1
|
Eser P, Kocabicak E, Bekar A, Temel Y. The interplay between neuroinflammatory pathways and Parkinson's disease. Exp Neurol 2024; 372:114644. [PMID: 38061555 DOI: 10.1016/j.expneurol.2023.114644] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder predominantly affecting elderly, is marked by the gradual degeneration of the nigrostriatal dopaminergic pathway, culminating in neuronal loss within the substantia nigra pars compacta (SNpc) and dopamine depletion. At the molecular level, neuronal loss in the SNpc has been attributed to factors including neuroinflammation, impaired protein homeostasis, as well as mitochondrial dysfunction and the resulting oxidative stress. This review focuses on the interplay between neuroinflammatory pathways and Parkinson's disease, drawing insights from current literature.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
2
|
Raitiere MN. The Elusive "Switch Process" in Bipolar Disorder and Photoperiodism: A Hypothesis Centering on NADPH Oxidase-Generated Reactive Oxygen Species Within the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2022; 13:847584. [PMID: 35782417 PMCID: PMC9243387 DOI: 10.3389/fpsyt.2022.847584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most striking and least understood aspects of mood disorders involves the "switch process" which drives the dramatic state changes characteristic of bipolar disorder. In this paper we explore the bipolar switch mechanism as deeply grounded in forms of seasonal switching (for example, from summer to winter phenotypes) displayed by many mammalian species. Thus we develop a new and unifying hypothesis that involves four specific claims, all converging to demonstrate a deeper affinity between the bipolar switch process and the light-sensitive (photoperiodic) nonhuman switch sequence than has been appreciated. First, we suggest that rapid eye movement (REM) sleep in both human and nonhuman plays a key role in probing for those seasonal changes in length of day that trigger the organism's characteristic involutional response (in certain animals, hibernation) to shorter days. Second, we claim that this general mammalian response requires the integrity of a neural circuit centering on the anterior bed nucleus of the stria terminalis. Third, we propose that a key molecular mediator of the switch process in both nonhumans and seasonal humans involves reactive oxygen species (ROS) of a particular provenance, namely those created by the enzyme NADPH oxidase (NOX). This position diverges from one currently prominent among students of bipolar disorder. In that tradition, the fact that patients afflicted with bipolar-spectrum disorders display indices of oxidative damage is marshaled to support the conclusion that ROS, escaping adventitiously from mitochondria, have a near-exclusive pathological role. Instead, we believe that ROS, originating instead in membrane-affiliated NOX enzymes upstream from mitochondria, take part in an eminently physiological signaling process at work to some degree in all mammals. Fourth and finally, we speculate that the diversion of ROS from that purposeful, genetically rooted seasonal switching task into the domain of human pathology represents a surprisingly recent phenomenon. It is one instigated mainly by anthropogenic modifications of the environment, especially "light pollution."
Collapse
Affiliation(s)
- Martin N Raitiere
- Department of Psychiatry, Providence St. Vincent Medical Center, Portland, OR, United States
| |
Collapse
|
3
|
Kamynina A, Esteras N, Koroev DO, Angelova PR, Volpina OM, Abramov AY. Activation of RAGE leads to the release of glutamate from astrocytes and stimulates calcium signal in neurons. J Cell Physiol 2021; 236:6496-6506. [PMID: 33570767 PMCID: PMC8651009 DOI: 10.1002/jcp.30324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a signal receptor first shown to be activated by advanced glycation end products, but also by a variety of signal molecules, including pathological advanced oxidation protein products and β-amyloid. However, most of the RAGE activators have multiple intracellular targets, making it difficult to unravel the exact pathway of RAGE activation. Here, we show that the cell-impermeable RAGE fragment sequence (60-76) of the V-domain of the receptor is able to activate RAGE present on the plasma membrane of neurons and, preferentially, astrocytes. This leads to the exocytosis of vesicular glutamate transporter vesicles and the release of glutamate from astrocytes, which stimulate NMDA and AMPA/kainate receptors, resulting in calcium signals predominantly in neurons. Thus, we show a specific mechanism of RAGE activation by the RAGE fragment and propose a mechanism by which RAGE activation can contribute to the neuronal-astrocytic communication in physiology and pathology.
