1
|
Scopelliti F, Dimartino V, Cattani C, Cavani A. Functional TRPA1 Channels Regulate CD56 dimCD16 + NK Cell Cytotoxicity against Tumor Cells. Int J Mol Sci 2023; 24:14736. [PMID: 37834182 PMCID: PMC10572725 DOI: 10.3390/ijms241914736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channels are expressed on the surface of different cell types, including immune cells. However, TRPA1's role in the context of innate and adaptive immune responses has not been fully elucidated so far. In this study, we aimed at investigating the expression and function of TRPA1 channels on NK cells. Among NK cells, TRPA1 was highly expressed by the CD56dimCD16+ subpopulation, but not by CD56brightCD16- cells, as detected by FACS. TRPA1 activation with the potent ligand allyl isothiocyanate (AITC) induces intracellular calcium flux in CD56dimCD16+ cells, which was prevented by the TRPA1 antagonist HC-030031. AITC treatment increased the membrane around NKp44 and strongly decreased CD16 and CD8 expression, while CD158a, CD159a, NKG2d, NKp46 were substantially unaffected. Importantly, AITC increased the granzyme production and CD107 expression and increased NK cell-mediated cytotoxicity towards the K562 cell line and two different melanoma cell lines. In parallel, TRPA1 activation also plays regulatory roles by affecting the survival of NK cells to limit uncontrolled and prolonged NK cell-mediated cytotoxicity. Our results indicate that the activation of TRPA1 is an important regulatory signal for NK cells, and agonists of TRPA1 could be used to strengthen the tumor response of the immune system.
Collapse
Affiliation(s)
- Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| | - Valentina Dimartino
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
- National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Caterina Cattani
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy (C.C.); (C.A.)
| |
Collapse
|
2
|
Naert R, López-Requena A, Talavera K. TRPA1 Expression and Pathophysiology in Immune Cells. Int J Mol Sci 2021; 22:ijms222111460. [PMID: 34768891 PMCID: PMC8583806 DOI: 10.3390/ijms222111460] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.
Collapse
Affiliation(s)
- Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Ablynx, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
3
|
Morita T, Mitsuyama K, Yamasaki H, Mori A, Yoshimura T, Araki T, Morita M, Tsuruta K, Yamasaki S, Kuwaki K, Yoshioka S, Takedatsu H, Torimura T. Gene Expression of Transient Receptor Potential Channels in Peripheral Blood Mononuclear Cells of Inflammatory Bowel Disease Patients. J Clin Med 2020; 9:jcm9082643. [PMID: 32823895 PMCID: PMC7547374 DOI: 10.3390/jcm9082643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
We examined the expression profile of transient receptor potential (TRP) channels in peripheral blood mononuclear cells (PBMCs) from patients with inflammatory bowel disease (IBD). PBMCs were obtained from 41 ulcerative colitis (UC) patients, 34 Crohn's disease (CD) patients, and 30 normal subjects. mRNA levels of TRP channels were measured using the quantitative real-time polymerase chain reaction, and correlation tests with disease ranking, as well as laboratory parameters, were performed. Compared with controls, TRPV2 and TRPC1 mRNA expression was lower, while that of TRPM2, was higher in PBMCs of UC and CD patients. Moreover, TRPV3 mRNA expression was lower, while that of TRPV4 was higher in CD patients. TRPC6 mRNA expression was higher in patients with CD than in patients with UC. There was also a tendency for the expression of TRPV2 mRNA to be negatively correlated with disease activity in patients with UC and CD, while that of TRPM4 mRNA was negatively correlated with disease activity only in patients with UC. PBMCs from patients with IBD exhibited varying mRNA expression levels of TRP channel members, which may play an important role in the progression of IBD.
