1
|
Huang X, Zhang J, Xu C, Cao R, Jiang P, Ji X, Wang W, Huang Z, Han P. Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury. Circ Res 2025; 136:279-296. [PMID: 39764631 DOI: 10.1161/circresaha.124.325290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear. METHODS We simultaneously visualized the formation of membrane blebs and the subcellular translocation of Vps4a during a variety of cell death programs in primary cardiomyocytes. Vps4a cardiomyocyte-specific knockout and overexpression mice were generated and characterized. In vivo and ex vivo surgeries were performed to determine the effects of altered Vps4a expression levels on plasma membrane repair and cell survival. Given the role of Ripk3 (receptor-interacting kinase 3)-mediated pore formation in regulating cell membrane integrity, hearts from Ripk3 and Vps4a double-knockout mice were examined. The sequential recruitment of upstream ESCRT components that promote the translocation of Vps4a to injured sites was also assessed using genetic gain- and loss-of-function approaches. Finally, we overexpressed a mutated form of Vps4a with defective ATPase activity and investigated its function during cardiomyocyte membrane repair. RESULTS Ischemia/reperfusion stimulation or forced induction of apoptosis, necroptosis, and pyroptosis in primary cardiomyocytes leads to membrane blebbing and the exposure of phosphatidylserine to the extracellular space. In response to injury, Vps4a promptly translocates to injured sites to reseal damaged membranes. Vps4a gain- and loss-of-function in the postnatal stage minimally affects cardiac structure formation and function. However, in the context of ischemia/reperfusion stimulation, overexpression of Vps4a protects cardiomyocytes against injury, whereas Vps4a-deficient hearts are more susceptible to cell damage. Additionally, Ripk3 deletion abrogates the detrimental effects of Vps4a deficiency during ischemia/reperfusion injury, and the Ca2+-Alix-Ist1 axis plays an essential role in recruiting Vps4a to the injured site. Mechanistically, Vps4a promotes the shedding of plasma membrane blebs to restrict permeability to the extracellular environment, and the surveillance of membrane integrity requires the ATPase activity of Vps4a. CONCLUSIONS These results demonstrate that Vps4a-mediated plasma membrane repair is an intrinsic cell protection machinery that antagonizes cardiac ischemia/reperfusion injury, and our findings may contribute to the development of therapeutic strategies towards attenuating cardiac injury.
Collapse
Affiliation(s)
- Xiaozhi Huang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Jiayin Zhang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Chen Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Ranran Cao
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Peijun Jiang
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Xue Ji
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Wenyi Wang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Zhishan Huang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| | - Peidong Han
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- International School of Medicine, International Institute of Medicine, Zhejiang University, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.)
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China (X.H., J.Z., C.X., R.C., P.J., X.J., W.W., Z.H., P.H.)
| |
Collapse
|
2
|
Dorca-Arévalo J, Santana-Ruiz A, Torrejón-Escribano B, Martín-Satué M, Blasi J. Epsilon Toxin from Clostridium perfringens Induces the Generation of Extracellular Vesicles in HeLa Cells Overexpressing Myelin and Lymphocyte Protein. Toxins (Basel) 2024; 16:525. [PMID: 39728783 PMCID: PMC11728497 DOI: 10.3390/toxins16120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Epsilon toxin (ETX) from Clostridium perfringens is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis. Myelin and lymphocyte protein (MAL) is widely considered to be the receptor for ETX as its presence is crucial for the effects of ETX on the plasma membrane of host cells that involve pore formation, resulting in cell death. To overcome the pores formed by PFTs, some host cells produce extracellular vesicles (EVs) to reduce the amount of pores inserted into the plasma membrane. The formation of EVs has not been studied for ETX in host cells. Here, we generated a highly sensitive clone from HeLa cells overexpressing the MAL-GFP protein in the plasma membrane. We observed that ETX induces the formation of EVs. Moreover, the MAL protein and ETX oligomers are found in these EVs, which are a very useful tool to decipher and study the mode of action of ETX and characterize the mechanisms involved in the binding of ETX to its receptor.
Collapse
Affiliation(s)
- Jonatan Dorca-Arévalo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Spain
- Institute of Neuroscience, Bellvitge Health Sciences Campus, University of Barcelona, Carrer de la Feixa Llarga, s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Antonio Santana-Ruiz
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
| | - Benjamín Torrejón-Escribano
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Scientific and Technological Centers (CCiTUB), Bellvitge Campus, University of Barcelona, Carrer de la Feixa Llarga, s/n, 08907 L’Hospitalet de Llobregat, Spain
| | - Mireia Martín-Satué
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), CIBERONC, 08908 L’Hospitalet de Llobregat, Spain
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain; (A.S.-R.); (B.T.-E.); (M.M.-S.); (J.B.)
- Laboratory of Molecular and Cellular Neurobiology, Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Spain
- Institute of Neuroscience, Bellvitge Health Sciences Campus, University of Barcelona, Carrer de la Feixa Llarga, s/n, 08907 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
3
|
Tang J, Song H, Li S, Lam SM, Ping J, Yang M, Li N, Chang T, Yu Z, Liu W, Lu Y, Zhu M, Tang Z, Liu Z, Guo YR, Shui G, Veillette A, Zeng Z, Wu N. TMEM16F Expressed in Kupffer Cells Regulates Liver Inflammation and Metabolism to Protect Against Listeria Monocytogenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402693. [PMID: 39136057 PMCID: PMC11497084 DOI: 10.1002/advs.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/20/2024] [Indexed: 10/25/2024]
Abstract
Infection by bacteria leads to tissue damage and inflammation, which need to be tightly controlled by host mechanisms to avoid deleterious consequences. It is previously reported that TMEM16F, a calcium-activated lipid scramblase expressed in various immune cell types including T cells and neutrophils, is critical for the control of infection by bacterium Listeria monocytogenes (Lm) in vivo. This function correlated with the capacity of TMEM16F to repair the plasma membrane (PM) damage induced in T cells in vitro, by the Lm toxin listeriolysin O (LLO). However, whether the protective effect of TMEM16F on Lm infection in vivo is mediated by an impact in T cells, or in other cell types, is not determined. Herein, the immune cell types and mechanisms implicated in the protective effect of TMEM16F against Lm in vivo are elucidated. Cellular protective effects of TMEM16F correlated with its capacity of lipid scrambling and augment PM fluidity. Using cell type-specific TMEM16F-deficient mice, the indication is obtained that TMEM16F expressed in liver Kupffer cells (KCs), but not in T cells or B cells, is key for protection against Listeria in vivo. In the absence of TMEM16F, Listeria induced PM rupture and fragmentation of KCs in vivo. KC death associated with greater liver damage, inflammatory changes, and dysregulated liver metabolism. Overall, the results uncovered that TMEM16F expressed in Kupffer cells is crucial to protect the host against Listeria infection. This influence is associated with the capacity of Kupffer cell-expressed TMEM16F to prevent excessive inflammation and abnormal liver metabolism.