Collapse
Affiliation(s)
- Anna Kamynina
- Research Center for Molecular Mechanisms of Aging and Age Related DiseasesMoscow Institute of Physics and Technology (National Research University)DolgoprudnyRussia
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussia
| | - Noemi Esteras
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, Queen SquareLondonUK
| | - Dmitry O. Koroev
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussia
| | - Plamena R. Angelova
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, Queen SquareLondonUK
| | - Olga M. Volpina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussia
| | - Andrey Y. Abramov
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, Queen SquareLondonUK
| |
Collapse
|
4
|
Sur S, Sharma A, Malik I, Bhardwaj SK, Kumar V. Daytime light spectrum affects photoperiodic induction of vernal response in obligate spring migrants. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111017. [PMID: 34126231 DOI: 10.1016/j.cbpa.2021.111017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/26/2022]
Abstract
It is not well understood how the spectral composition (wavelength) of daylight that varies considerably during the day and seasons affects photoperiodic responses in a seasonal species. Here, we investigated the molecular underpinnings of wavelength-dependent photoperiodic induction in migratory redheaded buntings transferred to 13 h long days in neutral (white), 460 nm (blue), 500 nm (green) or 620 nm (red) wavelength that were compared with one another, and to short day controls for indices of the migratory (body fattening and weight gain, and Zugunruhe) and reproductive (testicular maturation) responses. Buntings showed wavelength-dependent photoperiodic response, with delayed Zugunruhe and slower testis maturation under 620 nm red light. Post-mortem comparison of gene expressions further revealed wavelength-dependence of the photoperiodic molecular response. Whereas there were higher retinal expressions of opn2 (rhodopsin) and opn5 (neuropsin) genes in red daylight, and of rhodopsin-like opsin (rh2) gene in green daylight, the hypothalamic opn2 mRNA levels were higher in blue daylight. Similarly, we found in birds under blue daylight an increased hypothalamic expression of genes involved in the photoperiodic induction (thyroid stimulating hormone subunit beta, tshb; eye absent 3, eya3; deiodinase type 2, dio2) and associated neural responses such as the calcium signaling (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, atp2a2), dopamine biosynthesis (tyrosine hydroxylase, th) and neurogenesis (brain-derived neurotrophic factor, bdnf). These results demonstrate transcriptional changes in parallel to responses associated with migration and reproduction in buntings, and suggest a role of daylight spectrum in photoperiodic induction of the vernal response in obligate spring avian migrants.
Collapse
Affiliation(s)
- Sayantan Sur
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Indu Malik
- Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
5
|
Berezhnov AV, Fedotova EI, Sergeev AI, Teplov IY, Abramov AY. Dopamine controls neuronal spontaneous calcium oscillations via astrocytic signal. Cell Calcium 2021; 94:102359. [PMID: 33550209 DOI: 10.1016/j.ceca.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/10/2023]
Abstract
Dopamine is a neuromodulator and neurotransmitter responsible for a number of physiological processes. Dysfunctions of the dopamine metabolism and signalling are associated with neurological and psychiatric diseases. Here we report that in primary co-culture of neurons and astrocytes dopamine-induces calcium signal in astrocytes and suppress spontaneous synchronous calcium oscillations (SSCO) in neurons. Effect of dopamine on SSCO in neurons was dependent on calcium signal in astrocytes and could be modified by inhibition of dopamine-induced calcium signal or by stimulation of astrocytic calcium rise with ATP. Ability of dopamine to suppress SSCO in neurons was independent on D1- or D2- like receptors but dependent on GABA and alpha-adrenoreceptors. Inhibitor of monoaminoxidase bifemelane blocked effect of dopamine on astrocytes but also inhibited the effect dopamine on SSCO in neurons. These findings suggest that dopamine-induced calcium signal may stimulate release of neuromodulators such as GABA and adrenaline and thus suppress spontaneous calcium oscillations in neurons.
Collapse
Affiliation(s)
- Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia.
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia; Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia
| | - Alexander I Sergeev
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ilya Y Teplov
- Institute of Cell Biophysics of the Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Andrey Y Abramov
- Cell Physiology and Pathology Laboratory, Orel State University, 302026, Orel, Russia; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, WC1N 3BG, London, UK.
| |
Collapse
|
6
|
Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation. Cell Death Differ 2020; 27:2781-2796. [PMID: 32341450 PMCID: PMC7492459 DOI: 10.1038/s41418-020-0542-z] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/13/2023] Open
Abstract
Protein aggregation and abnormal lipid homeostasis are both implicated in neurodegeneration through unknown mechanisms. Here we demonstrate that aggregate-membrane interaction is critical to induce a form of cell death called ferroptosis. Importantly, the aggregate-membrane interaction that drives ferroptosis depends both on the conformational structure of the aggregate, as well as the oxidation state of the lipid membrane. We generated human stem cell-derived models of synucleinopathy, characterized by the intracellular formation of α-synuclein aggregates that bind to membranes. In human iPSC-derived neurons with SNCA triplication, physiological concentrations of glutamate and dopamine induce abnormal calcium signaling owing to the incorporation of excess α-synuclein oligomers into membranes, leading to altered membrane conductance and abnormal calcium influx. α-synuclein oligomers further induce lipid peroxidation. Targeted inhibition of lipid peroxidation prevents the aggregate-membrane interaction, abolishes aberrant calcium fluxes, and restores physiological calcium signaling. Inhibition of lipid peroxidation, and reduction of iron-dependent accumulation of free radicals, further prevents oligomer-induced toxicity in human neurons. In summary, we report that peroxidation of polyunsaturated fatty acids underlies the incorporation of β-sheet-rich aggregates into the membranes, and that additionally induces neuronal death. This suggests a role for ferroptosis in Parkinson's disease, and highlights a new mechanism by which lipid peroxidation causes cell death.
