1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2025; 41:305-325. [PMID: 39266936 PMCID: PMC11794855 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Lauritzen I, Bini A, Bécot A, Gay A, Badot C, Pagnotta S, Chami M, Checler F. Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion. J Extracell Vesicles 2025; 14:e70019. [PMID: 39815792 PMCID: PMC11735957 DOI: 10.1002/jev2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025] Open
Abstract
Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli. Moreover, in PSEN-deficient cells, the re-expression of either PSEN1 or the functional active PSEN1delta9 mutant led to a rescue of most sEV secretion, while the deletion of PSEN1 alone almost fully phenocopied total PSEN invalidation. We found that the lack of sEV secretion in PSEN-deficient cells was also due to overactivated autophagy promoting MVEs to degradation rather than to plasma membrane fusion. Hence, in these cells, the autophagic blocker bafilomycin A1 (BafA1) not only increased the intracellular levels of the MVE protein CD63, but also turned on sEV secretion by stimulating autophagy-dependent unconventional secretion. In that case, sEVs arised from amphisomes and were enriched in both canonical exosomal proteins and lysosomal-autophagy-associated cargo. Altogether, we here demonstrate that PSENs, and particularly PSEN1, act as hub proteins controlling the balance between endosomal/autophagic degradation and secretion. More generally, our findings strengthen the view of a strong interconnection between the endocytic and autophagic pathways and their complementary roles in sEV secretion.
Collapse
Affiliation(s)
- Inger Lauritzen
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bini
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bécot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266Université de ParisParisFrance
| | - Anne‐Sophie Gay
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Céline Badot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Sophie Pagnotta
- Microscopy center (CCMA)Valrose, Université Côte d'Azur (UniCA)NiceFrance
| | - Mounia Chami
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Frédéric Checler
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| |
Collapse
|
3
|
Dobson JR, Jacobson DA. Disrupted Endoplasmic Reticulum Ca 2+ Handling: A Harβinger of β-Cell Failure. BIOLOGY 2024; 13:379. [PMID: 38927260 PMCID: PMC11200644 DOI: 10.3390/biology13060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The β-cell workload increases in the setting of insulin resistance and reduced β-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in β-cell ER stress. The depletion of β-cell Ca2+ER during ER stress activates the unfolded protein response, leading to β-cell dysfunction. Ca2+ER is involved in many pathways that are critical to β-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote β-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving β-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve β-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control β-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to β-cell failure.
Collapse
Affiliation(s)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
4
|
Gouriou Y, Gonnot F, Wehbi M, Brun C, Gomez L, Bidaux G. High-sensitivity calcium biosensor on the mitochondrial surface reveals that IP3R channels participate in the reticular Ca2+ leak towards mitochondria. PLoS One 2023; 18:e0285670. [PMID: 37294746 PMCID: PMC10256219 DOI: 10.1371/journal.pone.0285670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 06/11/2023] Open
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are widely used to monitor dynamics and sub-cellular spatial distribution of calcium ion (Ca2+) fluxes and their role in intracellular signaling pathways. The development of different mutations in the Ca2+-sensitive elements of the cameleon probes has allowed sensitive range of Ca2+ measurements in almost all cellular compartments. Region of the endoplasmic reticulum (ER) tethered to mitochondria, named as the mitochondrial-associated membranes (MAMs), has received an extended attention since the last 5 years. Indeed, as MAMs are essential for calcium homeostasis and mitochondrial function, molecular tools have been developed to assess quantitatively Ca2+ levels in the MAMs. However, sensitivity of the first generation Ca2+ biosensors on the surface of the outer-mitochondrial membrane (OMM) do not allow to measure μM or sub-μM changes in Ca2+ concentration which prevents to measure the native activity (unstimulated exogenously) of endogenous channels. In this study, we assembled a new ratiometric highly sensitive Ca2+ biosensor expressed on the surface of the outer-mitochondrial membrane (OMM). It allows the detection of smaller differences than the previous biosensor in or at proximity of the MAMs. Noteworthy, we demonstrated that IP3-receptors have an endogenous activity which participate to the Ca2+ leak channel on the surface of the OMM during hypoxia or when SERCA activity is blocked.
Collapse
Affiliation(s)
- Yves Gouriou
- Univ-Lyon CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INRAE, Bron, France
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, Bron, France
| | - Fabrice Gonnot
- Univ-Lyon CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INRAE, Bron, France
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, Bron, France
| | - Mariam Wehbi
- Univ-Lyon CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INRAE, Bron, France
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, Bron, France
| | - Camille Brun
- Univ-Lyon CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INRAE, Bron, France
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, Bron, France
| | - Ludovic Gomez
- Univ-Lyon CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INRAE, Bron, France
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, Bron, France
| | - Gabriel Bidaux
- Univ-Lyon CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INRAE, Bron, France
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, Bron, France
| |
Collapse
|
5
|
Chernyuk D, Callens M, Polozova M, Gordeev A, Chigriai M, Rakovskaya A, Ilina A, Pchitskaya E, Van den Haute C, Vervliet T, Bultynck G, Bezprozvanny I. Neuroprotective properties of anti-apoptotic BCL-2 proteins in 5xFAD mouse model of Alzheimer's disease. IBRO Neurosci Rep 2023; 14:273-283. [PMID: 36926591 PMCID: PMC10011438 DOI: 10.1016/j.ibneur.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. An early feature of the AD pathology is the dysregulation of intracellular Ca2+ signaling in neurons. In particular, increased Ca2+ release from endoplasmic reticulum-located Ca2+ channels, including inositol-1,4,5-trisphosphate type 1 receptors (IP3R1) and ryanodine receptors type 2 (RyR2), have been extensively reported. Known for its anti-apoptotic properties, Bcl-2 also has the ability to bind to and inhibit the Ca2+-flux properties of IP3Rs and RyRs. In this study, the hypothesis that the expression of Bcl-2 proteins can normalize dysregulated Ca2+ signaling in a mouse model of AD (5xFAD) and thereby prevent or slow the progression of AD was examined. Therefore, stereotactic injections of adeno-associated viral vectors expressing Bcl-2 proteins were performed in the CA1 region of the 5xFAD mouse hippocampus. In order to assess the importance of the association with IP3R1, the Bcl-2K17D mutant was also included in these experiments. This K17D mutation has been previously shown to decrease the association of Bcl-2 with IP3R1, thereby impairing its ability to inhibit IP3R1 while not affecting Bcl-2's ability to inhibit RyRs. Here, we demonstrate that Bcl-2 protein expression leads to synaptoprotective and amyloid-protective effects in the 5xFAD animal model. Several of these neuroprotective features are also observed by Bcl-2K17D protein expression, suggesting that these effects are not associated with Bcl-2-mediated inhibition of IP3R1. Potential mechanisms for this Bcl-2 synaptoprotective action may be related to its ability to inhibit RyR2 activity as Bcl-2 and Bcl-2K17D are equally potent in inhibiting RyR2-mediated Ca2+ fluxes. This work indicates that Bcl-2-based strategies hold neuroprotective potential in AD models, though the underlying mechanisms requires further investigation.
Collapse
Affiliation(s)
- D Chernyuk
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - M Callens
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - M Polozova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - A Gordeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - M Chigriai
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - A Rakovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - A Ilina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - E Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia
| | - C Van den Haute
- KU Leuven, Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, Campus Gasthuisberg O/N-5 box 1023, Herestraat 49, BE-3000 Leuven, Belgium.,Leuven Viral Vector Core, BE-3000 Leuven, Belgium
| | - T Vervliet
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - G Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - I Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, Saint Petersburg, Russia.,Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
6
|
Huang DX, Yu X, Yu WJ, Zhang XM, Liu C, Liu HP, Sun Y, Jiang ZP. Calcium Signaling Regulated by Cellular Membrane Systems and Calcium Homeostasis Perturbed in Alzheimer’s Disease. Front Cell Dev Biol 2022; 10:834962. [PMID: 35281104 PMCID: PMC8913592 DOI: 10.3389/fcell.2022.834962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Although anything that changes spatiotemporally could be a signal, cells, particularly neurons, precisely manipulate calcium ion (Ca2+) to transmit information. Ca2+ homeostasis is indispensable for neuronal functions and survival. The cytosolic Ca2+ concentration ([Ca2+]CYT) is regulated by channels, pumps, and exchangers on cellular membrane systems. Under physiological conditions, both endoplasmic reticulum (ER) and mitochondria function as intracellular Ca2+ buffers. Furthermore, efficient and effective Ca2+ flux is observed at the ER-mitochondria membrane contact site (ERMCS), an intracellular membrane juxtaposition, where Ca2+ is released from the ER followed by mitochondrial Ca2+ uptake in sequence. Hence, the ER intraluminal Ca2+ concentration ([Ca2+]ER), the mitochondrial matrix Ca2+ concentration ([Ca2+]MT), and the [Ca2+]CYT are related to each other. Ca2+ signaling dysregulation and Ca2+ dyshomeostasis are associated with Alzheimer’s disease (AD), an irreversible neurodegenerative disease. The present review summarizes the cellular and molecular mechanism underlying Ca2+ signaling regulation and Ca2+ homeostasis maintenance at ER and mitochondria levels, focusing on AD. Integrating the amyloid hypothesis and the calcium hypothesis of AD may further our understanding of pathogenesis in neurodegeneration, provide therapeutic targets for chronic neurodegenerative disease in the central nervous system.
