1
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
2
|
Cai H, Zhang J, Xu H, Sun W, Wu W, Dong C, Zhou P, Xue C, Nan Y, Ni Y, Wu X, Gu Z, Chen M, Wang Y. ALOX5 drives the pyroptosis of CD4 + T cells and tissue inflammation in rheumatoid arthritis. Sci Signal 2024; 17:eadh1178. [PMID: 38412254 DOI: 10.1126/scisignal.adh1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Pyroptosis, an inflammatory form of programmed cell death, is linked to the pathology of rheumatoid arthritis (RA). Here, we investigated the molecular mechanism underlying pyroptosis in T cells isolated from patients with RA. Compared with healthy individuals, patients with RA had more pyroptotic CD4+ T cells in blood and synovia, which correlated with clinical measures of disease activity. Moreover, the mRNA expression and protein abundance of arachidonate 5-lipoxygenase (ALOX5), which converts arachidonic acid to leukotriene A4 (LTA4), were increased in CD4+ T cells from patients with RA and, among patients with RA, were lowest in those in clinical remission. Knockdown or pharmacological inhibition of ALOX5 suppressed CD4+ T cell pyroptosis and improved symptoms in two rodent models of RA. Mechanistically, the increase in ALOX5 activity in RA CD4+ T cells enhanced the production of the LTA4 derivative LTB4, which stimulated Ca2+ influx through ORAI3 channels, leading to the activation of NLRP3 inflammasomes and pyroptosis. Our findings reveal a role for ALOX5 in RA and provide a molecular basis for further exploring the clinical utility of ALOX5 inhibition in RA and for using ALOX5 as a biomarker to distinguish active disease and remission in RA.
Collapse
Affiliation(s)
- Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Putta P, Chaudhuri P, Guardia-Wolff R, Rosenbaum MA, Graham LM. iPLA2 inhibition blocks LysoPC-induced TRPC6 externalization and promotes Re-endothelialization of carotid injuries in hypercholesterolemic mice. Cell Calcium 2023; 112:102734. [PMID: 37030190 PMCID: PMC10234282 DOI: 10.1016/j.ceca.2023.102734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
Lipid oxidation products, including lysophosphatidylcholine (lysoPC), accumulate at the site of arterial injury after vascular interventions and hinder re-endothelization. LysoPC activates calcium-permeable channels, specifically canonical transient receptor potential 6 (TRPC6) channels that induce a sustained increase in intracellular calcium ion concentration [Ca2+]i and contribute to dysregulation of the endothelial cell (EC) cytoskeleton. Activation of TRPC6 leads to inhibition of EC migration in vitro and delayed re-endothelization of arterial injuries in vivo. Previously, we demonstrated the role of phospholipase A2 (PLA2), specifically calcium-independent PLA2 (iPLA2), in lysoPC-induced TRPC6 externalization and inhibition of EC migration in vitro. The ability of FKGK11, an iPLA2-specific pharmacological inhibitor, to block TRPC6 externalization and preserve EC migration was assessed in vitro and in a mouse model of carotid injury. Our data suggest that FKGK11 prevents lysoPC-induced PLA2 activity, blocks TRPC6 externalization, attenuates calcium influx, and partially preserves EC migration in vitro. Furthermore, FKGK11 promotes re-endothelization of an electrocautery carotid injury in hypercholesterolemic mice. FKGK11 has similar arterial healing effects in male and female mice on a high-fat diet. This study suggests that iPLA2 is a potential therapeutic target to attenuate calcium influx through TRPC6 channels and promote EC healing in cardiovascular patients undergoing angioplasty.
Collapse
Affiliation(s)
- Priya Putta
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, United States.
| | - Pinaki Chaudhuri
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, United States
| | - Rocio Guardia-Wolff
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, United States
| | - Michael A Rosenbaum
- Surgical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, United States
| | - Linda M Graham
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44195, United States; Department of Vascular Surgery, Cleveland Clinic, Cleveland, OH, 44195, United States
| |
Collapse
|
4
|
Daba MY, Fan Z, Li Q, Yuan X, Liu B. The Role of Calcium Channels in Prostate Cancer Progression and Potential as a Druggable Target for Prostate Cancer Treatment. Crit Rev Oncol Hematol 2023; 186:104014. [PMID: 37119879 DOI: 10.1016/j.critrevonc.2023.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
Prostate cancer (PCa) is the most diagnosed cancer among men. Discovering novel prognostic biomarkers and potential therapeutic targets are critical. Calcium signaling has been implicated in PCa progression and development of treatment resistance. Altered modification of Ca2+ flows leads to serious pathophysiological processes, such as malignant transformation, tumor proliferation, epithelial to mesenchymal transition, evasion of apoptosis, and treatment resistance. Calcium channels control and contribute to these processes. PCa has shown defective Ca2+ channels, which subsequently promotes tumor metastasis and growth. Store-operated Ca2+ entry channels such as Orai and STIM channels and transient receptor potential channels play a significant role in PCa pathogenesis. Pharmacological modulation of these calcium channels or pumps has been suggested as a practical approach. In this review, we discuss the role of calcium channels in PCa development and progression, and we identify current novel discoveries of drugs that target specific calcium channels for the treatment of PCa.
Collapse
Affiliation(s)
- Motuma Yigezu Daba
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
5
|
Store-Operated Calcium Entry and Its Implications in Cancer Stem Cells. Cells 2022; 11:cells11081332. [PMID: 35456011 PMCID: PMC9032688 DOI: 10.3390/cells11081332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
Tumors are composed by a heterogeneous population of cells. Among them, a sub-population of cells, termed cancer stem cells, exhibit stemness features, such as self-renewal capabilities, disposition to differentiate to a more proliferative state, and chemotherapy resistance, processes that are all mediated by Ca2+. Ca2+ homeostasis is vital for several physiological processes, and alterations in the patterns of expressions of the proteins and molecules that modulate it have recently become a cancer hallmark. Store-operated Ca2+ entry is a major mechanism for Ca2+ entry from the extracellular medium in non-excitable cells that leads to increases in the cytosolic Ca2+ concentration required for several processes, including cancer stem cell properties. Here, we focus on the participation of STIM, Orai, and TRPC proteins, the store-operated Ca2+ entry key components, in cancer stem cell biology and tumorigenesis.
Collapse
|
6
|
Putta P, Smith AH, Chaudhuri P, Guardia-Wolff R, Rosenbaum MA, Graham LM. Activation of the cytosolic calcium-independent phospholipase A 2 β isoform contributes to TRPC6 externalization via release of arachidonic acid. J Biol Chem 2021; 297:101180. [PMID: 34509476 PMCID: PMC8498464 DOI: 10.1016/j.jbc.2021.101180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 10/25/2022] Open
Abstract
During vascular interventions, oxidized low-density lipoprotein and lysophosphatidylcholine (lysoPC) accumulate at the site of arterial injury, inhibiting endothelial cell (EC) migration and arterial healing. LysoPC activates canonical transient receptor potential 6 (TRPC6) channels, leading to a prolonged increase in intracellular calcium ion concentration that inhibits EC migration. However, an initial increase in intracellular calcium ion concentration is required to activate TRPC6, and this mechanism remains elusive. We hypothesized that lysoPC activates the lipid-cleaving enzyme phospholipase A2 (PLA2), which releases arachidonic acid (AA) from the cellular membrane to open arachidonate-regulated calcium channels, allowing calcium influx that promotes externalization and activation of TRPC6 channels. The focus of this study was to identify the roles of calcium-dependent and/or calcium-independent PLA2 in lysoPC-induced TRPC6 externalization. We show that lysoPC induced PLA2 enzymatic activity and caused AA release in bovine aortic ECs. To identify the specific subgroup and the isoform(s) of PLA2 involved in lysoPC-induced TRPC6 activation, transient knockdown studies were performed in the human endothelial cell line EA.hy926 using siRNA to inhibit the expression of genes encoding cPLA2α, cPLA2γ, iPLA2β, or iPLA2γ. Downregulation of the β isoform of iPLA2 blocked lysoPC-induced release of AA from EC membranes and TRPC6 externalization, as well as preserved EC migration in the presence of lysoPC. We propose that blocking TRPC6 activation and promoting endothelial healing could improve the outcomes for patients undergoing cardiovascular interventions.
Collapse
Affiliation(s)
- Priya Putta
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.
| | - Andrew H Smith
- Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pinaki Chaudhuri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rocio Guardia-Wolff
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Rosenbaum
- Surgical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Linda M Graham
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA; Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
8
|
Redmon SN, Yarishkin O, Lakk M, Jo A, Mustafic E, Tvrdik P, Križaj D. TRPV4 channels mediate the mechanoresponse in retinal microglia. Glia 2021; 69:1563-1582. [PMID: 33624376 PMCID: PMC8989051 DOI: 10.1002/glia.23979] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.