Collapse
|
7
|
Magi S, Piccirillo S, Maiolino M, Lariccia V, Amoroso S. NCX1 and EAAC1 transporters are involved in the protective action of glutamate in an in vitro Alzheimer's disease-like model. Cell Calcium 2020; 91:102268. [PMID: 32827867 DOI: 10.1016/j.ceca.2020.102268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer's disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities. We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid β protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection. Remarkably, our results indicate, as proof-of-principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Marta Maiolino
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
8
|
Esteras N, Kundel F, Amodeo GF, Pavlov EV, Klenerman D, Abramov AY. Insoluble tau aggregates induce neuronal death through modification of membrane ion conductance, activation of voltage-gated calcium channels and NADPH oxidase. FEBS J 2020; 288:127-141. [PMID: 32338825 DOI: 10.1111/febs.15340] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
Most neurodegenerative disorders are associated with aggregation and accumulation of misfolded proteins. One of these proteins, tau, is involved in a number of pathologies including Alzheimer's disease and frontotemporal dementia. Aggregation and phosphorylation of tau have been shown to be a trigger for abnormal signal transduction and disruption of cellular homeostasis. Here, we have studied the effect of extracellular tau at different stages of aggregation in cortical co-cultures of neurons and astrocytes, to understand how this process affects tau pathogenicity. We found that the species formed after prolonged in vitro aggregation of tau (longer than 1 day) are able to stimulate reactive oxygen species (ROS) production through the activation of NADPH oxidase without decreasing the level of the endogenous antioxidant glutathione. The same late insoluble aggregates of tau induced calcium signals in neurons and a gradual increase in the ionic current of artificial membranes. Both tau-induced calcium signals and ROS production in NADPH oxidase were reduced in the presence of the inhibitor of voltage-gated calcium channels (VGCC) nifedipine. This suggests that insoluble aggregates of tau incorporate into the membrane and modify ionic currents, changing plasma membrane potential and activating VGCCs, which induces a calcium influx that triggers ROS production in NADPH oxidase. The combination of all these effects likely leads to toxicity, as only the same insoluble tau aggregates which demonstrated membrane-active properties produced neuronal cell death.
Collapse
Affiliation(s)
- Noemi Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | | | - Giuseppe F Amodeo
- Department of Basic Sciences, New York University College of Dentistry, NY, USA
| | - Evgeny V Pavlov
- Department of Basic Sciences, New York University College of Dentistry, NY, USA
| | | | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
9
|
Kamynina AV, Esteras N, Koroev DO, Bobkova NV, Balasanyants SM, Simonyan RA, Avetisyan AV, Abramov AY, Volpina OM. Synthetic Fragments of Receptor for Advanced Glycation End Products Bind Beta-Amyloid 1-40 and Protect Primary Brain Cells From Beta-Amyloid Toxicity. Front Neurosci 2018; 12:681. [PMID: 30319347 PMCID: PMC6170785 DOI: 10.3389/fnins.2018.00681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of Alzheimer's disease. We have previously revealed that RAGE fragment sequence (60-76) and its shortened analogs sequence (60-70) and (60-65) under intranasal insertion were able to restore memory and improve morphological and biochemical state of neurons in the brain of bulbectomized mice developing major AD features. In the current study, we have investigated the ability of RAGE peptide (60-76) and five shortened analogs to bind beta-amyloid (Aβ) 1-40 in an fluorescent titration test and show that all the RAGE fragments apart from one [sequence (65-76)] were able to bind Aβ in vitro. Moreover, we show that all RAGE fragments apart from the shortest one (60-62), were able to protect neuronal primary cultures from amyloid toxicity, by preventing the caspase 3 activation induced by Aβ 1-42. We have compared the data obtained in the present research with the previously published data in the animal model of AD, and offer a probable mechanism of neuroprotection of the RAGE peptide.