Collapse
Affiliation(s)
- Taku Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Keiichi Mitsuyama
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
- Correspondence: ; Tel.: +81-942-31-7561
| | - Hiroshi Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Atsushi Mori
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Tetsuhiro Yoshimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Toshihiro Araki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Masaru Morita
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Kozo Tsuruta
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Sayo Yamasaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| | - Kotaro Kuwaki
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Shinichiro Yoshioka
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Hidetoshi Takedatsu
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
- Inflammatory Bowel Disease Center, Kurume University Hospital, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Takuji Torimura
- Department of Medicine, Division of Gastroenterology, School of Medicine, Kurume University, 67 Asahi-Machi, Kurume 830-0011, Japan; (T.M.); (H.Y.); (A.M.); (T.Y.); (T.A.); (M.M.); (K.T.); (S.Y.); (K.K.); (S.Y.); (H.T.); (T.T.)
| |
Collapse
|
4
|
Nam JH, Kim WK. The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance. Curr Med Chem 2020; 27:1446-1468. [PMID: 30474526 DOI: 10.2174/0929867326666181126113015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea.,Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| |
Collapse
|
5
|
Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Sci Rep 2020; 10:7227. [PMID: 32350291 PMCID: PMC7190874 DOI: 10.1038/s41598-020-61177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The seven-member transient receptor potential canonical genes (TRPC1-7) encode cation channels linked to several human diseases. There is little understanding of the participation of each TRPC in each pathology, considering functional redundancy. Also, most of the inhibitors available are not specific. Thus, we developed mice that lack all of the TRPCs and performed a transcriptome analysis in eight tissues. The aim of this research was to address the impact of the absence of all TRPC channels on gene expression. We obtained a total of 4305 differentially expressed genes (DEGs) in at least one tissue where spleen showed the highest number of DEGs (1371). Just 21 genes were modified in all the tissues. Performing a pathway enrichment analysis, we found that many important signaling pathways were modified in more than one tissue, including PI3K (phosphatidylinositol 3-kinase/protein kinase-B) signaling pathway, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and circadian rhythms. We describe for the first time the changes at the transcriptome level due to the lack of all TRPC proteins in a mouse model and provide a starting point to understand the function of TRPC channels and their possible roles in pathologies.
Collapse
Affiliation(s)
- Karina Formoso
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Sebastian Susperreguy
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Marc Freichel
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
6
|
Tsvilovskyy V, Solis-Lopez A, Almering J, Richter C, Birnbaumer L, Dietrich A, Freichel M. Analysis of Mrgprb2 Receptor-Evoked Ca 2+ Signaling in Bone Marrow Derived (BMMC) and Peritoneal (PMC) Mast Cells of TRPC-Deficient Mice. Front Immunol 2020; 11:564. [PMID: 32322252 PMCID: PMC7156601 DOI: 10.3389/fimmu.2020.00564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022] Open
Abstract
Mast cells are a heterogeneous group of immune cells. The simplest and commonly accepted classification divides them in two groups according to their protease content. We have compared the action of diverse secretagogues on bone marrow derived (BMMC) and peritoneal (PMC) mast cells which represent classical models of mucosal and connective tissue type mast cells in mice. Whereas, antigen stimulation of the FcεRI receptors was similarly effective in triggering elevations of free intracellular Ca2+ concentration ([Ca2+]i) in both BMMC and PMC, robust [Ca2+]i rise following Endothelin-1 stimulation was observed only in a fraction of BMMC. Leukotriene C4 activating cysteinyl leukotriene type I receptors failed to evoke [Ca2+]i rise in either mast cell model. Stimulation of the recently identified target of many small-molecule drugs associated with systemic pseudo-allergic reactions, Mrgprb2, with compound 48/80, a mast cell activator with unknown receptor studied for many years, triggered Ca2+ oscillations in BMMC and robust [Ca2+]i rise in PMCs similarly to that evoked by FcεRI stimulation. [Ca2+]i rise in PMC could also be evoked by other Mrgprb2 agonists such as Tubocurarine, LL-37, and Substance P. The extent of [Ca2+]i rise correlated with mast cell degranulation. Expression analysis of TRPC channels as potential candidates mediating agonist evoked Ca2+ entry revealed the presence of transcripts of all members of the TRPC subfamily of TRP channels in PMCs. The amplitude and AUC of compound 48/80-evoked [Ca2+]i rise was reduced by ~20% in PMC from Trpc1/4/6−/− mice compared to Trpc1/4−/− littermatched control mice, whereas FcεRI-evoked [Ca2+]i rise was unaltered. Whole-cell patch clamp recordings showed that the reduction in compound 48/80-evoked [Ca2+]i rise in Trpc1/4/6−/− PMC was accompanied by a reduced amplitude of Compound 48/80-induced cation currents which exhibited typical features of TRPC currents. Together, this study demonstrates that PMC are an appropriate mast cell model to study mechanisms of Mrgprb2 receptor-mediated mast cell activation, and it reveals that TRPC channels contribute at least partially to Mrgprb2-mediated mast cellactivation but not following FcεRI stimulation. However, the channels conducting most of the Ca2+ entry in mast cells triggered by Mrgprb2 receptor stimulation remains to be identified.
