KDR were down-regulated in metabolic syndrome after exercise. CONCLUSION The expression of NR5A2 is down-regulated in metabolic syndrome, and exercise can increase the expression level of NR5A2. NR5A2 might be used as a potential target for exercise to improve metabolic syndrome.
Collapse
Affiliation(s)
- Lingxiu Meng
- Department of Cardiology, Qinhuangdao Second Hospital, Qinhuangdao, Hebei 066600, PR China
| | - Fusheng Dong
- Department of Anesthesiology, Qinhuangdao Second Hospital, Qinhuangdao, Hebei 066600, PR China
| | - Junguo Deng
- Department of Cardiology, Qinhuangdao Second Hospital, Qinhuangdao, Hebei 066600, PR China
| |
Collapse
|
17
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
18
|
Lang A, Isigkeit L, Schubert-Zsilavecz M, Merk D. The Medicinal Chemistry and Therapeutic Potential of LRH-1 Modulators. J Med Chem 2021; 64:16956-16973. [PMID: 34839661 DOI: 10.1021/acs.jmedchem.1c01663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-activated transcription factor liver receptor homologue 1 (LRH-1, NR5A2) is involved in the regulation of metabolic homeostasis, including cholesterol and glucose balance. Preliminary evidence points to therapeutic potential of LRH-1 modulation in diabetes, hepatic diseases, inflammatory bowel diseases, atherosclerosis, and certain cancers, but because of a lack of suitable ligands, pharmacological control of LRH-1 has been insufficiently studied. Despite the availability of considerable structural knowledge on LRH-1, only a few ligand chemotypes have been developed, and potent, selective, and bioavailable tools to explore LRH-1 modulation in vivo are lacking. In view of the therapeutic potential of LRH-1 in prevalent diseases, improved chemical tools are needed to probe the beneficial and adverse effects of pharmacological LRH-1 modulation in sophisticated preclinical models and to further elucidate the receptor's molecular function.
Collapse
Affiliation(s)
- Alisa Lang
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Laura Isigkeit
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | | | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
19
|
Sandhu N, Rana S, Meena K. Nuclear receptor subfamily 5 group A member 2 (NR5A2): role in health and diseases. Mol Biol Rep 2021; 48:8155-8170. [PMID: 34643922 DOI: 10.1007/s11033-021-06784-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Nuclear receptors are the regulatory molecules that mediate cellular signals as they interact with specific DNA sequences. NR5A2 is a member of NR5A subfamily having four members (Nr5a1-Nr5a4). NR5A2 shows involvement in diverse biological processes like reverse cholesterol transport, embryonic stem cell pluripotency, steroidogenesis, development and differentiation of embryo, and adult homeostasis. NR5A2 haploinsufficiency has been seen associated with chronic pancreatitis, pancreatic and gastrointestinal cancer. There is a close relationship between the progression of pancreatic cancer from chronic pancreatitis, NR5A2 serving a common link. NR5A2 activity is regulated by intracellular phospholipids, transcriptional coregulators and post-translational modifications. The specific ligand of NR5A2 is unknown hence called an orphan receptor, but specific phospholipids such as dilauroyl phosphatidylcholine and diundecanoyl phosphatidylcholine act as a ligand and they are established drug targets in various diseases. This review will focus on the NR5A2 structure, regulation of its activity, and role in biological processes and diseases. In future, need more emphasis on discovering small molecule agonists and antagonist, which act as a drug target for therapeutic applications.
Collapse
Affiliation(s)
- Nikita Sandhu
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, Uttarakhand, India
| | - Satyavati Rana
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, Uttarakhand, India
| | - Kiran Meena
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, Uttarakhand, India.
| |
Collapse
|
20
|
Gkikas D, Stellas D, Polissidis A, Manolakou T, Kokotou MG, Kokotos G, Politis PK. Nuclear receptor NR5A2 negatively regulates cell proliferation and tumor growth in nervous system malignancies. Proc Natl Acad Sci U S A 2021; 118:e2015243118. [PMID: 34561301 PMCID: PMC8488649 DOI: 10.1073/pnas.2015243118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
Nervous system malignancies are characterized by rapid progression and poor survival rates. These clinical observations underscore the need for novel therapeutic insights and pharmacological targets. To this end, here, we identify the orphan nuclear receptor NR5A2/LRH1 as a negative regulator of cancer cell proliferation and promising pharmacological target for nervous system-related tumors. In particular, clinical data from publicly available databases suggest that high expression levels of NR5A2 are associated with favorable prognosis in patients with glioblastoma and neuroblastoma tumors. Consistently, we experimentally show that NR5A2 is sufficient to strongly suppress proliferation of both human and mouse glioblastoma and neuroblastoma cells without inducing apoptosis. Moreover, short hairpin RNA-mediated knockdown of the basal expression levels of NR5A2 in glioblastoma cells promotes their cell cycle progression. The antiproliferative effect of NR5A2 is mediated by the transcriptional induction of negative regulators of the cell cycle, CDKN1A (encoding for p21cip1), CDKN1B (encoding for p27kip1) and Prox1 Interestingly, two well-established agonists of NR5A2, dilauroyl phosphatidylcholine (DLPC) and diundecanoyl phosphatidylcholine, are able to mimic the antiproliferative action of NR5A2 in human glioblastoma cells via the induction of the same critical genes. Most importantly, treatment with DLPC inhibits glioblastoma tumor growth in vivo in heterotopic and orthotopic xenograft mouse models. These data indicate a tumor suppressor role of NR5A2 in the nervous system and render this nuclear receptor a potential pharmacological target for the treatment of nervous tissue-related tumors.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
- Department of Biology, University of Patras, 265 04, Patras, Greece
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35, Athens, Greece