Collapse
Affiliation(s)
- Anna V. Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Dmitriy O. Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V. Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Samson M. Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruben A. Simonyan
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Armine V. Avetisyan
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Olga M. Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Mitochondrial calcium imbalance in Parkinson’s disease. Neurosci Lett 2018; 663:86-90. [DOI: 10.1016/j.neulet.2017.08.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
|
11
|
Lozano R, Gilmore KJ, Thompson BC, Stewart EM, Waters AM, Romero-Ortega M, Wallace GG. Electrical stimulation enhances the acetylcholine receptors available for neuromuscular junction formation. Acta Biomater 2016; 45:328-339. [PMID: 27554016 DOI: 10.1016/j.actbio.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 01/17/2023]
Abstract
Neuromuscular junctions (NMJ) are specialized synapses that link motor neurons with muscle fibers. These sites are fundamental to human muscle activity, controlling swallowing and breathing amongst many other vital functions. Study of this synapse formation is an essential area in neuroscience; the understanding of how neurons interact and control their targets during development and regeneration are fundamental questions. Existing data reveals that during initial stages of development neurons target and form synapses driven by biophysical and biochemical cues, and during later stages they require electrical activity to develop their functional interactions. The aim of this study was to investigate the effect of exogenous electrical stimulation (ES) electrodes directly in contact with cells, on the number and size of acetylcholine receptor (AChR) clusters available for NMJ formation. We used a novel in vitro model that utilizes a flexible electrical stimulation system and allows the systematic testing of several stimulation parameters simultaneously as well as the use of alternative electrode materials such as conductive polymers to deliver the stimulation. Functionality of NMJs under our co-culture conditions was demonstrated by monitoring changes in the responses of primary myoblasts to chemical stimulants that specifically target neuronal signaling. Our results suggest that biphasic electrical stimulation at 250Hz, 100μs pulse width and current density of 1mA/cm2 for 8h, applied via either gold-coated mylar or the conductive polymer PPy, significantly increased the number and size of AChRs clusters available for NMJ formation. This study supports the beneficial use of direct electrical stimulation as a strategic therapy for neuromuscular disorders. STATEMENT OF SIGNIFICANCE The beneficial effects of electrical stimulation (ES) on human cells in vitro and in vivo have long been known. Although the effects of stimulation are clear and the therapeutic benefits are known, no uniform parameters exist with regard to the duration, frequency and amplitude of the ES. To this end, we are answering several important questions on the parameters for ES of nerve and muscle monocultures and co-cultures by probing the effects on the enhancement of acetylcholine receptors (AChR) clustering available for neuromuscular junction formation using a conductive platform. This work opens the possibility to combine electrical stimulus delivered via conductive polymer substrates, from which biomolecules could also be delivered, providing opportunities to further enhance the therapeutic effect.
Collapse
Affiliation(s)
- Rodrigo Lozano
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kerry J Gilmore
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Brianna C Thompson
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elise M Stewart
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Aaron M Waters
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mario Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
12
|
Iljina M, Tosatto L, Choi ML, Sang JC, Ye Y, Hughes CD, Bryant CE, Gandhi S, Klenerman D. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein. Sci Rep 2016; 6:33928. [PMID: 27671749 PMCID: PMC5037366 DOI: 10.1038/srep33928] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/31/2016] [Indexed: 12/12/2022] Open
Abstract
The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson’s disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule Fӧrster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Laura Tosatto
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Minee L Choi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jason C Sang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Yu Ye
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,Department of Cell Biology, Harvard Medical School, Boston, 02115, USA
| | - Craig D Hughes
- Department of Veterinary Medicine, University Of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine, University Of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Sonia Gandhi
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
13
|
Begieneman MPV, Ter Horst EN, Rijvers L, Meinster E, Leen R, Pankras JE, Fritz J, Kubat B, Musters RJP, van Kuilenburg ABP, Stap J, Niessen HWM, Krijnen PAJ. Dopamine induces lipid accumulation, NADPH oxidase-related oxidative stress, and a proinflammatory status of the plasma membrane in H9c2 cells. Am J Physiol Heart Circ Physiol 2016; 311:H1097-H1107. [PMID: 27521422 DOI: 10.1152/ajpheart.00633.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 07/15/2016] [Indexed: 01/08/2023]
Abstract
Excess catecholamine levels are suggested to be cardiotoxic and to underlie stress-induced heart failure. The cardiotoxic effects of norepinephrine and epinephrine are well recognized. However, although cardiac and circulating dopamine levels are also increased in stress cardiomyopathy patients, knowledge regarding putative toxic effects of excess dopamine levels on cardiomyocytes is scarce. We now studied the effects of elevated dopamine levels in H9c2 cardiomyoblasts. H9c2 cells were cultured and treated with dopamine (200 μM) for 6, 24, and 48 h. Subsequently, the effects on lipid accumulation, cell viability, flippase activity, reactive oxygen species (ROS) production, subcellular NADPH oxidase (NOX) protein expression, and ATP/ADP and GTP/GDP levels were analyzed. Dopamine did not result in cytotoxic effects after 6 h. However, after 24 and 48 h dopamine treatment induced a significant increase in lipid accumulation, nitrotyrosine levels, indicative of ROS production, and cell death. In addition, dopamine significantly reduced flippase activity and ATP/GTP levels, coinciding with phosphatidylserine exposure on the outer plasma membrane. Furthermore, dopamine induced a transient increase in cytoplasmic and (peri)nucleus NOX1 and NOX4 expression after 24 h that subsided after 48 h. Moreover, while dopamine induced a similar transient increase in cytoplasmic NOX2 and p47phox expression, in the (peri)nucleus this increased expression persisted for 48 h where it colocalized with ROS. Exposure of H9c2 cells to elevated dopamine levels induced lipid accumulation, oxidative stress, and a proinflammatory status of the plasma membrane. This can, in part, explain the inflammatory response in patients with stress-induced heart failure.