Collapse
Affiliation(s)
- Volodymyr Tsvilovskyy
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alejandra Solis-Lopez
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Julia Almering
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Christin Richter
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Alexander Dietrich
- Walther-Straub Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Tellechea A, Bai S, Dangwal S, Theocharidis G, Nagai M, Koerner S, Cheong JE, Bhasin S, Shih TY, Zheng Y, Zhao W, Zhang C, Li X, Kounas K, Panagiotidou S, Theoharides T, Mooney D, Bhasin M, Sun L, Veves A. Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. J Invest Dermatol 2019; 140:901-911.e11. [PMID: 31568772 DOI: 10.1016/j.jid.2019.08.449] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/09/2023]
Abstract
Impaired wound healing in the diabetic foot is a major problem often leading to amputation. Mast cells have been shown to regulate wound healing in diabetes. We developed an indole-carboxamide type mast cell stabilizer, MCS-01, which proved to be an effective mast cell degranulation inhibitor in vitro and can be delivered topically for prolonged periods through controlled release by specifically designed alginate bandages. In diabetic mice, both pre- and post-wounding, topical MCS-01 application accelerated wound healing comparable to that achieved with systemic mast cell stabilization. Moreover, MCS-01 altered the macrophage phenotype, promoting classically activated polarization. Bulk transcriptome analysis from wounds treated with MCS-01 or placebo showed that MCS-01 significantly modulated the mRNA and microRNA profile of diabetic wounds, stimulated upregulation of pathways linked to acute inflammation and immune cell migration, and activated the NF-κB complex along with other master regulators of inflammation. Single-cell RNA sequencing analysis of 6,154 cells from wounded and unwounded mouse skin revealed that MCS-01 primarily altered the gene expression of mast cells, monocytes, and keratinocytes. Taken together, these findings offer insights into the process of diabetic wound healing and suggest topical mast cell stabilization as a potentially successful treatment for diabetic foot ulceration.
Collapse
Affiliation(s)
- Ana Tellechea
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sha Bai
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seema Dangwal
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Institute for Translational and Therapeutics Strategies, Hannover Medical School, Hannover, Germany
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Masa Nagai
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steffi Koerner
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Swati Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - YongJun Zheng
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wanni Zhao
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cuiping Zhang
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoli Li
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Smaro Panagiotidou
- Laboratory of Immunopharmacology and Drug, Discovery Department of Immunology Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Theoharis Theoharides
- Laboratory of Immunopharmacology and Drug, Discovery Department of Immunology Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - Manoj Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC. Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol 2019; 144:S31-S45. [PMID: 30772496 DOI: 10.1016/j.jaci.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - George K Ainooson
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Riedlinger
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
9
|
Emerging Roles of Diacylglycerol-Sensitive TRPC4/5 Channels. Cells 2018; 7:cells7110218. [PMID: 30463370 PMCID: PMC6262340 DOI: 10.3390/cells7110218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential classical or canonical 4 (TRPC4) and TRPC5 channels are members of the classical or canonical transient receptor potential (TRPC) channel family of non-selective cation channels. TRPC4 and TRPC5 channels are widely accepted as receptor-operated cation channels that are activated in a phospholipase C-dependent manner, following the Gq/11 protein-coupled receptor activation. However, their precise activation mechanism has remained largely elusive for a long time, as the TRPC4 and TRPC5 channels were considered as being insensitive to the second messenger diacylglycerol (DAG) in contrast to the other TRPC channels. Recent findings indicate that the C-terminal interactions with the scaffolding proteins Na+/H+ exchanger regulatory factor 1 and 2 (NHERF1 and NHERF2) dynamically regulate the DAG sensitivity of the TRPC4 and TRPC5 channels. Interestingly, the C-terminal NHERF binding suppresses, while the dissociation of NHERF enables, the DAG sensitivity of the TRPC4 and TRPC5 channels. This leads to the assumption that all of the TRPC channels are DAG sensitive. The identification of the regulatory function of the NHERF proteins in the TRPC4/5-NHERF protein complex offers a new starting point to get deeper insights into the molecular basis of TRPC channel activation. Future studies will have to unravel the physiological and pathophysiological functions of this multi-protein channel complex.