Collapse
Affiliation(s)
- Jianlong Tang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Hua Song
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
| | - Shimin Li
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Jieming Ping
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Mengyun Yang
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Na Li
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Teding Chang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ze Yu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Weixiang Liu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Yan Lu
- Department of Clinical ImmunologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Min Zhu
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhaohui Tang
- Department of Traumatic SurgeryTongji Trauma CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyNo. 1095 Jiefang AvenueWuhan430030China
| | - Yusong R. Guo
- Department of biochemistry and molecular biologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - André Veillette
- Laboratory of Molecular OncologyInstitut de recherches cliniques de Montréal (IRCM)MontréalQuébecH2W1R7Canada
- Department of MedicineUniversity of MontréalMontréalQuébecH3T 1J4Canada
- Department of MedicineMcGill UniversityMontréalQuébecH3G 1Y6Canada
| | - Zhutian Zeng
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseSchool of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
- Department of OncologyThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefei230001China
| | - Ning Wu
- Department of ImmunologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology (HUST)Wuhan430030China
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
- Cell Architecture Research CenterTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
4
|
Prislusky MI, Lam JGT, Contreras VR, Ng M, Chamberlain M, Pathak-Sharma S, Fields M, Zhang X, Amer AO, Seveau S. The septin cytoskeleton is required for plasma membrane repair. EMBO Rep 2024; 25:3870-3895. [PMID: 38969946 PMCID: PMC11387490 DOI: 10.1038/s44319-024-00195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.
Collapse
Affiliation(s)
- M Isabella Prislusky
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jonathan G T Lam
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Viviana Ruiz Contreras
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
- Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Sucre, Colombia
| | - Marilynn Ng
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madeline Chamberlain
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sarika Pathak-Sharma
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Madalyn Fields
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection & Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
McGraw E, Laurent GM, Avila LA. Nanoparticle-mediated photoporation - an emerging versatile physical drug delivery method. NANOSCALE ADVANCES 2024:d4na00122b. [PMID: 39280791 PMCID: PMC11391416 DOI: 10.1039/d4na00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
Facilitating the delivery of impermeable molecules into cells stands as a pivotal step for both basic research and therapeutic delivery. While current methods predominantly use nanoparticles or viral vectors, the exploration of physical phenomena, particularly light-based techniques, remains relatively under-explored. Photoporation, a physical method, employs either pulsed or continuous wave lasers to create transient pores in cell membranes. These openings enable the entry of exogenous, membrane-impermeable molecules into the cytosol while preserving cell viability. Poration can either be achieved directly through focusing a laser beam onto a cell membrane, or indirectly through the addition of sensitizing nanoparticles that interact with the laser pulses. Nanoparticle-mediated photoporation specifically has recently been receiving increasing attention for the high-throughput ability to transfect cells, which also has exciting potential for clinical translation. Here, we begin with a snapshot of the current state of direct and indirect photoporation and the mechanisms that contribute to cell pore formation and molecule delivery. Following this, we present an outline of the evolution of photoporation methodologies for mammalian and non-mammalian cells, accompanied by a description of variations in experimental setups among photoporation systems. Finally, we discuss the potential clinical translation of photoporation and offer our perspective on recent key findings in the field, addressing unmet needs, gaps, and inconsistencies.
Collapse
Affiliation(s)
- Erin McGraw
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| | | | - L Adriana Avila
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| |
Collapse
|
6
|
Solovev I, Sergeeva A, Geraskina A, Shaposhnikov M, Vedunova M, Borysova O, Moskalev A. Aging and physiological barriers: mechanisms of barrier integrity changes and implications for age-related diseases. Mol Biol Rep 2024; 51:917. [PMID: 39158744 DOI: 10.1007/s11033-024-09833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
The phenomenon of compartmentalization is one of the key traits of life. Biological membranes and histohematic barriers protect the internal environment of the cell and organism from endogenous and exogenous impacts. It is known that the integrity of these barriers decreases with age due to the loss of homeostasis, including age-related gene expression profile changes and the abnormal folding/assembly, crosslinking, and cleavage of barrier-forming macromolecules in addition to morphological changes in cells and tissues. The critical molecular and cellular mechanisms involved in physiological barrier integrity maintenance and aging-associated changes in their functioning are reviewed on different levels: molecular, organelle, cellular, tissue (histohematic, epithelial, and endothelial barriers), and organ one (skin). Biogerontology, which studies physiological barriers in the aspect of age, is still in its infancy; data are being accumulated, but there is no talk of the synthesis of complex theories yet. This paper mainly presents the mechanisms that will become targets of anti-aging therapy only in the future, possibly: pharmacological, cellular, and gene therapies, including potential geroprotectors, hormetins, senomorphic drugs, and senolytics.
Collapse
Affiliation(s)
- Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp, Syktyvkar, 167001, Russian Federation
| | - Alena Sergeeva
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation
| | | | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation
| | - Maria Vedunova
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation
| | | | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st, Syktyvkar, 167982, Russian Federation.
- Lobachevsky State University, Nizhny Novgorod, 603022, Russian Federation.
- Laboratory of genetics and epigenetics of aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow, 129226, Russian Federation.
| |
Collapse
|
7
|
Xu S, Yang TJ, Xu S, Gong YN. Plasma membrane repair empowers the necrotic survivors as innate immune modulators. Semin Cell Dev Biol 2024; 156:93-106. [PMID: 37648621 PMCID: PMC10872800 DOI: 10.1016/j.semcdb.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
The plasma membrane is crucial to the survival of animal cells, and damage to it can be lethal, often resulting in necrosis. However, cells possess multiple mechanisms for repairing the membrane, which allows them to maintain their integrity to some extent, and sometimes even survive. Interestingly, cells that survive a near-necrosis experience can recognize sub-lethal membrane damage and use it as a signal to secrete chemokines and cytokines, which activate the immune response. This review will present evidence of necrotic cell survival in both in vitro and in vivo systems, including in C. elegans, mouse models, and humans. We will also summarize the various membrane repair mechanisms cells use to maintain membrane integrity. Finally, we will propose a mathematical model to illustrate how near-death experiences can transform dying cells into innate immune modulators for their microenvironment. By utilizing their membrane repair activity, the biological effects of cell death can extend beyond the mere elimination of the cells.
Collapse
Affiliation(s)
- Shiqi Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China
| | - Tyler J Yang
- Departments of Biology and Advanced Placement Biology, White Station High School, Memphis, TN 38117, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Burn and Wound Repair of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang 314400, China.
| | - Yi-Nan Gong
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Ecard J, Lian YL, Divoux S, Gouveia Z, Vigne E, Perez F, Boncompain G. Lysosomal membrane proteins LAMP1 and LIMP2 are segregated in the Golgi apparatus independently of their clathrin adaptor binding motif. Mol Biol Cell 2024; 35:ar42. [PMID: 38231876 PMCID: PMC10916873 DOI: 10.1091/mbc.e23-06-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
To reach the lysosome, lysosomal membrane proteins (LMPs) are translocated in the endoplasmic reticulum after synthesis and then transported to the Golgi apparatus. The existence of a direct transport from the Golgi apparatus to the endosomes but also of an indirect route through the plasma membrane has been described. Clathrin adaptor binding motifs contained in the cytosolic tail of LMPs have been described as key players in their intracellular trafficking. Here we used the RUSH assay to synchronize the biosynthetic transport of multiple LMPs. After exiting the Golgi apparatus, RUSH-synchronized LAMP1 was addressed to the cell surface both after overexpression or at endogenous level. Its YXXΦ motif was not involved in the transport from the Golgi apparatus to the plasma membrane but in its endocytosis. LAMP1 and LIMP2 were sorted from each other after reaching the Golgi apparatus. LIMP2 was incorporated in punctate structures for export from the Golgi apparatus from which LAMP1 is excluded. LIMP2-containing post-Golgi transport intermediates did not rely neither on its adaptor binding signal nor on its C-terminal cytoplasmic domain.