Collapse
Affiliation(s)
- Mark P V Begieneman
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; .,Netherlands Forensic Institute, The Hague, the Netherlands.,Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Ellis N Ter Horst
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands.,Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.,Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Liza Rijvers
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Elisa Meinster
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - René Leen
- Laboratory Genetic Metabolic Diseases and Department of Pediatrics/Emma's Children Hospital, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Jeannette E Pankras
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jan Fritz
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Bela Kubat
- Netherlands Forensic Institute, The Hague, the Netherlands.,Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - René J P Musters
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Jan Stap
- Core Facility Cellular Imaging/LCAM-AMC, Amsterdam, the Netherlands; and
| | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands.,Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.,Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Paul A J Krijnen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands.,Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Angelova PR, Ludtmann MHR, Horrocks MH, Negoda A, Cremades N, Klenerman D, Dobson CM, Wood NW, Pavlov EV, Gandhi S, Abramov AY. Ca2+ is a key factor in α-synuclein-induced neurotoxicity. J Cell Sci 2016; 129:1792-801. [PMID: 26989132 PMCID: PMC4893653 DOI: 10.1242/jcs.180737] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca2+ signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca2+ in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca2+ signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca2+, which prevented the α-synuclein-induced Ca2+ dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca2+ signalling in a structure-specific manner and the oligomeric β-sheet-rich α-synuclein species ultimately leads to Ca2+ dysregulation and Ca2+-dependent cell death. Summary: Monomeric and oligomeric α-synuclein induce Ca2+ signal in neurons and astrocytes by incorporating into the membrane.
Collapse
Affiliation(s)
| | | | - Mathew H Horrocks
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Canada
| | - Nunilo Cremades
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Nicholas W Wood
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Evgeny V Pavlov
- Department of Physiology and Biophysics, Dalhousie University, Halifax B3H 4R2, Canada College of Dentistry, New York University, New York 10010, USA
| | - Sonia Gandhi
- UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
15
|
AlQot H, Elnozahi N, Mohy El-Din M, Bistawroos A, Abou Zeit-Har M. Facilitatory effect of dopamine on neuromuscular transmission mediated via dopamine D1-like receptors and prospective interaction with nicotine. Eur J Pharmacol 2015; 765:51-7. [DOI: 10.1016/j.ejphar.2015.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/17/2015] [Accepted: 08/05/2015] [Indexed: 11/16/2022]
|
16
|
Amphetamine activates calcium channels through dopamine transporter-mediated depolarization. Cell Calcium 2015; 58:457-66. [PMID: 26162812 DOI: 10.1016/j.ceca.2015.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023]
Abstract
Amphetamine (AMPH) and its more potent enantiomer S(+)AMPH are psychostimulants used therapeutically to treat attention deficit hyperactivity disorder and have significant abuse liability. AMPH is a dopamine transporter (DAT) substrate that inhibits dopamine (DA) uptake and is implicated in DA release. Furthermore, AMPH activates ionic currents through DAT that modify cell excitability presumably by modulating voltage-gated channel activity. Indeed, several studies suggest that monoamine transporter-induced depolarization opens voltage-gated Ca(2+) channels (CaV), which would constitute an additional AMPH mechanism of action. In this study we co-express human DAT (hDAT) with Ca(2+) channels that have decreasing sensitivity to membrane depolarization (CaV1.3, CaV1.2 or CaV2.2). Although S(+)AMPH is more potent than DA in transport-competition assays and inward-current generation, at saturating concentrations both substrates indirectly activate voltage-gated L-type Ca(2+) channels (CaV1.3 and CaV1.2) but not the N-type Ca(2+) channel (CaV2.2). Furthermore, the potency to achieve hDAT-CaV electrical coupling is dominated by the substrate affinity on hDAT, with negligible influence of L-type channel voltage sensitivity. In contrast, the maximal coupling-strength (defined as Ca(2+) signal change per unit hDAT current) is influenced by CaV voltage sensitivity, which is greater in CaV1.3- than in CaV1.2-expressing cells. Moreover, relative to DA, S(+)AMPH showed greater coupling-strength at concentrations that induced relatively small hDAT-mediated currents. Therefore S(+)AMPH is not only more potent than DA at inducing hDAT-mediated L-type Ca(2+) channel currents but is a better depolarizing agent since it produces tighter electrical coupling between hDAT-mediated depolarization and L-type Ca(2+) channel activation.