Collapse
|
10
|
Wolfrum C, Kiehlmann E, Pelczar P. TRPC1 regulates brown adipose tissue activity in a PPARγ-dependent manner. Am J Physiol Endocrinol Metab 2018; 315:E825-E832. [PMID: 29989850 DOI: 10.1152/ajpendo.00170.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brown adipose tissue (BAT) has the unique ability to convert energy stored in the form of triglycerides into heat. This property makes BAT a target tissue to increase energy expenditure and improve systemic metabolic control. TRPC1 is a founding member of the TRP protein family that also includes several temperature sensitive channels. We show that TRPC1 is highly expressed in all adipocyte depots including BAT and that Trpc1-deficient mice are prone to weight gain and manifest reduced metabolic control. We also demonstrate that knockdown of TRPC1 in cultured brown adipocytes leads to a downregulation of several metabolic genes, including UCP1 and PPARγ, as well as upregulation of a BAT-specific thermosensitive channel TRPV2, ultimately resulting in impaired respiratory function. We also show that TRPC1 is a possible target of PPARγ, suggesting that TRPC1 is a downstream component of a mechanism that translates metabolic or environmental stimuli into output in the form of BAT activity. Better understanding of the possible role of TRPC1 and other TRP channels in body temperature regulation and BAT function may help us to develop obesity therapies based on BAT activation.
Collapse
Affiliation(s)
- Christian Wolfrum
- Department of Health Science and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Elke Kiehlmann
- Department of Health Science and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel , Basel , Switzerland
| |
Collapse
|
11
|
Ramirez GA, Coletto LA, Sciorati C, Bozzolo EP, Manunta P, Rovere-Querini P, Manfredi AA. Ion Channels and Transporters in Inflammation: Special Focus on TRP Channels and TRPC6. Cells 2018; 7:E70. [PMID: 29973568 PMCID: PMC6070975 DOI: 10.3390/cells7070070] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Allergy and autoimmune diseases are characterised by a multifactorial pathogenic background. Several genes involved in the control of innate and adaptive immunity have been associated with diseases and variably combine with each other as well as with environmental factors and epigenetic processes to shape the characteristics of individual manifestations. Systemic or local perturbations in salt/water balance and in ion exchanges between the intra- and extracellular spaces or among tissues play a role. In this field, usually referred to as elementary immunology, novel evidence has been recently acquired on the role of members of the transient potential receptor (TRP) channel family in several cellular mechanisms of potential significance for the pathophysiology of the immune response. TRP canonical channel 6 (TRPC6) is emerging as a functional element for the control of calcium currents in immune-committed cells and target tissues. In fact, TRPC6 influences leukocytes’ tasks such as transendothelial migration, chemotaxis, phagocytosis and cytokine release. TRPC6 also modulates the sensitivity of immune cells to apoptosis and influences tissue susceptibility to ischemia-reperfusion injury and excitotoxicity. Here, we provide a view of the interactions between ion exchanges and inflammation with a focus on the pathogenesis of immune-mediated diseases and potential future therapeutic implications.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Lavinia A Coletto
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Clara Sciorati
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Enrica P Bozzolo
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Paolo Manunta
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Nephrology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Patrizia Rovere-Querini
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Angelo A Manfredi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
12
|
Suzuki R. The Emerging Picture of Mast Cell Activation: The Complex Regulatory Network of High-Affinity Receptor for Immunoglobulin E Signaling. Biol Pharm Bull 2018; 40:1828-1832. [PMID: 29093329 DOI: 10.1248/bpb.b17-00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now well known that immunoglobulin E (IgE) and mast cells (MCs) are important participants in allergic diseases. MCs contain electron-dense secretory granules which are filled with inflammatory mediators. The interaction of an allergen (antigen) with an antigen-specific IgE-bound high-affinity receptor for IgE (FcεRI) is an essential step in MC activation as well as subsequent downstream signaling events. What we know is that IgE and FcεRI activate a complex regulatory network (i.e., signaling molecules and messengers) that governs both the type of MC activation and the symptoms of allergic disease. This review focuses on recent discoveries that shed new light on FcεRI signaling networks, holding promise for the development of new therapeutic solutions in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