| | - Alexia Polissidis
- Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Theodora Manolakou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece
| | - Maroula G Kokotou
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Center of Excellence for Drug Design and Discovery, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 115 27, Athens, Greece;
| |
Collapse
|
21
|
Sun Y, Demagny H, Schoonjans K. Emerging functions of the nuclear receptor LRH-1 in liver physiology and pathology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166145. [PMID: 33862147 DOI: 10.1016/j.bbadis.2021.166145] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Nuclear receptors play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. The nuclear receptor, liver receptor homolog-1 (LRH-1, NR5A2), originally identified in the liver as a regulator of bile acid and cholesterol homeostasis, was recently recognized to coordinate a multitude of other hepatic metabolic processes, including glucose and lipid processing, methyl group sensing, and cellular stress responses. In this review, we summarize the physiological and pathophysiological functions of LRH-1 in the liver, as well as the molecular mechanisms underlying these processes. This review also focuses on the recent advances highlighting LRH-1 as an attractive target for liver-associated diseases, such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Yu Sun
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Guo F, Zhou Y, Guo H, Ren D, Jin X, Wu H. NR5A2 transcriptional activation by BRD4 promotes pancreatic cancer progression by upregulating GDF15. Cell Death Discov 2021; 7:78. [PMID: 33850096 PMCID: PMC8044179 DOI: 10.1038/s41420-021-00462-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022] Open
Abstract
NR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Functions of nuclear receptors SUMOylation. Clin Chim Acta 2021; 516:27-33. [PMID: 33476589 DOI: 10.1016/j.cca.2021.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
The nuclear receptor superfamily is a family of ligand-activated transcription factors that play a key role in cell metabolism and human diseases. They can be modified after translation, such as acetylation, ubiquitination, phosphorylation and SUMOylation. Crosstalk between SUMO and ubiquitin, phosphorylation and acetylation regulates a variety of metabolic and physiological activities. Nuclear receptors play an important role in lipid metabolism, inflammation, bile acid homeostasis and autophagy. SUMOylation nuclear receptors can regulate their function and affect cell metabolism. It also provides a potential therapeutic target for atherosclerosis, tumor and other metabolic and inflammation-related diseases. This review focuses on the function of SUMOylation nuclear receptors.
Collapse
|
24
|
He T, Shen H, Wang S, Wang Y, He Z, Zhu L, Du X, Wang D, Li J, Zhong S, Huang W, Yang H. MicroRNA-3613-5p Promotes Lung Adenocarcinoma Cell Proliferation through a RELA and AKT/MAPK Positive Feedback Loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:572-583. [PMID: 33230458 PMCID: PMC7562961 DOI: 10.1016/j.omtn.2020.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022]
Abstract
Aberrant activation of nuclear factor κB (NF-κB)/RELA is often found in lung adenocarcinoma (LUAD). In this study, we determined that microRNA-3613-5p (miR-3613-5p) plays a crucial role in RELA-mediated post-transcriptional regulation of LUAD cell proliferation. Expression of miR-3613-5p in clinical LUAD specimens is associated with poor prognosis in LUAD. Upregulation of miR-3613-5p promotes LUAD cell proliferation in vitro and in vivo. Our results suggested a mechanism whereby miR-3613-5p expression is induced by RELA through its direct interaction with JUN, thereby stimulating the AKT/mitogen-activated protein kinase (MAPK) pathway by directly targeting NR5A2. In addition, we also found that phosphorylation of AKT1 and MAPK3/1 co-transactivates RELA, thus constituting a RELA/JUN/miR-3613-5p/NR5A2/AKT1/MAPK3/1 positive feedback loop, leading to persistent NF-κB activation. Our findings also revealed that miR-3613-5p plays an oncogenic role in LUAD by promoting cell proliferation and acting as a key regulator of the positive feedback loop underlying the link between the NF-κB/RELA and AKT/MAPK pathways.
Collapse
Affiliation(s)
- Tao He
- Department of Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongyou Shen
- Emergency Department, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Shuangmiao Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yanfang Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiwei He
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Litong Zhu
- Department of Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong 518028, P.R. China
| | - Xinyue Du
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Dan Wang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiao Li
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shizhen Zhong
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Guangdong Medical University, Zhanjiang, Guangdong 524002, P.R. China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
25
|
Michalek S, Brunner T. Nuclear-mitochondrial crosstalk: On the role of the nuclear receptor liver receptor homolog-1 (NR5A2) in the regulation of mitochondrial metabolism, cell survival, and cancer. IUBMB Life 2020; 73:592-610. [PMID: 32931651 DOI: 10.1002/iub.2386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Liver receptor homolog-1 (LRH-1, NR5A2) is an orphan nuclear receptor with widespread activities in the regulation of development, stemness, metabolism, steroidogenesis, and proliferation. Many of the LRH-1-regulated processes target the mitochondria and associated activities. While under physiological conditions, a balanced LRH-1 expression and regulation contribute to the maintenance of a physiological equilibrium, deregulation of LRH-1 has been associated with inflammation and cancer. In this review, we discuss the role and mechanism(s) of how LRH-1 regulates metabolic processes, cell survival, and cancer in a nuclear-mitochondrial crosstalk, and evaluate its potential as a pharmacological target.