Collapse
|
17
|
Ruchala I, Cabra V, Solis E, Glennon RA, De Felice LJ, Eltit JM. Electrical coupling between the human serotonin transporter and voltage-gated Ca(2+) channels. Cell Calcium 2014; 56:25-33. [PMID: 24854234 DOI: 10.1016/j.ceca.2014.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
Abstract
Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca(2+) mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca(2+) permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca(2+) channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca(2+) channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca(2+) transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca(2+) channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca(2+)-driven signals in excitable cells.
Collapse
Affiliation(s)
- Iwona Ruchala
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Vanessa Cabra
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Ernesto Solis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Richard A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Louis J De Felice
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
18
|
Narayan P, Holmström KM, Kim DH, Whitcomb DJ, Wilson MR, St George-Hyslop P, Wood NW, Dobson CM, Cho K, Abramov AY, Klenerman D. Rare individual amyloid-β oligomers act on astrocytes to initiate neuronal damage. Biochemistry 2014; 53:2442-53. [PMID: 24717093 PMCID: PMC4004235 DOI: 10.1021/bi401606f] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oligomers of the amyloid-β (Aβ) peptide have been implicated in the neurotoxicity associated with Alzheimer's disease. We have used single-molecule techniques to examine quantitatively the cellular effects of adding well characterized Aβ oligomers to primary hippocampal cells and hence determine the initial pathway of damage. We found that even picomolar concentrations of Aβ (1-40) and Aβ (1-42) oligomers can, within minutes of addition, increase the levels of intracellular calcium in astrocytes but not in neurons, and this effect is saturated at a concentration of about 10 nM of oligomers. Both Aβ (1-40) and Aβ (1-42) oligomers have comparable effects. The rise in intracellular calcium is followed by an increase in the rate of ROS production by NADPH oxidase in both neurons and astrocytes. The increase in ROS production then triggers caspase-3 activation resulting in the inhibition of long-term potentiation. Our quantitative approach also reveals that only a small fraction of the oligomers are damaging and that an individual rare oligomer binding to an astrocyte can initiate the aforementioned cascade of responses, making it unlikely to be due to any specific interaction. Preincubating the Aβ oligomers with an extracellular chaperone, clusterin, sequesters the oligomers in long-lived complexes and inhibits all of the physiological damage, even at a ratio of 100:1, total Aβ to clusterin. To explain how Aβ oligomers are so damaging but that it takes decades to develop Alzheimer's disease, we suggest a model for disease progression where small amounts of neuronal damage from individual unsequestered oligomers can accumulate over time leading to widespread tissue-level dysfunction.
Collapse
Affiliation(s)
- Priyanka Narayan
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Holmström KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M, Dinkova-Kostova AT, Abramov AY. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2013; 2:761-70. [PMID: 23951401 PMCID: PMC3744067 DOI: 10.1242/bio.20134853] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/30/2013] [Indexed: 12/19/2022] Open
Abstract
Transcription factor Nrf2 and its repressor Keap1 regulate a network of cytoprotective genes involving more than 1% of the genome, their best known targets being drug-metabolizing and antioxidant genes. Here we demonstrate a novel role for this pathway in directly regulating mitochondrial bioenergetics in murine neurons and embryonic fibroblasts. Loss of Nrf2 leads to mitochondrial depolarisation, decreased ATP levels and impaired respiration, whereas genetic activation of Nrf2 increases the mitochondrial membrane potential and ATP levels, the rate of respiration and the efficiency of oxidative phosphorylation. We further show that Nrf2-deficient cells have increased production of ATP in glycolysis, which is then used by the F1Fo-ATPase for maintenance of the mitochondrial membrane potential. While the levels and in vitro activities of the respiratory complexes are unaffected by Nrf2 deletion, their activities in isolated mitochondria and intact live cells are substantially impaired. In addition, the rate of regeneration of NADH after inhibition of respiration is much slower in Nrf2-knockout cells than in their wild-type counterparts. Taken together, these results show that Nrf2 directly regulates cellular energy metabolism through modulating the availability of substrates for mitochondrial respiration. Our findings highlight the importance of efficient energy metabolism in Nrf2-mediated cytoprotection.