13
|
Wajdner HE, Farrington J, Barnard C, Peachell PT, Schnackenberg CG, Marino JP, Xu X, Affleck K, Begg M, Seward EP. Orai and TRPC channel characterization in Fc εRI-mediated calcium signaling and mediator secretion in human mast cells. Physiol Rep 2017; 5:5/5/e13166. [PMID: 28292887 PMCID: PMC5350174 DOI: 10.14814/phy2.13166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Inappropriate activation of mast cells via the FcεRI receptor leads to the release of inflammatory mediators and symptoms of allergic disease. Calcium influx is a critical regulator of mast cell signaling and is required for exocytosis of preformed mediators and for synthesis of eicosanoids, cytokines and chemokines. Studies in rodent and human mast cells have identified Orai calcium channels as key contributors to FcεRI-initiated mediator release. However, until now the role of TRPC calcium channels in FcεRI-mediated human mast cell signaling has not been published. Here, we show evidence for the expression of Orai 1,2, and 3 and TRPC1 and 6 in primary human lung mast cells and the LAD2 human mast cell line but, we only find evidence of functional contribution of Orai and not TRPC channels to FcεRI-mediated calcium entry. Calcium imaging experiments, utilizing an Orai selective antagonist (Synta66) showed the contribution of Orai to FcεRI-mediated signaling in human mast cells. Although, the use of a TRPC3/6 selective antagonist and agonist (GSK-3503A and GSK-2934A, respectively) did not reveal evidence for TRPC6 contribution to FcεRI-mediated calcium signaling in human mast cells. Similarly, inactivation of STIM1-regulated TRPC1 in human mast cells (as tested by transfecting cells with STIM1-KK684-685EE - TRPC1 gating mutant) failed to alter FcεRI-mediated calcium signaling in LAD2 human mast cells. Mediator release assays confirm that FcεRI-mediated calcium influx through Orai is necessary for histamine and TNFα release but is differentially involved in the generation of cytokines and eicosanoids.
Collapse
Affiliation(s)
- Hannah E Wajdner
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Jasmine Farrington
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Claire Barnard
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Peter T Peachell
- Academic Unit of Respiratory Medicine, University of Sheffield The Royal Hallamshire Hospital, Sheffield, UK
| | | | - Joseph P Marino
- Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Xiaoping Xu
- Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Karen Affleck
- Respiratory Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Malcolm Begg
- Respiratory Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Elizabeth P Seward
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| |
Collapse
|
14
|
Azimi I, Milevskiy MJG, Kaemmerer E, Turner D, Yapa KTDS, Brown MA, Thompson EW, Roberts-Thomson SJ, Monteith GR. TRPC1 is a differential regulator of hypoxia-mediated events and Akt signalling in PTEN-deficient breast cancer cells. J Cell Sci 2017; 130:2292-2305. [PMID: 28559303 DOI: 10.1242/jcs.196659] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a feature of the tumour microenvironment that promotes invasiveness, resistance to chemotherapeutics and cell survival. Our studies identify the transient receptor potential canonical-1 (TRPC1) ion channel as a key component of responses to hypoxia in breast cancer cells. This regulation includes control of specific epithelial to mesenchymal transition (EMT) events and hypoxia-mediated activation of signalling pathways such as activation of the EGFR, STAT3 and the autophagy marker LC3B, through hypoxia-inducible factor-1α (HIF1α)-dependent and -independent mechanisms. TRPC1 regulated HIF1α levels in PTEN-deficient MDA-MB-468 and HCC1569 breast cancer cell lines. This regulation arises from effects on the constitutive translation of HIF1α under normoxic conditions via an Akt-dependent pathway. In further support of the role of TRPC1 in EMT, its expression is closely associated with EMT- and metastasis-related genes in breast tumours, and is enhanced in basal B breast cancer cell lines. TRPC1 expression is also significantly prognostic for basal breast cancers, particularly those classified as lymph node positive. The defined roles of TRPC1 identified here could be therapeutically exploited for the control of oncogenic pathways in breast cancer cells.