Collapse
Affiliation(s)
- Svenja Michalek
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
26
|
Wei Y, Tian C, Zhao Y, Liu X, Liu F, Li S, Chen Y, Qiu Y, Feng Z, Chen L, Zhou T, Ren X, Feng C, Liu Y, Yu W, Ying H, Ding Q. MRG15 orchestrates rhythmic epigenomic remodelling and controls hepatic lipid metabolism. Nat Metab 2020; 2:447-460. [PMID: 32694659 DOI: 10.1038/s42255-020-0203-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
The rhythmic regulation of transcriptional processes is intimately linked to lipid homeostasis, to anticipate daily changes in energy access. The Rev-erbα-HDAC3 complex was previously discovered to execute the rhythmic repression of lipid genes; however, the epigenetic switch that turns on these genes is less clear. Here, we show that genomic recruitment of MRG15, which is encoded by the mortality factor on chromosome 4 (MORF4)-related gene on chromosome 15, displays a significant diurnal rhythm and activates lipid genes in the mouse liver. RNA polymerase II (Pol II) recruitment and histone acetylation correspond to MRG15 binding, and the rhythm is impaired upon MRG15 depletion, establishing MRG15 as a key modulator in global rhythmic transcriptional regulation. MRG15 interacts with the nuclear receptor LRH-1, rather than with known core clock proteins, and is recruited to genomic loci near lipid genes via LRH-1. Blocking of MRG15 by CRISPR targeting or by the FDA-approved drug argatroban, which is an antagonist to MRG15, attenuates liver steatosis. This work highlights MRG15 as a targetable master regulator in the rhythmic regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cheng Tian
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhuanghui Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaoguang Ren
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chengwu Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
27
|
Cobo-Vuilleumier N, Gauthier BR. Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration. Metabolism 2020; 104:154137. [PMID: 31904355 DOI: 10.1016/j.metabol.2020.154137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that targets the destruction of islet beta-cells resulting in insulin deficiency, hyperglycemia and death if untreated. Despite advances in medical devices and longer-acting insulin, there is still no robust therapy to substitute and protect beta-cells that are lost in T1DM. Attempts to refrain from the autoimmune attack have failed to achieve glycemic control in patients highlighting the necessity for a paradigm shift in T1DM treatment. Paradoxically, beta-cells are present in T1DM patients indicating a disturbed equilibrium between the immune attack and beta-cell regeneration reminiscent of unresolved wound healing that under normal circumstances progression towards an anti-inflammatory milieu promotes regeneration. Thus, the ultimate T1DM therapy should concomitantly restore immune self-tolerance and replenish the beta-cell mass similar to wound healing. Recently the agonistic activation of the nuclear receptor LRH-1/NR5A2 was shown to induce immune self-tolerance, increase beta-cell survival and promote regeneration through a mechanism of alpha-to-beta cell phenotypic switch. This trans-regeneration process appears to be facilitated by a pancreatic anti-inflammatory environment induced by LRH-1/NR5A2 activation. Herein, we review the literature on the role of LRH1/NR5A2 in immunity and islet physiology and propose that a cross-talk between these cellular compartments is mandatory to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029 Spain.
| |
Collapse
|
28
|
Pharmacological LRH-1/Nr5a2 inhibition limits pro-inflammatory cytokine production in macrophages and associated experimental hepatitis. Cell Death Dis 2020; 11:154. [PMID: 32111818 PMCID: PMC7048823 DOI: 10.1038/s41419-020-2348-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Liver receptor homolog-1 (LRH-1, Nr5a2) is an orphan nuclear receptor mainly expressed in tissues of endodermal origin, where its physiological role has been extensively studied. LRH-1 has been implicated in liver cell differentiation and proliferation, as well as glucose, lipid, and bile acid metabolism. In addition, increasing evidence highlights its role in immunoregulatory processes via glucocorticoid synthesis in the intestinal epithelium. Although the direct function of LRH-1 in immune cells is fairly elucidated, a role of LRH-1 in the regulation of macrophage differentiation has been recently reported. In this study, we aimed to investigate the role of LRH-1 in the regulation of pro-inflammatory cytokine production in macrophages. Our data demonstrate that pharmacological inhibition, along with LRH-1 knockdown, significantly reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines in the macrophage line RAW 264.7 cells, as well as in primary murine macrophages. This inhibitory effect was found to be independent of defects of LRH-1-regulated cell proliferation or toxic effects of the LRH-1 inhibitors. In contrast, LRH-1 inhibition reduced the mitochondrial ATP production and metabolism of macrophages through downregulation of the LRH-1 targets glucokinase and glutminase-2, and thus impairing the LPS-induced macrophage activation. Interestingly, in vivo pharmacological inhibition of LRH-1 also resulted in reduced tumor necrosis factor (TNF) production and associated decreased liver damage in a macrophage- and TNF-dependent mouse model of hepatitis. Noteworthy, despite hepatocytes expressing high levels of LRH-1, pharmacological inhibition of LRH-1 per se did not cause any obvious liver damage. Therefore, this study proposes LRH-1 as an emerging therapeutic target in the treatment of inflammatory disorders, especially where macrophages and cytokines critically decide the extent of inflammation.
Collapse
|
29
|
Ahmed A, Schmidt C, Brunner T. Extra-Adrenal Glucocorticoid Synthesis in the Intestinal Mucosa: Between Immune Homeostasis and Immune Escape. Front Immunol 2019; 10:1438. [PMID: 31316505 PMCID: PMC6611402 DOI: 10.3389/fimmu.2019.01438] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones predominantly produced in the adrenal glands in response to physiological cues and stress. Adrenal GCs mediate potent anti-inflammatory and immunosuppressive functions. Accumulating evidence in the past two decades has demonstrated other extra-adrenal organs and tissues capable of synthesizing GCs. This review discusses the role and regulation of GC synthesis in the intestinal epithelium in the regulation of normal immune homeostasis, inflammatory diseases of the intestinal mucosa, and the development of intestinal tumors.
