1
|
Moccia F, Totaro A, Guerra G, Testa G. Ca 2+ Signaling in Cardiac Fibroblasts: An Emerging Signaling Pathway Driving Fibrotic Remodeling in Cardiac Disorders. Biomedicines 2025; 13:734. [PMID: 40149710 PMCID: PMC11940070 DOI: 10.3390/biomedicines13030734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiac fibrosis is a scarring event that occurs in the myocardium in response to multiple cardiovascular disorders, such as acute myocardial infarction (AMI), ischemic cardiomyopathy, dilated cardiomyopathy, hypertensive heart disease, inflammatory heart disease, diabetic cardiomyopathy, and aortic stenosis. Fibrotic remodeling is mainly sustained by the differentiation of fibroblasts into myofibroblasts, which synthesize and secrete most of the extracellular matrix (ECM) proteins. An increase in the intracellular Ca2+ concentration ([Ca2+]i) in cardiac fibroblasts is emerging as a critical mediator of the fibrogenic signaling cascade. Herein, we review the mechanisms that may shape intracellular Ca2+ signals involved in fibroblast transdifferentiation into myofibroblasts. We focus our attention on the functional interplay between inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) and store-operated Ca2+ entry (SOCE). In accordance with this, InsP3Rs and SOCE drive the Ca2+ response elicited by Gq-protein coupled receptors (GqPCRs) that promote fibrotic remodeling. Then, we describe the additional mechanisms that sustain extracellular Ca2+ entry, including receptor-operated Ca2+ entry (ROCE), P2X receptors, Transient Receptor Potential (TRP) channels, and Piezo1 channels. In parallel, we discuss the pharmacological manipulation of the Ca2+ handling machinery as a promising approach to mitigate or reverse fibrotic remodeling in cardiac disorders.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (A.T.); (G.G.); (G.T.)
| | | | | | | |
Collapse
|
2
|
Rinne A, Pluteanu F. Ca 2+ Signaling in Cardiovascular Fibroblasts. Biomolecules 2024; 14:1365. [PMID: 39595542 PMCID: PMC11592142 DOI: 10.3390/biom14111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrogenesis is a physiological process required for wound healing and tissue repair. It is induced by activation of quiescent fibroblasts, which first proliferate and then change their phenotype into migratory, contractile myofibroblasts. Myofibroblasts secrete extracellular matrix proteins, such as collagen, to form a scar. Once the healing process is terminated, most myofibroblasts undergo apoptosis. However, in some tissues, such as the heart, myofibroblasts remain active and sensitive to neurohumoral factors and inflammatory mediators, which lead eventually to excessive organ fibrosis. Many cellular processes involved in fibroblast activation, including cell proliferation, protein secretion and cell contraction, are highly regulated by intracellular Ca2+ signals. This review summarizes current research on Ca2+ signaling pathways underlying fibroblast activation. We present receptor- and ion channel-mediated Ca2+ signaling pathways, discuss how localized Ca2+ signals of the cell nucleus may be involved in fibroblast activation and present Ca2+-sensitive transcription pathways relevant for fibroblast biology. When investigated, we highlight how the function of Ca2+-handling proteins changes during cardiac and pulmonary fibrosis. Many aspects of Ca2+ signaling remain unexplored in different types of cardiovascular fibroblasts in relation to pathologies, and a better understanding of Ca2+ signaling in fibroblasts will help to design targeted therapies against fibrosis.
Collapse
Affiliation(s)
- Andreas Rinne
- Department of Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania;
| | - Florentina Pluteanu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
3
|
Loeck T, Schwab A. The role of the Na +/Ca 2+-exchanger (NCX) in cancer-associated fibroblasts. Biol Chem 2023; 404:325-337. [PMID: 36594183 DOI: 10.1515/hsz-2022-0253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Cancer is characterized by uncontrolled growth, invasion, and metastasis. In addition to solid cancer cells, cancer-associated fibroblasts (CAFs) play important roles in cancer pathophysiology. They arise from "healthy" cells but get manipulated by solid cancer cells to supply them and develop a tumor microenvironment (TME) that protects the cancer cells from the immune defense. A wide variety of cell types can differentiate into CAFs, including fibroblasts, endothelial cells, and epithelial cells. Precise Ca2+ regulation is essential for each cell including CAFs. The electrogenic Na+/Ca2+ exchanger (NCX) is one of the ubiquitously expressed regulatory Ca2+ transport proteins that rapidly responds to changes of the intracellular ion concentrations. Its transport function is also influenced by the membrane potential and thereby indirectly by the activity of ion channels. NCX transports Ca2+ out of the cell (forward mode) or allows its influx (reverse mode), always in exchange for 3 Na+ ions that are moved into the opposite direction. In this review, we discuss the functional roles NCX has in CAFs and how these depend on the properties of the TME. NCX activity modifies migration and leads to a reduced proliferation and apoptosis. The effect of the NCX in fibrosis is still largely unknown.