Collapse
Affiliation(s)
- Jason Ecard
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
- Large Molecules Research, Sanofi, 94400 Vitry-Sur-Seine, France
| | - Yen-Ling Lian
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Séverine Divoux
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Zelia Gouveia
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | | | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75005, Paris, France
| |
Collapse
|
9
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
10
|
Wang Z, Yang Y, Li S, Ma W, Wang K, Soberón M, Yan S, Shen J, Francis F, Bravo A, Zhang J. JAK/STAT signaling regulated intestinal regeneration defends insect pests against pore-forming toxins produced by Bacillus thuringiensis. PLoS Pathog 2024; 20:e1011823. [PMID: 38236820 PMCID: PMC10796011 DOI: 10.1371/journal.ppat.1011823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 01/22/2024] Open
Abstract
A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchao Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Sirui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Kui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Frederic Francis
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Shtuhin-Rahav R, Olender A, Zlotkin-Rivkin E, Bouman EA, Danieli T, Nir-Keren Y, Weiss AM, Nandi I, Aroeti B. Enteropathogenic E. coli infection co-elicits lysosomal exocytosis and lytic host cell death. mBio 2023; 14:e0197923. [PMID: 38038448 PMCID: PMC10746156 DOI: 10.1128/mbio.01979-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.
Collapse
Affiliation(s)
- Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aaron Olender
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Etan Amse Bouman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Tsafi Danieli
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Yael Nir-Keren
- The Protein Production Facility, Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Aryeh M. Weiss
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus–Givat Ram, Jerusalem, Israel
| |
Collapse
|
12
|
Pedrera L, Ros U, García-Sáez AJ. Calcium as a master regulator of ferroptosis and other types of regulated necrosis. Cell Calcium 2023; 114:102778. [PMID: 37356350 DOI: 10.1016/j.ceca.2023.102778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Regulation of proliferation and cell death is fundamental for organismal development and for restoring tissue homeostasis after biological stress. During the last years, several forms of regulated cell death have been discovered that share the loss of plasma membrane integrity as a common hallmark and that are collectively known as regulated necrosis (RN) pathways. During RN, plasma membrane damage is sensed by the cell by increases in the levels of intracellular calcium. Interestingly, cytosolic calcium influx can either lead to cell death or survival, given the versatile role of this ion in regulating multiple signaling processes. Among them, membrane repair enables the cells to tolerate the injury and, even in some conditions, survive. Here, we review calcium signaling in the context of RN pathways, with a focus on ferroptosis, a type of RN in which plasma membrane damage is elicited by the accumulation of oxidized lipids. In contrast, other forms of RN such as necroptosis and pyroptosis require dedicated pore-forming proteins for plasma membrane damage and cell death. We first focus on the current knowledge regarding the contribution of calcium to ferroptosis, and then illustrate the similarities and differences in calcium signaling with necroptosis and pyroptosis. Calcium signaling emerges as a key event in the cellular responses to membrane damage and in the regulation of cell death.
Collapse
Affiliation(s)
- Lohans Pedrera
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.
| |
Collapse
|
13
|
Liu J, Li RS, Zhang L, Wang J, Dong Q, Xu Z, Kang Y, Xue P. Enzyme-Activatable Polypeptide for Plasma Membrane Disruption and Antitumor Immunity Elicitation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206912. [PMID: 36932931 DOI: 10.1002/smll.202206912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Indexed: 06/15/2023]
Abstract
Enzyme-instructed self-assembly of bioactive molecules into nanobundles inside cells is conceived to potentially disrupt plasma membrane and subcellular structure. Herein, an alkaline phosphatase (ALP)-activatable hybrid of ICG-CF4 KYp is facilely synthesized by conjugating photosensitizer indocyanine green (ICG) with CF4 KYp peptide via classical Michael addition reaction. ALP-induced dephosphorylation of ICG-CF4 KYp enables its transformation from small-molecule precursor into rigid nanofibrils, and such fibrillation in situ causes severe mechanical disruption of cytomembrane. Besides, ICG-mediated photosensitization causes additional oxidative damage of plasma membrane by lipid peroxidation. Hollow MnO2 nanospheres devote to deliver ICG-CF4 KYp into tumorous tissue through tumor-specific acidity/glutathione-triggered degradation of MnO2 , which is monitored by fluorescent probing and magnetic resonance imaging. The burst release of damage-associated molecular patterns and other tumor antigens during therapy effectively triggers immunogenetic cell death and improves immune stimulatory, as demonstrated by the promotion of dendritic cell maturation and CD8+ lymphocyte infiltration, as well as constraint of regulatory T cell population. Taken together, such cytomembrane injury strategy based on peptide fibrillation in situ holds high clinical promise for lesion-specific elimination of primary, abscopal, and metastatic tumors, which may enlighten more bioinspired nanoplatforms for anticancer theranostics.
Collapse
Affiliation(s)
- Jiahui Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Rong Sheng Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, School of Chemical Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jie Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Qi Dong
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
14
|
Thapa R, Keyel PA. Patch repair protects cells from the small pore-forming toxin aerolysin. J Cell Sci 2023; 136:jcs261018. [PMID: 36951121 PMCID: PMC10198622 DOI: 10.1242/jcs.261018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
Aerolysin family pore-forming toxins damage the membrane, but membrane repair responses used to resist them, if any, remain controversial. Four proposed membrane repair mechanisms include toxin removal by caveolar endocytosis, clogging by annexins, microvesicle shedding catalyzed by MEK, and patch repair. Which repair mechanism aerolysin triggers is unknown. Membrane repair requires Ca2+, but it is controversial if Ca2+ flux is triggered by aerolysin. Here, we determined Ca2+ influx and repair mechanisms activated by aerolysin. In contrast to what is seen with cholesterol-dependent cytolysins (CDCs), removal of extracellular Ca2+ protected cells from aerolysin. Aerolysin triggered sustained Ca2+ influx. Intracellular Ca2+ chelation increased cell death, indicating that Ca2+-dependent repair pathways were triggered. Caveolar endocytosis failed to protect cells from aerolysin or CDCs. MEK-dependent repair did not protect against aerolysin. Aerolysin triggered slower annexin A6 membrane recruitment compared to CDCs. In contrast to what is seen with CDCs, expression of the patch repair protein dysferlin protected cells from aerolysin. We propose aerolysin triggers a Ca2+-dependent death mechanism that obscures repair, and the primary repair mechanism used to resist aerolysin is patch repair. We conclude that different classes of bacterial toxins trigger distinct repair mechanisms.
Collapse
Affiliation(s)
- Roshan Thapa
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Peter A. Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
15
|
McKenzie B, Valitutti S. Resisting T cell attack: tumor-cell-intrinsic defense and reparation mechanisms. Trends Cancer 2023; 9:198-211. [PMID: 36593148 DOI: 10.1016/j.trecan.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 01/02/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are antigen-specific killer cells equipped to identify and eliminate host cells that have been altered through infection or transformation. Both chimeric antigen-receptor (CAR) T cell therapies and immune checkpoint blockade (ICB) therapies are based on successful elimination of tumor cells by cytotoxic effectors. In this opinion article, we outline cell-intrinsic mechanisms by which tumor cells defend against CTLs, highlighting pathways that confer resistance and proposing opportunities for combination therapies. We discuss how exogenous killing entities [e.g., supramolecular attack particles (SMAPs)] offer a novel strategy to circumvent cellular resistance mechanisms. Our opinion article highlights the importance of identifying, quantifying, and targeting tumor defense mechanisms at the interface between tumor cells and CTLs as a critical consideration in the development of immunotherapy approaches.