Collapse
Affiliation(s)
- Kira M. Holmström
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Liam Baird
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee DD1 9SY, UK
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee DD1 9SY, UK
| | - Iain Hargreaves
- Neurometabolic Unit, National Hospital, Queen Square, London WC1N 3BG, UK
| | | | - John M. Land
- Neurometabolic Unit, National Hospital, Queen Square, London WC1N 3BG, UK
| | - Lee Stanyer
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrey Y. Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
20
|
Signalling properties of inorganic polyphosphate in the mammalian brain. Nat Commun 2013; 4:1362. [PMID: 23322050 PMCID: PMC3562455 DOI: 10.1038/ncomms2364] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/07/2012] [Indexed: 11/11/2022] Open
Abstract
Inorganic polyphosphate is known to be present in the mammalian brain at micromolar concentrations. Here we show that polyphosphate may act as a gliotransmitter, mediating communication between astrocytes. It is released by astrocytes in a calcium-dependent manner and signals to neighbouring astrocytes through P2Y1 purinergic receptors, activation of phospholipase C and release of calcium from the intracellular stores. In primary neuroglial cultures, application of polyP triggers release of endogenous polyphosphate from astrocytes while neurons take it up. In vivo, central actions of polyphosphate at the level of the brainstem include profound increases in key homeostatic physiological activities, such as breathing, central sympathetic outflow and the arterial blood pressure. Together, these results suggest a role for polyphosphate as a mediator of astroglial signal transmission in the mammalian brain. Inorganic polyphosphates have been identified in the central nervous system. Holmström and colleagues examine neuroglial cultures in vitro and cardiorespiratory responses in vivo, and find that inorganic polyphosphates trigger calcium-dependent activation of astrocytes and increase cardiorespiratory activity.
Collapse
|
21
|
Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis 2013; 54:139-49. [PMID: 23454195 DOI: 10.1016/j.nbd.2013.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/31/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022] Open
Abstract
The importance of the complement system in Alzheimer's disease (AD) pathogenesis has been emphasized through recent genome wide association studies. However, the cellular and molecular role of these complement proteins is not fully understood. Microglia express complement receptors and the activation of specific receptors may increase Aβ clearance and reduce neurodegeneration. Here, we investigated the contribution of complement receptor 1 (CR1), the second most significant hit in GWAS studies, on microglia to neuronal damage. We show that microglia displaying an activated phenotype demonstrate an increase in CR1 expression. We also provide evidence that activation of microglial CR1 was detrimental to neurons and this correlated with an increase in microglial intracellular superoxide generation, and tumour necrosis factor-α (TNFα) and interleukin-1 β (IL-1β) secretion. Amyloid-β 42 (Aβ1-42)-treated microglia displayed an increased ability to phagocytose dextran beads following antibody blockage of CR1 but a decreased capacity to phagocytose fluorescent-tagged Aβ1-42. Together, these results indicate that microglial CR1 plays a role in the neuronal death observed in AD and investigating this further may provide a possible strategy to control neurotoxicity in the AD brain.
Collapse
|
22
|
Abstract
Glutamate excitotoxicity is responsible for neuronal death in acute neurological disorders including stroke, trauma and neurodegenerative disease. Loss of calcium homeostasis is a key mediator of glutamate-induced cell death. The neurotransmitter dopamine (DA) is known to modulate calcium signalling, and here we show that it can do so in response to physiological concentrations of glutamate. Furthermore, DA is able to protect neurons from glutamate-induced cell death at pathological concentrations of glutamate. We demonstrate that DA has a novel role in preventing delayed calcium deregulation in cortical, hippocampal and midbrain neurons. The effect of DA in abolishing glutamate excitotoxicity can be induced by DA receptor agonists, and is abolished by DA receptor antagonists. Our data indicate that the modulation of glutamate excitotoxicity by DA is receptor-mediated. We postulate that DA has a major physiological function as a safety catch to restrict the glutamate-induced calcium signal, and thereby prevent glutamate-induced cell death in the brain.