Collapse
Affiliation(s)
- Thorsten Loeck
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| | - Albrecht Schwab
- Institut für Physiologie II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| |
Collapse
|
4
|
Chung CC, Lin YK, Chen YC, Kao YH, Yeh YH, Trang NN, Chen YJ. Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis. Cardiovasc Diabetol 2023; 22:27. [PMID: 36747205 PMCID: PMC9903522 DOI: 10.1186/s12933-023-01756-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The novel sodium-glucose co-transporter 2 inhibitor (SGLT2i) potentially ameliorates heart failure and reduces cardiac arrhythmia. Cardiac fibrosis plays a pivotal role in the pathophysiology of HF and atrial myopathy, but the effect of SGLT2i on fibrogenesis remains to be elucidated. This study investigated whether SGLT2i directly modulates fibroblast activities and its underlying mechanisms. METHODS AND RESULTS Migration, proliferation analyses, intracellular pH assay, intracellular inositol triphosphate (IP3) assay, Ca2+ fluorescence imaging, and Western blotting were applied to human atrial fibroblasts. Empagliflozin (an SGLT2i, 1, or 5 μmol/L) reduced migration capability and collagen type I, and III production. Compared with control cells, empagliflozin (1 μmol/L)- treated atrial fibroblasts exhibited lower endoplasmic reticulum (ER) Ca2+ leakage, Ca2+ entry, inositol trisphosphate (IP3), lower expression of phosphorylated phospholipase C (PLC), and lower intracellular pH. In the presence of cariporide (an Na+-H+ exchanger (NHE) inhibitor, 10 μmol/L), control and empagliflozin (1 μmol/L)-treated atrial fibroblasts revealed similar intracellular pH, ER Ca2+ leakage, Ca2+ entry, phosphorylated PLC, pro-collagen type I, type III protein expression, and migration capability. Moreover, empagliflozin (10 mg/kg/day orally for 28 consecutive days) significantly increased left ventricle systolic function, ß-hydroxybutyrate and decreased atrial fibrosis, in isoproterenol (100 mg/kg, subcutaneous injection)-induced HF rats. CONCLUSIONS By inhibiting NHE, empagliflozin decreases the expression of phosphorylated PLC and IP3 production, thereby reducing ER Ca2+ release, extracellular Ca2+ entry and the profibrotic activities of atrial fibroblasts.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- grid.260565.20000 0004 0634 0356Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yung-Hsin Yeh
- grid.413801.f0000 0001 0711 0593Division of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nguyen Ngoc Trang
- grid.414163.50000 0004 4691 4377Radiology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan.
| |
Collapse
|
5
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
6
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
7
|
Gwanyanya A, Mubagwa K. Emerging role of transient receptor potential (TRP) ion channels in cardiac fibroblast pathophysiology. Front Physiol 2022; 13:968393. [PMID: 36277180 PMCID: PMC9583832 DOI: 10.3389/fphys.2022.968393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibroblasts make up a major proportion of non-excitable cells in the heart and contribute to the cardiac structural integrity and maintenance of the extracellular matrix. During myocardial injury, fibroblasts can be activated to trans-differentiate into myofibroblasts, which secrete extracellular matrix components as part of healing, but may also induce cardiac fibrosis and pathological cardiac structural and electrical remodeling. The mechanisms regulating such cellular processes still require clarification, but the identification of transient receptor potential (TRP) channels in cardiac fibroblasts could provide further insights into the fibroblast-related pathophysiology. TRP proteins belong to a diverse superfamily, with subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins form non-selective channels that are permeable to cations like Na+ and Ca2+ and are activated by various chemical and physical stimuli. This review highlights the role of TRP channels in cardiac fibroblasts and the possible underlying signaling mechanisms. Changes in the expression or activity of TRPs such as TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and myofibroblasts, especially under pathological conditions. Such TRPs contribute to cardiac fibroblast proliferation and differentiation as well as to disease conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in cardiac disease.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Asfree Gwanyanya,
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, K U Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| |
Collapse
|
8
|
Jacobs T, Abdinghoff J, Tschernig T. Protein detection and localization of the non-selective cation channel TRPC6 in the human heart. Eur J Pharmacol 2022; 924:174972. [PMID: 35483666 DOI: 10.1016/j.ejphar.2022.174972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Abstract
Due to longer lifespans in societies in industrialized countries, cardiovascular diseases are becoming increasingly important for medical research. It has already been shown that the cell membrane-bound, non-selective TRPC6 ion channel is important in the pathogenesis of heart diseases. Among other things, it is permeable to calcium ion, which plays a critical role in cardiac contraction and relaxation. The TRPC6 ion channel is a promising therapeutic target in the treatment of cardiovascular diseases. A deeper understanding of the physiological and pathophysiological role as well as the localization of TRPC6 in human cardiac tissue is the basis for new drug development. Although the TRPC6 channel has been detected in animal studies, at the mRNA level in humans, and sparse TRPC6 protein has been detected in humans, there are no systematic studies of TRPC6 protein detection in the human heart. For the first time, TRPC6 ion channel protein was detected histologically in human heart tissue from body donors in different structures, localizations, and histological layers - particularly in cardiomyocytes and intramuscular arterioles - by immunohistochemistry, just as TRPC6 expression has already been shown in animal models of the heart by other research groups. In the sense of the translational concept, this indicates a possible transferability of research results from animal models to humans.