Collapse
Affiliation(s)
- Brienne McKenzie
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France.
| | - Salvatore Valitutti
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse III-Paul Sabatier, 31057 Toulouse, France; Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse, 31059 Toulouse, France.
| |
Collapse
|
16
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
17
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
18
|
Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, De Keersmaecker H, Boterberg V, Dubruel P, Vandekerckhove B, De Smedt SC, De Vos WH, Braeckmans K. Delivery of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Control Release 2023; 354:680-693. [PMID: 36681281 DOI: 10.1016/j.jconrel.2023.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Ex vivo modification of T cells with exogenous cargo is a common prerequisite for the development of T cell therapies, such as chimeric antigen receptor therapy. Despite the clinical success and FDA approval of several such products, T cell manufacturing presents unique challenges related to therapeutic efficacy after adoptive cell transfer and several drawbacks of viral transduction-based manufacturing, such as high cost and safety concerns. To generate cellular products with optimal potency, engraftment potential and persistence in vivo, recent studies have shown that minimally differentiated T cell phenotypes are preferred. However, genetic engineering of quiescent T cells remains challenging. Photoporation is an upcoming alternative non-viral transfection method which makes use of photothermal nanoparticles, such as polydopamine nanoparticles (PDNPs), to induce transient membrane permeabilization by distinct photothermal effects upon laser irradiation, allowing exogenous molecules to enter cells. In this study, we analyzed the capability of PDNP-photoporation to deliver large model macromolecules (FITC-dextran 500 kDa, FD500) in unstimulated and expanded human T cells. We compared different sizes of PDNPs (150, 250 and 400 nm), concentrations of PDNPs and laser fluences and found an optimal condition that generated high delivery yields of FD500 in both T cell phenotypes. A multiparametric analysis of cell proliferation, surface activation markers and cytokine production, revealed that unstimulated T cells photoporated with 150 nm and 250 nm PDNPs retained their propensity to become activated, whereas those photoporated with 400 nm PDNPs did less. Our findings show that PDNP-photoporation is a promising strategy for transfection of quiescent T cells, but that PDNPs should be small enough to avoid excessive cell damage.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Veerle Boterberg
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Maekawa T, Kashkar H, Coll NS. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ 2023; 30:258-268. [PMID: 36195671 PMCID: PMC9950082 DOI: 10.1038/s41418-022-01060-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Host organisms utilise a range of genetically encoded cell death programmes in response to pathogen challenge. Host cell death can restrict pathogen proliferation by depleting their replicative niche and at the same time dying cells can alert neighbouring cells to prepare environmental conditions favouring future pathogen attacks. As expected, many pathogenic microbes have strategies to subvert host cell death to promote their virulence. The structural and lifestyle differences between animals and plants have been anticipated to shape very different host defence mechanisms. However, an emerging body of evidence indicates that several components of the host-pathogen interaction machinery are shared between the two major branches of eukaryotic life. Many proteins involved in cell death execution or cell death-associated immunity in plants and animals exert direct effects on endomembrane and loss of membrane integrity has been proposed to explain the potential immunogenicity of dying cells. In this review we aim to provide a comparative view on how cell death processes are linked to anti-microbial defence mechanisms in plants and animals and how pathogens interfere with these cell death programmes. In comparison to the several well-defined cell death programmes in animals, immunogenic cell death in plant defence is broadly defined as the hypersensitive response. Our comparative overview may help discerning whether specific types of immunogenic cell death exist in plants, and correspondingly, it may provide new hints for previously undiscovered cell death mechanism in animals.
Collapse
Affiliation(s)
- Takaki Maekawa
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany.
- CEPLAS Cluster of Excellence on Plant Sciences at the University of Cologne, Cologne, Germany.
| | - Hamid Kashkar
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, 50931, Cologne, Germany.
- Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain.
| |
Collapse
|
20
|
Ashraf APK, Gerke V. The resealing factor S100A11 interacts with annexins and extended synaptotagmin-1 in the course of plasma membrane wound repair. Front Cell Dev Biol 2022; 10:968164. [PMID: 36200035 PMCID: PMC9527316 DOI: 10.3389/fcell.2022.968164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
After damage, cells repair their plasma membrane in an active process that is driven by Ca2+ entering through the wound. This triggers a range of Ca2+-regulated events such as the translocation of different Ca2+-binding proteins to the wound site which likely function in the repair process. The translocated proteins include Ca2+/phospholipid binding proteins of the annexin (ANX) family and S100A11, an EF hand-type Ca2+-binding protein which can interact with ANX. The molecular mechanism by which S100A11 mediates PM wound repair remains poorly understood although it likely involves interactions with ANX. Here, using S100A11 knockout endothelial cells and expression of S100A11 mutants, we show that endothelial S100A11 is essential for efficient plasma membrane wound repair and engages in Ca2+-dependent interactions with ANXA1 and ANXA2 through its C-terminal extension (residues 93–105). ANXA2 but not ANXA1 translocation to the wound is substantially inhibited in the absence of S100A11; however, the repair defect in S100A11 knockout cells is rescued by ectopic expression of an ANX interaction-defective S100A11 mutant, suggesting an ANX-independent role of S100A11 in membrane wound repair. In search for other interaction partners that could mediate this action of S100A11 we identify extended synaptotagmin 1 (E-Syt1), a protein tether that regulates endoplasmic reticulum-plasma membrane contact sites. E-Syt1 binds to S100A11 in the presence of Ca2+ and depletion of E-Syt1 interferes with wound site recruitment of S100A11 and proper membrane resealing. Thus, the role of S100A11 in membrane wound repair does not exclusively dependent on ANX interactions and a Ca2+-regulated S100A11-E-Syt1 complex acts as a yet unrecognized component of the membrane resealing machinery.
Collapse
|
21
|
Valappil DK, Mini NJ, Dilna A, Nath S. Membrane interaction to intercellular spread of pathology in Alzheimer’s disease. Front Neurosci 2022; 16:936897. [PMID: 36161178 PMCID: PMC9500529 DOI: 10.3389/fnins.2022.936897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer’s disease (AD) is the most prevalent among them. Extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aβ aggregates is considered as a trigger point. Interaction of Aβ peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aβ binding to the lipid membranes initiates formation of oligomers of Aβ species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a “prion-like” fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aβ and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aβ aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Nath
- *Correspondence: Sangeeta Nath, ; orcid.org/0000-0003-0050-0606
| |
Collapse
|
22
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040886. [PMID: 35456718 PMCID: PMC9031838 DOI: 10.3390/pharmaceutics14040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Localized and reversible plasma membrane disruption is a promising technique employed for the targeted deposition of exogenous therapeutic compounds for the treatment of disease. Indeed, the plasma membrane represents a significant barrier to successful delivery, and various physical methods using light, sound, and electrical energy have been developed to generate cell membrane perforations to circumvent this issue. To restore homeostasis and preserve viability, localized cellular repair mechanisms are subsequently triggered to initiate a rapid restoration of plasma membrane integrity. Here, we summarize the known emergency membrane repair responses, detailing the salient membrane sealing proteins as well as the underlying cytoskeletal remodeling that follows the physical induction of a localized plasma membrane pore, and we present an overview of potential modulation strategies that may improve targeted drug delivery approaches.