Collapse
Affiliation(s)
- Dong-Xu Huang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jun Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin-Min Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Ping Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Deparment of The First Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Zi-Ping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zi-Ping Jiang,
| |
Collapse
|
7
|
Bovo E, Nikolaienko R, Kahn D, Cho E, Robia SL, Zima AV. Presenilin 1 is a direct regulator of the cardiac sarco/endoplasmic reticulum calcium pump. Cell Calcium 2021; 99:102468. [PMID: 34517214 PMCID: PMC8541915 DOI: 10.1016/j.ceca.2021.102468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
The gamma secretase catalytic subunit presenilin 1 (PS1) is expressed in the endoplasmic reticulum (ER) of neurons, where it regulates Ca2+ signaling. PS1 is also expressed in heart, but its role in regulation of cardiac Ca2+ transport remains unknown. Since the type 2 sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a) plays a central role in cardiac Ca2+ homeostasis, we studied whether PS1 regulates the cardiac SERCA2a function. The experiments were conducted in an inducible human SERCA2a stable T-Rex-293 cell line transfected with fluorescently labeled PS1 and the ER Ca2+ sensor R-CEPIA1er. Confocal imaging showed that that PS1 is localized predominantly in the ER membrane. Fluorescent resonance energy transfer (FRET) experiments in HEK293 cells transfected with fluorescently labeled SERCA2a and PS1 revealed that the two proteins directly interact with a 1:1 stoichiometry. The functional significance of this interaction was investigated in a heterologous cellular environment using a novel approach to directly measure ER Ca2+ dynamics. Measurements of SERCA2a-mediated Ca2+ transport showed that PS1 enhanced Ca2+ uptake at low ER Ca2+ loads (<0.15 mM) and reduced uptake at high loads (>0.35 mM). The results of this study revealed that PS1 could act as an important regulator of the cardiac Ca2+ pump function with a complex stimulatory/inhibitory profile.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA.
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Daniel Kahn
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Ellen Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, IL, USA
| |
Collapse
|
8
|
Intertwined and Finely Balanced: Endoplasmic Reticulum Morphology, Dynamics, Function, and Diseases. Cells 2021; 10:cells10092341. [PMID: 34571990 PMCID: PMC8472773 DOI: 10.3390/cells10092341] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is an organelle that is responsible for many essential subcellular processes. Interconnected narrow tubules at the periphery and thicker sheet-like regions in the perinuclear region are linked to the nuclear envelope. It is becoming apparent that the complex morphology and dynamics of the ER are linked to its function. Mutations in the proteins involved in regulating ER structure and movement are implicated in many diseases including neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis (ALS). The ER is also hijacked by pathogens to promote their replication. Bacteria such as Legionella pneumophila and Chlamydia trachomatis, as well as the Zika virus, bind to ER morphology and dynamics-regulating proteins to exploit the functions of the ER to their advantage. This review covers our understanding of ER morphology, including the functional subdomains and membrane contact sites that the organelle forms. We also focus on ER dynamics and the current efforts to quantify ER motion and discuss the diseases related to ER morphology and dynamics.
Collapse
|
9
|
Fafián-Labora JA, Morente-López M, de Toro FJ, Arufe MC. High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2021; 22:7327. [PMID: 34298947 PMCID: PMC8305791 DOI: 10.3390/ijms22147327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.
Collapse
Affiliation(s)
| | | | | | - María C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universdidade da Coruña, Agrupación Estratégica INIBIC-CICA, 15006 A Coruña, Spain; (J.A.F.-L.); (M.M.-L.); (F.J.d.T.)
| |
Collapse
|
10
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Chatzistavraki M, Papazafiri P, Efthimiopoulos S. Amyloid-β Protein Precursor Regulates Depolarization-Induced Calcium-Mediated Synaptic Signaling in Brain Slices. J Alzheimers Dis 2020; 76:1121-1133. [PMID: 32597808 DOI: 10.3233/jad-200290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Coordinated calcium influx upon neuronal depolarization activates pathways that phosphorylate CaMKII, ERKs, and the transcription factor CREB and, therefore, expression of pro-survival and neuroprotective genes. Recent evidence indicates that amyloid-β protein precursor (AβPP) is trafficked to synapses and promotes their formation. At the synapse, AβPP interacts with synaptic proteins involved in vesicle exocytosis and affects calcium channel function. OBJECTIVE Herein, we examined the role of AβPP in depolarization-induced calcium-mediated signaling using acute cerebral slices from wild-type C57bl/6 mice and AβPP-/- C57bl/6 mice. METHODS Depolarization of acute cerebral slices from wild-type C57bl/6 and AβPP-/- C57bl/6 mice was used to induce synaptic signaling. Protein levels were examined by western blot and calcium dynamics were assessed using primary neuronal cultures. RESULTS In the absence of AβPP, decreased pCaMKII and pERKs levels were observed. This decrease was sensitive to the inhibition of N- and P/Q-type Voltage Gated Calcium Channels (N- and P/Q-VGCCs) by ω-conotoxin GVIA and ω-conotoxin MVIIC, respectively, but not to inhibition of L-type VGCCs by nifedipine. However, the absence of AβPP did not result in a statistically significant decrease of pCREB, which is a known substrate of pERKs. Finally, using calcium imaging, we found that down regulation of AβPP in cortical neurons results in a decreased response to depolarization and altered kinetics of calcium response. CONCLUSION AβPP regulates synaptic activity-mediated neuronal signaling by affecting N- and P/Q-VGCCs.
Collapse
Affiliation(s)
- Maria Chatzistavraki
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Panagiota Papazafiri
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Spiros Efthimiopoulos
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| |
Collapse
|
12
|
Bong AHL, Robitaille M, Milevskiy MJG, Roberts-Thomson SJ, Monteith GR. NCS-1 expression is higher in basal breast cancers and regulates calcium influx and cytotoxic responses to doxorubicin. Mol Oncol 2019; 14:87-104. [PMID: 31647602 PMCID: PMC6944103 DOI: 10.1002/1878-0261.12589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/13/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Neuronal calcium sensor‐1 (NCS‐1) is a positive modulator of IP3 receptors and was recently associated with poorer survival in breast cancers. However, the association between NCS‐1 and breast cancer molecular subtypes and the effects of NCS‐1 silencing on calcium (Ca2+) signaling in breast cancer cells remain unexplored. Herein, we report for the first time an increased expression of NCS‐1 in breast cancers of the basal molecular subtype, a subtype associated with poor prognosis. Using MDA‐MB‐231 basal breast cancer cells expressing the GCaMP6m Ca2+ indicator, we showed that NCS‐1 silencing did not result in major changes in cytosolic free Ca2+ increases as a result of endoplasmic reticulum Ca2+ store mobilization. However, NCS‐1 silencing suppressed unstimulated basal Ca2+ influx. NCS‐1 silencing in MDA‐MB‐231 cells also promoted necrotic cell death induced by the chemotherapeutic drug doxorubicin (1 µm). The effect of NCS‐1 silencing on cell death was phenocopied by silencing of ORAI1, a Ca2+ store‐operated Ca2+ channel that maintains Ca2+ levels in the endoplasmic reticulum Ca2+ store and whose expression was significantly positively correlated with NCS‐1 in clinical breast cancer samples. This newly identified association between NCS‐1 and basal breast cancers, together with the identification of the role of NCS‐1 in the regulation of the effects of doxorubicin in MDA‐MB‐231 breast cancer cells, suggests that NCS‐1 and/or pathways regulated by NCS‐1 may be important in the treatment of basal breast cancers in women.