Collapse
Affiliation(s)
- Tobias Jacobs
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Jan Abdinghoff
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Medical Campus, Homburg, Saar, Germany.
| |
Collapse
|
9
|
Li W, Ehrich M. Effects of chlorpyrifos on transient receptor potential channels. Toxicol Lett 2022; 358:100-104. [DOI: 10.1016/j.toxlet.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023]
|
10
|
Regional Diversities in Fibrogenesis Weighed as a Key Determinant for Atrial Arrhythmogenesis. Biomedicines 2021; 9:biomedicines9121900. [PMID: 34944715 PMCID: PMC8698388 DOI: 10.3390/biomedicines9121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrosis plays a key role in atrial myopathy, resulting in the genesis of atrial fibrillation (AF). The abnormal distribution of fibrotic tissue, electrical coupling, paracrine interactions, and biomechanical–electrical interactions have all been suggested as causes of fibrosis-related arrhythmogenesis. Moreover, the regional difference in fibrogenesis, specifically the left atrium (LA) exhibiting a higher arrhythmogenesis and level of fibrosis than the right atrium (RA) in AF, is a key contributor to atrial arrhythmogenesis. LA fibroblasts have greater profibrotic cellular activities than RA fibroblasts, but knowledge about the regional diversity of atrial regional fibrogenesis remains limited. This article provides a comprehensive review of research findings on the association between fibrogenesis and arrhythmogenesis from laboratory to clinical evidence and updates the current understanding of the potential mechanism underlying the difference in fibrogenesis between the LA and RA.
Collapse
|
11
|
Transient Receptor Potential Channels in the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158188. [PMID: 34360952 PMCID: PMC8348042 DOI: 10.3390/ijms22158188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.
Collapse
|
12
|
Xu J, Wen X, Fu Z, Jiang Y, Hong W, Liu R, Li S, Cao W, Pu J, Huang L, Li B, Ran P, Peng G. Chronic hypoxia promoted pulmonary arterial smooth muscle cells proliferation through upregulated calcium-sensing receptorcanonical transient receptor potential 1/6 pathway. Microcirculation 2021; 28:e12715. [PMID: 34008915 DOI: 10.1111/micc.12715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Although both calcium-sensing receptor (CaSR) and canonical transient receptor potential (TRPC) proteins contribute to chronic hypoxia (CH)-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation, the relationship between CaSR and TRPC in hypoxic PASMCs proliferation remains poorly understood. The goal of this study was to identify that CH promotes PASMCs proliferation through CaSR-TRPC pathway. METHODS Rat PASMCs were isolated and treated with CH. Cell proliferation was assessed by cell counting, CCK-8 assay, and EdU incorporation. CaSR and TRPC expressions were determined by qPCR and Western blotting. Store-operated Ca2+ entry (SOCE) was assessed by extracellular Ca2+ restoration. RESULTS In PASMCs, CH enhanced the cell number, cell viability and DNA synthesis, which is accompanied by upregulated expression of CaSR, TRPC1 and TRPC6. Negative CaSR modulators (NPS2143, NPS2390) inhibited, whereas positive modulators (spermine, R568) enhanced, the CH-induced increases in cell number, cell viability and DNA synthesis in PASMCs. Knockdown of CaSR by siRNA inhibited the CH-induced upregulation of TRPC1 and TRPC6 and enhancement of SOCE and attenuated the CH-induced enhancements of cell number, cell viability and DNA synthesis in PASMCs. However, neither siTRPC1 nor siTRPC6 had an effect on the CH-induced CaSR upregulation, although both significantly attenuated the CH-induced enhancements of cell number, cell viability and DNA synthesis in PASMCs. CONCLUSION These results demonstrate that upregulated CaSR-TRPC1/6 pathway mediating PASMCs proliferation is an important pathogenic mechanism under hypoxic conditions.
Collapse
Affiliation(s)
- Juan Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing Wen
- Department of Acupuncture, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zhenli Fu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongliang Jiang
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rongmin Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaoxing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinding Pu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingmei Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The Division of Pulmonary and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Allyl isothiocyanate (AITC) activates nonselective cation currents in human cardiac fibroblasts: possible involvement of TRPA1. Heliyon 2021; 7:e05816. [PMID: 33458442 PMCID: PMC7797518 DOI: 10.1016/j.heliyon.2020.e05816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/11/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
The effects of allyl isothiocyanate (AITC), transient receptor potential ankyrin 1 (TRPA1) agonist, on cultured human cardiac fibroblasts were examined by measuring intracellular Ca2+ concentration [Ca2+]i and whole-cell voltage clamp techniques. AITC (200 μM) increased Ca2+ entry in the presence of [Ca2+]i. Ruthenium red (RR) (30 μM), and La3+ (0.5 mM), a general cation channel blocker, inhibited AITC-induced Ca2+ entry. Under the patch pipette filled with Cs+- and EGTA-solution, AITC induced the current of a reversal potential (Er) of approximately +0 mV. When extracellular Na+ ion was changed by NMDG+, the inward current activated by AITC was markedly reduced. La3+ and RR inhibited the AITC-induced current. The conventional RT-PCR analysis, Western blot, and immunocytochemical studies showed TRPA1 mRNA and protein expression. The present study shows the first evidence for functional Ca2+-permeable nonselective cation currents induced by AITC, possibly via TRPA1 in human cardiac fibroblast.