Collapse
Affiliation(s)
- Sarah N. Redmon
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Andrew Jo
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Edin Mustafic
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
| | - Peter Tvrdik
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville VA 22908
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Institute, Salt Lake City, UT 84132
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84132
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84132
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84132
| |
Collapse
|
9
|
Orai3-Mediates Cisplatin-Resistance in Non-Small Cell Lung Cancer Cells by Enriching Cancer Stem Cell Population through PI3K/AKT Pathway. Cancers (Basel) 2021; 13:cancers13102314. [PMID: 34065942 PMCID: PMC8150283 DOI: 10.3390/cancers13102314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Lung cancer is recognized for having a very poor prognosis with an overall survival rate of 5-years not exceeding 15%. Platinum-doublet therapy is the most current chemotherapeutic treatment used to treat lung tumors. However, resistance to such drugs evolves rapidly in patients with non-small cell lung cancer (NSCLC) and is one of the major reasons behind therapy failure. Tumor recurrence due to chemoresistance is mainly attributed to the presence of cancer stem cells (CSCs) subpopulations. Thus, the identification of resistance actors and markers is necessary. The Orai3 channel has been recently identified as a predictive marker of metastasis and survival in resectable NSCLC tumors. Our results show, for the first time, that the Orai3 channel is able to induce chemoresistance by enriching CSCs population. Our findings present Orai3 as a promising predictive biomarker which could help with selecting chemotherapeutic drugs. Abstract The development of the resistance to platinum salts is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). Among the reasons underlying this resistance is the enrichment of cancer stem cells (CSCs) populations. Several studies have reported the involvement of calcium channels in chemoresistance. The Orai3 channel is overexpressed and constitutes a predictive marker of metastasis in NSCLC tumors. Here, we investigated its role in CSCs populations induced by Cisplatin (CDDP) in two NSCLC cell lines. We found that CDDP treatment increased Orai3 expression, but not Orai1 or STIM1 expression, as well as an enhancement of CSCs markers. Moreover, Orai3 silencing or the reduction of extracellular calcium concentration sensitized the cells to CDDP and led to a reduction in the expression of Nanog and SOX-2. Orai3 contributed to SOCE (Store-operated Calcium entry) in both CDDP-treated and CD133+ subpopulation cells that overexpress Nanog and SOX-2. Interestingly, the ectopic overexpression of Orai3, in the two NSCLC cell lines, lead to an increase of SOCE and expression of CSCs markers. Furthermore, CD133+ cells were unable to overexpress neither Nanog nor SOX-2 when incubated with PI3K inhibitor. Finally, Orai3 silencing reduced Akt phosphorylation. Our work reveals a link between Orai3, CSCs and resistance to CDDP in NSCLC cells.
Collapse
|
10
|
Shapovalov G, Gordienko D, Prevarskaya N. Store operated calcium channels in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:123-168. [PMID: 34392928 DOI: 10.1016/bs.ircmb.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France.
| | - Dmitri Gordienko
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| |
Collapse
|
11
|
Coronas V, Terrié E, Déliot N, Arnault P, Constantin B. Calcium Channels in Adult Brain Neural Stem Cells and in Glioblastoma Stem Cells. Front Cell Neurosci 2020; 14:600018. [PMID: 33281564 PMCID: PMC7691577 DOI: 10.3389/fncel.2020.600018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The brain of adult mammals, including humans, contains neural stem cells (NSCs) located within specific niches of which the ventricular-subventricular zone (V-SVZ) is the largest one. Under physiological conditions, NSCs proliferate, self-renew and produce new neurons and glial cells. Several recent studies established that oncogenic mutations in adult NSCs of the V-SVZ are responsible for the emergence of malignant primary brain tumors called glioblastoma. These aggressive tumors contain a small subpopulation of cells, the glioblastoma stem cells (GSCs), that are endowed with proliferative and self-renewal abilities like NSCs from which they may arise. GSCs are thus considered as the cells that initiate and sustain tumor growth and, because of their resistance to current treatments, provoke tumor relapse. A growing body of studies supports that Ca2+ signaling controls a variety of processes in NSCs and GSCs. Ca2+ is a ubiquitous second messenger whose fluctuations of its intracellular concentrations are handled by channels, pumps, exchangers, and Ca2+ binding proteins. The concerted action of the Ca2+ toolkit components encodes specific Ca2+ signals with defined spatio-temporal characteristics that determine the cellular responses. In this review, after a general overview of the adult brain NSCs and GSCs, we focus on the multiple roles of the Ca2+ toolkit in NSCs and discuss how GSCs hijack these mechanisms to promote tumor growth. Extensive knowledge of the role of the Ca2+ toolkit in the management of essential functions in healthy and pathological stem cells of the adult brain should help to identify promising targets for clinical applications.
Collapse
Affiliation(s)
- Valérie Coronas
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Elodie Terrié
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Nadine Déliot
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Patricia Arnault
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| | - Bruno Constantin
- Laboratoire STIM, Université de Poitiers-CNRS ERL 7003, Poitiers, France
| |
Collapse
|
12
|
Sudigyo D, Rahmawati G, Setiasari DW, Poluan RH, Sesotyosari SL, Wardana T, Herawati C, Heriyanto DS, Indrasari SR, Afiahayati , Astuti I, Haryana SM. Transcriptome Profile of Next Generation Sequence Data Related to Inflammation on Nasopharyngeal Carcinoma Cases in Indonesia. Asian Pac J Cancer Prev 2020; 21:2763-2769. [PMID: 32986378 PMCID: PMC7779428 DOI: 10.31557/apjcp.2020.21.9.2763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 01/05/2023] Open
Abstract
Objective: Transcriptomic Profile Analysis Related to Inflammation in Nasopharyngeal Carcinoma Cases. Methods: This study used 2 control samples taken using the brushing technique and 7 cancer samples with tissue biopsy. Isolate total RNA using Rneasy® RNA Extraction Mini Kit. Measurement of total RNA concentration and purity using a fluorometer and nanodrop Qubit. Synthesis of cDNA library uses TruSeq® RNA Library Preparation Kit V2 and concentration is measured using qPCR. Sequencing samples using NGS Illumina NextSeq 550 platform engine. Quality control results of sequencing using FASTQC, and raw data processing using HISAT2. Differential analysis of gene expression (DEGs) using edgeR and pathway analysis using DAVID and PANTHER. Results: From the 25,493 genes that experienced a significant change in expression level (P <0.05) from DEG analysis there were 13 genes that play a role in the inflammatory process. Based on DAVID pathway analysis software, there are 8 genes detected based on the KEGG pathway database found in 2 pathways, namely Inflammatory Mediator Regulation of TRP Channels pathway with genes that play HTR2A, NGF, TRPA1, PRKCG, and ADCY8. CXCL9, CXCL10, and CXCL11 genes are found in the Toll-Like Receptor Signaling pathway. Based on PANTHER pathway analysis software, 6 genes were found, namely CXCL10, MYLK2, COL20A1, MYH2, ACTC1, and ALOX15 in the Inflammation Mediated by Chemokine and Cytokine Signaling pathways. Almost all genes found from DEGs are upregulated, except the ALOX15 gene that is downregulated. Conclusion: There are 13 genes that play a role in the inflammatory process in Nasopharyngeal Carcinomafrom a sample of the Indonesian population. Genes CXCL9, CXCL10, CXCL11, MYLK2, COL20A1, MYH2, ACTC1, HTR2A, NGF, TRPA1, PRKCG, and ADCY8 have been upregulated and ALOX15 has been downregulated. These genes play a role in the Inflammation Mediated by Chemokine and Cytokine Signaling pathways, Inflammatory Mediator Regulation of TRP Channels, and Toll-Like Receptor Signaling.
Collapse
Affiliation(s)
- Digdo Sudigyo
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia.,6Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Gisti Rahmawati
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Risky Hiskia Poluan
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Tirta Wardana
- Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Didik Setyo Heriyanto
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sagung Rai Indrasari
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Indwiani Astuti
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Jansen C, Shimoda LMN, Starkus J, Lange I, Rysavy N, Maaetoft-Udsen K, Tobita C, Stokes AJ, Turner H. In vitro exposure to Hymenoptera venom and constituents activates discrete ionotropic pathways in mast cells. Channels (Austin) 2020; 13:264-286. [PMID: 31237176 PMCID: PMC8670737 DOI: 10.1080/19336950.2019.1629225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Calcium entry is central to the functional processes in mast cells and basophils that contribute to the induction and maintenance of inflammatory responses. Mast cells and basophils express an array of calcium channels, which mediate responses to diverse stimuli triggered by small bioactive molecules, physicochemical stimuli and immunological inputs including antigens and direct immune cell interactions. These cells are also highly responsive to certain venoms (such as Hymenoptera envenomations), which cause histamine secretion, cytokine release and an array of pro-inflammatory functional responses. There are gaps in our understanding of the coupling of venom exposure to specific signaling pathways such as activation of calcium channels. In the present study, we performed a current survey of a model mast cell line selected for its pleiotropic responsiveness to multiple pro-inflammatory inputs. As a heterogenous stimulus, Hymenoptera venom activates multiple classes of conductance at the population level but tend to lead to the measurement of only one type of conductance per cell, despite the cell co-expressing multiple channel types. The data show that ICRAC, IARC, and TRPV-like currents are present in the model mast cell populations and respond to venom exposure. We further assessed individual venom components, specifically secretagogues and arachidonic acid, and identified the conductances associated with these stimuli in mast cells. Single-cell calcium assays and immunofluorescence analysis show that there is heterogeneity of channel expression across the cell population, but this heterogeneity does not explain the apparent selectivity for specific channels in response to exposure to venom as a composite stimulus.