Collapse
|
23
|
Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am J Hum Genet 2012. [PMID: 23200863 DOI: 10.1016/j.ajhg.2012.10.024] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we combined linkage analysis with whole-exome sequencing of two individuals to identify candidate causal variants in a moderately-sized UK kindred exhibiting autosomal-dominant inheritance of craniocervical dystonia. Subsequent screening of these candidate causal variants in a large number of familial and sporadic cases of cervical dystonia led to the identification of a total of six putatively pathogenic mutations in ANO3, a gene encoding a predicted Ca(2+)-gated chloride channel that we show to be highly expressed in the striatum. Functional studies using Ca(2+) imaging in case and control fibroblasts demonstrated clear abnormalities in endoplasmic-reticulum-dependent Ca(2+) signaling. We conclude that mutations in ANO3 are a cause of autosomal-dominant craniocervical dystonia. The locus DYT23 has been reserved as a synonym for this gene. The implication of an ion channel in the pathogenesis of dystonia provides insights into an alternative mechanism that opens fresh avenues for further research.
Collapse
|
24
|
Gandhi S, Vaarmann A, Yao Z, Duchen MR, Wood NW, Abramov AY. Dopamine induced neurodegeneration in a PINK1 model of Parkinson's disease. PLoS One 2012; 7:e37564. [PMID: 22662171 PMCID: PMC3360782 DOI: 10.1371/journal.pone.0037564] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Parkinson's disease is a common neurodegenerative disease characterised by progressive loss of dopaminergic neurons, leading to dopamine depletion in the striatum. Mutations in the PINK1 gene cause an autosomal recessive form of Parkinson's disease. Loss of PINK1 function causes mitochondrial dysfunction, increased reactive oxygen species production and calcium dysregulation, which increases susceptibility to neuronal death in Parkinson's disease. The basis of neuronal vulnerability to dopamine in Parkinson's disease is not well understood. METHODOLOGY We investigated the mechanism of dopamine induced cell death in transgenic PINK1 knockout mouse neurons. We show that dopamine results in mitochondrial depolarisation caused by mitochondrial permeability transition pore (mPTP) opening. Dopamine-induced mPTP opening is dependent on a complex of reactive oxygen species production and calcium signalling. Dopamine-induced mPTP opening, and dopamine-induced cell death, could be prevented by inhibition of reactive oxygen species production, by provision of respiratory chain substrates, and by alteration in calcium signalling. CONCLUSIONS These data demonstrate the mechanism of dopamine toxicity in PINK1 deficient neurons, and suggest potential therapeutic strategies for neuroprotection in Parkinson's disease.
Collapse
Affiliation(s)
- Sonia Gandhi
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Yao Z, Gandhi S, Burchell VS, Plun-Favreau H, Wood NW, Abramov AY. Cell metabolism affects selective vulnerability in PINK1-associated Parkinson's disease. J Cell Sci 2012; 124:4194-202. [PMID: 22223879 DOI: 10.1242/jcs.088260] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial dysfunction plays a primary role in the pathogenesis of Parkinson's disease (PD), particularly in autosomal recessive forms of the disease caused by mutations encoding PINK1. Although mitochondrial pathology can be demonstrated in many cell types, it is neurons that bear the brunt of cell death in PD. We studied the mitochondrial physiology of neurons and muscle cells with loss of function of the nuclear encoded mitochondrial protein PINK1. PINK1 is widely expressed in many types of tissues, but deficiency selectively induces death in neurons. We report here that the same genetic defect results in opposing phenotypes in different cell types, depending on the metabolic properties of the cell. Thus, PINK1-deficient myocytes exhibit high basal mitochondrial membrane potential (Δψm), whereas PINK1-deficient neurons have been shown to exhibit a low Δψm. PINK1 deficiency induces impaired respiration in both cell types, with a concomitant increase in glycolytic activity. We demonstrate that the high glycolytic capacity in myocytes compared with neurons enables them to produce more ATP and, therefore, compensates for the metabolic defects induced by PINK1 deficiency. Furthermore, the high Δψm generated in PINK1 knockout (KO) muscle mitochondria enables them to buffer cytosolic Ca(2+) fluxes, rendering them resistant to Ca(2+) stress effectively. Conversely, PINK1 KO neurons were previously shown to develop mitochondrial Ca(2+) overload and Ca(2+)-induced mitochondrial depolarisation. Prevention of Ca(2+) dysregulation in myocytes might therefore account for the sparing of these cells in PD.
Collapse
Affiliation(s)
- Zhi Yao
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|