Collapse
|
14
|
Transient receptor potential channel regulation by growth factors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118950. [PMID: 33421536 DOI: 10.1016/j.bbamcr.2021.118950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Calcium (Ca2+) is one of the most universal secondary messengers, owing its success to the immense concentration gradient across the plasma membrane. Dysregulation of Ca2+ homeostasis can result in severe cell dysfunction, thereby initiating several pathologies like tumorigenesis and fibrosis. Transient receptor potential (TRP) channels represent a superfamily of Ca2+-permeable ion channels that convey diverse physical and chemical stimuli into a physiological signal. Their broad expression pattern and gating promiscuity support their potential involvement in the cellular response to an altering environment. Growth factors (GF) are essential biochemical messengers that contribute to these environmental changes. Since Ca2+ is essential in GF signaling, altering TRP channel expression or function could be a valid strategy for GF to exert their effect onto their target. In this review, a comprehensive understanding of the current knowledge regarding the activation and/or modulation of TRP channels by GF is presented.
Collapse
|
15
|
Chandrasekaran A, Lee MY, Zhang X, Hasan S, Desta H, Tenenbaum SA, Melendez JA. Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype. Exp Biol Med (Maywood) 2020; 245:1560-1570. [PMID: 32686475 PMCID: PMC7787549 DOI: 10.1177/1535370220943122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/27/2020] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Through its ability to evoke responses from cells in a paracrine fashion, the senescence-associated secretory phenotype (SASP) has been linked to numerous age-associated disease pathologies including tumor invasion, cardiovascular dysfunction, neuroinflammation, osteoarthritis, and renal disease. Strategies which limit the amplitude and duration of SASP serve to delay age-related degenerative decline. Here we demonstrate that the SASP regulation is linked to shifts in intracellular Ca2+ homeostasis and strategies which rescue redox-dependent calcium entry including enzymatic H2O2 scavenging, TRP modulation, or mTOR inhibition block SASP and TRPC6 gene expression. As Ca2+ is indispensable for secretion from both secretory and non-secretory cells, it is exciting to speculate that the expression of plasma lamellar TRP channels critical for the maintenance of intracellular Ca2+ homeostasis may be coordinately regulated with the SASP.
Collapse
Affiliation(s)
- Akshaya Chandrasekaran
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - May Y Lee
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Xuexin Zhang
- College of Medicine, Penn State University, Hershey, PA 17033, USA
| | - Shaheen Hasan
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Habben Desta
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, NY 12203, USA
| |
Collapse
|
16
|
Camacho Londoño JE, Kuryshev V, Zorn M, Saar K, Tian Q, Hübner N, Nawroth P, Dietrich A, Birnbaumer L, Lipp P, Dieterich C, Freichel M. Transcriptional signatures regulated by TRPC1/C4-mediated Background Ca 2+ entry after pressure-overload induced cardiac remodelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:86-104. [PMID: 32738354 DOI: 10.1016/j.pbiomolbio.2020.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
AIMS After summarizing current concepts for the role of TRPC cation channels in cardiac cells and in processes triggered by mechanical stimuli arising e.g. during pressure overload, we analysed the role of TRPC1 and TRPC4 for background Ca2+ entry (BGCE) and for cardiac pressure overload induced transcriptional remodelling. METHODS AND RESULTS Mn2+-quench analysis in cardiomyocytes from several Trpc-deficient mice revealed that both TRPC1 and TRPC4 are required for BGCE. Electrically-evoked cell shortening of cardiomyocytes from TRPC1/C4-DKO mice was reduced, whereas parameters of cardiac contractility and relaxation assessed in vivo were unaltered. As pathological cardiac remodelling in mice depends on their genetic background, and the development of cardiac remodelling was found to be reduced in TRPC1/C4-DKO mice on a mixed genetic background, we studied TRPC1/C4-DKO mice on a C57BL6/N genetic background. Cardiac hypertrophy was reduced in those mice after chronic isoproterenol infusion (-51.4%) or after one week of transverse aortic constriction (TAC; -73.0%). This last manoeuvre was preceded by changes in the pressure overload induced transcriptional program as analysed by RNA sequencing. Genes encoding specific collagens, the Mef2 target myomaxin and the gene encoding the mechanosensitive channel Piezo2 were up-regulated after TAC in wild type but not in TRPC1/C4-DKO hearts. CONCLUSIONS Deletion of the TRPC1 and TRPC4 channel proteins protects against development of pathological cardiac hypertrophy independently of the genetic background. To determine if the TRPC1/C4-dependent changes in the pressure overload induced alterations in the transcriptional program causally contribute to cardio-protection needs to be elaborated in future studies.