Collapse
Affiliation(s)
- Asma Ahmed
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Pharmacology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Christian Schmidt
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
30
|
A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model. Sci Rep 2019; 9:6913. [PMID: 31061415 PMCID: PMC6502816 DOI: 10.1038/s41598-019-43091-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
To-date, most proteomic studies aimed at discovering tissue-based cancer biomarkers have compared the quantity of selected proteins between case and control groups. However, proteins generally function in association with other proteins to form modules localized in particular subcellular compartments in specialized cell types and tissues. Sub-cellular mislocalization of proteins has in fact been detected as a key feature in a variety of cancer cells. Here, we describe a strategy for tissue-biomarker detection based on a mitochondrial fold enrichment (mtFE) score, which is sensitive to protein abundance changes as well as changes in subcellular distribution between mitochondria and cytosol. The mtFE score integrates protein abundance data from total cellular lysates and mitochondria-enriched fractions, and provides novel information for the classification of cancer samples that is not necessarily apparent from conventional abundance measurements alone. We apply this new strategy to a panel of wild-type and mutant mice with a liver-specific gene deletion of Liver receptor homolog 1 (Lrh-1hep−/−), with both lines containing control individuals as well as individuals with liver cancer induced by diethylnitrosamine (DEN). Lrh-1 gene deletion attenuates cancer cell metabolism in hepatocytes through mitochondrial glutamine processing. We show that proteome changes based on mtFE scores outperform protein abundance measurements in discriminating DEN-induced liver cancer from healthy liver tissue, and are uniquely robust against genetic perturbation. We validate the capacity of selected proteins with informative mtFE scores to indicate hepatic malignant changes in two independent mouse models of hepatocellular carcinoma (HCC), thus demonstrating the robustness of this new approach to biomarker research. Overall, the method provides a novel, sensitive approach to cancer biomarker discovery that considers contextual information of tested proteins.
Collapse
|
31
|
Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The Orphan Nuclear Receptors Steroidogenic Factor-1 and Liver Receptor Homolog-1: Structure, Regulation, and Essential Roles in Mammalian Reproduction. Physiol Rev 2019; 99:1249-1279. [DOI: 10.1152/physrev.00019.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors are intracellular proteins that act as transcription factors. Proteins with classic nuclear receptor domain structure lacking identified signaling ligands are designated orphan nuclear receptors. Two of these, steroidogenic factor-1 (NR5A1, also known as SF-1) and liver receptor homolog-1 (NR5A2, also known as LRH-1), bind to the same DNA sequences, with different and nonoverlapping effects on targets. Endogenous regulation of both is achieved predominantly by cofactor interactions. SF-1 is expressed primarily in steroidogenic tissues, LRH-1 in tissues of endodermal origin and the gonads. Both receptors modulate cholesterol homeostasis, steroidogenesis, tissue-specific cell proliferation, and stem cell pluripotency. LRH-1 is essential for development beyond gastrulation and SF-1 for genesis of the adrenal, sexual differentiation, and Leydig cell function. Ovary-specific depletion of SF-1 disrupts follicle development, while LRH-1 depletion prevents ovulation, cumulus expansion, and luteinization. Uterine depletion of LRH-1 compromises decidualization and pregnancy. In humans, SF-1 is present in endometriotic tissue, where it regulates estrogen synthesis. SF-1 is underexpressed in ovarian cancer cells and overexpressed in Leydig cell tumors. In breast cancer cells, proliferation, migration and invasion, and chemotherapy resistance are regulated by LRH-1. In conclusion, the NR5A orphan nuclear receptors are nonredundant factors that are crucial regulators of a panoply of biological processes, across multiple reproductive tissues.
Collapse
Affiliation(s)
- Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Olivia E. Smith
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Kalyne Bertolin
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Bruce D. Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
32
|
Perez-Gomez A, Carretero M, Weber N, Peterka V, To A, Titova V, Solis G, Osborn O, Petrascheck M. A phenotypic Caenorhabditis elegans screen identifies a selective suppressor of antipsychotic-induced hyperphagia. Nat Commun 2018; 9:5272. [PMID: 30532051 PMCID: PMC6288085 DOI: 10.1038/s41467-018-07684-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antipsychotic (AP) drugs are used to treat psychiatric disorders but are associated with significant weight gain and metabolic disease. Increased food intake (hyperphagia) appears to be a driving force by which APs induce weight gain but the mechanisms are poorly understood. Here we report that administration of APs to C. elegans induces hyperphagia by a mechanism that is genetically distinct from basal food intake. We exploit this finding to screen for adjuvant drugs that suppress AP-induced hyperphagia in C. elegans and mice. In mice AP-induced hyperphagia is associated with a unique hypothalamic gene expression signature that is abrogated by adjuvant drug treatment. Genetic analysis of this signature using C. elegans identifies two transcription factors, nhr-25/Nr5a2 and nfyb-1/NFYB to be required for AP-induced hyperphagia. Our study reveals that AP-induced hyperphagia can be selectively suppressed without affecting basal food intake allowing for novel drug discovery strategies to combat AP-induced metabolic side effects.
Collapse
Affiliation(s)
- Anabel Perez-Gomez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Maria Carretero
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Natalie Weber
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Veronika Peterka
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Alan To
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Viktoriya Titova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gregory Solis
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
33
|
Mackeh R, Marr AK, Fadda A, Kino T. C2H2-Type Zinc Finger Proteins: Evolutionarily Old and New Partners of the Nuclear Hormone Receptors. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801071. [PMID: 30718982 PMCID: PMC6348741 DOI: 10.1177/1550762918801071] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
Nuclear hormone receptors (NRs) are evolutionarily conserved ligand-dependent
transcription factors. They are essential for human life, mediating the actions
of lipophilic molecules, such as steroid hormones and metabolites of fatty acid,
cholesterol, and external toxic compounds. The C2H2-type zinc finger proteins
(ZNFs) form the largest family of the transcription factors in humans and are
characterized by multiple, tandemly arranged zinc fingers. Many of the C2H2-type
ZNFs are conserved throughout evolution, suggesting their involvement in
preserved biological activities, such as general transcriptional regulation and
development/differentiation of organs/tissues observed in the early embryonic
phase. However, some C2H2-type ZNFs, such as those with the Krüppel-associated
box (KRAB) domain, appeared relatively late in evolution and have significantly
increased family members in mammals including humans, possibly modulating their
complicated transcriptional network and/or supporting the morphological
development/functions specific to them. Such evolutional characteristics of the
C2H2-type ZNFs indicate that these molecules influence the NR functions
conserved through evolution, whereas some also adjust them to meet with specific
needs of higher organisms. We review the interaction between NRs and C2H2-type
ZNFs by focusing on some of the latter molecules.