Collapse
Affiliation(s)
- Alice H L Bong
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia
| | - Michael J G Milevskiy
- ACRF Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia.,Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
13
|
Familial Alzheimer's disease-linked presenilin mutants and intracellular Ca 2+ handling: A single-organelle, FRET-based analysis. Cell Calcium 2019; 79:44-56. [PMID: 30822648 DOI: 10.1016/j.ceca.2019.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
An imbalance in Ca2+ homeostasis represents an early event in the pathogenesis of Alzheimer's disease (AD). Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial AD (FAD), have been extensively associated with alterations in different Ca2+ signaling pathways, in particular those handled by storage compartments. However, FAD-PSs effect on organelles Ca2+ content is still debated and the mechanism of action of mutant proteins is unclear. To fulfil the need of a direct investigation of intracellular stores Ca2+ dynamics, we here present a detailed and quantitative single-cell analysis of FAD-PSs effects on organelle Ca2+ handling using specifically targeted, FRET (Fluorescence/Förster Resonance Energy Transfer)-based Ca2+ indicators. In SH-SY5Y human neuroblastoma cells and in patient-derived fibroblasts expressing different FAD-PSs mutations, we directly measured Ca2+ concentration within the main intracellular Ca2+ stores, e.g., Endoplasmic Reticulum (ER) and Golgi Apparatus (GA) medial- and trans-compartment. We unambiguously demonstrate that the expression of FAD-PS2 mutants, but not FAD-PS1, in either SH-SY5Y cells or FAD patient-derived fibroblasts, is able to alter Ca2+ handling of ER and medial-GA, but not trans-GA, reducing, compared to control cells, the Ca2+ content within these organelles by partially blocking SERCA (Sarco/Endoplasmic Reticulum Ca2+-ATPase) activity. Moreover, by using a cytosolic Ca2+ probe, we show that the expression of both FAD-PS1 and -PS2 reduces the Ca2+ influx activated by stores depletion (Store-Operated Ca2+ Entry; SOCE), by decreasing the expression levels of one of the key molecules, STIM1 (STromal Interaction Molecule 1), controlling this pathway. Our data indicate that FAD-linked PSs mutants differentially modulate the Ca2+ content of intracellular stores yet leading to a complex dysregulation of Ca2+ homeostasis, which represents a common disease phenotype of AD.
Collapse
|
14
|
Klec C, Madreiter-Sokolowski CT, Stryeck S, Sachdev V, Duta-Mare M, Gottschalk B, Depaoli MR, Rost R, Hay J, Waldeck-Weiermair M, Kratky D, Madl T, Malli R, Graier WF. Glycogen Synthase Kinase 3 Beta Controls Presenilin-1-Mediated Endoplasmic Reticulum Ca²⁺ Leak Directed to Mitochondria in Pancreatic Islets and β-Cells. Cell Physiol Biochem 2019; 52:57-75. [PMID: 30790505 PMCID: PMC6459368 DOI: 10.33594/000000005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023] Open
Abstract
Background/Aims In pancreatic β-cells, the intracellular Ca2+ homeostasis is an essential regulator of the cells’ major functions. The endoplasmic reticulum (ER) as interactive intracellular Ca2+ store balances cellular Ca2+. In this study basal ER Ca2+ homeostasis was evaluated in order to reveal potential β-cell-specificity of ER Ca2+ handling and its consequences for mitochondrial Ca2+, ATP and respiration. Methods The two pancreatic cell lines INS-1 and MIN-6, freshly isolated pancreatic islets, and the two non-pancreatic cell lines HeLA and EA.hy926 were used. Cytosolic, ER and mitochondrial Ca2+ and ATP measurements were performed using single cell fluorescence microscopy and respective (genetically-encoded) sensors/dyes. Mitochondrial respiration was monitored by respirometry. GSK3β activity was measured with ELISA. Results An atypical ER Ca2+ leak was observed exclusively in pancreatic islets and β-cells. This continuous ER Ca2+ efflux is directed to mitochondria and increases basal respiration and organellar ATP levels, is established by GSK3β-mediated phosphorylation of presenilin-1, and is prevented by either knockdown of presenilin-1 or an inhibition/knockdown of GSK3β. Expression of a presenlin-1 mutant that mimics GSK3β-mediated phosphorylation established a β-cell-like ER Ca2+ leak in HeLa and EA.hy926 cells. The ER Ca2+ loss in β-cells was compensated at steady state by Ca2+ entry that is linked to the activity of TRPC3. Conclusion Pancreatic β-cells establish a cell-specific ER Ca2+ leak that is under the control of GSK3β and directed to mitochondria, thus, reflecting a cell-specific intracellular Ca2+ handling for basal mitochondrial activity.
Collapse
Affiliation(s)
- Christiane Klec
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Sarah Stryeck
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Madalina Duta-Mare
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Jesse Hay
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,University of Montana, Division of Biological Sciences, Center for Structural & Functional Neuroscience, Missoula, MT, USA
| | - Markus Waldeck-Weiermair
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Tobias Madl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria.,BioTechMed, Graz, Austria.,Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cellular Signaling, Metabolism & Aging, Medical University of Graz, Graz, Austria,
| |
Collapse
|
15
|
Abstract
β-amyloid is regarded by some scientists to be the cause of Alzheimer’s disease (AD). One of the strongest arguments against this hypothesis is the presence of hundreds of AD-causing mutations in presenilin, but none in the other three components of γ-secretase. This observation implies a γ-secretase–independent function of presenilin. To understand such a putative function, discovery of presenilin-binding proteins represents an important first step. In this study, we report the identification of Bax-inhibitor 1 (BI1) as a stable interacting partner of presenilin 1 (PS1), but not the intact γ-secretase. Our results link PS1 to BI1, a protein thought to play a role in apoptosis and calcium channel regulation. This finding opens a range of possibilities for the investigation of PS1 function and AD genesis. Presenilin is the catalytic subunit of γ-secretase, a four-component intramembrane protease responsible for the generation of β-amyloid (Aβ) peptides. Over 200 Alzheimer’s disease-related mutations have been identified in presenilin 1 (PS1) and PS2. Here, we report that Bax-inhibitor 1 (BI1), an evolutionarily conserved transmembrane protein, stably associates with PS1. BI1 specifically interacts with PS1 in isolation, but not with PS1 in the context of an assembled γ-secretase. The PS1–BI1 complex exhibits no apparent proteolytic activity, as judged by the inability to produce Aβ40 and Aβ42 from the substrate APP-C99. At an equimolar concentration, BI1 has no impact on the proteolytic activity of γ-secretase; at a 200-fold molar excess, BI1 reduces γ-secretase activity nearly by half. Our biochemical study identified BI1 as a PS1-interacting protein, suggesting additional functions of PS1 beyond its involvement in γ-secretase.
Collapse
|
16
|
Vervliet T. Ryanodine Receptors in Autophagy: Implications for Neurodegenerative Diseases? Front Cell Neurosci 2018; 12:89. [PMID: 29636667 PMCID: PMC5880912 DOI: 10.3389/fncel.2018.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022] Open
Abstract
Intracellular Ca2+ signaling is important in the regulation of several cellular processes including autophagy. The endoplasmic reticulum (ER) is the main and largest intracellular Ca2+ store. At the ER two protein families of Ca2+ release channels, inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), are expressed. Several studies have reported roles in the regulation of autophagy for the ubiquitously expressed IP3R. For instance, IP3R-mediated Ca2+ release supresses basal autophagic flux by promoting mitochondrial metabolism, while also promoting the rapid initial increase in autophagic flux in response to nutrient starvation. Insights into the contribution of RyRs in autophagy have been lagging significantly compared to the advances made for IP3Rs. This is rather surprising considering that RyRs are predominantly expressed in long-lived cells with specialized metabolic needs, such as neurons and muscle cells, in which autophagy plays important roles. In this review article, recent studies revealing roles for RyRs in the regulation of autophagy will be discussed. Several RyR-interacting proteins that have been established to modulate both RyR function and autophagy will also be highlighted. Finally, the involvement of RyRs in neurodegenerative diseases will be addressed. Inhibition of RyR channels has not only been shown to be beneficial for treating several of these diseases but also regulates autophagy.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Gazda K, Kuznicki J, Wegierski T. Knockdown of amyloid precursor protein increases calcium levels in the endoplasmic reticulum. Sci Rep 2017; 7:14512. [PMID: 29109429 PMCID: PMC5673940 DOI: 10.1038/s41598-017-15166-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Familial Alzheimer's disease (AD) is caused by mutations in the genes that encode amyloid precursor protein (APP) and presenilins. Disturbances in calcium homeostasis have been observed in various cellular and animal models of AD and are proposed to underlie the pathogenesis of the disease. Furthermore, wildtype presenilins were shown to regulate endoplasmic reticulum (ER) calcium homeostasis, although their precise mechanism of action remains controversial. To investigate whether APP also affects ER calcium levels, we used RNA interference to target the APP gene in cultured T84 cells in combination with two types of ER calcium sensors. Using a genetically encoded calcium indicator, GEM-CEPIA1er, we found that APP-deficient cells exhibited elevated resting calcium levels in the ER and prolonged emptying of ER calcium stores upon the cyclopiazonic acid-induced inhibition of sarco-endoplasmic reticulum calcium-ATPase. These effects could be ascribed to lower ER calcium leakage rates. Consistent with these results, translocation of the endogenous ER calcium sensor STIM1 to its target channel Orai1 was delayed following ER calcium store depletion. Our data suggest a physiological function of APP in the regulation of ER calcium levels.