Collapse
Affiliation(s)
- Iman Azimi
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Michael J G Milevskiy
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Elke Kaemmerer
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Dane Turner
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Kunsala T D S Yapa
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia
| | - Melissa A Brown
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Erik W Thompson
- Translational Research Institute, Brisbane, Queensland, 4102, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4059, Australia.,University of Melbourne, Department of Surgery, St. Vincent's Hospital, Melbourne, Victoria, 3065, Australia
| | | | - Gregory R Monteith
- The School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia .,Mater Research Institute, The University of Queensland, Brisbane, Queensland, 4101, Australia.,Translational Research Institute, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
15
|
Bai S, Nagai M, Koerner SK, Veves A, Sun L. Structure-activity relationship study and discovery of indazole 3-carboxamides as calcium-release activated calcium channel blockers. Bioorg Med Chem Lett 2017; 27:393-397. [PMID: 28057422 PMCID: PMC5271583 DOI: 10.1016/j.bmcl.2016.12.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 02/04/2023]
Abstract
Aberrant activation of mast cells contributes to the development of numerous diseases including cancer, autoimmune disorders, as well as diabetes and its complications. The influx of extracellular calcium via the highly calcium selective calcium-release activated calcium (CRAC) channel controls mast cell functions. Intracellular calcium homeostasis in mast cells can be maintained via the modulation of the CRAC channel, representing a critical point for therapeutic interventions. We describe the structure-activity relationship study (SAR) of indazole-3-carboxamides as potent CRAC channel blockers and their ability to stabilize mast cells. Our SAR results show that the unique regiochemistry of the amide linker is critical for the inhibition of calcium influx, the release of the pro-inflammatory mediators β-hexosaminidase and tumor necrosis factor α by activated mast cells. Thus, the indazole-3-carboxamide 12d actively inhibits calcium influx and stabilizes mast cells with sub-μM IC50. In contrast, its reverse amide isomer 9c is inactive in the calcium influx assay even at 100μM concentration. This requirement of the specific 3-carboxamide regiochemistry in indazoles is unprecedented in known CRAC channel blockers. The new structural scaffolds described in this report expand the structural diversity of the CRAC channel blockers and may lead to the discovery of novel immune modulators for the treatment of human diseases.
Collapse
Affiliation(s)
- Sha Bai
- Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masazumi Nagai
- Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steffi K Koerner
- Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aristidis Veves
- The Rongxiang Xu, MD Center for Regenerative Therapeutics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Rixecker T, Mathar I, Medert R, Mannebach S, Pfeifer A, Lipp P, Tsvilovskyy V, Freichel M. TRPM4-mediated control of FcεRI-evoked Ca(2+) elevation comprises enhanced plasmalemmal trafficking of TRPM4 channels in connective tissue type mast cells. Sci Rep 2016; 6:32981. [PMID: 27624684 PMCID: PMC5021962 DOI: 10.1038/srep32981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/17/2016] [Indexed: 11/09/2022] Open
Abstract
TRPM4 proteins form Ca2+-activated non selective cation (CAN) channels that affect transmembrane Ca2+-influx by determining the membrane potential. Tight control of the intracellular Ca2+ concentration is essential for mast cell responses. In this study, we analyzed the expression of TRPM4 in peritoneal mast cells (PCMC) as a model for connective tissue type mast cells with respect to FcεRI-evoked calcium changes and the subcellular localization of fluorescently labeled TRPM4 using two viral transduction systems before and following antigen stimulation. Our results show that TRPM4 is expressed in PCMCs, is an essential constituent of the endogenous CAN channels in PCMCs and regulates antigen-evoked increases in intracellular calcium that are significantly enhanced in TRPM4-deficient PCMCs. Compared to PCMCs analyzed before antigen stimulation, the cells depict a substantially increased localization of TRPM4 proteins towards the plasma membrane after FcεRI stimulation. Thus, TRPM4 functions as a limiting factor for antigen evoked calcium rise in connective tissue type mast cells and concurrent translocation of TRPM4 into the plasma membrane is part of this mechanism.