Collapse
|
34
|
Flynn AR, Mays SG, Ortlund EA, Jui NT. Development of Hybrid Phospholipid Mimics as Effective Agonists for Liver Receptor Homologue-1. ACS Med Chem Lett 2018; 9:1051-1056. [PMID: 30344916 DOI: 10.1021/acsmedchemlett.8b00361] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023] Open
Abstract
The orphan nuclear receptor Liver Receptor Homologue-1 (LRH-1) is an emerging drug target for metabolic disorders. The most effective known LRH-1 modulators are phospholipids or synthetic hexahydropentalene compounds. While both classes have micromolar efficacy, they target different portions of the ligand binding pocket and activate LRH-1 through different mechanisms. Guided by crystallographic data, we combined aspects of both ligand classes into a single scaffold, resulting in the most potent and efficacious LRH-1 agonists to date.
Collapse
|
35
|
Bryant JM, Blind RD. Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. J Lipid Res 2018; 60:299-311. [PMID: 30201631 DOI: 10.1194/jlr.r088518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide membrane signaling is critical for normal physiology, playing well-known roles in diverse human pathologies. The basic mechanisms governing phosphoinositide signaling within the nucleus, however, have remained deeply enigmatic owing to their presence outside the nuclear membranes. Over 40% of nuclear phosphoinositides can exist in this non-membrane state, held soluble in the nucleoplasm by nuclear proteins that remain largely unidentified. Recently, two nuclear proteins responsible for solubilizing phosphoinositides were identified, steroidogenic factor-1 (SF-1; NR5A1) and liver receptor homolog-1 (LRH-1; NR5A2), along with two enzymes that directly remodel these phosphoinositide/protein complexes, phosphatase and tensin homolog (PTEN; MMAC) and inositol polyphosphate multikinase (IPMK; ipk2). These new footholds now permit the assignment of physiological functions for nuclear phosphoinositides in human diseases, such as endometriosis, nonalcoholic fatty liver disease/steatohepatitis, glioblastoma, and hepatocellular carcinoma. The unique nature of nuclear phosphoinositide signaling affords extraordinary clinical opportunities for new biomarkers, diagnostics, and therapeutics. Thus, phosphoinositide biology within the nucleus may represent the next generation of low-hanging fruit for new drugs, not unlike what has occurred for membrane phosphatidylinositol 3-kinase drug development. This review connects recent basic science discoveries in nuclear phosphoinositide signaling to clinical pathologies, with the hope of inspiring development of new therapies.
Collapse
Affiliation(s)
- Jamal M Bryant
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Raymond D Blind
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
36
|
Wu C, Feng J, Li L, Wu Y, Xie H, Yin Y, Ye J, Li Z. Liver receptor homologue 1, a novel prognostic marker in colon cancer patients. Oncol Lett 2018; 16:2833-2838. [PMID: 30127869 PMCID: PMC6096149 DOI: 10.3892/ol.2018.8988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/13/2018] [Indexed: 01/31/2023] Open
Abstract
Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that is highly expressed in a variety of cancer tissues, promotes tumor cell proliferation and metastasis, and is involved in the tumor cell cycle and apoptosis. The aim of the present study was to assess the association between the expression of LRH-1 and the prognosis of patients with colon cancer. Immunohistochemistry was used to detect the expression of LRH1 in 128 cases of colon cancer and adjacent tissues. The 5-year survival rate was obtained from telephone follow-up data, outpatient review and through access to medical records. Positive expression of LRH-1 was found in 108/128 colon cancer samples, compared with 17/128 normal tissues. Statistical analysis showed that positive LRH-1 expression was significantly associated with clinical pathological stage, depth of invasion and lymph node metastasis. The overall survival (OS) rate of patients with positive LRH-1 expression was significantly lower than that of patients with low expression. Multivariate analysis showed that LRH-1 expression could be used as an independent predictor of OS. In conclusion, the present findings suggest that LRH-1 may serve an important role in the development and progression of colon cancer, with potential value as a prognostic molecular marker that could be used to assist in the diagnosis and evaluation of colon cancer. LRH-1 may become a target for novel therapies for patients with colon cancer.