Collapse
Affiliation(s)
- C Jansen
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - L M N Shimoda
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - J Starkus
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - I Lange
- b Department of Pharmaceutical Sciences , Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo , Hilo , Hawai'i , USA
| | - N Rysavy
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - K Maaetoft-Udsen
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - C Tobita
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - A J Stokes
- c Department of Cell and Molecular Biology, Laboratory of Experimental Medicine, John A. Burns School of Medicine , University of Hawai'i , Honolulu , Hawai'i , USA
| | - H Turner
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| |
Collapse
|
14
|
Tanwar J, Arora S, Motiani RK. Orai3: Oncochannel with therapeutic potential. Cell Calcium 2020; 90:102247. [PMID: 32659517 DOI: 10.1016/j.ceca.2020.102247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Ion channels in particular Calcium (Ca2+) channels play a critical role in physiology by regulating plethora of cellular processes ranging from cell proliferation, differentiation, transcriptional regulation and programmed cell death. One such physiologically important and highly Ca2+ selective channel family is Orai channels consisting of three homologs Orai1, Orai2 and Orai3. Orai channels are responsible for Ca2+ influx across the plasma membrane in response to decrease in Endoplasmic Reticulum (ER) Ca2+ stores. STIM1/STIM2 proteins sense the reduction in ER Ca2+ levels and activate Orai channels for restoring ER Ca2+ as well as for driving cellular functions. This signaling cascade is known as Store Operated Ca2+ Entry (SOCE). Although Orai1 is the ubiquitous SOCE channel protein, Orai2 and Orai3 mediate SOCE in certain specific tissues. Further, mammalian specific homolog Orai3 forms heteromultimeric channel with Orai1 for constituting Arachidonic acid regulated Ca2+ (ARC) channels or arachidonic acid metabolite Leukotriene C4 (LTC4) regulated Ca2+ (LRC) channels. Literature suggests that Orai3 regulates Breast, Prostate, Lung and Gastrointestinal cancers by either forming Store Operated Ca2+ (SOC) or ARC/LRC channels in the cancerous cells but not in healthy tissue. In this review, we would discuss the role of Orai3 in these cancers and would highlight the potential of therapeutic targeting of Orai3 for better management and treatment of cancer. Finally, we will deliberate on key outstanding questions in the field that demand critical attention and further studies.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India; CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samriddhi Arora
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
15
|
Butorac C, Krizova A, Derler I. Review: Structure and Activation Mechanisms of CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:547-604. [PMID: 31646526 DOI: 10.1007/978-3-030-12457-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ca2+ release activated Ca2+ (CRAC) channels represent a primary pathway for Ca2+ to enter non-excitable cells. The two key players in this process are the stromal interaction molecule (STIM), a Ca2+ sensor embedded in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel located in the plasma membrane. Upon depletion of the internal Ca2+ stores, STIM is activated, oligomerizes, couples to and activates Orai. This review provides an overview of novel findings about the CRAC channel activation mechanisms, structure and gating. In addition, it highlights, among diverse STIM and Orai mutants, also the disease-related mutants and their implications.
Collapse
Affiliation(s)
- Carmen Butorac
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria.
| |
Collapse
|
16
|
Lopez JJ, Jardin I, Albarrán L, Sanchez-Collado J, Cantonero C, Salido GM, Smani T, Rosado JA. Molecular Basis and Regulation of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:445-469. [PMID: 31646520 DOI: 10.1007/978-3-030-12457-1_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous mechanism for Ca2+ influx in mammalian cells with important physiological implications. Since the discovery of SOCE more than three decades ago, the mechanism that communicates the information about the amount of Ca2+ accumulated in the intracellular Ca2+ stores to the plasma membrane channels and the nature of these channels have been matters of intense investigation and debate. The stromal interaction molecule-1 (STIM1) has been identified as the Ca2+ sensor of the intracellular Ca2+ compartments that activates the store-operated channels. STIM1 regulates two types of store-dependent channels: the Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 subunits, that conduct the highly Ca2+ selective current I CRAC and the cation permeable store-operated Ca2+ (SOC) channels, which consist of Orai1 and TRPC1 proteins and conduct the non-selective current I SOC. While the crystal structure of Drosophila CRAC channel has already been solved, the architecture of the SOC channels still remains unclear. The dynamic interaction of STIM1 with the store-operated channels is modulated by a number of proteins that either support the formation of the functional STIM1-channel complex or protect the cell against Ca2+ overload.
Collapse
Affiliation(s)
- Jose J Lopez
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Isaac Jardin
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| | - Letizia Albarrán
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Carlos Cantonero
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Gines M Salido
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics and Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| |
Collapse
|
17
|
Kouba S, Ouldamer L, Garcia C, Fontaine D, Chantome A, Vandier C, Goupille C, Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019; 81:38-50. [PMID: 31200184 DOI: 10.1016/j.ceca.2019.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Epithelial Ovarian cancer (EOC) is the deadliest gynecologic malignancy and represents the fifth leading cause of all cancer-related deaths in women. The majority of patients are diagnosed at an advanced stage of the disease that has spread beyond the ovaries to the peritoneum or to distant organs (stage FIGO III-IV) with a 5-year overall survival of about 29%. Consequently, it is necessary to understand the pathogenesis of this disease. Among the factors that contribute to cancer development, lipids and ion channels have been described to be associated to cancerous diseases particularly in breast, colorectal and prostate cancers. Here, we reviewed the literature data to determine how lipids or lipid metabolites may influence EOC risk or progression. We also highlighted the role and the expression of the calcium (Ca2+) and calcium-activated potassium (KCa) channels in EOC and how lipids might regulate them. Although lipids and some subclasses of nutritional lipids may be associated to EOC risk, lipid metabolism of LPA (lysophosphatidic acid) and AA (arachidonic acid) emerges as an important signaling network in EOC. Clinical data showed that they are found at high concentrations in EOC patients and in vitro and in vivo studies referred to them as triggers of the Ca2+entry in the cancer cells inducing their proliferation, migration or drug resistance. The cross-talk between lipid mediators and Ca2+ and/or KCa channels needs to be elucidated in EOC in order to facilitate the understanding of its outcomes and potentially suggest novel therapeutic strategies including treatment and prevention.
Collapse
Affiliation(s)
- Sana Kouba
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Lobna Ouldamer
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Service de gynécologie et d'obstétrique, Tours, France
| | - Céline Garcia
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Delphine Fontaine
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Aurélie Chantome
- Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, Faculté de Pharmacie, Tours, France
| | - Christophe Vandier
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France
| | - Caroline Goupille
- Réseau CASTOR du Cancéropôle Grand Ouest, France; Université de Tours, INSERM, N2C UMR 1069, CHRU de Tours, Faculté de Médecine, Tours, France
| | - Marie Potier-Cartereau
- Université de Tours, INSERM, N2C UMR 1069, Faculté de Médecine, Tours, France; Réseau Molécules Marines, Métabolisme et Cancer du Cancéropôle Grand Ouest, France.
| |
Collapse
|
18
|
Cantonero C, Sanchez-Collado J, Gonzalez-Nuñez MA, Salido GM, Lopez JJ, Jardin I, Rosado JA. Store-independent Orai1-mediated Ca 2+ entry and cancer. Cell Calcium 2019; 80:1-7. [PMID: 30921687 DOI: 10.1016/j.ceca.2019.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Ca2+ channels play an important role in the development of different types of cancer, and considerable progress has been made to understand the pathophysiological mechanisms underlying the role of Ca2+ influx in the development of different cancer hallmarks. Orai1 is among the most ubiquitous and multifunctional Ca2+ channels. Orai1 mediates the highly Ca2+-selective Ca2+ release-activated current (ICRAC) and participates in the less Ca2+-selective store-operated current (ISOC), along with STIM1 or STIM1 and TRPC1, respectively. Furthermore, Orai1 contributes to a variety of store-independent Ca2+ influx mechanisms, including the arachidonate-regulated Ca2+ current, together with Orai3 and the plasma membrane resident pool of STIM1, as well as the constitutive Ca2+ influx processes activated by the secretory pathway Ca2+-ATPase-2 (SPCA2) or supported by physical and functional interaction with the small conductance Ca2+-activated K+ channel 3 (SK3) or the voltage-dependent Kv10.1 channel. This review summarizes the current knowledge concerning the store-independent mechanisms of Ca2+ influx activation through Orai1 channels and their role in the development of different cancer features.