Collapse
Affiliation(s)
- Juan E Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| | - Vladimir Kuryshev
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Markus Zorn
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kathrin Saar
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Qinghai Tian
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Norbert Hübner
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany; Berlin Institute of Health (BIH), 10178, Berlin, Germany; Charité -Universitätsmedizin, 10117, Berlin, Germany
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120, Heidelberg, Germany; German Center for Diabetes Research (DZD), Germany; Institute for Diabetes and Cancer IDC Helmholtz Center Munich, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Dept. of Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität, 80336, München, Germany
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, NIEHS, North Carolina, USA and Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Peter Lipp
- Medical Faculty, Centre for Molecular Signalling (PZMS), Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Christoph Dieterich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany; Innere Medizin III, Bioinformatik und Systemkardiologie, Klaus Tschira Institute for Computational Cardiology, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, 69120, Germany.
| |
Collapse
|
17
|
BRAF and NRAS mutated melanoma: Different Ca 2+ responses, Na +/Ca 2+ exchanger expression, and sensitivity to inhibitors. Cell Calcium 2020; 90:102241. [PMID: 32562975 DOI: 10.1016/j.ceca.2020.102241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023]
Abstract
Calcium is a ubiquitous intracellular second messenger, playing central roles in the regulation of several biological processes. Alterations in Ca2+ homeostasis and signaling are an important feature of tumor cells to acquire proliferative and survival advantages, which include structural and functional changes in storage capacity, channels, and pumps. Here, we investigated the differences in Ca2+ homeostasis in vemurafenib-responsive and non-responsive melanoma cells. Also, the expression of the Na+/Ca2+ exchanger (NCX) and the impact of its inhibition were studied. For this, it was used B-RAFV600E and NRASQ61R-mutated human melanoma cells. The intracellular Ca2+ chelator BAPTA-AM decreased the viability of SK-MEL-147 but not of SK-MEL-19 and EGTA sensitized NRASQ61R-mutated cells to vemurafenib. These cells also presented a smaller response to thapsargin and ionomycin regarding the cytosolic Ca2+ levels in relation to SK-MEL-19, which was associated to an increased expression of NCX1, NO basal levels, and sensitivity to NCX inhibitors. These data highlight the differences between B-RAFV600E and NRASQ61R-mutated melanoma cells in response to Ca2+ stimuli and point to the potential combination of clinically used chemotherapeutic drugs, including vemurafenib, with NCX inhibitors as a new therapeutic strategy to the treatment of melanoma.
Collapse
|
18
|
TGF-β Signaling Regulates SLC8A3 Expression and Prevents Oxidative Stress in Developing Midbrain Dopaminergic and Dorsal Raphe Serotonergic Neurons. Int J Mol Sci 2020; 21:ijms21082735. [PMID: 32326436 PMCID: PMC7216069 DOI: 10.3390/ijms21082735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 01/15/2023] Open
Abstract
Calcium homeostasis is a cellular process required for proper cell function and survival, maintained by the coordinated action of several transporters, among them members of the Na+/Ca2+-exchanger family, such as SLC8A3. Transforming growth factor beta (TGF-β) signaling defines neuronal development and survival and may regulate the expression of channels and transporters. We investigated the regulation of SLC8A3 by TGF-β in a conditional knockout mouse with deletion of TGF-β signaling from Engrailed 1-expressing cells, i.e., in cells from the midbrain and rhombomere 1, and elucidated the underlying molecular mechanisms. The results show that SLC8A3 is significantly downregulated in developing dopaminergic and dorsal raphe serotonergic neurons in mutants and that low SLC8A3 abundance prevents the expression of the anti-apoptotic protein Bcl-xL. TGF-β signaling affects SLC8A3 via the canonical and p38 signaling pathway and may increase the binding of Smad4 to the Slc8a3 promoter. Expression of the lipid peroxidation marker malondialdehyde (MDA) was increased following knockdown of Slc8a3 expression in vitro. In neurons lacking TGF-β signaling, the number of MDA- and 4-hydroxynonenal (4-HNE)-positive cells was significantly increased, accompanied with increased cellular 4-HNE abundance. These results suggest that TGF-β contributes to the regulation of SLC8A3 expression in developing dopaminergic and dorsal raphe serotonergic neurons, thereby preventing oxidative stress.
Collapse
|
19
|
Ahmad AA, Streiff ME, Hunter C, Sachse FB. Modulation of Calcium Transients in Cardiomyocytes by Transient Receptor Potential Canonical 6 Channels. Front Physiol 2020; 11:44. [PMID: 32116757 DOI: 10.3389/fphys.2020.00044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channels are non-selective cation channels that are thought to underlie mechano-modulation of calcium signaling in cardiomyocytes. TRPC6 channels are involved in development of cardiac hypertrophy and related calcineurin-nuclear factor of activated T cells (NFAT) signaling. However, the exact location and roles of TRPC6 channels remain ill-defined in cardiomyocytes. We used an expression system based on neonatal rat ventricular myocytes (NRVMs) to investigate the location of TRPC6 channels and their role in calcium signaling. NRVMs isolated from 1- to 2-day-old animals were cultured and infected with an adenoviral vector to express enhanced-green fluorescent protein (eGFP) or TRPC6-eGFP. After 3 days, NRVMs were fixed, immunolabeled, and imaged with confocal and super-resolution microscopy to determine TRPC6 localization. Cytosolic calcium transients at 0.5 and 1 Hz pacing rates were recorded in NRVMs using indo-1, a ratio-metric calcium dye. Confocal and super-resolution microscopy suggested that TRPC6-eGFP localized to the sarcolemma. NRVMs infected with TRPC6-eGFP exhibited higher diastolic and systolic cytosolic calcium concentration as well as increased sarcoplasmic reticulum (SR) calcium load compared to eGFP infected cells. We applied a computer model comprising sarcolemmal TRPC6 current to explain our experimental findings. Altogether, our studies indicate that TRPC6 channels play a role in sarcolemmal and intracellular calcium signaling in cardiomyocytes. Our findings support the hypothesis that upregulation or activation of TRPC6 channels, e.g., in disease, leads to sustained elevation of the cytosolic calcium concentration, which is thought to activate calcineurin-NFAT signaling and cardiac hypertrophic remodeling. Also, our findings support the hypothesis that mechanosensitivity of TRPC6 channels modulates cytosolic calcium transients and SR calcium load.