Collapse
Affiliation(s)
- Cong Wu
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jin Feng
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ling Li
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yugang Wu
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Haibin Xie
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yong Yin
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jing Ye
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhong Li
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
37
|
Zhao J, Gao S, Zhu Y, Shen X. Significant role of microRNA‑219‑5p in diabetic retinopathy and its mechanism of action. Mol Med Rep 2018; 18:385-390. [PMID: 29749515 DOI: 10.3892/mmr.2018.8988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/29/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Junying Zhao
- Department of Ophthalmology, Dahua Hospital, Shanghai 200237, P.R. China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanji Zhu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
38
|
Cobo I, Martinelli P, Flández M, Bakiri L, Zhang M, Carrillo-de-Santa-Pau E, Jia J, Sánchez-Arévalo Lobo VJ, Megías D, Felipe I, Del Pozo N, Millán I, Thommesen L, Bruland T, Olson SH, Smith J, Schoonjans K, Bamlet WR, Petersen GM, Malats N, Amundadottir LT, Wagner EF, Real FX. Transcriptional regulation by NR5A2 links differentiation and
inflammation in the pancreas. Nature 2018; 554:533-537. [PMID: 29443959 PMCID: PMC6121728 DOI: 10.1038/nature25751] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Chronic inflammation increases the risk of several cancer types. The
current notion is that the control of inflammatory responses relies on
transcriptional networks distinct from those involved in cell differentiation
1–3. The orphan nuclear receptor NR5A2
participates in a wide variety of processes including cholesterol and glucose
metabolism in the liver, resolution of ER stress, intestinal glucocorticoid
production, pancreatic development, and acinar differentiation 4–8. Single nucleotide polymorphisms (SNPs) in the vicinity
of NR5A2 have been associated with the risk of pancreatic
adenocarcinoma (PDAC) through genome wide association studies 9,10. In mice, Nr5a2 heterozygosity
sensitizes the pancreas to damage, impairs regeneration, and cooperates with
mutant KRas in tumor progression 11. Through global transcriptomic analysis,
we describe here an epithelial cell-autonomous basal pre-inflammatory state in
the pancreas of Nr5a2+/−
mice that is reminiscent of early stages of pancreatitis-induced inflammation
and is conserved in histologically normal human pancreata with reduced NR5A2
mRNA expression. In Nr5a2+/−
mice, Nr5a2 undergoes a dramatic transcriptional switch relocating from
differentiation-specific to inflammatory genes thereby promoting AP-1-dependent
gene transcription. Pancreatic deletion of c-Jun rescues the
pre-inflammatory phenotype, Nr5a2 binding to inflammatory gene promoters, and
the defective regenerative response to damage. These findings support the notion
that, in the pancreas, the same transcriptional networks involved in
differentiation-specific functions suppress inflammatory programmes. These
networks can be subverted to foster inflammation upon genetic or environmental
constraints.
Collapse
Affiliation(s)
- Isidoro Cobo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Paola Martinelli
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Marta Flández
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Latifa Bakiri
- Genes, Development, and Disease Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.,Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
| | - Irene Millán
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.,Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
| | - Liv Thommesen
- Department of Biomedical Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torunn Bruland
- Clinic of Medicine, St. Olav's University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jill Smith
- Departments of Gastroenterology and Hepatology, Georgetown University, Washington, DC 20007, USA
| | | | - William R Bamlet
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gloria M Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.,Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Erwin F Wagner
- Genes, Development, and Disease Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain.,Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, CIBERONC, Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
39
|
|
40
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
41
|
Lee JS, Bae S, Kang HS, Im SS, Moon YA. Liver receptor homolog-1 regulates mouse superoxide dismutase 2. Biochem Biophys Res Commun 2017; 489:299-304. [PMID: 28552526 DOI: 10.1016/j.bbrc.2017.05.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 01/22/2023]
Abstract
Liver receptor homolog-1 (LRH-1) is a nuclear receptor that plays an important role in the regulation of bile acid biosynthesis, cholesterol reverse transport, steroidogenesis, and exocrine pancreatic enzyme production. In the current study, previously published data from a genome wide analysis of LRH-1 binding in the liver were re-analyzed to identify new LRH-1 targets and propose new roles for LRH-1 in the liver. Superoxide dismutase 2 (Sod2) was identified, which contains putative LRH-1 binding sites in the proximal promoter. When hepatocytes were treated with the LRH-1 agonist RJW101, Sod2 expression was dramatically increased and reactive oxygen species (ROS) production, which was induced by a high concentration of palmitate, was significantly reduced. A LRH-1 binding site was mapped to -288/-283 in the Sod2 promoter, which increased Sod2 promoter activity in response to LRH-1 and its agonist. LRH-1 binding to this site was confirmed using a chromatin immunoprecipitation assay. These results suggest that Sod2 is a target gene of LRH-1, and that LRH-1 agonists can mediate a reduction in ROS production and oxidative stress driven by an excess of fatty acids, as exhibited in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Jun-Su Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Sijeong Bae
- Department of Molecular Medicine, Inha University School of Medicine, Incheon, South Korea
| | - Hye-Suk Kang
- Department of Physiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, South Korea.
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University School of Medicine, Incheon, South Korea.
| |
Collapse
|
42
|
LRH-1 expression patterns in breast cancer tissues are associated with tumour aggressiveness. Oncotarget 2017; 8:83626-83636. [PMID: 29137369 PMCID: PMC5663541 DOI: 10.18632/oncotarget.18886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/12/2017] [Indexed: 11/25/2022] Open
Abstract
The significance and regulation of liver receptor homologue 1 (LRH-1, NR5A2), a tumour-promoting transcription factor in breast cancer cell lines, is unknown in clinical breast cancers. This study aims to determine LRH-1/NR5A2 expression in breast cancers and relationship with DNA methylation and tumour characteristics. In The Cancer Genome Atlas breast cancer cohort NR5A2 expression was positively associated with intragenic CpG island methylation (1.4-fold expression for fully methylated versus not fully methylated, p=0.01) and inversely associated with promoter CpG island methylation (0.6-fold expression for fully methylated versus not fully methylated, p=0.036). LRH-1 immunohistochemistry of 329 invasive carcinomas and ductal carcinoma in situ (DCIS) was performed. Densely punctate/coarsely granular nuclear reactivity was significantly associated with high tumour grade (p<0.005, p=0.033 in invasive carcinomas and DCIS respectively), negative estrogen receptor status (p=0.008, p=0.038 in overall cohort and invasive carcinomas, respectively), negative progesterone receptor status (p=0.003, p=0.013 in overall cohort and invasive carcinomas, respectively), HER2 amplification (overall cohort p=0.034) and non-luminal intrinsic subtype (p=0.018, p=0.038 in overall cohort and invasive carcinomas, respectively). These significant associations of LRH-1 protein expression with tumour phenotype suggest that LRH-1 is an important indicator of tumour biology in breast cancers and may be useful in risk stratification.