Collapse
Affiliation(s)
- C Cantonero
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - J Sanchez-Collado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - M A Gonzalez-Nuñez
- Pathology Service, Hospital San Pedro de Alcantara, 10003 Cáceres, Spain
| | - G M Salido
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - J J Lopez
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - I Jardin
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain
| | - J A Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
19
|
Royo F, Gil-Carton D, Gonzalez E, Mleczko J, Palomo L, Perez-Cormenzana M, Mayo R, Alonso C, Falcon-Perez JM. Differences in the metabolite composition and mechanical properties of extracellular vesicles secreted by hepatic cellular models. J Extracell Vesicles 2019; 8:1575678. [PMID: 30788084 PMCID: PMC6374943 DOI: 10.1080/20013078.2019.1575678] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023] Open
Abstract
Liver constitutes the major metabolic factory in the organism and is involved in the synthesis, secretion and clearance of many blood-circulating molecules. Previously, we have characterised the protein and RNA cargo of extracellular vesicles (EVs) secreted by two hepatic cellular models, a mouse hepatocyte progenitor cell line (MLP29) and primary rat hepatocytes (RHs). Here, we report the metabolome profile of these vesicles by performing a targeted UHPLC-MS metabolomics analysis of these two cellular models and their respective secreted EVs. Visual inspection of the data through principal component analysis allows clear separation of the metabolic profile of cells and EVs, and also of both cellular models. Correlation matrix supported that lipid composition of EVs is mainly determined by parent cell composition. EVs derived from MLP29 and RHs showed a negative correlation in their percentage composition of ceramides, glycerophospholipids, sphingomyelins and triglycerides. Metabolites enriched in EVs were also different depending on the cellular model. EVs secreted by MLP29 were enriched in different species of sphingomyelins and ceramides underrepresented in EVs secreted by RHs. Remarkably, triglycerides constitute an important percentage of the composition of EVs derived from RHs. We further investigate if the differences in lipid composition were also accompanied by differences in mechanical behaviour, by using atomic force microscopy complemented with nanoindentation-based methodology. To compare the stiffness and brittleness of EVs derived from MLP29 cell line and RH primary cells, FZ curves were performed in the centre of single vesicles and the differences found in their force-vs.-indentation curves suggest that RHs EVs are softer (less stiff) and less resistance to mechanical failure than MLP29 EVs. Therefore, we can conclude that EVs from different origin carry a characteristic lipid composition related to their parental cell composition, and exhibit different mechanical properties. Abbreviations: For the identification of the different species of lipids, the following abbreviations has been employed: Cer, ceramide; ChoE, Cholesteryl Ester; CMH, monohexosylceramide; DAG, diglycerid; LPC, lysophosphatidylcholin; LPI, lysophosphatidyinositol; PC, phosphocoline; PE, phoethanolamine; PI, phosphoinositol; SM, sphingomyelin; TAG, triglycerid
Collapse
Affiliation(s)
- Felix Royo
- Exosomes Laboratory, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - David Gil-Carton
- Electron Microscopy Technology Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | | | - Justyna Mleczko
- Exosomes Laboratory, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Laura Palomo
- Exosomes Laboratory, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | | | - Rebeca Mayo
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | - Juan M Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain.,Metabolomics platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
20
|
Jardin I, Lopez JJ, Salido GM, Rosado JA. Store-Operated Ca 2+ Entry in Breast Cancer Cells: Remodeling and Functional Role. Int J Mol Sci 2018; 19:ijms19124053. [PMID: 30558192 PMCID: PMC6321005 DOI: 10.3390/ijms19124053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. It is a heterogeneous disease that ranges from the less undifferentiated luminal A to the more aggressive basal or triple negative breast cancer molecular subtype. Ca2+ influx from the extracellular medium, but more specifically store-operated Ca2+ entry (SOCE), has been reported to play an important role in tumorigenesis and the maintenance of a variety of cancer hallmarks, including cell migration, proliferation, invasion or epithelial to mesenchymal transition. Breast cancer cells remodel the expression and functional role of the molecular components of SOCE. This review focuses on the functional role and remodeling of SOCE in breast cancer cells. The current studies suggest the need to deepen our understanding of SOCE in the biology of the different breast cancer subtypes in order to develop new and specific therapeutic strategies.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Jose J Lopez
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Gines M Salido
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Juan A Rosado
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
21
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
22
|
CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147-159. [PMID: 30075400 DOI: 10.1016/j.ceca.2018.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Calcium release-activated calcium (CRAC) channels have been the target of drug discovery for many years. The identification of STIM and Orai proteins as key components of CRAC channels greatly facilitated this process because their co-expression in cell lines produced electrophysiological currents (ICRAC) much larger than those in native cells, making it easier to confirm and characterize the effects of modulatory compounds. A driving force in the quest for CRAC channel drugs has been the immunocompromised phenotype displayed by humans and mice with null or loss-of-function mutations in STIM1 or Orai1, suggesting that CRAC channel inhibitors could be useful therapeutics for autoimmune or inflammatory conditions. Emerging data also suggests that other therapeutic conditions may benefit from CRAC channel inhibition. However, only recently have CRAC channel inhibitors reached clinical trials. This review discusses the challenges associated with drug discovery and development on CRAC channels and the approaches employed to date, as well as the results, starting from initial high-throughput screens for CRAC channel modulators and progressing through target selection and justification, descriptions of pharmacological, safety and toxicological profiles of compounds, and finally the entry of CRAC channel inhibitors into clinical trials.
Collapse
|
23
|
Toxoplasma gondii LCAT Primarily Contributes to Tachyzoite Egress. mSphere 2018; 3:mSphere00073-18. [PMID: 29507893 PMCID: PMC5830472 DOI: 10.1128/mspheredirect.00073-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is one of the most successful human pathogens, infecting an estimated 2.5 billion people across the globe. Pathogenesis seen during acute or reactivated toxoplasmosis has been closely tied to the parasite’s intracellular lytic life cycle, which culminates in an event called egress that results in the release of freshly replicated parasites from the infected host cell. Despite the highly destructive, cytolytic nature of this event and its downstream consequences, very little is known about how the parasite accomplishes this step. Previous work has suggested a role for a secreted phospholipase, LCAT, in Toxoplasma egress and roles in cell traversal and egress in the Plasmodium species orthologue. We confirm here that LCAT-deficient tachyzoites are unable to efficiently egress from infected monolayers, and we provide evidence that LCAT catalytic activity is required for its role in egress. Egress is a crucial phase of the Toxoplasma gondii intracellular lytic cycle. This is a process that drives inflammation and is strongly associated with the pathogenesis observed during toxoplasmosis. Despite the link between this process and virulence, little is known about egress on a mechanistic or descriptive level. Previously published work has suggested that a phospholipase, lecithin-cholesterol acyltransferase (LCAT), secreted from the parasite’s dense granules contributes to parasite growth, virulence, and egress. Here we present evidence from several independent mutant parasite lines confirming a role for LCAT in efficient egress, although no defects in growth or virulence were apparent. We also show via genetic complementation that the catalytic activity of LCAT is required for its role in parasite egress. This work solidifies the contribution of LCAT to egress of T. gondii tachyzoites. IMPORTANCEToxoplasma gondii is one of the most successful human pathogens, infecting an estimated 2.5 billion people across the globe. Pathogenesis seen during acute or reactivated toxoplasmosis has been closely tied to the parasite’s intracellular lytic life cycle, which culminates in an event called egress that results in the release of freshly replicated parasites from the infected host cell. Despite the highly destructive, cytolytic nature of this event and its downstream consequences, very little is known about how the parasite accomplishes this step. Previous work has suggested a role for a secreted phospholipase, LCAT, in Toxoplasma egress and roles in cell traversal and egress in the Plasmodium species orthologue. We confirm here that LCAT-deficient tachyzoites are unable to efficiently egress from infected monolayers, and we provide evidence that LCAT catalytic activity is required for its role in egress.
Collapse
|
24
|
Cao S, Anishkin A, Zinkevich NS, Nishijima Y, Korishettar A, Wang Z, Fang J, Wilcox DA, Zhang DX. Transient receptor potential vanilloid 4 (TRPV4) activation by arachidonic acid requires protein kinase A-mediated phosphorylation. J Biol Chem 2018; 293:5307-5322. [PMID: 29462784 DOI: 10.1074/jbc.m117.811075] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel of the transient receptor potential (TRP) superfamily activated by diverse stimuli, including warm temperature, mechanical forces, and lipid mediators such as arachidonic acid (AA) and its metabolites. This activation is tightly regulated by protein phosphorylation carried out by various serine/threonine or tyrosine kinases. It remains poorly understood how phosphorylation differentially regulates TRPV4 activation in response to different stimuli. We investigated how TRPV4 activation by AA, an important signaling process in the dilation of coronary arterioles, is affected by protein kinase A (PKA)-mediated phosphorylation at Ser-824. Wildtype and mutant TRPV4 channels were expressed in human coronary artery endothelial cells (HCAECs). AA-induced TRPV4 activation was blunted in the S824A mutant but was enhanced in the phosphomimetic S824E mutant, whereas the channel activation by the synthetic agonist GSK1016790A was not affected. The low level of basal phosphorylation at Ser-824 was robustly increased by the redox signaling molecule hydrogen peroxide (H2O2). The H2O2-induced phosphorylation was accompanied by an enhanced channel activation by AA, and this enhanced response was largely abolished by PKA inhibition or S824A mutation. We further identified a potential structural context dependence of Ser-824 phosphorylation-mediated TRPV4 regulation involving an interplay between AA binding and the possible phosphorylation-induced rearrangements of the C-terminal helix bearing Ser-824. These results provide insight into how phosphorylation specifically regulates TRPV4 activation. Redox-mediated TRPV4 phosphorylation may contribute to pathologies associated with enhanced TRPV4 activity in endothelial and other systems.
Collapse
Affiliation(s)
- Sheng Cao
- From the Department of Medicine, Cardiovascular Center
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Natalya S Zinkevich
- From the Department of Medicine, Cardiovascular Center.,Department of Health and Medicine, Carroll University, Waukesha, Wisconsin 53186, and
| | | | | | - Zhihao Wang
- From the Department of Medicine, Cardiovascular Center
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - David A Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Children's Research Institute, The Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226
| | - David X Zhang
- From the Department of Medicine, Cardiovascular Center,
| |
Collapse
|
25
|
Wang J, Xu C, Zheng Q, Yang K, Lai N, Wang T, Tang H, Lu W. Orai1, 2, 3 and STIM1 promote store-operated calcium entry in pulmonary arterial smooth muscle cells. Cell Death Discov 2017; 3:17074. [PMID: 29188077 PMCID: PMC5702854 DOI: 10.1038/cddiscovery.2017.74] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/05/2017] [Accepted: 08/24/2017] [Indexed: 12/04/2022] Open
Abstract
Previous studies have demonstrated that besides the classic canonical transient receptor potential channel family, Orai family and stromal interaction molecule 1 (STIM1) might also be involved in the regulation of store-operated calcium channels (SOCCs). An increase in cytosolic free Ca2+ concentration promoted by store-operated Ca2+ entry (SOCE) in pulmonary arterial smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation and migration of PASMCs. In this study, our data revealed the following: (1) in both rat distal pulmonary arteries and PASMCs, chronic hypoxia exposure upregulated the expression of Orai1 and Orai2, without affecting Orai3 and STIM1; (2) either heterozygous knockout of HIF-1α in mice or knockdown of HIF-1α in PASMCs abolished the hypoxic upregulation of Orai2, but not Orai1, suggesting the hypoxic upregulation of Orai2 depends on HIF-1α; and (3) using small interference RNA knockdown strategies, Orai1, 2, 3 and STIM1 were all shown to mediate SOCE in hypoxic PASMCs. Together, these results suggested that the components of SOCCs, including Orai1, 2, 3 and STIM1, may lead to novel therapeutic targets for the treatment of chronic hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA
| | - Chuyi Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Ning Lai
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona, Tucson, AZ 85721-0202, USA
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
26
|
Villegas-Comonfort S, Takei Y, Tsujimoto G, Hirasawa A, García-Sáinz JA. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization. Prostaglandins Leukot Essent Fatty Acids 2017; 117:1-10. [PMID: 28237082 DOI: 10.1016/j.plefa.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - β-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.