Collapse
Affiliation(s)
- Kinga Gazda
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Tomasz Wegierski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| |
Collapse
|
18
|
Joshi AU, Kornfeld OS, Mochly-Rosen D. The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: A tangled duo unchained. Cell Calcium 2016; 60:218-34. [PMID: 27212603 DOI: 10.1016/j.ceca.2016.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondrial function have both been shown to be critical events in neurodegenerative diseases. The ER mediates protein folding, maturation, sorting as well acts as calcium storage. The unfolded protein response (UPR) is a stress response of the ER that is activated by the accumulation of misfolded proteins within the ER lumen. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Similarly, calcium-mediated mitochondrial function and dynamics not only contribute to ATP generation and calcium buffering but are also a linchpin in mediating cell fate. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintaining cellular homeostasis and determining cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of pro-survival/pro-death pathways. In this review, we summarize the latest therapeutic strategies that target these essential organelles in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Opher S Kornfeld
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, CA, USA.
| |
Collapse
|
19
|
Chung KM, Jeong EJ, Park H, An HK, Yu SW. Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells. Front Cell Neurosci 2016; 10:116. [PMID: 27199668 PMCID: PMC4858590 DOI: 10.3389/fncel.2016.00116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/21/2016] [Indexed: 11/15/2022] Open
Abstract
Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca2+ release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs—especially RyR3—were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology.
Collapse
Affiliation(s)
- Kyung Min Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Eun-Ji Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Hyunhee Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea
| |
Collapse
|
20
|
Li LH, Tian XR, Jiang Z, Zeng LW, He WF, Hu ZP. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation. Neurosignals 2016; 21:272-84. [PMID: 23796968 DOI: 10.1159/000350471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The Golgi apparatus (GA), an intermediate organelle of the cell inner membrane system, plays a key role in protein glycosylation and secretion. In recent years, this organelle has been found to act as a vital intracellular Ca(2+) store because different Ca (2+) regulators, such as the inositol-1,4,5-triphosphate receptor, sarco/endoplasmic reticulum Ca(2+) -ATPase and secretory pathway Ca 2+ -ATPase, were demonstrated to localize on their membrane. The mechanisms involved in Ca(2+) release and uptake in the GA have now been established.Here, based on careful backward looking on compartments and patterns in GA Ca (2+) regulation, we review neurological diseases related to GA calcium remodeling and propose a modified cytosolic Ca(2+) adjustment model, in which GA acts as part of the panel point.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Neurology, Second Xiangya Hospital, Central-South University, Changsha; School of Medicine, Jishou University, Jishou , PR China
| | | | | | | | | | | |
Collapse
|
21
|
Ryazantseva M, Skobeleva K, Glushankova L, Kaznacheyeva E. Attenuated presenilin-1 endoproteolysis enhances store-operated calcium currents in neuronal cells. J Neurochem 2016; 136:1085-95. [DOI: 10.1111/jnc.13495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/07/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Ryazantseva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Ksenia Skobeleva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Lyubov Glushankova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Elena Kaznacheyeva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| |
Collapse
|
22
|
Duggan SP, McCarthy JV. Beyond γ-secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cell Signal 2015; 28:1-11. [PMID: 26498858 DOI: 10.1016/j.cellsig.2015.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 01/24/2023]
Abstract
The presenilins are the catalytic subunit of the membrane-embedded tetrameric γ-secretase protease complexes. More that 90 transmembrane proteins have been reported to be γ-secretase substrates, including the widely studied amyloid precursor protein (APP) and the Notch receptor, which are precursors for the generation of amyloid-β peptides and biologically active APP intracellular domain (AICD) and Notch intracellular domain (NICD). The diversity of γ-secretase substrates highlights the importance of presenilin-dependent γ-secretase protease activities as a regulatory mechanism in a range of biological systems. However, there is also a growing body of evidence that supports the existence of γ-secretase-independent functions for the presenilins in the regulation and progression of an array of cell signalling pathways. In this review, we will present an overview of current literature that proposes evolutionarily conserved presenilin functions outside of the γ-secretase complex, with a focus on the suggested role of the presenilins in the regulation of Wnt/β-catenin signalling, protein trafficking and degradation, calcium homeostasis and apoptosis.
Collapse
Affiliation(s)
- Stephen P Duggan
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland
| | - Justin V McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology, ABCRF, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
23
|
Liang J, Kulasiri D, Samarasinghe S. Ca2+ dysregulation in the endoplasmic reticulum related to Alzheimer's disease: A review on experimental progress and computational modeling. Biosystems 2015; 134:1-15. [PMID: 25998697 DOI: 10.1016/j.biosystems.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating, incurable neurodegenerative disease affecting millions of people worldwide. Dysregulation of intracellular Ca(2+) signaling has been observed as an early event prior to the presence of clinical symptoms of AD and is believed to be a crucial factor contributing to its pathogenesis. The progressive and sustaining increase in the resting level of cytosolic Ca(2+) will affect downstream activities and neural functions. This review focuses on the issues relating to the increasing Ca(2+) release from the endoplasmic reticulum (ER) observed in AD neurons. Numerous research papers have suggested that the dysregulation of ER Ca(2+) homeostasis is associated with mutations in the presenilin genes and amyloid-β oligomers. These disturbances could happen at many different points in the signaling process, directly affecting ER Ca(2+) channels or interfering with related pathways, which makes it harder to reveal the underlying mechanisms. This review paper also shows that computational modeling is a powerful tool in Ca(2+) signaling studies and discusses the progress in modeling related to Ca(2+) dysregulation in AD research.
Collapse
Affiliation(s)
- Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Informatics and Enabling Technologies, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
24
|
Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 2015; 22:995-1019. [PMID: 25557408 DOI: 10.1089/ars.2014.6223] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE In all cells, the endoplasmic reticulum (ER) and mitochondria are physically connected to form junctions termed mitochondria-associated membranes (MAMs). This subcellular compartment is under intense investigation because it represents a "hot spot" for the intracellular signaling of important pathways, including the synthesis of cholesterol and phospholipids, calcium homeostasis, and reactive oxygen species (ROS) generation and activity. RECENT ADVANCES The advanced methods currently used to study this fascinating intracellular microdomain in detail have enabled the identification of the molecular composition of MAMs and their involvement within different physiopathological contexts. CRITICAL ISSUES Here, we review the knowledge regarding (i) MAMs composition in terms of protein composition, (ii) the relationship between MAMs and ROS, (iii) the involvement of MAMs in cell death programs with particular emphasis within the tumor context, (iv) the emerging role of MAMs during inflammation, and (v) the key role of MAMs alterations in selected neurological disorders. FUTURE DIRECTIONS Whether alterations in MAMs represent a response to the disease pathogenesis or directly contribute to the disease has not yet been unequivocally established. In any case, the signaling at the MAMs represents a promising pharmacological target for several important human diseases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- 1 Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2164-83. [PMID: 24642269 DOI: 10.1016/j.bbamcr.2014.03.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 01/22/2023]
Abstract
Cell-death and -survival decisions are critically controlled by intracellular Ca(2+) homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca(2+) flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca(2+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca(2+), Ca(2+)-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca(2+) store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca(2+) leak. Third, we will review the regulation of the Ca(2+)-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Hristina Ivanova
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Tim Vervliet
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Humbert De Smedt
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Geert Bultynck
- KU Leuven Lab. of Molecular and Cellular Signaling, Dept. of Cellular and Molecular Medicine, Campus Gasthuisberg O&N I Box 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
26
|
Luyten T, Bultynck G, Parys JB, De Smedt H, Missiaen L. Measurement of intracellular Ca2+ release in permeabilized cells using 45Ca2+. Cold Spring Harb Protoc 2014; 2014:289-294. [PMID: 24591686 DOI: 10.1101/pdb.prot073189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This protocol describes a technique to measure Ca(2+) release from the nonmitochondrial intracellular Ca(2+) stores in monolayers of saponin-permeabilized cells cultured in 12-well 4-cm(2) clusters. The (45)Ca(2+)-flux technique described here can only be applied to cell types that still adhere to the plastic after exposing them to saponin. We describe the permeabilization procedure, the loading of the nonmitochondrial Ca(2+) stores with (45)Ca(2+), and the subsequent (45)Ca(2+) efflux.