Collapse
Affiliation(s)
- Torben Rixecker
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Ilka Mathar
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Rebekka Medert
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Stefanie Mannebach
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Peter Lipp
- Institut für Molekulare Zellbiologie Universität des Saarlandes, 66421 Homburg, Germany
| | - Volodymyr Tsvilovskyy
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2016; 173:953-69. [PMID: 26603538 DOI: 10.1111/bph.13392] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases.
Collapse
Affiliation(s)
- A Parenti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - F De Logu
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - P Geppetti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - S Benemei
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Constantin B. Role of Scaffolding Proteins in the Regulation of TRPC-Dependent Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:379-403. [PMID: 27161237 DOI: 10.1007/978-3-319-26974-0_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Plasma membrane ion channels, and in particular TRPC channels need a specific membrane environment and association with scaffolding, signaling, and cytoskeleton proteins in order to play their important functional role. The molecular composition of TRPC channels is an important factor in determining channel activation mechanisms. TRPC proteins are incorporated in macromolecular complexes including several key Ca(2 +) signaling proteins as well as proteins involved in vesicle trafficking, cytoskeletal interactions, and scaffolding. Evidence has been provided for association of TRPC with calmodulin (CaM), IP3R, PMCA, Gq/11, RhoA, and a variety of scaffolding proteins. The interaction between TRPC channels with adaptor proteins, determines their mode of regulation as well as their cellular localization and function. Adaptor proteins do not display any enzymatic activity but act as scaffold for the building of signaling complexes. The scaffolding proteins are involved in the assembling of these Ca(2+) signaling complexes, the correct sub-cellular localization of protein partners, and the regulation of the TRPC channelosome. In particular, these proteins, via their multiple protein-protein interaction motifs, can interact with various ion channels involved in the transmembrane potential, and membrane excitability. Scaffolding proteins are key components for the functional organization of TRPC channelosomes that serves as a platform regulating slow Ca(2+) entry, spatially and temporally controlled [Ca(2+)]i signals and Ca(2+) -dependent cellular functions.
Collapse
Affiliation(s)
- Bruno Constantin
- Laboratory STIM, ERL-7368 CNRS-Université de Poitiers, 1, rue Georges Bonnet, Bat. B36, Pôle Biologie-Santé, 86000, Poitiers, France.
| |
Collapse
|
19
|
Abstract
The TRPC1 ion channel was the first mammalian TRP channel to be cloned. In humans, it is encoded by the TRPC1 gene located in chromosome 3. The protein is predicted to consist of six transmembrane segments with the N- and C-termini located in the cytoplasm. The extracellular loop connecting transmembrane segments 5 and 6 participates in the formation of the ionic pore region. Inside the cell, TRPC1 is present in the endoplasmic reticulum, plasma membrane, intracellular vesicles, and primary cilium, an antenna-like sensory organelle functioning as a signaling platform. In human and rodent tissues, it shows an almost ubiquitous expression. TRPC1 interacts with a diverse group of proteins including ion channel subunits, receptors, and cytosolic proteins to mediate its effect on Ca(2+) signaling. It primarily functions as a cation nonselective channel within pathways controlling Ca(2+) entry in response to cell surface receptor activation. Through these pathways, it affects basic cell functions, such as proliferation and survival, differentiation, secretion, and cell migration, as well as cell type-specific functions such as chemotropic turning of neuronal growth cones and myoblast fusion. The biological role of TRPC1 has been studied in genetically engineered mice where the Trpc1 gene has been experimentally ablated. Although these mice live to adulthood, they show defects in several organs and tissues, such as the cardiovascular, central nervous, skeletal and muscular, and immune systems. Genetic and functional studies have implicated TRPC1 in diabetic nephropathy, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, cancer, seizures, and Darier-White skin disease.