Collapse
|
24
|
Kozlov AV, Grillari J. Pathogenesis of Multiple Organ Failure: The Impact of Systemic Damage to Plasma Membranes. Front Med (Lausanne) 2022; 9:806462. [PMID: 35372390 PMCID: PMC8964500 DOI: 10.3389/fmed.2022.806462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple organ failure (MOF) is the major cause of morbidity and mortality in intensive care patients, but the mechanisms causing this severe syndrome are still poorly understood. Inflammatory response, tissue hypoxia, immune and cellular metabolic dysregulations, and endothelial and microvascular dysfunction are the main features of MOF, but the exact mechanisms leading to MOF are still unclear. Recent progress in the membrane research suggests that cellular plasma membranes play an important role in key functions of diverse organs. Exploration of mechanisms contributing to plasma membrane damage and repair suggest that these processes can be the missing link in the development of MOF. Elevated levels of extracellular phospholipases, reactive oxygen and nitrogen species, pore-forming proteins (PFPs), and dysregulation of osmotic homeostasis occurring upon systemic inflammatory response are the major extracellular inducers of plasma membrane damage, which may simultaneously operate in different organs causing their profound dysfunction. Hypoxia activates similar processes, but they predominantly occur within the cells targeting intracellular membrane compartments and ultimately causing cell death. To combat the plasma membrane damage cells have developed several repair mechanisms, such as exocytosis, shedding, and protein-driven membrane remodeling. Analysis of knowledge on these mechanisms reveals that systemic damage to plasma membranes may be associated with potentially reversible MOF, which can be quickly recovered, if pathological stimuli are eliminated. Alternatively, it can be transformed in a non-resolving phase, if repair mechanisms are not sufficient to deal with a large damage or if the damage is extended to intracellular compartments essential for vital cellular functions.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, LBG, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, LBG, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
25
|
Lata K, Singh M, Chatterjee S, Chattopadhyay K. Membrane Dynamics and Remodelling in Response to the Action of the Membrane-Damaging Pore-Forming Toxins. J Membr Biol 2022; 255:161-173. [PMID: 35305136 DOI: 10.1007/s00232-022-00227-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming protein toxins (PFTs) represent a diverse class of membrane-damaging proteins that are produced by a wide variety of organisms. PFT-mediated membrane perforation is largely governed by the chemical composition and the physical properties of the plasma membranes. The interaction between the PFTs with the target membranes is critical for the initiation of the pore-formation process, and can lead to discrete membrane reorganization events that further aids in the process of pore-formation. Punching holes on the plasma membranes by the PFTs interferes with the cellular homeostasis by disrupting the ion-balance inside the cells that in turn can turn on multiple signalling cascades required to restore membrane integrity and cellular homeostasis. In this review, we discuss the physicochemical attributes of the plasma membranes associated with the pore-formation processes by the PFTs, and the subsequent membrane remodelling events that may start off the membrane-repair mechanisms.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
26
|
Abstract
Ageing, death, and potential immortality lie at the heart of biology, but two seemingly incompatible paradigms coexist in different research communities and have done since the nineteenth century. The universal senescence paradigm sees senescence as inevitable in all cells. Damage accumulates. The potential immortality paradigm sees some cells as potentially immortal, especially unicellular organisms, germ cells and cancerous cells. Recent research with animal cells, yeasts and bacteria show that damaged cell constituents do in fact build up, but can be diluted by growth and cell division, especially by asymmetric cell division. By contrast, mammalian embryonic stem cells and many cancerous and 'immortalized' cell lines divide symmetrically, and yet replicate indefinitely. How do they acquire their potential immortality? I suggest they are rejuvenated by excreting damaged cell constituents in extracellular vesicles. If so, our understanding of cellular senescence, rejuvenation and potential immortality could be brought together in a new synthesis, which I call the cellular rejuvenation hypothesis: damaged cell constituents build up in all cells, but cells can be rejuvenated either by growth and cell division or, in 'immortal' cell lines, by excreting damaged cell constituents. In electronic supplementary material, appendix, I outline nine ways in which this hypothesis could be tested.
Collapse
|
27
|
Bhattacharya S, Silkunas M, Gudvangen E, Mangalanathan U, Pakhomova ON, Pakhomov AG. Ca 2+ dependence and kinetics of cell membrane repair after electropermeabilization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183823. [PMID: 34838875 DOI: 10.1016/j.bbamem.2021.183823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023]
Abstract
Electroporation, in particular with nanosecond pulses, is an efficient technique to generate nanometer-size membrane lesions without the use of toxins or other chemicals. The restoration of the membrane integrity takes minutes and is only partially dependent on [Ca2+]. We explored the impact of Ca2+ on the kinetics of membrane resealing by monitoring the entry of a YO-PRO-1 dye (YP) in BPAE and HEK cells. Ca2+ was promptly removed or added after the electric pulse (EP) by a fast-step perfusion. YP entry increased sharply after the EP and gradually slowed down following either a single- or a double-exponential function. In BPAE cells permeabilized by a single 300- or 600-ns EP at 14 kV/cm in a Ca2+-free medium, perfusion with 2 mM of external Ca2+ advanced the 90% resealing and reduced the dye uptake about twofold. Membrane restoration was accomplished by a combination of fast, Ca2+-independent resealing (τ = 13-15 s) and slow, Ca2+-dependent processes (τ ~70 s with Ca2+ and ~ 110 s or more without it). These time constants did not change when the membrane damage was doubled by increasing EP duration from 300 to 600 ns. However, injury by microsecond-range EP (300 and 600 μs) took longer to recover even when the membrane initially was less damaged, presumably because of the larger size of pores made in the membrane. Full membrane recovery was not prevented by blocking both extra- and intracellular Ca2+ (by loading cells with BAPTA or after Ca2+ depletion from the reticulum), suggesting the recruitment of unknown Ca2+-independent repair mechanisms.
Collapse
Affiliation(s)
- Sayak Bhattacharya
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Mantas Silkunas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive System Research, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Uma Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
28
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
29
|
Yang Y, Chen Y, Guo J, Liu H, Ju H. A pore-forming protein-induced surface-enhanced Raman spectroscopic strategy for dynamic tracing of cell membrane repair. iScience 2021; 24:102980. [PMID: 34485862 PMCID: PMC8403736 DOI: 10.1016/j.isci.2021.102980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/10/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The plasma membrane repair holds significance for maintaining cell survival and homeostasis. To achieve the sensitive visualization of membrane repair process for revealing its mechanism, this work designs a perforation-induced surface-enhanced Raman spectroscopy (SERS) strategy by conjugating Raman reporter (4-mercaptobenzoic acid) loaded gold nanostars with pore-forming protein streptolysin O (SLO) to induce the SERS signal on living cells. The SERS signal obviously decreases with the initiation of membrane repair and the degradation of SLO pores due to the departure of gold-nanostar-conjugated SLO. Thus, the designed strategy can dynamically visualize the complete cell membrane repair and provide a sensitive method to demonstrate the SLO endocytosis- and exocytosis-mediated repairing mechanism. Using DOX-resistant MCF-7 cells as a model, a timely repair-blocking technology for promoting the highly efficient treatment of drug-resistant cancer cells is also proposed. This work opens an avenue for probing the plasma membrane repairing mechanisms and designing the precision therapeutic schedule.