Collapse
|
43
|
Xu P, Oosterveer MH, Stein S, Demagny H, Ryu D, Moullan N, Wang X, Can E, Zamboni N, Comment A, Auwerx J, Schoonjans K. LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes Dev 2017; 30:1255-60. [PMID: 27298334 PMCID: PMC4911925 DOI: 10.1101/gad.277483.116] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022]
Abstract
Xu et al. identify the nuclear receptor liver receptor homolog 1 (LRH-1) as a key regulator in the process of hepatic tumorigenesis through the coordination of a noncanonical glutamine pathway that is reliant on the mitochondrial and cytosolic transaminases glutamate pyruvate transaminase 2 (GPT2) and glutamate oxaloacetate transaminase 1 (GOT1), which fuel anabolic metabolism. Various tumors develop addiction to glutamine to support uncontrolled cell proliferation. Here we identify the nuclear receptor liver receptor homolog 1 (LRH-1) as a key regulator in the process of hepatic tumorigenesis through the coordination of a noncanonical glutamine pathway that is reliant on the mitochondrial and cytosolic transaminases glutamate pyruvate transaminase 2 (GPT2) and glutamate oxaloacetate transaminase 1 (GOT1), which fuel anabolic metabolism. In particular, we show that gain and loss of function of hepatic LRH-1 modulate the expression and activity of mitochondrial glutaminase 2 (GLS2), the first and rate-limiting step of this pathway. Acute and chronic deletion of hepatic LRH-1 blunts the deamination of glutamine and reduces glutamine-dependent anaplerosis. The robust reduction in glutaminolysis and the limiting availability of α-ketoglutarate in turn inhibit mTORC1 signaling to eventually block cell growth and proliferation. Collectively, these studies highlight the importance of LRH-1 in coordinating glutamine-induced metabolism and signaling to promote hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Pan Xu
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, NL-9700 RB Groningen, The Netherlands
| | - Sokrates Stein
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hadrien Demagny
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Norman Moullan
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Xu Wang
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Emine Can
- Institute of the Physics of Biological Systems, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute for Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, CH-8093 Zurich, Switzerland
| | - Arnaud Comment
- Institute of the Physics of Biological Systems, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Fletterick R. NR5A2 discovering compounds that block tumor growth in PDAC. J Surg Oncol 2017; 116:89-93. [PMID: 28445593 DOI: 10.1002/jso.24639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/22/2017] [Indexed: 11/08/2022]
Abstract
Pancreatic cancers depend on driver molecules, oncogene proteins such as RAS. NR5A2 protein is a transcription factor and either activates or inhibits transcription through actions at hundreds of enhancers. It has unusual properties with effects appearing in multiple signaling networks. NR5A2 is a pluripotency reprogramming factor in the class nuclear receptor. Its controlling hormone is PIP3. Experiments suggest NR5A2 activation drives PDAC and inhibitors blunt cancer cell proliferation.
Collapse
Affiliation(s)
- Robert Fletterick
- Department of Biochemistry, School of Medicine, UCSF, San Francisco, California
| |
Collapse
|
45
|
Yan L, Qiu J, Yao J. Downregulation of microRNA-30d promotes cell proliferation and invasion by targeting LRH-1 in colorectal carcinoma. Int J Mol Med 2017; 39:1371-1380. [PMID: 28440426 PMCID: PMC5428944 DOI: 10.3892/ijmm.2017.2958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
The aberrant expression of miR-30d has been reported in several types of human malignancies. However, its biological function in colorectal cancer (CRC) remains largely unknown. In this study, we identified that miR-30d was significantly downregulated in CRC tissues compared to that observed in normal controls as detected by RT-qPCR analysis. Downregulation of miR-30d was significantly associated with aggressive clinicopathological parameters including tumor differentiation, invasive depth, TNM stage, lymph node metastasis, distant metastasis, and poor prognosis. Furthermore, functional analysis revealed that overexpression of miR-30d significantly inhibited cell proliferation, caused cell cycle arrest at the G0/G1 phase, suppressed cell migration and invasion, induced cell apoptosis in vitro, and decreased tumor growth in a xenograft mouse model. Bioinformatic analysis and dual-luciferase reporter assay revealed that liver receptor homologue-1 (LRH-1) is a direct target of miR-30d in CRC cells. Rescue assay showed that LRH-1 overexpression could restore the inhibitory effect of miR-30d on CRC cells. In addition, miR-30d overexpression suppressed the activation of key components of the Wnt/β-catenin signaling pathway, β-catenin, c-Myc and cyclin D1, which contributed to the inhibition of CRC development. Thus, our findings suggest that miR-30d functions as a tumor suppressor against CRC development and miR-30d/LRH-1/Wnt signaling may be novel potential targets for CRC treatment.