Collapse
Affiliation(s)
- S Villegas-Comonfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap., Postal 70-248, Ciudad de México 04510, Mexico
| | - Y Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - G Tsujimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - A Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - J A García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. Ap., Postal 70-248, Ciudad de México 04510, Mexico.
| |
Collapse
|
27
|
Halls ML, Cooper DMF. Adenylyl cyclase signalling complexes - Pharmacological challenges and opportunities. Pharmacol Ther 2017; 172:171-180. [PMID: 28132906 DOI: 10.1016/j.pharmthera.2017.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signalling pathways involving the vital second messanger, cAMP, impact on most significant physiological processes. Unsurprisingly therefore, the activation and regulation of cAMP signalling is tightly controlled within the cell by processes including phosphorylation, the scaffolding of protein signalling complexes and sub-cellular compartmentalisation. This inherent complexity, along with the highly conserved structure of the catalytic sites among the nine membrane-bound adenylyl cyclases, presents significant challenges for efficient inhibition of cAMP signalling. Here, we will describe the biochemistry and cell biology of the family of membrane-bound adenylyl cyclases, their organisation within the cell, and the nature of the cAMP signals that they produce, as a prelude to considering how cAMP signalling might be perturbed. We describe the limitations associated with direct inhibition of adenylyl cyclase activity, and evaluate alternative strategies for more specific targeting of adenylyl cyclase signalling. The inherent complexity in the activation and organisation of adenylyl cyclase activity may actually provide unique opportunities for selectively targeting discrete adenylyl cyclase functions in disease.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
28
|
Tanwar J, Trebak M, Motiani RK. Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:425-452. [PMID: 28900927 DOI: 10.1007/978-3-319-57732-6_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Store-operated Ca2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca2+ levels and transmits the message to plasma membrane Ca2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca2+ influx into the cells. This increase in cytosolic Ca2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.
| |
Collapse
|
29
|
Stanisz H, Vultur A, Herlyn M, Roesch A, Bogeski I. The role of Orai-STIM calcium channels in melanocytes and melanoma. J Physiol 2016; 594:2825-35. [PMID: 26864956 DOI: 10.1113/jp271141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium signalling within normal and cancer cells regulates many important cellular functions such as migration, proliferation, differentiation and cytokine secretion. Store operated Ca(2+) entry (SOCE) via the Ca(2+) release activated Ca(2+) (CRAC) channels, which are composed of the plasma membrane based Orai channels and the endoplasmic reticulum stromal interaction molecules (STIMs), is a major Ca(2+) entry route in many cell types. Orai and STIM have been implicated in the growth and metastasis of multiple cancers; however, while their involvement in cancer is presently indisputable, how Orai-STIM-controlled Ca(2+) signals affect malignant transformation, tumour growth and invasion is not fully understood. Here, we review recent studies linking Orai-STIM Ca(2+) channels with cancer, with a particular focus on melanoma. We highlight and examine key molecular players and the signalling pathways regulated by Orai and STIM in normal and malignant cells, we expose discrepancies, and we reflect on the potential of Orai-STIMs as anticancer drug targets. Finally, we discuss the functional implications of future discoveries in the field of Ca(2+) signalling.
Collapse
Affiliation(s)
- Hedwig Stanisz
- Department of Dermatology, Venerology and Allergology, University Hospital of the Saarland, Homburg, Germany
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
30
|
Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc Natl Acad Sci U S A 2016; 113:2110-5. [PMID: 26858457 DOI: 10.1073/pnas.1600371113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid oxidation products, including lysophosphatidylcholine (lysoPC), activate canonical transient receptor potential 6 (TRPC6) channels leading to inhibition of endothelial cell (EC) migration in vitro and delayed EC healing of arterial injuries in vivo. The precise mechanism through which lysoPC activates TRPC6 channels is not known, but calmodulin (CaM) contributes to the regulation of TRPC channels. Using site-directed mutagenesis, cDNAs were generated in which Tyr(99) or Tyr(138) of CaM was replaced with Phe, generating mutant CaM, Phe(99)-CaM, or Phe(138)-CaM, respectively. In ECs transiently transfected with pcDNA3.1-myc-His-Phe(99)-CaM, but not in ECs transfected with pcDNA3.1-myc-His-Phe(138)-CaM, the lysoPC-induced TRPC6-CaM dissociation and TRPC6 externalization was disrupted. Also, the lysoPC-induced increase in intracellular calcium concentration was inhibited in ECs transiently transfected with pcDNA3.1-myc-His-Phe(99)-CaM. Blocking phosphorylation of CaM at Tyr(99) also reduced CaM association with the p85 subunit and subsequent activation of phosphatidylinositol 3-kinase (PI3K). This prevented the increase in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and the translocation of TRPC6 to the cell membrane and reduced the inhibition of EC migration by lysoPC. These findings suggest that lysoPC induces CaM phosphorylation at Tyr(99) by a Src family kinase and that phosphorylated CaM activates PI3K to produce PIP3, which promotes TRPC6 translocation to the cell membrane.
Collapse
|
31
|
Desai PN, Zhang X, Wu S, Janoshazi A, Bolimuntha S, Putney JW, Trebak M. Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 2015; 8:ra74. [PMID: 26221052 PMCID: PMC4583604 DOI: 10.1126/scisignal.aaa8323] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In mammals exclusively, the pore-forming Ca(2+) release-activated Ca(2+) (CRAC) channel subunit Orai1 occurs in two forms because of alternative translation initiation. The longer, mammal-specific Orai1α contains an additional 63 amino acids upstream of the conserved start site for Orai1β, which occurs at methionine 64 in Orai1α. Orai1 participates in the generation of three distinct Ca(2+) currents, including two store-operated currents: Icrac, which involves activation of Orai1 channels by the Ca(2+)-sensing protein STIM1 (stromal interaction molecule 1), and Isoc, which involves an interaction among Orai1, the transient receptor potential (TRP) family member TRPC1 (TRP canonical 1), and STIM1. Orai1 is also a pore-forming subunit of an arachidonic acid (or leukotriene C4)-regulated current Iarc that involves interactions among Orai1, Orai3, and STIM1. We evaluated the roles of the two Orai1 forms in the Ca(2+) currents Icrac, Isoc, and Iarc. We found that Orai1α and Orai1β were largely interchangeable for Icrac and Isoc, although Orai1α exhibited stronger inhibition by Ca(2+). Only the mammalian-specific Orai1α functioned in the arachidonic acid-regulated current Iarc. Thus, alternative translation initiation of the Orai1 message produces at least three types of Ca(2+) channels with distinct signaling and regulatory properties.
Collapse
Affiliation(s)
- Pooja N Desai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Shilan Wu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Agnes Janoshazi
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Sunitha Bolimuntha
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - James W Putney
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
32
|
Li J, Bruns AF, Hou B, Rode B, Webster PJ, Bailey MA, Appleby HL, Moss NK, Ritchie JE, Yuldasheva NY, Tumova S, Quinney M, McKeown L, Taylor H, Prasad KR, Burke D, O'Regan D, Porter KE, Foster R, Kearney MT, Beech DJ. Orai3 Surface Accumulation and Calcium Entry Evoked by Vascular Endothelial Growth Factor. Arterioscler Thromb Vasc Biol 2015; 35:1987-94. [PMID: 26160956 PMCID: PMC4548547 DOI: 10.1161/atvbaha.115.305969] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Vascular endothelial growth factor (VEGF) acts, in part, by triggering calcium ion (Ca2+) entry. Here, we sought understanding of a Synta66-resistant Ca2+ entry pathway activated by VEGF.