Collapse
Affiliation(s)
- Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jingxing Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
30
|
Alvarez C, Soto C, Cabezas S, Alvarado-Mesén J, Laborde R, Pazos F, Ros U, Hernández AM, Lanio ME. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins (Basel) 2021; 13:toxins13080567. [PMID: 34437438 PMCID: PMC8402351 DOI: 10.3390/toxins13080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs’ intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.
Collapse
Affiliation(s)
- Carlos Alvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Correspondence:
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Sheila Cabezas
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Javier Alvarado-Mesén
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40101, Costa Rica
| | - Rady Laborde
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Fabiola Pazos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-strasse 26, 50931 Cologne, Germany
| | - Ana María Hernández
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana CP 11600, Cuba;
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| |
Collapse
|
31
|
Yan X, Kumar K, Miclette Lamarche R, Youssef H, Shaw GS, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. Interactions between the Cell Membrane Repair Protein S100A10 and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9652-9663. [PMID: 34339205 DOI: 10.1021/acs.langmuir.1c00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein S100A10 participates in different cellular mechanisms and has different functions, especially at the membrane. Among those, it forms a ternary complex with annexin A2 and the C-terminal of AHNAK and then joins the dysferlin membrane repair complex. Together, they act as a platform enabling membrane repair. Both AHNAK and annexin A2 have been shown to have membrane binding properties. However, the membrane binding abilities of S100A10 are not clear. In this paper, we aimed to study the membrane binding of S100A10 in order to better understand its role in the cell membrane repair process. S100A10 was overexpressed by E. coli and purified by affinity chromatography. Using a Langmuir monolayer as a model membrane, the binding parameters and ellipsometric angles of the purified S100A10 were measured using surface tensiometry and ellipsometry, respectively. Phosphorus-31 solid-state nuclear magnetic resonance spectroscopy was also used to study the interaction of S100A10 with lipid bilayers. In the presence of a lipid monolayer, S100A10 preferentially interacts with unsaturated phospholipids. In addition, its behavior in the presence of a bilayer model suggests that S100A10 interacts more with the negatively charged polar head groups than the zwitterionic ones. This work offers new insights on the binding of S100A10 to different phospholipids and advances our understanding of the parameters influencing its membrane behavior.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| | - Kiran Kumar
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Gary S Shaw
- Departement of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada
| | - Isabelle Marcotte
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Dror E Warschawski
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, 75 005 France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| |
Collapse
|
32
|
Nahm M, Lim SM, Kim YE, Park J, Noh MY, Lee S, Roh JE, Hwang SM, Park CK, Kim YH, Lim G, Lee J, Oh KW, Ki CS, Kim SH. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci Transl Med 2021; 12:12/566/eaax3993. [PMID: 33087501 DOI: 10.1126/scitranslmed.aax3993] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/15/2019] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Dysregulation of calcium ion homeostasis and abnormal protein aggregation have been proposed as major pathogenic hallmarks underpinning selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Recently, mutations in annexin A11 (ANXA11), a gene encoding a Ca2+-dependent phospholipid-binding protein, have been identified in familial and sporadic ALS. However, the physiological and pathophysiological roles of ANXA11 remain unknown. Here, we report functions of ANXA11 related to intracellular Ca2+ homeostasis and stress granule dynamics. We analyzed the exome sequences of 500 Korean patients with sALS and identified nine ANXA11 variants in 13 patients. The amino-terminal variants p.G38R and p.D40G within the low-complexity domain of ANXA11 enhanced aggregation propensity, whereas the carboxyl-terminal ANX domain variants p.H390P and p.R456H altered Ca2+ responses. Furthermore, all four variants in ANXA11 underwent abnormal phase separation to form droplets with aggregates and led to the alteration of the biophysical properties of ANXA11. These functional defects caused by ALS-linked variants induced alterations in both intracellular Ca2+ homeostasis and stress granule disassembly. We also revealed that p.G228Lfs*29 reduced ANXA11 expression and impaired Ca2+ homeostasis, as caused by missense variants. Ca2+-dependent interaction and coaggregation between ANXA11 and ALS-causative RNA-binding proteins, FUS and hnRNPA1, were observed in motor neuron cells and brain from a patient with ALS-FUS. The expression of ALS-linked ANXA11 variants in motor neuron cells caused cytoplasmic sequestration of endogenous FUS and triggered neuronal apoptosis. Together, our findings suggest that disease-associated ANXA11 mutations can contribute to ALS pathogenesis through toxic gain-of-function mechanisms involving abnormal protein aggregation.
Collapse
Affiliation(s)
- Minyeop Nahm
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea.,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Sanggon Lee
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju Eun Roh
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - GyuTae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.,Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | | | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea. .,Biomedical Research Institute, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
33
|
Hammond K, Cipcigan F, Al Nahas K, Losasso V, Lewis H, Cama J, Martelli F, Simcock PW, Fletcher M, Ravi J, Stansfeld PJ, Pagliara S, Hoogenboom BW, Keyser UF, Sansom MSP, Crain J, Ryadnov MG. Switching Cytolytic Nanopores into Antimicrobial Fractal Ruptures by a Single Side Chain Mutation. ACS NANO 2021; 15:9679-9689. [PMID: 33885289 PMCID: PMC8219408 DOI: 10.1021/acsnano.1c00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Disruption of cell membranes is a fundamental host defense response found in virtually all forms of life. The molecular mechanisms vary but generally lead to energetically favored circular nanopores. Here, we report an elaborate fractal rupture pattern induced by a single side-chain mutation in ultrashort (8-11-mers) helical peptides, which otherwise form transmembrane pores. In contrast to known mechanisms, this mode of membrane disruption is restricted to the upper leaflet of the bilayer where it exhibits propagating fronts of peptide-lipid interfaces that are strikingly similar to viscous instabilities in fluid flow. The two distinct disruption modes, pores and fractal patterns, are both strongly antimicrobial, but only the fractal rupture is nonhemolytic. The results offer wide implications for elucidating differential membrane targeting phenomena defined at the nanoscale.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | | | - Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | | | - Helen Lewis
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | - Jehangir Cama
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- College of Engineering, Mathematics and Phys Sciences, University of Exeter, Exeter EX4 4QF, UK
| | | | - Patrick W Simcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Jascindra Ravi
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
| | | | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics & Astronomy, University College London, London WC1E 6BT, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jason Crain
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK
- Department of Physics, King’s College London, London, WC2R 2LS, UK
- Corresponding author: Prof Maxim G Ryadnov; National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK, Tel: (+44) 20 89436078;
| |
Collapse
|
34
|
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - A review. Bioelectrochemistry 2021; 141:107871. [PMID: 34147013 DOI: 10.1016/j.bioelechem.2021.107871] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Exposure of cells to high voltage electric pulses increases transiently membrane permeability through membrane electroporation. Electroporation can be reversible and is used in gene transfer and enhanced drug delivery but can also lead to cell death. Electroporation resulting in cell death (termed as irreversible electroporation) has been successfully used as a new non-thermal ablation method of soft tissue such as tumours or arrhythmogenic heart tissue. Even though the mechanisms of cell death can influence the outcome of electroporation-based treatments due to use of different electric pulse parameters and conditions, these are not elucidated yet. We review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death after electroporation and membrane repair mechanisms involved. The knowledge of membrane repair and cell death mechanisms after cell exposure to electric pulses, targets of electric field in cells need to be identified to optimize existing and develop of new electroporation-based techniques used in medicine, biotechnology, and food technology.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
35
|
MLKL promotes cellular differentiation in myeloid leukemia by facilitating the release of G-CSF. Cell Death Differ 2021; 28:3235-3250. [PMID: 34079078 PMCID: PMC8630008 DOI: 10.1038/s41418-021-00811-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022] Open
Abstract
The blockade of cellular differentiation represents a hallmark of acute myeloid leukemia (AML), which is largely attributed to the dysfunction of lineage-specific transcription factors controlling cellular differentiation. However, alternative mechanisms of cellular differentiation programs in AML remain largely unexplored. Here we report that mixed lineage kinase domain-like protein (MLKL) contributes to the cellular differentiation of transformed hematopoietic progenitor cells in AML. Using gene-targeted mice, we show that MLKL facilitates the release of granulocyte colony-stimulating factor (G-CSF) by controlling membrane permeabilization in leukemic cells. Mlkl−/− hematopoietic stem and progenitor cells released reduced amounts of G-CSF while retaining their capacity for CSF3 (G-CSF) mRNA expression, G-CSF protein translation, and G-CSF receptor signaling. MLKL associates with early endosomes and controls G-CSF release from intracellular storage by plasma membrane pore formation, whereas cell death remained unaffected by loss of MLKL. Of note, MLKL expression was significantly reduced in AML patients, specifically in those with a poor-risk AML subtype. Our data provide evidence that MLKL controls myeloid differentiation in AML by controlling the release of G-CSF from leukemic progenitor cells.