Collapse
Affiliation(s)
- Azmi A Ahmad
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Molly E Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Chris Hunter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
20
|
TRPC Channels in Cardiac Plasticity. Cells 2020; 9:cells9020454. [PMID: 32079284 PMCID: PMC7072762 DOI: 10.3390/cells9020454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023] Open
Abstract
The heart flexibly changes its structure in response to changing environments and oxygen/nutrition demands of the body. Increased and decreased mechanical loading induces hypertrophy and atrophy of cardiomyocytes, respectively. In physiological conditions, these structural changes of the heart are reversible. However, chronic stresses such as hypertension or cancer cachexia cause irreversible remodeling of the heart, leading to heart failure. Accumulating evidence indicates that calcium dyshomeostasis and aberrant reactive oxygen species production cause pathological heart remodeling. Canonical transient receptor potential (TRPC) is a nonselective cation channel subfamily whose multimodal activation or modulation of channel activity play important roles in a plethora of cellular physiology. Roles of TRPC channels in cardiac physiology have been reported in pathological cardiac remodeling. In this review, we summarize recent findings regarding the importance of TRPC channels in flexible cardiac remodeling (i.e., cardiac plasticity) in response to environmental stresses and discuss questions that should be addressed in the near future.
Collapse
|
21
|
Chung CC, Lin YK, Chen YC, Kao YH, Lee TI, Chen YJ. Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. J Transl Med 2020; 100:285-296. [PMID: 31748680 DOI: 10.1038/s41374-019-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/14/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a pivotal activator of angiogenesis and calcium (Ca2+) signaling in endothelial cells, was shown to increase collagen production in atrial fibroblasts. In this study, we evaluated whether VEGF may regulate Ca2+ homeostasis in atrial fibroblasts and contribute to its profibrogenesis. Migration, and proliferation analyses, patch-clamp assay, Ca2+ fluorescence imaging, and western blotting were performed using VEGF-treated (300 pg/mL or 1000 pg/mL) human atrial fibroblasts with or without coadministration of Ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L), or KN93 (a Ca2+/calmodulin-dependent protein kinase II [CaMKII] inhibitor, 10 μmol/L). VEGF (1000 pg/mL) increased migration, myofibroblast differentiation, pro-collagen type I, pro-collagen type III production, and phosphorylated VEGF receptor 1 expression of fibroblasts. VEGF (1000 pg/mL) increased the nonselective cation current (INSC) of transient receptor potential (TRP) channels and potassium current of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels thereby upregulating Ca2+ entry. VEGF upregulated phosphorylated ERK expression. An ERK inhibitor (PD98059, 50 μmol/L) attenuated VEGF-activated INSC of TRP channels. The presence of EGTA attenuated the profibrotic effects of VEGF on pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and migratory capabilities of fibroblasts. VEGF upregulated the expression of phosphorylated CaMKII in fibroblasts, which was attenuated by EGTA. In addition, KN93 reduced VEGF-increased pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and the migratory capabilities of fibroblasts. In conclusion, we found that VEGF increases atrial fibroblast activity through CaMKII signaling by enhancing Ca2+ entry. Our findings provide benchside evidence leading to a potential novel strategy targeting atrial myopathy and arrhythmofibrosis.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Angiotensin-II-Evoked Ca 2+ Entry in Murine Cardiac Fibroblasts Does Not Depend on TRPC Channels. Cells 2020; 9:cells9020322. [PMID: 32013125 PMCID: PMC7072683 DOI: 10.3390/cells9020322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
TRPC proteins form cation conducting channels regulated by different stimuli and are regulators of the cellular calcium homeostasis. TRPC are expressed in cardiac cells including cardiac fibroblasts (CFs) and have been implicated in the development of pathological cardiac remodeling including fibrosis. Using Ca2+ imaging and several compound TRPC knockout mouse lines we analyzed the involvement of TRPC proteins for the angiotensin II (AngII)-induced changes in Ca2+ homeostasis in CFs isolated from adult mice. Using qPCR we detected transcripts of all Trpc genes in CFs; Trpc1, Trpc3 and Trpc4 being the most abundant ones. We show that the AngII-induced Ca2+ entry but also Ca2+ release from intracellular stores are critically dependent on the density of CFs in culture and are inversely correlated with the expression of the myofibroblast marker α-smooth muscle actin. Our Ca2+ measurements depict that the AngII- and thrombin-induced Ca2+ transients, and the AngII-induced Ca2+ entry and Ca2+ release are not affected in CFs isolated from mice lacking all seven TRPC proteins (TRPC-hepta KO) compared to control cells. However, pre-incubation with GSK7975A (10 µM), which sufficiently inhibits CRAC channels in other cells, abolished AngII-induced Ca2+ entry. Consequently, we conclude the dispensability of the TRPC channels for the acute neurohumoral Ca2+ signaling evoked by AngII in isolated CFs and suggest the contribution of members of the Orai channel family as molecular constituents responsible for this pathophysiologically important Ca2+ entry pathway.