Collapse
Affiliation(s)
- Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|
20
|
Saul S, Stanisz H, Backes CS, Schwarz EC, Hoth M. How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol 2013; 739:49-59. [PMID: 24291108 DOI: 10.1016/j.ejphar.2013.10.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022]
Abstract
Four types of Ca(2+) selective ion channels are known, ten voltage gated Ca(2+) (CaV) channels, four CatSper channels, three store operated CRAC channels (ORAI channels) and at least two members of the TRPV subfamily (TRPV5, TRPV6). Some of the other TRP channels also show some Ca(2+) selectivity like certain splice variants of TRPM3. In addition to Ca(2+) selective channels, various cation channels play an important role for Ca(2+) entry and furthermore, they may also regulate Ca(2+) entry through other channels by modulating the membrane potential or other means as outlined in this review. Of the different types of cation channels, TRP channels form one of the most prominent families of non-selective cation channels with functional relevance in electrically non-excitable and electrically excitable cell types. Among these, the seven channels of the TRPC subfamily are rather non-selective with very modest Ca(2+) selectivity, whereas in the other subfamilies, cation selectivity ranges from monovalent selectivity (i.e. TRPM4, TRPM5) to divalent selectivity (i.e. TRPM6, TRPM7) or Ca(2+) selectivity (i.e. TRPV5, TRPV6). Rather than discussing the heavily reviewed individual functions of ORAI or TRP channels, we summarize data and present models how TRP and ORAI may functionally interact to guide cellular functions. We focus on T lymphocytes representing a more ORAI-dominated tissue and skin as model system in which both ORAI and TRP channel have been reported to control relevant functions. We present several interaction models how ORAI and TRP may interfere with each other's function.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Hedwig Stanisz
- Department of Dermatology, School of Medicine, Saarland University, Homburg, Germany
| | - Christian S Backes
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
21
|
Contribution and regulation of TRPC channels in store-operated Ca2+ entry. CURRENT TOPICS IN MEMBRANES 2013; 71:149-79. [PMID: 23890115 DOI: 10.1016/b978-0-12-407870-3.00007-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Store-operated calcium entry (SOCE) is activated in response to depletion of the endoplasmic reticulum-Ca(2+) stores following stimulation of plasma membrane receptors that couple to PIP2 hydrolysis and IP3 generation. Search for the molecular components of SOCE channels led to the identification of mammalian transient receptor potential canonical (TRPC) family of calcium-permeable channels (TRPC1-TRPC7), which are all activated in response to stimuli that result in PIP2 hydrolysis. While several TRPCs, including TRPC1, TRPC3, and TRPC4, have been implicated in SOCE, the data are most consistent for TRPC1. Extensive studies in cell lines and knockout mouse models have established the contribution of TRPC1 to SOCE. Furthermore, there is a critical functional interaction between TRPC1 and the key components of SOCE, STIM1, and Orai1, which determines the activation of TRPC1. Orai1-mediated Ca(2+) entry is required for recruitment of TRPC1 and its insertion into surface membranes while STIM1 gates the channel. Notably, TRPC1 and Orai1 generate distinct patterns of Ca(2+) signals in cells that are decoded for the regulation of specific cellular functions. Thus, SOCE appears to be a complex process that depends on temporal and spatial coordination of several distinct steps mediated by proteins in different cellular compartments. Emerging data suggest that, in many cell types, the net Ca(2+) entry measured in response to store depletion is the result of the coordinated regulation of different calcium-permeable ion channels. Orai1 and STIM1 are central players in this process, and by mediating recruitment or activation of other Ca(2+) channels, Orai1-CRAC function can elicit rapid changes in global and local [Ca(2+)]i signals in cells. It is most likely that the type of channels and the [Ca(2+)]i signature that are generated by this process reflect the physiological function of the cell that is regulated by Ca(2+).
Collapse
|