Collapse
Affiliation(s)
- Tomas Luyten
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven Campus Gasthuisberg O&N I, 3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
27
|
Pierro C, Cook SJ, Foets TCF, Bootman MD, Roderick HL. Oncogenic K-Ras suppresses IP₃-dependent Ca²⁺ release through remodelling of the isoform composition of IP₃Rs and ER luminal Ca²⁺ levels in colorectal cancer cell lines. J Cell Sci 2014; 127:1607-19. [PMID: 24522186 DOI: 10.1242/jcs.141408] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The GTPase Ras is a molecular switch engaged downstream of G-protein-coupled receptors and receptor tyrosine kinases that controls multiple cell-fate-determining signalling pathways. Ras signalling is frequently deregulated in cancer, underlying associated changes in cell phenotype. Although Ca(2+) signalling pathways control some overlapping functions with Ras, and altered Ca(2+) signalling pathways are emerging as important players in oncogenic transformation, how Ca(2+) signalling is remodelled during transformation and whether it has a causal role remains unclear. We have investigated Ca(2+) signalling in two human colorectal cancer cell lines and their isogenic derivatives in which the allele encoding oncogenic K-Ras (G13D) was deleted by homologous recombination. We show that agonist-induced Ca(2+) release from the endoplasmic reticulum (ER) intracellular Ca(2+) stores is enhanced by loss of K-Ras(G13D) through an increase in the Ca(2+) content of the ER store and a modification of the abundance of inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) subtypes. Consistently, uptake of Ca(2+) into mitochondria and sensitivity to apoptosis was enhanced as a result of K-Ras(G13D) loss. These results suggest that suppression of Ca(2+) signalling is a common response to naturally occurring levels of K-Ras(G13D), and that this contributes to a survival advantage during oncogenic transformation.
Collapse
Affiliation(s)
- Cristina Pierro
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT UK
| | | | | | | | | |
Collapse
|
28
|
Presenilins regulate the cellular activity of ryanodine receptors differentially through isotype-specific N-terminal cysteines. Exp Neurol 2013; 250:143-50. [PMID: 24029002 DOI: 10.1016/j.expneurol.2013.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/23/2013] [Accepted: 09/01/2013] [Indexed: 12/16/2022]
Abstract
Presenilins (PS), endoplasmic reticulum (ER) transmembrane proteins, form the catalytic core of γ-secretase, an amyloid precursor protein processing enzyme. Mutations in PS lead to Alzheimer's disease (AD) by altering γ-secretase activity to generate pathologic amyloid beta and amyloid plaques in the brain. Here, we identified a novel mechanism where binding of a soluble, cytosolic N-terminal domain fragment (NTF) of PS to intracellular Ca(2+) release channels, ryanodine receptors (RyR), controls Ca(2+) release from the ER. While PS1NTF decreased total RyR-mediated Ca(2+) release, PS2NTF had no effect at physiological Ca(2+) concentrations. This differential function and isotype-specificity is due to four cysteines absent in PS1NTF, present, however, in PS2NTF. Site-directed mutagenesis targeting these cysteines converted PS1NTF to PS2NTF function and vice versa, indicating differential RyR binding. This novel mechanism of intracellular Ca(2+) regulation through the PS-RyR interaction represents a novel target for AD drug development and the treatment of other neurodegenerative disorders that critically depend on RyR and PS signaling.
Collapse
|
29
|
Monaco G, Decrock E, Nuyts K, Wagner II LE, Luyten T, Strelkov SV, Missiaen L, De Borggraeve WM, Leybaert L, Yule DI, De Smedt H, Parys JB, Bultynck G. Alpha-helical destabilization of the Bcl-2-BH4-domain peptide abolishes its ability to inhibit the IP3 receptor. PLoS One 2013; 8:e73386. [PMID: 24137498 PMCID: PMC3795776 DOI: 10.1371/journal.pone.0073386] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/22/2013] [Indexed: 01/11/2023] Open
Abstract
The anti-apoptotic Bcl-2 protein is the founding member and namesake of the Bcl-2-protein family. It has recently been demonstrated that Bcl-2, apart from its anti-apoptotic role at mitochondrial membranes, can also directly interact with the inositol 1,4,5-trisphosphate receptor (IP3R), the primary Ca(2+)-release channel in the endoplasmic reticulum (ER). Bcl-2 can thereby reduce pro-apoptotic IP3R-mediated Ca(2+) release from the ER. Moreover, the Bcl-2 homology domain 4 (Bcl-2-BH4) has been identified as essential and sufficient for this IP3R-mediated anti-apoptotic activity. In the present study, we investigated whether the reported inhibitory effect of a Bcl-2-BH4 peptide on the IP 3R1 was related to the distinctive α-helical conformation of the BH4 domain peptide. We therefore designed a peptide with two glycine "hinges" replacing residues I14 and V15, of the wild-type Bcl-2-BH4 domain (Bcl-2-BH4-IV/GG). By comparing the structural and functional properties of the Bcl-2-BH4-IV/GG peptide with its native counterpart, we found that the variant contained reduced α-helicity, neither bound nor inhibited the IP 3R1 channel, and in turn lost its anti-apoptotic effect. Similar results were obtained with other substitutions in Bcl-2-BH4 that destabilized the α-helix with concomitant loss of IP3R inhibition. These results provide new insights for the further development of Bcl-2-BH4-derived peptides as specific inhibitors of the IP3R with significant pharmacological implications.
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Koen Nuyts
- Section of Molecular Design and Synthesis, Department of Chemistry, Heverlee, Belgium
| | - Larry E. Wagner II
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tomas Luyten
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Wim M. De Borggraeve
- Section of Molecular Design and Synthesis, Department of Chemistry, Heverlee, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - David I. Yule
- Department of Pharmacology & Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Jan B. Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| |
Collapse
|
30
|
Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons. Proc Natl Acad Sci U S A 2013; 110:15091-6. [PMID: 23918386 DOI: 10.1073/pnas.1304171110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin (PS) plays a central role in the pathogenesis of Alzheimer's disease, and loss of PS causes progressive memory impairment and age-related neurodegeneration in the mouse cerebral cortex. In hippocampal neurons, PS is essential for neurotransmitter release, NMDA receptor-mediated responses, and long-term potentiation. PS is also involved in the regulation of calcium homeostasis, although the precise site of its action is less clear. Here we investigate the mechanism by which PS regulates synaptic function and calcium homeostasis using acute hippocampal slices from PS conditional knockout mice and primary cultured postnatal hippocampal neurons, in which PS is inducibly inactivated. Using two different calcium probes, Fura-2 and Mag-Fura-2, we found that inactivation of PS in primary hippocampal neurons does not affect calcium concentration in the endoplasmic reticulum. Rather, in the absence of PS, levels of ryanodine receptor (RyR) are reduced in the hippocampus, measured by Western analysis and radioligand binding assay, although the mRNA expression is unaffected. RyR-mediated function is also impaired, as indicated by reduced RyR agonist-induced calcium release from the ER and RyR-mediated synaptic responses in the absence of PS. Furthermore, knockdown of RyR expression in wild-type hippocampal neurons by two independent shRNAs to levels comparable with the RyR protein reduction in PS-deficient hippocampal neurons mimics the defects exhibited in calcium homeostasis and presynaptic function. Collectively, our findings show that PS regulates calcium homeostasis and synaptic function via RyR and suggest that disruption of intracellular calcium homeostasis may be an early pathogenic event leading to presynaptic dysfunction in Alzheimer's disease.