Collapse
|
23
|
Hof T, Chaigne S, Récalde A, Sallé L, Brette F, Guinamard R. Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 2020; 16:344-360. [PMID: 30664669 DOI: 10.1038/s41569-018-0145-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia-reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.
Collapse
Affiliation(s)
- Thomas Hof
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Sébastien Chaigne
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Alice Récalde
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Laurent Sallé
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France
| | - Fabien Brette
- IHU-Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Pessac-Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France.,Université Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Romain Guinamard
- Normandie Université, UNICAEN, EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-Reperfusion Myocardique, Caen, France.
| |
Collapse
|
24
|
TRPC Channels: Dysregulation and Ca 2+ Mishandling in Ischemic Heart Disease. Cells 2020; 9:cells9010173. [PMID: 31936700 PMCID: PMC7017417 DOI: 10.3390/cells9010173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis. In this review, we highlight the current knowledge regarding TRPC implication in different cellular processes related to ischemia and reperfusion and to heart infarction.
Collapse
|
25
|
Feng J, Armillei MK, Yu AS, Liang BT, Runnels LW, Yue L. Ca 2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. J Cardiovasc Dev Dis 2019; 6:E34. [PMID: 31547577 PMCID: PMC6956282 DOI: 10.3390/jcdd6040034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis is the excessive deposition of extracellular matrix proteins by cardiac fibroblasts and myofibroblasts, and is a hallmark feature of most heart diseases, including arrhythmia, hypertrophy, and heart failure. This maladaptive process occurs in response to a variety of stimuli, including myocardial injury, inflammation, and mechanical overload. There are multiple signaling pathways and various cell types that influence the fibrogenesis cascade. Fibroblasts and myofibroblasts are central effectors. Although it is clear that Ca2+ signaling plays a vital role in this pathological process, what contributes to Ca2+ signaling in fibroblasts and myofibroblasts is still not wholly understood, chiefly because of the large and diverse number of receptors, transporters, and ion channels that influence intracellular Ca2+ signaling. Intracellular Ca2+ signals are generated by Ca2+ release from intracellular Ca2+ stores and by Ca2+ entry through a multitude of Ca2+-permeable ion channels in the plasma membrane. Over the past decade, the transient receptor potential (TRP) channels have emerged as one of the most important families of ion channels mediating Ca2+ signaling in cardiac fibroblasts. TRP channels are a superfamily of non-voltage-gated, Ca2+-permeable non-selective cation channels. Their ability to respond to various stimulating cues makes TRP channels effective sensors of the many different pathophysiological events that stimulate cardiac fibrogenesis. This review focuses on the mechanisms of Ca2+ signaling in fibroblast differentiation and fibrosis-associated heart diseases and will highlight recent advances in the understanding of the roles that TRP and other Ca2+-permeable channels play in cardiac fibrosis.
Collapse
Affiliation(s)
- Jianlin Feng
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Maria K Armillei
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Albert S Yu
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Bruce T Liang
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Loren W Runnels
- Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | - Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
26
|
Chen YL, Fan J, Cao L, Han TL, Zeng M, Xu Y, Ling Z, Yin Y. Unique mechanistic insights into the beneficial effects of angiotensin-(1-7) on the prevention of cardiac fibrosis: A metabolomic analysis of primary cardiac fibroblasts. Exp Cell Res 2019; 378:158-170. [PMID: 30844388 DOI: 10.1016/j.yexcr.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cell metabolic pathways are highly conserved among species and change rapidly in response to drug stimulation. Therefore, we explore the effects of angiotensin-(1-7) in a primary cell model of cardiac fibrosis established in angiotensin II-stimulated cardiac fibroblasts via metabolomics analysis and further clarify the potential protective mechanism of angiotensin-(1-7). METHODS AND RESULTS After exposing cardiac fibroblasts to angiotensin II and/or angiotensin-(1-7), 172 metabolites in these cells were quantified and identified by gas chromatography-mass spectrometry. The data were subsequently analyzed by orthogonal partial least squares discriminant analysis to shortlist biochemically significant metabolites associated with the antifibrotic action of angiotensin-(1-7). Seven significant metabolites were identified: 10,13-dimethyltetradecanoic acid, arachidonic acid, aspartic acid, docosahexaenoic acid (DHA), glutathione, palmitelaidic acid, and pyroglutamic acid. By metabolic network analysis, we found that these metabolites were involved in six metabolic pathways, including arachidonic acid metabolism, leukotriene metabolism, and the γ-glutamyl cycle. Since these metabolic pathways are related to calcium balance and oxidative stress, we further verified that angiotensin-(1-7) suppressed the abnormal extracellular calcium influx and excessive accumulation of intracellular reactive oxygen species (ROS) in angiotensin II-stimulated cardiac fibroblasts. Furthermore, we found that angiotensin-(1-7) suppressed the abnormal calcium- and ROS-dependent activation of calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ), the increased expression of CaMKIIδ-related proteins (NADPH oxidase 4 (Nox4), cellular communication network factor 2 (CTGF), and p-ERK1/2), and excessive collagen deposition in vitro and in vivo. CONCLUSIONS Angiotensin-(1-7) can ameliorate the angiotensin II-stimulated metabolic perturbations associated with cardiac fibroblast activation. These metabolic changes indicate that modulation of calcium- and ROS-dependent activation of CaMKIIδ mediates the activity of angiotensin-(1-7) against cardiac fibrosis. Moreover, pyroglutamic acid and arachidonic acid may be potential biomarkers for monitoring the antifibrotic action of angiotensin-(1-7).