Collapse
|
36
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
37
|
Muratori C, Silkuniene G, Mollica PA, Pakhomov AG, Pakhomova ON. The role of ESCRT-III and Annexin V in the repair of cell membrane permeabilization by the nanosecond pulsed electric field. Bioelectrochemistry 2021; 140:107837. [PMID: 34004548 DOI: 10.1016/j.bioelechem.2021.107837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023]
Abstract
Exposure of living cells to intense nanosecond pulsed electric field (nsPEF) increases membrane permeability to small solutes, presumably by the formation of nanometer-size membrane lesions. Mechanisms responsible for the restoration of membrane integrity over the course of minutes after nsPEF have not been identified. This study explored if ESCRT-III and Annexin V calcium-dependent repair mechanisms, which play critical role in resealing large membrane lesions, are also activated by electroporation and contribute to the membrane resealing. The extent of membrane damage and the time course of resealing were monitored by the time-lapse imaging of propidium (Pr) uptake in human cervical carcinoma (HeLa) cells exposed to trains of 300-ns PEF. The removal of the extracellular Ca2+ slowed down the resealing, although did not prevent it. Recruitment of CHMP4B protein, a component of ESCRT-III complex, to the electroporated plasma membrane was not observed, thus providing no evidence for possible contribution of the macro-vesicle shedding mechanism. In contrast, silencing the AnxA5 gene impaired resealing and reduced the viability of nsPEF-treated cells. We conclude that Annexin V but not ESCRT-III was involved in the repair of HeLa cells permeabilized by 300-ns stimuli, but it was not the only and perhaps not the main repair mechanism.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Giedre Silkuniene
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive Research, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Peter A Mollica
- Department of Medical Diagnostics and Translational Sciences, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
38
|
Ferroptotic pores induce Ca 2+ fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ 2021; 28:1644-1657. [PMID: 33335287 PMCID: PMC8167089 DOI: 10.1038/s41418-020-00691-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated necrosis associated with lipid peroxidation. Despite its key role in the inflammatory outcome of ferroptosis, little is known about the molecular events leading to the disruption of the plasma membrane during this type of cell death. Here we show that a sustained increase in cytosolic Ca2+ is a hallmark of ferroptosis that precedes complete bursting of the cell. We report that plasma membrane damage leading to ferroptosis is associated with membrane nanopores of a few nanometers in radius and that ferroptosis, but not lipid peroxidation, can be delayed by osmoprotectants. Importantly, Ca2+ fluxes during ferroptosis induce the activation of the ESCRT-III-dependent membrane repair machinery, which counterbalances the kinetics of cell death and modulates the immunological signature of ferroptosis. Our findings with ferroptosis provide a unifying concept that sustained increase of cytosolic Ca2+ prior to plasma membrane rupture is a common feature of regulated types of necrosis and position ESCRT-III activation as a general protective mechanism in these lytic cell death pathways.
Collapse
|
39
|
Tomasek T, Ware LB, Bastarache JA, Meegan JE. Cell-free hemoglobin-mediated human lung microvascular endothelial barrier dysfunction is not mediated by cell death. Biochem Biophys Res Commun 2021; 556:199-206. [PMID: 33848934 DOI: 10.1016/j.bbrc.2021.03.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/14/2023]
Abstract
Circulating cell-free hemoglobin (CFH) contributes to endothelial injury in several inflammatory and hemolytic conditions. We and others have shown that CFH causes increased endothelial permeability, but the precise mechanisms of CFH-mediated endothelial barrier dysfunction are not fully understood. Based on our previous study in a mouse model of sepsis demonstrating that CFH increased apoptosis in the lung, we hypothesized that CFH causes endothelial barrier dysfunction through this cell death mechanism. We first confirmed that CFH causes human lung microvascular barrier dysfunction in vitro that can be prevented by the hemoglobin scavenger, haptoglobin. While CFH caused a small but significant decrease in cell viability measured by the membrane impermeable DNA dye Draq7 in human lung microvascular endothelial cells, CFH did not increase apoptosis as measured by TUNEL staining or Western blot for cleaved caspase-3. Moreover, inhibitors of apoptosis (Z-VAD-FMK), necrosis (IM-54), necroptosis (necrostatin-1), ferroptosis (ferrostatin-1), or autophagy (3-methyladenine) did not prevent CFH-mediated endothelial barrier dysfunction. We conclude that although CFH may cause a modest decrease in cell viability over time, cell death does not contribute to CFH-mediated lung microvascular endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Toria Tomasek
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
40
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
41
|
Repairing plasma membrane damage in regulated necrotic cell death. Mol Biol Rep 2021; 48:2751-2759. [PMID: 33687702 DOI: 10.1007/s11033-021-06252-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
The plasma membrane performs a central role in maintaining cellular homeostasis and viability by acting as a semi-permeable barrier separating the cell from its surroundings. Under physiological conditions, it is constantly exposed to different kinds of stress, such as from pore-forming proteins/toxins and mechanical activity, that compromises its integrity resulting in cells developing various ways to cope with these dangers to survive. These plasma membrane repair mechanisms are initiated by the rapid influx of extracellular Ca2+ ions and are thus hinged on the activity of various Ca2+-binding proteins. The cell's response to membrane damage also depends on the nature and extent of the stimuli as well as the cell type, and the mechanisms involved are believed to be not mutually exclusive. In regulated necrotic cell death, specifically necroptosis, pyroptosis, and ferroptosis, plasma membrane damage ultimately causes cell lysis and the release of immunomodulating damage-associated molecular patterns. Here, I will discuss how these three cell death pathways are counterbalanced by the action of ESCRT (Endosomal Sorting Complex Required for Transport)-III-dependent plasma membrane repair mechanism, that eventually affects the profile of released cytokines and cell-to-cell communication. These highlight a crucial role that plasma membrane repair play in regulated necrosis, and its potential as a viable target to modulate the immune responses associated with these pathways in the context of the various human pathologies where these cell death modalities are implicated.
Collapse
|
42
|
Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov 2021; 7:4. [PMID: 33462191 PMCID: PMC7813858 DOI: 10.1038/s41421-020-00233-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.