Collapse
|
31
|
Bandara S, Malmersjö S, Meyer T. Regulators of calcium homeostasis identified by inference of kinetic model parameters from live single cells perturbed by siRNA. Sci Signal 2013; 6:ra56. [PMID: 23838183 DOI: 10.1126/scisignal.2003649] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Assigning molecular functions and revealing dynamic connections between large numbers of partially characterized proteins in regulatory networks are challenges in systems biology. We showed that functions of signaling proteins can be discovered with a differential equations model of the underlying signaling process to extract specific molecular parameter values from single-cell, time-course measurements. By analyzing the effects of 250 small interfering RNAs on Ca(2+) signals in single cells over time, we identified parameters that were specifically altered in the Ca(2+) regulatory system. Analysis of the screen confirmed known functions of the Ca(2+) sensors STIM1 (stromal interaction molecule 1) and calmodulin and of Ca(2+) channels and pumps localized in the endoplasmic reticulum (ER) or plasma membrane. Furthermore, we showed that the Alzheimer's disease-linked protein presenilin-2 and the channel protein ORAI2 prevented overload of ER Ca(2+) and that feedback from Ca(2+) to phosphatidylinositol 4-kinase and PLCδ (phospholipase Cδ) may regulate the abundance of the plasma membrane lipid PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to control Ca(2+) extrusion. Thus, functions of signaling proteins and dynamic regulatory connections can be identified by extracting molecular parameter values from single-cell, time-course data.
Collapse
Affiliation(s)
- Samuel Bandara
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
32
|
Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin. Cell Calcium 2013; 54:37-45. [DOI: 10.1016/j.ceca.2013.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/27/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022]
|
33
|
De Strooper B, Iwatsubo T, Wolfe MS. Presenilins and γ-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb Perspect Med 2013; 2:a006304. [PMID: 22315713 DOI: 10.1101/cshperspect.a006304] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Presenilins were first discovered as sites of missense mutations responsible for early-onset Alzheimer disease (AD). The encoded multipass membrane proteins were subsequently found to be the catalytic components of γ-secretases, membrane-embedded aspartyl protease complexes responsible for generating the carboxyl terminus of the amyloid β-protein (Aβ) from the amyloid protein precursor (APP). The protease complex also cleaves a variety of other type I integral membrane proteins, most notably the Notch receptor, signaling from which is involved in many cell differentiation events. Although γ-secretase is a top target for developing disease-modifying AD therapeutics, interference with Notch signaling should be avoided. Compounds that alter Aβ production by γ-secretase without affecting Notch proteolysis and signaling have been identified and are currently at various stages in the drug development pipeline.
Collapse
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, Leuven Institute for Neurodegenerative Diseases, KULeuven, 3000 Leuven, Belgium; Department of Molecular and Developmental Genetics, VIB, 3000, Leuven, Belgium
| | | | | |
Collapse
|
34
|
Amyloid precursor protein-mediated modulation of capacitive calcium entry. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Honarnejad K, Herms J. Presenilins: Role in calcium homeostasis. Int J Biochem Cell Biol 2012; 44:1983-6. [DOI: 10.1016/j.biocel.2012.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 01/30/2023]
|
36
|
Calì T, Ottolini D, Brini M. Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium 2012; 52:73-85. [PMID: 22608276 PMCID: PMC3396847 DOI: 10.1016/j.ceca.2012.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/16/2022]
Abstract
Mitochondria are essential for ensuring numerous fundamental physiological processes such as cellular energy, redox balance, modulation of Ca2+ signaling and important biosynthetic pathways. They also govern the cell fate by participating in the apoptosis pathway. The mitochondrial shape, volume, number and distribution within the cells are strictly controlled. The regulation of these parameters has an impact on mitochondrial function, especially in the central nervous system, where trafficking of mitochondria is critical to their strategic intracellular distribution, presumably according to local energy demands. Thus, the maintenance of a healthy mitochondrial population is essential to avoid the impairment of the processes they regulate: for this purpose, cells have developed mechanisms involving a complex system of quality control to remove damaged mitochondria, or to renew them. Defects of these processes impair mitochondrial function and lead to disordered cell function, i.e., to a disease condition. Given the standard role of mitochondria in all cells, it might be expected that their dysfunction would give rise to similar defects in all tissues. However, damaged mitochondrial function has pleiotropic effects in multicellular organisms, resulting in diverse pathological conditions, ranging from cardiac and brain ischemia, to skeletal muscle myopathies to neurodegenerative diseases. In this review, we will focus on the relationship between mitochondrial (and cellular) derangements and Ca2+ dysregulation in neurodegenerative diseases, emphasizing the evidence obtained in genetic models. Common patterns, that recognize the derangement of Ca2+ and energy control as a causative factor, have been identified: advances in the understanding of the molecular regulation of Ca2+ homeostasis, and on the ways in which it could become perturbed in neurological disorders, may lead to the development of therapeutic strategies that modulate neuronal Ca2+ signaling.
Collapse
Affiliation(s)
- Tito Calì
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | |
Collapse
|
37
|
Shilling D, Mak DOD, Kang DE, Foskett JK. Lack of evidence for presenilins as endoplasmic reticulum Ca2+ leak channels. J Biol Chem 2012; 287:10933-44. [PMID: 22311977 DOI: 10.1074/jbc.m111.300491] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Familial Alzheimer disease (FAD) is linked to mutations in the presenilin (PS) homologs. FAD mutant PS expression has several cellular consequences, including exaggerated intracellular Ca(2+) ([Ca(2+)](i)) signaling due to enhanced agonist sensitivity and increased magnitude of [Ca(2+)](i) signals. The mechanisms underlying these phenomena remain controversial. It has been proposed that PSs are constitutively active, passive endoplasmic reticulum (ER) Ca(2+) leak channels and that FAD PS mutations disrupt this function resulting in ER store overfilling that increases the driving force for release upon ER Ca(2+) release channel opening. To investigate this hypothesis, we employed multiple Ca(2+) imaging protocols and indicators to directly measure ER Ca(2+) dynamics in several cell systems. However, we did not observe consistent evidence that PSs act as ER Ca(2+) leak channels. Nevertheless, we confirmed observations made using indirect measurements employed in previous reports that proposed this hypothesis. Specifically, cells lacking PS or expressing a FAD-linked PS mutation displayed increased area under the ionomycin-induced [Ca(2+)](i) versus time curve (AI) compared with cells expressing WT PS. However, an ER-targeted Ca(2+) indicator revealed that this did not reflect overloaded ER stores. Monensin pretreatment selectively attenuated the AI in cells lacking PS or expressing a FAD PS allele. These findings contradict the hypothesis that PSs form ER Ca(2+) leak channels and highlight the need to use ER-targeted Ca(2+) indicators when studying ER Ca(2+) dynamics.
Collapse
Affiliation(s)
- Dustin Shilling
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
38
|
Li A, Zhou C, Moore J, Zhang P, Tsai TH, Lee HC, Romano DM, McKee ML, Schoenfeld DA, Serra MJ, Raygor K, Cantiello HF, Fujimoto JG, Tanzi RE. Changes in the expression of the Alzheimer’s disease-associated presenilin gene in drosophila heart leads to cardiac dysfunction. Curr Alzheimer Res 2011; 8:313-22. [PMID: 21524270 DOI: 10.2174/156720511795563746] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Mutations in the presenilin genes cause the majority of early-onset familial Alzheimer’s disease. Recently, presenilin mutations have been identified in patients with dilated cardiomyopathy (DCM), a common cause of heart failure and the most prevalent diagnosis in cardiac transplantation patients. However, the molecular mechanisms, by which presenilin mutations lead to either AD or DCM, are not yet understood. We have employed transgenic Drosophila models and optical coherence tomography imaging technology to analyze cardiac function in live adult Drosophila. Silencing of Drosophila ortholog of presenilins (dPsn) led to significantly reduced heart rate and remarkably age-dependent increase in end-diastolic vertical dimensions. In contrast, overexpression of dPsn increased heart rate. Either overexpression or silencing of dPsn resulted in irregular heartbeat rhythms accompanied by cardiomyofibril defects and mitochondrial impairment. The calcium channel receptor activities in cardiac cells were quantitatively determined via real-time RT-PCR. Silencing of dPsn elevated dIP3R expression, and reduced dSERCA expression; overexprerssion of dPsn led to reduced dRyR expression. Moreover, overexpression of dPsn in wing disc resulted in loss of wing phenotype and reduced expression of wingless. Our data provide novel evidence that changes in presenilin level leads to cardiac dysfunction, owing to aberrant calcium channel receptor activities and disrupted Wnt signaling transduction, indicating a pathogenic role for presenilin mutations in DCM pathogenesis.