Collapse
Affiliation(s)
- Jing Li
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Alexander-Francisco Bruns
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Bing Hou
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Baptiste Rode
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Peter J Webster
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Marc A Bailey
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Hollie L Appleby
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Nicholas K Moss
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Judith E Ritchie
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Nadira Y Yuldasheva
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Sarka Tumova
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Matthew Quinney
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Lynn McKeown
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Hilary Taylor
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - K Raj Prasad
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Dermot Burke
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - David O'Regan
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Karen E Porter
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Richard Foster
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - Mark T Kearney
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.)
| | - David J Beech
- From the Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine (J.L., A.-F.B., B.H., B.R., P.J.W., M.A.B., H.L.A., N.K.M., J.E.R., N.Y.Y., S.T., M.Q., L.M., H.T., K.E.P., D.J.B.) and School of Chemistry (R.F.), University of Leeds, Leeds, United Kingdom; Departments of Hepatobiliary and Transplant Surgery (K.R.P.) and Colorectal Surgery (D.B.), St. James's University Hospital, Leeds, United Kingdom; and Yorkshire Heart Centre, Leeds General Infirmary, Leeds, United Kingdom (D.O.R.).
| |
Collapse
|
33
|
Alansary D, Bogeski I, Niemeyer BA. Facilitation of Orai3 targeting and store-operated function by Orai1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1541-50. [PMID: 25791427 DOI: 10.1016/j.bbamcr.2015.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 11/27/2022]
Abstract
Orai1 subunits interacting with STIM1 molecules comprise the major components responsible for calcium release-activated calcium (CRAC) channels. The homologs Orai2 and Orai3 yield smaller store-operated currents when overexpressed and are mostly unable to substitute Orai1. Orai3 subunits are also essential components of store independent channel complexes and also tune inhibition of ICRAC by reactive oxygen species. Here we use patch-clamp, microscopy, Ca(2+)-imaging and biochemical experiments to investigate the interdependence of Orai2, Orai3 and Orai1. We demonstrate that store-operation and localization of Orai3 but not of Orai2 to STIM1 clusters in HEK cells or to the immunological synapse in T cells is facilitated by Orai1 while Orai3's store-independent activity remains unaffected. On the other hand, one Orai3 subunit confers redox-resistance to heteromeric channels. The inefficient store operation of Orai3 is partly due to the lack of three critical C-terminal residues, the insertion of which improves interaction with STIM1 and abrogates Orai3's dependence on Orai1. Our results suggest that Orai3 down-tunes efficient STIM1 gating when in a heteromeric complex with Orai1.
Collapse
Affiliation(s)
- Dalia Alansary
- Molecular Biophysics, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrated Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Barbara A Niemeyer
- Molecular Biophysics, School of Medicine, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
34
|
Muslikhov ER, Sukhanova IF, Avdonin PV. Arachidonic acid activates release of calcium ions from reticulum via ryanodine receptor channels in C2C12 skeletal myotubes. BIOCHEMISTRY (MOSCOW) 2015; 79:435-9. [PMID: 24954594 DOI: 10.1134/s0006297914050071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Arachidonic acid causes an increase in free cytoplasmic calcium concentration ([Ca2+]i) in differentiated skeletal multinucleated myotubes C2C12 and does not induce calcium response in C2C12 myoblasts. The same reaction of myotubes to arachidonic acid is observed in Ca2+-free medium. This indicates that arachidonic acid induces release of calcium ions from intracellular stores. The blocker of ryanodine receptor channels of sarcoplasmic reticulum dantrolene (20 µM) inhibits this effect by 68.7 ± 6.3% (p < 0.001). The inhibitor of two-pore calcium channels of endolysosomal vesicles trans-NED19 (10 µM) decreases the response to arachidonic acid by 35.8 ± 5.4% (p < 0.05). The phospholipase C inhibitor U73122 (10 µM) has no effect. These data indicate the involvement of ryanodine receptor calcium channels of sarcoplasmic reticulum in [Ca2+]i elevation in skeletal myotubes caused by arachidonic acid and possible participation of two-pore calcium channels from endolysosomal vesicles in this process.
Collapse
Affiliation(s)
- E R Muslikhov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | |
Collapse
|
35
|
Thompson MA, Prakash YS, Pabelick CM. Arachidonate-regulated Ca(2+) influx in human airway smooth muscle. Am J Respir Cell Mol Biol 2014; 51:68-76. [PMID: 24471656 DOI: 10.1165/rcmb.2013-0144oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasma membrane Ca(2+) influx, especially store-operated Ca(2+) entry triggered by sarcoplasmic reticulum (SR) Ca(2+) release, is a key component of intracellular calcium concentration ([Ca(2+)]i) regulation in airway smooth muscle (ASM). Agonist-induced Ca(2+) oscillations in ASM that involve both influx and SR mechanisms have been previously demonstrated. In nonexcitable cells, [Ca(2+)]i oscillations involve Ca(2+) influx via arachidonic acid (AA) -stimulated channels, which show similarities to store-operated Ca(2+) entry, although their molecular identity remains undetermined. Little is known about AA-regulated Ca(2+) channels or their regulation in ASM. In enzymatically dissociated human ASM cells loaded with the Ca(2+) indicator, fura-2, AA (1-10 μM) triggered [Ca(2+)]i oscillations that were inhibited by removal of extracellular Ca(2+). Other fatty acids, such as the diacylglycerol analog, 1-oleoyl-2-acetyl-SN-glycerol, oleic acid, and palmitic acid (10 μM each), failed to elicit similar [Ca(2+)]i responses. Preincubation with LaCl3 (1 μM or 1 mM) inhibited AA-induced oscillations. Inhibition of receptor-operated channels (SKF96,365 [10 μM]), lipoxygenase (zileuton [10 μM]), or cyclooxygenase (indomethacin [10 μM]) did not affect oscillation parameters. Inhibition of SR Ca(2+) release (ryanodine [10 μM] or inositol 1,4,5-trisphosphate receptor inhibitor, xestospongin C [1 μM]) decreased [Ca(2+)]i oscillation frequency and amplitude. Small interfering RNA against caveolin-1, stromal interaction molecule 1, or Orai3 (20 nM each) reduced the frequency and amplitude of AA-induced [Ca(2+)]i oscillations. In ASM cells derived from individuals with asthma, AA increased oscillation amplitude, but not frequency. These results are highly suggestive of a novel AA-mediated Ca(2+)-regulatory mechanism in human ASM, reminiscent of agonist-induced oscillations. Given the role of AA in ASM intracellular signaling, especially with inflammation, AA-regulated Ca(2+) channels could potentially contribute to increased [Ca(2+)]i in diseases such asthma.
Collapse
|
36
|
Kukkonen JP, Leonard CS. Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 2014; 171:314-31. [PMID: 23902572 DOI: 10.1111/bph.12324] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/18/2013] [Accepted: 07/28/2013] [Indexed: 12/16/2022] Open
Abstract
Orexin (hypocretin) peptides and their two known G-protein-coupled receptors play essential roles in sleep-wake control and powerfully influence other systems regulating appetite/metabolism, stress and reward. Consequently, drugs that influence signalling by these receptors may provide novel therapeutic opportunities for treating sleep disorders, obesity and addiction. It is therefore critical to understand how these receptors operate, the nature of the signalling cascades they engage and their physiological targets. In this review, we evaluate what is currently known about orexin receptor signalling cascades, while a sister review (Leonard & Kukkonen, this issue) focuses on tissue-specific responses. The evidence suggests that orexin receptor signalling is multifaceted and is substantially more diverse than originally thought. Indeed, orexin receptors are able to couple to members of at least three G-protein families and possibly other proteins, through which they regulate non-selective cation channels, phospholipases, adenylyl cyclase, and protein and lipid kinases. In the central nervous system, orexin receptors produce neuroexcitation by postsynaptic depolarization via activation of non-selective cation channels, inhibition of K⁺ channels and activation of Na⁺/Ca²⁺ exchange, but they also can stimulate the release of neurotransmitters by presynaptic actions and modulate synaptic plasticity. Ca²⁺ signalling is also prominently influenced by these receptors, both via the classical phospholipase C-Ca²⁺ release pathway and via Ca²⁺ influx, mediated by several pathways. Upon longer-lasting stimulation, plastic effects are observed in some cell types, while others, especially cancer cells, are stimulated to die. Thus, orexin receptor signals appear highly tunable, depending on the milieu in which they are operating.
Collapse
Affiliation(s)
- J P Kukkonen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
37
|
Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference. Biochimie 2014; 107 Pt A:11-4. [PMID: 24997404 DOI: 10.1016/j.biochi.2014.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023]
Abstract
Dietary lipids are usually responsible of several metabolic disorders. Recent compelling evidences suggest that there is a sixth taste modality, destined for the detection of oro-gustatory fats. The lipid-binding glycoprotein CD36, expressed by circumvallate papillae (CVP) of the mouse tongue, has been shown to be implicated in oro-gustatory perception of dietary lipids. We demonstrate that linoleic acid (LA) by activating sPLA2, cPLA2 and iPLA2 via CD36, produced arachidonic acid (AA) and lyso-phosphatidylcholine (Lyso-PC) which triggered Ca(2+) influx in CD36-positive taste bud cells (TBC), purified from mouse CVP. LA induced the production of Ca(2+) influx factor (CIF). CIF, AA and Lyso-PC exerted different actions on the opening of store-operated Ca2+ (SOC) channels, constituted of Orai proteins and regulated by STIM1, a sensor of Ca(2+) depletion in the endoplasmic reticulum. We observed that CIF and Lyso-PC opened Orai1 channels whereas AA-opened Ca(2+) channels were composed of Orai1/Orai3. STIM1 was found to regulate LA-induced CIF production and opening of both kinds of Ca(2+) channels. Furthermore, Stim1(-/-) mice lost the spontaneous preference for fat, observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. Other cell types are involved in, and external factors can influence this preference.
Collapse
|
38
|
Putney JW, Bird GS. Calcium signaling in lacrimal glands. Cell Calcium 2014; 55:290-6. [PMID: 24507443 DOI: 10.1016/j.ceca.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
Abstract
Lacrimal glands provide the important function of lubricating and protecting the ocular surface. Failure of proper lacrimal gland function results in a number of debilitating dry eye diseases. Lacrimal glands secrete lipids, mucins, proteins, salts and water and these secretions are at least partially regulated by neurotransmitter-mediated cell signaling. The predominant signaling mechanism for lacrimal secretion involves activation of phospholipase C, generation of the Ca(2+)-mobilizing messenger, IP3, and release of Ca(2+) stored in the endoplasmic reticulum. The loss of Ca(2+) from the endoplasmic reticulum then triggers a process known as store-operated Ca(2+) entry, involving a Ca(2+) sensor in the endoplasmic reticulum, STIM1, which activates plasma membrane store-operated channels comprised of Orai subunits. Recent studies with deletions of the channel subunit, Orai1, confirm the important role of SOCE in both fluid and protein secretion in lacrimal glands, both in vivo and in vitro.