Collapse
|
43
|
Onyishi CU, Desanti GE, May RC. Plugging a Leak: How Phagosomes "Stretch" to Accommodate Pathogen Growth. Cell Host Microbe 2021; 28:774-775. [PMID: 33301715 DOI: 10.1016/j.chom.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phagocytes engulf pathogens into a membrane bound compartment called a phagosome, but what happens when engulfed pathogens start growing? In this issue of Cell Host & Microbe,Westman et al. (2020) show that lysosomes fuse with phagosomes to maintain phagosomal membrane integrity as the fungal pathogen Candida albicans expands.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Guillaume E Desanti
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
44
|
Defective membrane repair machinery impairs survival of invasive cancer cells. Sci Rep 2020; 10:21821. [PMID: 33311633 PMCID: PMC7733495 DOI: 10.1038/s41598-020-77902-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Cancer cells are able to reach distant tissues by migration and invasion processes. Enhanced ability to cope with physical stresses leading to cell membrane damages may offer to cancer cells high survival rate during metastasis. Consequently, down-regulation of the membrane repair machinery may lead to metastasis inhibition. We show that migration of MDA-MB-231 cells on collagen I fibrils induces disruptions of plasma membrane and pullout of membrane fragments in the wake of cells. These cells are able to reseal membrane damages thanks to annexins (Anx) that are highly expressed in invasive cancer cells. In vitro membrane repair assays reveal that MDA-MB-231 cells respond heterogeneously to membrane injury and some of them possess a very efficient repair machinery. Finally, we show that silencing of AnxA5 and AnxA6 leads to the death of migrating MDA-MB-231 cells due to major defect of the membrane repair machinery. Disturbance of the membrane repair process may therefore provide a new avenue for inhibiting cancer metastasis.
Collapse
|
45
|
Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2020; 234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.
Collapse
|
46
|
Westman J, Walpole GFW, Kasper L, Xue BY, Elshafee O, Hube B, Grinstein S. Lysosome Fusion Maintains Phagosome Integrity during Fungal Infection. Cell Host Microbe 2020; 28:798-812.e6. [PMID: 33022213 DOI: 10.1016/j.chom.2020.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Phagosomes must maintain membrane integrity to exert their microbicidal function. Some microorganisms, however, survive and grow within phagosomes. In such instances, phagosomes must expand to avoid rupture and microbial escape. We studied whether phagosomes regulate their size to preserve integrity during infection with the fungal pathogen Candida albicans. Phagosomes release calcium as C. albicans hyphae elongate, inducing lysosome recruitment and insertion, thereby increasing the phagosomal surface area. As hyphae grow, the expanding phagosome consumes the majority of free lysosomes. Simultaneously, lysosome biosynthesis is stimulated by activation of TFEB, a transcriptional regulator of lysosomal biogenesis. Preventing lysosomal insertion causes phagosomal rupture, NLRP3 inflammasome activation, IL-1β secretion and host-cell death. Whole-genome transcriptomic analysis demonstrate that stress responses elicited in C. albicans upon engulfment are reversed if phagosome expansion is prevented. Our findings reveal a mechanism whereby phagosomes maintain integrity while expanding, ensuring that growing pathogens remain entrapped within this microbicidal compartment.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Bessie Y Xue
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Osama Elshafee
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada.
| |
Collapse
|
47
|
Actin Polymerization and ESCRT Trigger Recruitment of the Fusogens Syntaxin-2 and EFF-1 to Promote Membrane Repair in C. elegans. Dev Cell 2020; 54:624-638.e5. [DOI: 10.1016/j.devcel.2020.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/08/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
|
48
|
Croissant C, Gounou C, Bouvet F, Tan S, Bouter A. Annexin-A6 in Membrane Repair of Human Skeletal Muscle Cell: A Role in the Cap Subdomain. Cells 2020; 9:E1742. [PMID: 32708200 PMCID: PMC7409186 DOI: 10.3390/cells9071742] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in membrane repair contribute to the development of some muscular dystrophies, highlighting the importance to decipher the membrane repair mechanisms in human skeletal muscle. In murine myofibers, the formation of a cap subdomain composed notably by annexins (Anx) is critical for membrane repair. We applied membrane damage by laser ablation to human skeletal muscle cells and assessed the behavior of annexin-A6 (AnxA6) tagged with GFP by correlative light and electron microscopy (CLEM). We show that AnxA6 was recruited to the site of membrane injury within a few seconds after membrane injury. In addition, we show that the deficiency in AnxA6 compromises human sarcolemma repair, demonstrating the crucial role played by AnxA6 in this process. An AnxA6-containing cap-subdomain was formed in damaged human myotubes in about one minute. Through transmission electron microscopy (TEM), we observed that extension of the sarcolemma occurred during membrane resealing, which participated in forming a dense lipid structure in order to plug the hole. By properties of membrane folding and curvature, AnxA6 helped in the formation of this tight structure. The compaction of intracellular membranes-which are used for membrane resealing and engulfed in extensions of the sarcolemma-may also facilitate elimination of the excess of lipid and protein material once cell membrane has been repaired. These data reinforce the role played by AnxA6 and the cap subdomain in membrane repair of skeletal muscle cells.
Collapse
Affiliation(s)
- Coralie Croissant
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Céline Gounou
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Flora Bouvet
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Sisareuth Tan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, F-33600 Pessac, France
| |
Collapse
|
49
|
Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function. Cells 2020; 9:cells9071590. [PMID: 32630196 PMCID: PMC7408548 DOI: 10.3390/cells9071590] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target.
Collapse
|
50
|
Ang CG, Hossain MA, Rajpara M, Bach H, Acharya K, Dick A, Rashad AA, Kutzler M, Abrams CF, Chaiken I. Metastable HIV-1 Surface Protein Env Sensitizes Cell Membranes to Transformation and Poration by Dual-Acting Virucidal Entry Inhibitors. Biochemistry 2020; 59:818-828. [PMID: 31942789 PMCID: PMC7362902 DOI: 10.1021/acs.biochem.9b01008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dual-acting virucidal entry inhibitors (DAVEIs) have previously been shown to cause irreversible inactivation of HIV-1 Env-presenting pseudovirus by lytic membrane transformation. This study examined whether this transformation could be generalized to include membranes of Env-presenting cells. Flow cytometry was used to analyze HEK293T cells transiently transfected with increasing amounts of DNA encoding JRFL Env, loaded with calcein dye, and treated with serial dilutions of microvirin (Q831K/M83R)-DAVEI. Comparing calcein retention against intact Env expression (via Ab 35O22) on individual cells revealed effects proportional to Env expression. "Low-Env" cells experienced transient poration and calcein leakage, while "high-Env" cells were killed. The cell-killing effect was confirmed with an independent mitochondrial activity-based cell viability assay, showing dose-dependent cytotoxicity in response to DAVEI treatment. Transfection with increasing quantities of Env DNA showed further shifts toward "High-Env" expression and cytotoxicity, further reinforcing the Env dependence of the observed effect. Controls with unlinked DAVEI components showed no effect on calcein leakage or cell viability, confirming a requirement for covalently linked DAVEI compounds to achieve Env transformation. These data demonstrate that the metastability of Env is an intrinsic property of the transmembrane protein complex and can be perturbed to cause membrane disruption in both virus and cell contexts.
Collapse
Affiliation(s)
- Charles G Ang
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Marg Rajpara
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Harry Bach
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Michele Kutzler
- Department of Microbiology and Immunology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, College of Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| |
Collapse
|