Collapse
Affiliation(s)
- A Li
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bultynck G, Kiviluoto S, Henke N, Ivanova H, Schneider L, Rybalchenko V, Luyten T, Nuyts K, De Borggraeve W, Bezprozvanny I, Parys JB, De Smedt H, Missiaen L, Methner A. The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem 2011; 287:2544-57. [PMID: 22128171 DOI: 10.1074/jbc.m111.275354] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bax inhibitor-1 (BI-1) is a multitransmembrane domain-spanning endoplasmic reticulum (ER)-located protein that is evolutionarily conserved and protects against apoptosis and ER stress. Furthermore, BI-1 is proposed to modulate ER Ca(2+) homeostasis by acting as a Ca(2+)-leak channel. Based on experimental determination of the BI-1 topology, we propose that its C terminus forms a Ca(2+) pore responsible for its Ca(2+)-leak properties. We utilized a set of C-terminal peptides to screen for Ca(2+) leak activity in unidirectional (45)Ca(2+)-flux experiments and identified an α-helical 20-amino acid peptide causing Ca(2+) leak from the ER. The Ca(2+) leak was independent of endogenous ER Ca(2+)-release channels or other Ca(2+)-leak mechanisms, namely translocons and presenilins. The Ca(2+)-permeating property of the peptide was confirmed in lipid-bilayer experiments. Using mutant peptides, we identified critical residues responsible for the Ca(2+)-leak properties of this BI-1 peptide, including a series of critical negatively charged aspartate residues. Using peptides corresponding to the equivalent BI-1 domain from various organisms, we found that the Ca(2+)-leak properties were conserved among animal, but not plant and yeast orthologs. By mutating one of the critical aspartate residues in the proposed Ca(2+)-channel pore in full-length BI-1, we found that Asp-213 was essential for BI-1-dependent ER Ca(2+) leak. Thus, we elucidated residues critically important for BI-1-mediated Ca(2+) leak and its potential channel pore. Remarkably, one of these residues was not conserved among plant and yeast BI-1 orthologs, indicating that the ER Ca(2+)-leak properties of BI-1 are an added function during evolution.
Collapse
Affiliation(s)
- Geert Bultynck
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, K.U. Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Decuypere JP, Monaco G, Kiviluoto S, Oh-hora M, Luyten T, De Smedt H, Parys JB, Missiaen L, Bultynck G. STIM1, but not STIM2, is required for proper agonist-induced Ca2+ signaling. Cell Calcium 2011; 48:161-7. [PMID: 20801505 DOI: 10.1016/j.ceca.2010.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The stromal interaction molecules STIM1 and STIM2 sense a decreasing Ca(2+) concentration in the lumen of the endoplasmic reticulum and activate Ca(2+) channels in the plasma membrane. In addition, at least 2 reports suggested that STIM1 may also interact with the inositol 1,4,5-trisphosphate (IP(3)) receptor. Using embryonic fibroblasts from Stim1(-/-), Stim2(-/-) and wild-type mice, we now tested the hypothesis that STIM1 and STIM2 would also regulate the IP(3) receptor. We investigated whether STIM1 or STIM2 would be the luminal Ca(2+) sensor that controls the loading dependence of the IP(3)-induced Ca(2+) release. Partial emptying of the stores in plasma-membrane permeabilized cells resulted in an increased EC(50) and a decreased Hill coefficient for IP(3)-induced Ca(2+) release. This effect occurred both in the presence and absence of STIM proteins, indicating that these proteins were not the luminal Ca(2+) sensor for the IP(3) receptor. Although Stim1(-/-) cells displayed a normal IP(3)-receptor function, agonist-induced Ca(2+) release was reduced. This finding suggests that the presence of STIM1 is required for proper agonist-induced Ca(2+) signaling. Our data do not provide experimental evidence for the suggestion that STIM proteins would directly control the function of the IP(3) receptor.
Collapse
|
41
|
Müller M, Cheung KH, Foskett JK. Enhanced ROS generation mediated by Alzheimer's disease presenilin regulation of InsP3R Ca2+ signaling. Antioxid Redox Signal 2011; 14:1225-35. [PMID: 20701429 PMCID: PMC3048838 DOI: 10.1089/ars.2010.3421] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Familial Alzheimer's disease (FAD) is caused by mutations in amyloid precursor protein and presenilins (PS1, PS2). Many FAD-linked PS mutations affect intracellular calcium (Ca(2+)) homeostasis by proximal mechanisms independent of amyloid production by dramatically enhancing gating of the inositol trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channel by a gain-of-function effect that mirrors genetics of FAD and is independent of secretase activity. Electrophysiological recordings of InsP(3)R in FAD patient B cells, cortical neurons of asymptomatic PS1-AD mice, and other cells revealed they have higher occupancy in a high open probability burst mode, resulting in enhanced Ca(2+) signaling. Exaggerated Ca(2+) signaling through this mechanism results in enhanced generation of reactive oxygen species, believed to be an important component in AD pathogenesis. Exaggerated Ca(2+) signaling through InsP(3)R-PS interaction is a disease specific and robust proximal mechanism in AD that may contribute to the pathology of AD by enhanced generation of reactive oxygen species.
Collapse
Affiliation(s)
- Marioly Müller
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
42
|
Abstract
AD (Alzheimer's disease) is a neurodegenerative disease characterized by a gradual loss of neurons and the accumulation of neurotoxic Aβ (amyloid β-peptide) and hyperphosphorylated tau. The discovery of mutations in three genes, PSEN1 (presenilin 1), PSEN2 (presenilin 2) and APP (amyloid precursor protein), in patients with FAD (familial AD) has made an important contribution towards an understanding of the disease aetiology; however, a complete molecular mechanism is still lacking. Both presenilins belong to the γ-secretase complex, and serve as the catalytic entity needed for the final cleavage of APP into Aβ. PSEN only functions within the γ-secretase complex through intra- and inter-molecular interactions with three other membrane components, including nicastrin, Aph-1 (anterior pharynx defective-1) and Pen-2 (PSEN enhancer-2). However, although the list of γ-secretase substrates is still expanding, other non-catalytic activities of presenilins are also increasing the complexity behind its molecular contribution towards AD. These γ-secretase-independent roles are so far mainly attributed to PSEN1, including the transport of membrane proteins, cell adhesion, ER (endoplasmic reticulum) Ca(2+) regulation and cell signalling. In the present minireview, we discuss the current understanding of the γ-secretase-independent roles of PSENs and their possible implications in respect of AD.
Collapse
|
43
|
Decuypere JP, Monaco G, Missiaen L, De Smedt H, Parys JB, Bultynck G. IP(3) Receptors, Mitochondria, and Ca Signaling: Implications for Aging. J Aging Res 2011; 2011:920178. [PMID: 21423550 PMCID: PMC3056293 DOI: 10.4061/2011/920178] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
The tight interplay between endoplasmic-reticulum-(ER-) and mitochondria-mediated Ca(2+) signaling is a key determinant of cellular health and cellular fate through the control of apoptosis and autophagy. Proteins that prevent or promote apoptosis and autophagy can affect intracellular Ca(2+) dynamics and homeostasis through binding and modulation of the intracellular Ca(2+)-release and Ca(2+)-uptake mechanisms. During aging, oxidative stress becomes an additional factor that affects ER and mitochondrial function and thus their role in Ca(2+) signaling. Importantly, mitochondrial dysfunction and sustained mitochondrial damage are likely to underlie part of the aging process. In this paper, we will discuss the different mechanisms that control intracellular Ca(2+) signaling with respect to apoptosis and autophagy and review how these processes are affected during aging through accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Biology, K.U.Leuven, Campus Gasthuisberg O/N-1, Herestraat 49, Bus 802, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Induction of Ca²+-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP3 receptor interaction. Blood 2010; 117:2924-34. [PMID: 21193695 DOI: 10.1182/blood-2010-09-307405] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bcl-2 contributes to the pathophysiology and therapeutic resistance of chronic lymphocytic leukemia (CLL). Therefore, developing inhibitors of this protein based on a thorough understanding of its mechanism of action is an active and promising area of inquiry. One approach centers on agents (eg, ABT-737) that compete with proapoptotic members of the Bcl-2 protein family for binding in the hydrophobic groove formed by the BH1-BH3 domains of Bcl-2. Another region of Bcl-2, the BH4 domain, also contributes to the antiapoptotic activity of Bcl-2 by binding to the inositol 1,4,5-trisphosphate receptor (IP₃R) Ca²(+) channel, inhibiting IP(3)-dependent Ca²(+) release from the endoplasmic reticulum. We report that a novel synthetic peptide, modeled after the Bcl-2-interacting site on the IP₃R, binds to the BH4 domain of Bcl-2 and functions as a competitive inhibitor of the Bcl-2-IP₃R interaction. By disrupting the Bcl-2-IP₃R interaction, this peptide induces an IP₃R-dependent Ca²(+) elevation in lymphoma and leukemia cell lines and in primary CLL cells. The Ca²(+) elevation evoked by this peptide induces apoptosis in CLL cells, but not in normal peripheral blood lymphocytes, suggesting the involvement of the Bcl-2-IP₃R interaction in the molecular mechanism of CLL and indicating the potential merit of targeting this interaction therapeutically.