Collapse
Affiliation(s)
- Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jian Qiu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jianfeng Yao
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
46
|
Liver receptor homolog-1 (NR5a2) regulates CD95/Fas ligand transcription and associated T-cell effector functions. Cell Death Dis 2017; 8:e2745. [PMID: 28406481 PMCID: PMC5477591 DOI: 10.1038/cddis.2017.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/25/2023]
Abstract
CD95/Fas ligand (FasL) is a cell death-promoting member of the tumor necrosis factor family with important functions in the regulation of T-cell homeostasis and cytotoxicity. In T cells, FasL expression is tightly regulated on a transcriptional level involving a complex set of different transcription factors. The orphan nuclear receptor liver receptor homolog-1 (LRH-1/NR5a2) is involved in the regulation of development, lipid metabolism and proliferation and is predominantly expressed in epithelial tissues. However, its expression in T lymphocytes has never been reported so far. Based on in silico analysis, we identified potential LRH-1 binding sites within the FASLG promoter. Here, we report that LRH-1 is expressed in primary and secondary lymphatic tissues, as well as in CD4+ and CD8+ T cells. LRH-1 directly binds to its binding sites in the FASLG promoter, and thereby drives FASLG promoter activity. Mutations in the LRH-1 binding sites reduce FASLG promoter activity. Pharmacological inhibition of LRH-1 decreases activation-induced FasL mRNA expression, as well as FasL-mediated activation-induced T-cell apoptosis and T-cell cytotoxicity. In a mouse model of Concanavalin A-induced and FasL-mediated hepatitis pharmacological inhibition of LRH-1 resulted in decreased hepatic FasL expression and a significant reduction of liver damage. In summary, these data show for the first time LRH-1 expression in T cells, its role in FASLG transcription and the potential of pharmacological inhibition of LRH-1 in the treatment of FasL-mediated immunopathologies.
Collapse
|
47
|
Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, Jimenez V, Bosch F, Lüscher TF, Oosterveer MH, Schoonjans K. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest 2017; 127:583-592. [PMID: 28094767 DOI: 10.1172/jci85499] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatic steatosis is caused by metabolic imbalances that could be explained in part by an increase in de novo lipogenesis that results from increased sterol element binding protein 1 (SREBP-1) activity. The nuclear receptor liver receptor homolog 1 (LRH-1) is an important regulator of intermediary metabolism in the liver, but its role in regulating lipogenesis is not well understood. Here, we have assessed the contribution of LRH-1 SUMOylation to the development of nonalcoholic fatty liver disease (NAFLD). Mice expressing a SUMOylation-defective mutant of LRH-1 (LRH-1 K289R mice) developed NAFLD and early signs of nonalcoholic steatohepatitis (NASH) when challenged with a lipogenic, high-fat, high-sucrose diet. Moreover, we observed that the LRH-1 K289R mutation induced the expression of oxysterol binding protein-like 3 (OSBPL3), enhanced SREBP-1 processing, and promoted de novo lipogenesis. Mechanistically, we demonstrated that ectopic expression of OSBPL3 facilitates SREBP-1 processing in WT mice, while silencing hepatic Osbpl3 reverses the lipogenic phenotype of LRH-1 K289R mice. These findings suggest that compromised SUMOylation of LRH-1 promotes the development of NAFLD under lipogenic conditions through regulation of OSBPL3.
Collapse
|
48
|
Downing LE, Edgar D, Ellison PA, Ricketts ML. Mechanistic insight into nuclear receptor-mediated regulation of bile acid metabolism and lipid homeostasis by grape seed procyanidin extract (GSPE). Cell Biochem Funct 2017; 35:12-32. [DOI: 10.1002/cbf.3247] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Laura E. Downing
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| | - Daniel Edgar
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Patricia A. Ellison
- Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno Nevada USA
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences; University of Nevada Reno; Reno Nevada USA
| |
Collapse
|
49
|
Nuclear receptor NR5A2 is involved in the calreticulin gene regulation during renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1774-85. [DOI: 10.1016/j.bbadis.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022]
|
50
|
Ament Z, West JA, Stanley E, Ashmore T, Roberts LD, Wright J, Nicholls AW, Griffin JL. PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling. Free Radic Biol Med 2016; 95:357-68. [PMID: 26654758 PMCID: PMC4891066 DOI: 10.1016/j.freeradbiomed.2015.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 01/11/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear receptors that regulate cellular homoeostasis and metabolism. PPARs control the expression of genes involved in fatty-acid and lipid metabolism. Despite evidence showing beneficial effects of their activation in the treatment of metabolic diseases, particularly dyslipidaemias and type 2 diabetes, PPAR agonists have also been associated with a variety of side effects and adverse pathological changes. Agonists have been developed that simultaneously activate the three PPAR receptors (PPARα, γ and δ) in the hope that the beneficial effects can be harnessed while avoiding some of the negative side effects. In this study, the hepatic effects of a discontinued PPAR-pan agonist (a triple agonist of PPAR-α, -γ, and -δ), was investigated after dietary treatment of male Sprague-Dawley (SD) rats. The agonist induced liver enlargement in conjunction with metabolomic and lipidomic remodelling. Increased concentrations of several metabolites related to processes of oxidation, such as oxo-methionine, methyl-cytosine and adenosyl-methionine indicated increased stress and immune status. These changes are reflected in lipidomic changes, and increased energy demands as determined by free fatty acid (decreased 18:3 n-3, 20:5 n-3 and increased ratios of n-6/n-3 fatty acids) triacylglycerol, phospholipid (decreased and increased bulk changes respectively) and eicosanoid content (increases in PGB2 and 15-deoxy PGJ2). We conclude that the investigated PPAR agonist, GW625019, induces liver enlargement, accompanied by lipidomic remodelling, oxidative stress and increases in several pro-inflammatory eicosanoids. This suggests that such pathways should be monitored in the drug development process and also outline how PPAR agonists induce liver proliferation.
Collapse
Affiliation(s)
- Zsuzsanna Ament
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - James A West
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Elizabeth Stanley
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Tom Ashmore
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Lee D Roberts
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Jayne Wright
- Jayne Wright Ltd., Underhill House, Ledbury, Herefordshire HR8 2QR, UK
| | - Andrew W Nicholls
- GlaxoSmithKline, Investigative Preclinical Toxicology, Park Road, Ware SG12 0DP, UK
| | - Julian L Griffin
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK.
| |
Collapse
|