Collapse
Affiliation(s)
- James W Putney
- Calcium Regulation Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA.
| | - Gary S Bird
- Calcium Regulation Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
39
|
Trebak M, Zhang W, Ruhle B, Henkel MM, González-Cobos JC, Motiani RK, Stolwijk JA, Newton RL, Zhang X. What role for store-operated Ca²⁺ entry in muscle? Microcirculation 2013; 20:330-6. [PMID: 23312019 DOI: 10.1111/micc.12042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022]
Abstract
Store-operated Ca²⁺ entry (SOCE) is a receptor-regulated Ca²⁺ entry pathway that is both ubiquitous and evolutionarily conserved. SOCE is activated by depletion of intracellular Ca²⁺ stores through receptor-mediated production of inositol 1,4,5-trisphosphate (IP₃). The depletion of endoplasmic reticulum (ER) Ca²⁺ is sensed by stromal interaction molecule 1 (STIM1). On store depletion, STIM1 aggregates and moves to areas where the ER comes close to the plasma membrane (PM; within 25 nm) to interact with Orai1 channels and activate Ca²⁺ entry. Ca²⁺ entry through store-operated Ca²⁺ (SOC) channels, originally thought to mediate the replenishment of Ca²⁺ stores, participate in active downstream signaling by coupling to the activation of enzymes and transcription factors that control a wide variety of long-term cell functions such as proliferation, growth, and migration. SOCE has also been proposed to contribute to short-term cellular responses such as muscle contractility. While there are significant STIM1/Orai1 protein levels and SOCE activity in adult skeletal muscle, the precise role of SOCE in skeletal muscle contractility is not clear. The dependence on SOCE during cardiac and smooth muscle contractility is even less certain. Here, we will hypothesize on the contribution of SOCE in muscle and its potential role in contractility and signaling.
Collapse
Affiliation(s)
- Mohamed Trebak
- Nanobioscience Constellation, College of Nanoscale Science and Engineering-CNSE, University at Albany, State University of New York, Albany, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108:1-20. [PMID: 23851106 DOI: 10.1016/j.pneurobio.2013.06.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 01/11/2023]
Abstract
Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.
Collapse
Affiliation(s)
- Marijke De Bock
- Dept. of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Samuels SE, Lipitz JB, Wang J, Dahl G, Muller KJ. Arachidonic acid closes innexin/pannexin channels and thereby inhibits microglia cell movement to a nerve injury. Dev Neurobiol 2013; 73:621-31. [PMID: 23650255 DOI: 10.1002/dneu.22088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 01/04/2023]
Abstract
Pannexons are membrane channels formed by pannexins and are permeable to ATP. They have been implicated in various physiological and pathophysiological processes. Innexins, the invertebrate homologues of the pannexins, form innexons. Nerve injury induces calcium waves in glial cells, releasing ATP through glial pannexon/innexon channels. The ATP then activates microglia. More slowly, injury releases arachidonic acid (ArA). The present experiments show that ArA itself reduced the macroscopic membrane currents of innexin- and of pannexin-injected oocytes; ArA also blocked K(+) -induced release of ATP. In leeches, whose large glial cells have been favorable for studying control of microglia migration, ArA blocked glial dye-release and, evidently, ATP-release. A physiological consequence in the leech was block of microglial migration to nerve injuries. Exogenous ATP (100 µM) reversed the effect, for ATP causes activation and movement of microglia after nerve injury, but nitric oxide directs microglia to the lesion. It was not excluded that metabolites of ArA may also inhibit the channels. But for all these effects, ArA and its non-metabolizable analog eicosatetraynoic acid (ETYA) were indistinguishable. Therefore, ArA itself is an endogenous regulator of pannexons and innexons. ArA thus blocks release of ATP from glia after nerve injury and thereby, at least in leeches, stops microglia at lesions.
Collapse
Affiliation(s)
- Stuart E Samuels
- Neuroscience Program, University of Miami, Miami, Florida, 33136, USA
| | | | | | | | | |
Collapse
|
42
|
Motiani RK, Stolwijk JA, Newton RL, Zhang X, Trebak M. Emerging roles of Orai3 in pathophysiology. Channels (Austin) 2013; 7:392-401. [PMID: 23695829 DOI: 10.4161/chan.24960] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Calcium (Ca(2+)) is a ubiquitous second messenger that regulates a plethora of physiological functions. Deregulation of calcium homeostasis has been reported in a wide variety of pathological conditions including cardiovascular disorders, cancer and neurodegenerative diseases. One of the most ubiquitous pathways involved in regulated Ca(2+) influx into cells is the store-operated Ca(2+) entry (SOCE) pathway. In 2006, Orai1 was identified as the channel protein that mediates SOCE in immune cells. Orai1 has two mammalian homologs, Orai2 and Orai3. Although Orai1 has been the most widely studied Orai isoform, Orai3 has recently received significant attention. Under native conditions, Orai3 was demonstrated to be an important component of store-independent arachidonate-regulated Ca(2+) (ARC) entry in HEK293 cells, and more recently of a store-independent leukotrieneC4-regulated Ca(2+) (LRC) entry pathway in vascular smooth muscle cells. Recent studies have shown upregulation of Orai3 in estrogen receptor-expressing breast cancers and a critical role for Orai3 in breast cancer development in immune-compromised mice. Orai3 upregulation was also shown to contribute to vascular smooth muscle remodeling and neointimal hyperplasia caused by vascular injury. Furthermore, Orai3 has been shown to contribute to proliferation of effector T-lymphocytes under oxidative stress. In this review, we will discuss the role of Orai3 in reported pathophysiological conditions and will contribute ideas on the potential role of Orai3 in native Ca(2+) signaling pathways and human disease.
Collapse
Affiliation(s)
- Rajender K Motiani
- Nanobioscience Constellation; College of Nanoscale Science and Engineering (CNSE); University at Albany; State University of New York; Albany, NY USA; DST-INSPIRE Faculty; Institute of Genomics and Integrative Biology (IGIB); New Delhi, India
| | - Judith A Stolwijk
- Nanobioscience Constellation; College of Nanoscale Science and Engineering (CNSE); University at Albany; State University of New York; Albany, NY USA
| | - Rachel L Newton
- Nanobioscience Constellation; College of Nanoscale Science and Engineering (CNSE); University at Albany; State University of New York; Albany, NY USA
| | - Xuexin Zhang
- Nanobioscience Constellation; College of Nanoscale Science and Engineering (CNSE); University at Albany; State University of New York; Albany, NY USA
| | - Mohamed Trebak
- Nanobioscience Constellation; College of Nanoscale Science and Engineering (CNSE); University at Albany; State University of New York; Albany, NY USA
| |
Collapse
|
43
|
Thompson JL, Shuttleworth TJ. Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1. J Physiol 2013; 591:3507-23. [PMID: 23690558 DOI: 10.1113/jphysiol.2013.256784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Currently, Orai proteins are known to encode two distinct agonist-activated, highly calcium-selective channels: the store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, and the store-independent, arachidonic acid-activated ARC channels. Surprisingly, whilst the trigger for activation of these channels is entirely different, both depend on stromal interacting molecule 1 (STIM1). However, whilst STIM1 in the endoplasmic reticulum membrane is the critical sensor for the depletion of this calcium store that triggers CRAC channel activation, it is the pool of STIM1 constitutively resident in the plasma membrane that is essential for activation of the ARC channels. Here, using a variety of approaches, we show that the key domains within the cytosolic part of STIM1 identified as critical for the activation of CRAC channels are also key for activation of the ARC channels. However, examination of the actual steps involved in such activation reveal marked differences between these two Orai channel types. Specifically, loss of calcium from the EF-hand of STIM1 that forms the key initiation point for activation of the CRAC channels has no effect on ARC channel activity. Secondly, in marked contrast to the dynamic and labile nature of interactions between STIM1 and the CRAC channels, STIM1 in the plasma membrane appears to be constitutively associated with the ARC channels. Finally, specific mutations in STIM1 that induce an extended, constitutively active, conformation for the CRAC channels actually prevent activation of the ARC channels by arachidonic acid. Based on these findings, we propose that the likely role of arachidonic acid lies in inducing the actual gating of the channel.