Collapse
|
45
|
Kaja S, Duncan RS, Longoria S, Hilgenberg JD, Payne AJ, Desai NM, Parikh RA, Burroughs SL, Gregg EV, Goad DL, Koulen P. Novel mechanism of increased Ca2+ release following oxidative stress in neuronal cells involves type 2 inositol-1,4,5-trisphosphate receptors. Neuroscience 2010; 175:281-91. [PMID: 21075175 DOI: 10.1016/j.neuroscience.2010.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 12/14/2022]
Abstract
Dysregulation of Ca(2+) signaling following oxidative stress is an important pathophysiological mechanism of many chronic neurodegenerative disorders, including Alzheimer's disease, age-related macular degeneration, glaucomatous and diabetic retinopathies. However, the underlying mechanisms of disturbed intracellular Ca(2+) signaling remain largely unknown. We here describe a novel mechanism for increased intracellular Ca(2+) release following oxidative stress in a neuronal cell line. Using an experimental approach that included quantitative polymerase chain reaction, quantitative immunoblotting, microfluorimetry and the optical imaging of intracellular Ca(2+) release, we show that sub-lethal tert-butyl hydroperoxide-mediated oxidative stress result in a selective up-regulation of type-2 inositol-1,4,5,-trisphophate receptors. This oxidative stress mediated change was detected both at the transcriptional and translational level and functionally resulted in increased Ca(2+) release into the nucleoplasm from the membranes of the nuclear envelope at a given receptor-specific stimulus. Our data describe a novel source of Ca(2+) dysregulation induced by oxidative stress with potential relevance for differential subcellular Ca(2+) signaling specifically within the nucleus and the development of novel neuroprotective strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- S Kaja
- Department of Ophthalmology and BasicMedical Science, University of Missouri, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
De Strooper B, Annaert W. Novel Research Horizons for Presenilins and γ-Secretases in Cell Biology and Disease. Annu Rev Cell Dev Biol 2010; 26:235-60. [DOI: 10.1146/annurev-cellbio-100109-104117] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bart De Strooper
- Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium; ,
| | - Wim Annaert
- Center for Human Genetics, Katholieke Universiteit Leuven, and Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium; ,
| |
Collapse
|
47
|
McCombs JE, Gibson EA, Palmer AE. Using a genetically targeted sensor to investigate the role of presenilin-1 in ER Ca2+ levels and dynamics. MOLECULAR BIOSYSTEMS 2010; 6:1640-9. [PMID: 20379593 PMCID: PMC3155245 DOI: 10.1039/c001975e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ER plays a fundamental role in storing cellular Ca(2+), generating Ca(2+) signals, and modulating Ca(2+) in both the cytosol and mitochondria. Genetically encoded Ca(2+) sensors can be explicitly targeted to the ER to directly define Ca(2+) levels and monitor fluxes of Ca(2+) within this organelle. In this study we use an ER-targeted Ca(2+) sensor to define both the level and dynamics of ER Ca(2+) in cells expressing mutant presenilin proteins. Growing evidence suggests the enigmatic presenilin-1 plays a role in regulating ER Ca(2+). Presenilin-1 was initially identified in a screen for genetic causes of inherited familial Alzheimer's disease (fAD). The connection between presenilin-1, calcium regulation, and Alzheimer's disease may provide the key to understanding the long-observed, but poorly understood, link between Alzheimer's disease and Ca(2+) dysregulation. In this study we examined seven fAD-causing mutations in presenilin-1 to define how they influence ER Ca(2+) levels and dynamics. We observed that some, but not all, mutations in PS1 decrease the level of Ca(2+) within the ER and this difference depends on the enzymatic activity of PS1. Two mutations tested altered the kinetics of Ca(2+) release from the ER upon ATP stimulation, resulting in faster spiking. Combined, these results indicate that mutations in PS1 can alter the balance of Ca(2+) in cells and have the potential to influence the nature of Ca(2+) signals.
Collapse
Affiliation(s)
- Janet E McCombs
- UCB 215, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
48
|
Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:607-18. [PMID: 20470749 DOI: 10.1016/j.bbabio.2010.05.005] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 12/21/2022]
Abstract
Calcium handling by mitochondria is a key feature in cell life. It is involved in energy production for cell activity, in buffering and shaping cytosolic calcium rises and also in determining cell fate by triggering or preventing apoptosis. Both mitochondria and the mechanisms involved in the control of calcium homeostasis have been extensively studied, but they still provide researchers with long-standing or even new challenges. Technical improvements in the tools employed for the investigation of calcium dynamics have been-and are still-opening new perspectives in this field, and more prominently for mitochondria. In this review we present a state-of-the-art toolkit for calcium measurements, with major emphasis on the advantages of genetically encoded indicators. These indicators can be efficiently and selectively targeted to specific cellular sub-compartments, allowing previously unavailable high-definition calcium dynamic studies. We also summarize the main features of cellular and, in more detail, mitochondrial calcium handling, especially focusing on the latest breakthroughs in the field, such as the recent direct characterization of the calcium microdomains that occur on the mitochondrial surface upon cellular stimulation. Additionally, we provide a major example of the key role played by calcium in patho-physiology by briefly describing the extensively reported-albeit highly controversial-alterations of calcium homeostasis in Alzheimer's disease, casting lights on the possible alterations in mitochondrial calcium handling in this pathology.
Collapse
Affiliation(s)
- Laura Contreras
- Department of Biomedical Sciences, University of Padua, Italy.
| | | | | | | |
Collapse
|
49
|
Cárdenas C, Juretić N, Bevilacqua JA, García IE, Figueroa R, Hartley R, Taratuto AL, Gejman R, Riveros N, Molgó J, Jaimovich E. Abnormal distribution of inositol 1,4,5‐trisphosphate receptors in human muscle can be related to altered calcium signals and gene expression in Duchenne dystrophy‐derived cells. FASEB J 2010; 24:3210-21. [DOI: 10.1096/fj.09-152017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- César Cárdenas
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nevenka Juretić
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jorge A. Bevilacqua
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Programa de Anatomía y Biología del DesarrolloInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Departamento de Neurología y NeurocirugíaHospital Clínico Universidad de Chile Independencia Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Isaac E. García
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Reinaldo Figueroa
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ricardo Hartley
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ana L. Taratuto
- Departamento de NeuropatologíaInstituto de Investigaciones NeurológicasFLENI Buenos Aires Argentina
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Roger Gejman
- Departamento de Anatomía PatológicaFacultad de MedicinaPontificia Universidad Católica de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nora Riveros
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jordi Molgó
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| |
Collapse
|
50
|
Foskett JK. Inositol trisphosphate receptor Ca2+ release channels in neurological diseases. Pflugers Arch 2010; 460:481-94. [PMID: 20383523 DOI: 10.1007/s00424-010-0826-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 01/15/2023]
Abstract
The modulation of cytoplasmic Ca2+ concentration by release from internal stores through the inositol trisphosphate receptor (InsP3R) Ca2+ release channel is a ubiquitous signaling system involved in the regulation of numerous processes. Because of its ubiquitous expression and roles in regulating diverse cell physiological processes, it is not surprising that the InsP3R has been implicated in a number of disease states. However, relatively few mutations in InsP3R genes have been identified to date. Here, I will discuss mutations in the type 1 InsP3R that have been discovered by analyses of human patients and mice with neurological disorders. In addition, I will highlight diseases caused by mutations in other genes, including Huntington's and Alzheimer's diseases and some spinocerebellar ataxias, where the mutant proteins have been found to exert strong influences on InsP3R function that may link InsP3R to disease pathogenesis.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania School of Medicine, B39 Anatomy-Chemistry Bldg., 414 Guardian Dr., Philadelphia, PA 19104, USA.
| |
Collapse
|