Collapse
Affiliation(s)
- Jill L Thompson
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
44
|
Zheng X, Zinkevich NS, Gebremedhin D, Gauthier KM, Nishijima Y, Fang J, Wilcox DA, Campbell WB, Gutterman DD, Zhang DX. Arachidonic acid-induced dilation in human coronary arterioles: convergence of signaling mechanisms on endothelial TRPV4-mediated Ca2+ entry. J Am Heart Assoc 2013; 2:e000080. [PMID: 23619744 PMCID: PMC3698766 DOI: 10.1161/jaha.113.000080] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Arachidonic acid (AA) and/or its enzymatic metabolites are important lipid mediators contributing to endothelium-derived hyperpolarizing factor (EDHF)-mediated dilation in multiple vascular beds, including human coronary arterioles (HCAs). However, the mechanisms of action of these lipid mediators in endothelial cells (ECs) remain incompletely defined. In this study, we investigated the role of the transient receptor potential vanilloid 4 (TRPV4) channel in AA-induced endothelial Ca(2+) response and dilation of HCAs. METHODS AND RESULTS AA induced concentration-dependent dilation in isolated HCAs. The dilation was largely abolished by the TRPV4 antagonist RN-1734 and by inhibition of endothelial Ca(2+)-activated K(+) channels. In native and TRPV4-overexpressing human coronary artery ECs (HCAECs), AA increased intracellular Ca(2+) concentration ([Ca(2+)]i), which was mediated by TRPV4-dependent Ca(2+) entry. The AA-induced [Ca(2+)]i increase was inhibited by cytochrome P450 (CYP) inhibitors. Surprisingly, the CYP metabolites of AA, epoxyeicosatrienoic acids (EETs), were much less potent activators of TRPV4, and CYP inhibitors did not affect EET production in HCAECs. Apart from its effect on [Ca(2+)]i, AA induced endothelial hyperpolarization, and this effect was required for Ca(2+) entry through TRPV4. AA-induced and TRPV4-mediated Ca(2+) entry was also inhibited by the protein kinase A inhibitor PKI. TRPV4 exhibited a basal level of phosphorylation, which was inhibited by PKI. Patch-clamp studies indicated that AA activated TRPV4 single-channel currents in cell-attached and inside-out patches of HCAECs. CONCLUSIONS AA dilates HCAs through a novel mechanism involving endothelial TRPV4 channel-dependent Ca(2+) entry that requires endothelial hyperpolarization, PKA-mediated basal phosphorylation of TRPV4, and direct activation of TRPV4 channels by AA.
Collapse
Affiliation(s)
- Xiaodong Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Donald G. Welsh
- From the Department of Physiology and Pharmacology, Hotchkiss Brain and Libin Cardiovascular Research Institutes and University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Motiani RK, Hyzinski-García MC, Zhang X, Henkel MM, Abdullaev IF, Kuo YH, Matrougui K, Mongin AA, Trebak M. STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflugers Arch 2013; 465:1249-60. [PMID: 23515871 DOI: 10.1007/s00424-013-1254-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
The Ca(2+) sensor stromal interacting molecule 1 (STIM1) and the Ca(2+) channel Orai1 mediate the ubiquitous store-operated Ca(2+) entry (SOCE) pathway activated by depletion of internal Ca(2+) stores and mediated through the highly Ca(2+)-selective, Ca(2+) release-activated Ca(2+) (CRAC) current. Furthermore, STIM1 and Orai1, along with Orai3, encode store-independent Ca(2+) currents regulated by either arachidonate or its metabolite, leukotriene C4. Orai channels are emerging as important contributors to numerous cell functions, including proliferation, migration, differentiation, and apoptosis. Recent studies suggest critical involvement of STIM/Orai proteins in controlling the development of several cancers, including malignancies of the breast, prostate, and cervix. Here, we quantitatively compared the magnitude of SOCE and the expression levels of STIM1 and Orai1 in non-malignant human primary astrocytes (HPA) and in primary human cell lines established from surgical samples of the brain tumor glioblastoma multiforme (GBM). Using Ca(2+) imaging, patch-clamp electrophysiology, pharmacological reagents, and gene silencing, we established that in GBM cells, SOCE and CRAC are mediated by STIM1 and Orai1. We further found that GBM cells show upregulation of SOCE and increased Orai1 levels compared to HPA. The functional significance of SOCE was evaluated by studying the effects of STIM1 and Orai1 knockdown on cell proliferation and invasion. Utilizing Matrigel assays, we demonstrated that in GBM, but not in HPA, downregulation of STIM1 and Orai1 caused a dramatic decrease in cell invasion. In contrast, the effects of STIM1 and Orai1 knockdown on GBM cell proliferation were marginal. Overall, these results demonstrate that STIM1 and Orai1 encode SOCE and CRAC currents and control invasion of GBM cells. Our work further supports the potential use of channels contributed by Orai isoforms as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Rajender K Motiani
- The College of Nanoscale Science and Engineering (CNSE), University at Albany, State University of New York, 257 Fuller Rd., Albany, NY 12203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Srikanth S, Ribalet B, Gwack Y. Regulation of CRAC channels by protein interactions and post-translational modification. Channels (Austin) 2013; 7:354-63. [PMID: 23454861 DOI: 10.4161/chan.23801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is a widespread mechanism to elevate the intracellular Ca(2+) concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca(2+) store depletion that subsequently activates Ca(2+)-release-activated-Ca(2+) (CRAC) channels, a prototype of store-operated Ca(2+) (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| | - Bernard Ribalet
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| | - Yousang Gwack
- Department of Physiology; David Geffen School of Medicine at UCLA; Los Angeles, CA USA
| |
Collapse
|
48
|
Varadarajan S, Tanaka K, Smalley JL, Bampton ETW, Pellecchia M, Dinsdale D, Willars GB, Cohen GM. Endoplasmic reticulum membrane reorganization is regulated by ionic homeostasis. PLoS One 2013; 8:e56603. [PMID: 23457590 PMCID: PMC3574070 DOI: 10.1371/journal.pone.0056603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/14/2013] [Indexed: 01/01/2023] Open
Abstract
Recently we described a new, evolutionarily conserved cellular stress response characterized by a reversible reorganization of endoplasmic reticulum (ER) membranes that is distinct from canonical ER stress and the unfolded protein response (UPR). Apogossypol, a putative broad spectrum BCL-2 family antagonist, was the prototype compound used to induce this ER membrane reorganization. Following microarray analysis of cells treated with apogossypol, we used connectivity mapping to identify a wide range of structurally diverse chemicals from different pharmacological classes and established their ability to induce ER membrane reorganization. Such structural diversity suggests that the mechanisms initiating ER membrane reorganization are also diverse and a major objective of the present study was to identify potentially common features of these mechanisms. In order to explore this, we used hierarchical clustering of transcription profiles for a number of chemicals that induce membrane reorganization and discovered two distinct clusters. One cluster contained chemicals with known effects on Ca2+ homeostasis. Support for this was provided by the findings that ER membrane reorganization was induced by agents that either deplete ER Ca2+ (thapsigargin) or cause an alteration in cellular Ca2+ handling (calmodulin antagonists). Furthermore, overexpression of the ER luminal Ca2+ sensor, STIM1, also evoked ER membrane reorganization. Although perturbation of Ca2+ homeostasis was clearly one mechanism by which some agents induced ER membrane reorganization, influx of extracellular Na+ but not Ca2+ was required for ER membrane reorganization induced by apogossypol and the related BCL-2 family antagonist, TW37, in both human and yeast cells. Not only is this novel, non-canonical ER stress response evolutionary conserved but so also are aspects of the mechanism of formation of ER membrane aggregates. Thus perturbation of ionic homeostasis is important in the regulation of ER membrane reorganization.
Collapse
Affiliation(s)
| | - Kayoko Tanaka
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Joshua L. Smalley
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | | | - David Dinsdale
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Gary B. Willars
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | - Gerald M. Cohen
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
González-Cobos JC, Zhang X, Zhang W, Ruhle B, Motiani RK, Schindl R, Muik M, Spinelli AM, Bisaillon JM, Shinde AV, Fahrner M, Singer HA, Matrougui K, Barroso M, Romanin C, Trebak M. Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ Res 2013; 112:1013-25. [PMID: 23349245 DOI: 10.1161/circresaha.111.300220] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
RATIONALE Through largely unknown mechanisms, Ca(2+) signaling plays important roles in vascular smooth muscle cell (VSMC) remodeling. Orai1-encoded store-operated Ca(2+) entry has recently emerged as an important player in VSMC remodeling. However, the role of the exclusively mammalian Orai3 protein in native VSMC Ca(2+) entry pathways, its upregulation during VSMC remodeling, and its contribution to neointima formation remain unknown. OBJECTIVE The goal of this study was to determine the agonist-evoked Ca(2+) entry pathway contributed by Orai3; Orai3 potential upregulation and role during neointima formation after balloon injury of rat carotid arteries. METHODS AND RESULTS Ca(2+) imaging and patch-clamp recordings showed that although the platelet-derived growth factor activates the canonical Ca(2+) release-activated Ca(2+) channels via store depletion in VSMC, the pathophysiological agonist thrombin activates a distinct Ca(2+)-selective channel contributed by Orai1, Orai3, and stromal interacting molecule1 in the same cells. Unexpectedly, Ca(2+) store depletion is not required for activation of Orai1/3 channel by thrombin. Rather, the signal for Orai1/3 channel activation is cytosolic leukotrieneC4 produced downstream thrombin receptor stimulation through the catalytic activity of leukotrieneC4 synthase. Importantly, Orai3 is upregulated in an animal model of VSMC neointimal remodeling, and in vivo Orai3 knockdown inhibits neointima formation. CONCLUSIONS These results demonstrate that distinct native Ca(2+)-selective Orai channels are activated by different agonists/pathways and uncover a mechanism whereby leukotrieneC4 acts through hitherto unknown intracrine mode to elicit store-independent Ca(2+) signaling that promotes vascular occlusive disease. Orai3 and Orai3-containing channels provide novel targets for control of VSMC remodeling during vascular injury or disease.
Collapse
Affiliation(s)
- José C González-Cobos
- College of Nanoscale Science and Engineering, NFE4417, University at Albany, State University of New York, 257 Fuller Rd, Albany, NY 12203, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alternative Forms of the Store-Operated Calcium Entry Mediators, STIM1 and Orai1. CURRENT TOPICS IN MEMBRANES 2013; 71:109-23. [DOI: 10.1016/b978-0-12-407870-3.00005-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|