Collapse
Affiliation(s)
- Yun-Lin Chen
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Jinqi Fan
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China; Departments of Biomedical Engineering and Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Li Cao
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, the 1st Affiliated Hospital of Chongqing Medical University, China; Liggins Institute, University of Auckland, New Zealand; Mass Spectrometry Centre, China-Canada-New Zealand Joint Laboratory of Maternal and Foetal Medicine, Chongqing Medical University, China
| | - Mengying Zeng
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Yanping Xu
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Zhiyu Ling
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China
| | - Yuehui Yin
- Department of Cardiology, the 2nd Affiliated Hospital of Chongqing Medical University, China.
| |
Collapse
|
27
|
Liu B, Zhang B, Huang S, Yang L, Roos CM, Thompson MA, Prakash YS, Zang J, Miller JD, Guo R. Ca 2+ Entry Through Reverse Mode Na +/Ca 2+ Exchanger Contributes to Store Operated Channel-Mediated Neointima Formation After Arterial Injury. Can J Cardiol 2018; 34:791-799. [PMID: 29705161 DOI: 10.1016/j.cjca.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Na+/Ca2+ exchange (NCX) reversal-mediated Ca2+ entry is a critical pathway for stimulating proliferation in many cell lines. However, the role of reverse-mode NCX1 in neointima formation and atherosclerosis remains unclear. The aims of the present study were to investigate the functional role of NCX1 in the pathogenesis of atherosclerosis and vascular smooth muscle cell (VSMC) proliferation, and to determine the interaction between NCX1 and store depletion in VSMCs. METHODS A rat balloon injury model was established to examine the effect of the knockdown of NCX1 on neointima formation after injury. VSMCs were cultured to verify that NCX1 knockdown suppressed serum-induced VSMC proliferation. RESULTS The results showed that balloon injury induced neointima formation and upregulated NCX1 expression at 7 and 14 days after injury in rat carotid arteries (1.18- and 1.45-fold, respectively). A lentivirus vector expressing short hairpin (sh)RNA against rat NCX1 dramatically downregulated NCX1, proliferating cell nuclear antigen (PCNA) and Ki-67 expression, and suppressed neointima formation in vivo (62% at 7 days and 70% at 14 days). KB-R7943 (an inhibitor of reverse-mode NCX1) and NCX1 knockdown significantly inhibited serum-induced VSMC proliferation (65% at 72 hours and 41% at 72 hours, respectively), determined according to PCNA and Ki-67 expression and cell counting in vitro, and markedly suppressed store depletion-mediated Ca2+ entry and peripheral cytosolic Na+ transients in VSMCs. CONCLUSIONS Reverse-mode NCX1 is activated by store depletion and is required for proliferative VSMC proliferation and neointima formation after arterial injury.
Collapse
Affiliation(s)
- Bei Liu
- Department of Obstetrics and Gynecology, Kunming General Hospital, Kunming, Yunnan, China
| | - Bin Zhang
- Division of Cardiovascular Surgery, and Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shiliang Huang
- Department of Cardiology, Kunming General Hospital, Kunming, Yunnan, China
| | - Lixia Yang
- Department of Cardiology, Kunming General Hospital, Kunming, Yunnan, China
| | - Carolyn M Roos
- Division of Cardiovascular Surgery, and Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Zang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Peking, China
| | - Jordan D Miller
- Division of Cardiovascular Surgery, and Department of Physiology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Ruiwei Guo
- Department of Cardiology, Kunming General Hospital, Kunming, Yunnan, China.
| |
Collapse
|
28
|
Chen XX, Zhang JH, Pan BH, Ren HL, Feng XL, Wang JL, Xiao JH. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation. Life Sci 2017; 187:64-73. [PMID: 28802903 DOI: 10.1016/j.lfs.2017.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
AIMS Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca2+-permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. MATERIALS AND METHODS Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca2+]i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. KEY FINDINGS TRPC3 blocker Gd3+, antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca2+]i and KCl-induced changes in [Ca2+]i, eventually inhibiting ACh-induced ASMC proliferation. SIGNIFICANCE Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling.
Collapse
Affiliation(s)
- Xiao-Xu Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Hua Zhang
- Center for Stem Cell Research and Application, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin-Hua Pan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui-Li Ren
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiu-Ling Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia-Ling Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Hua Xiao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
29
|
Ahmad AA, Streiff M, Hunter C, Hu Q, Sachse FB. Physiological and pathophysiological role of transient receptor potential canonical channels in cardiac myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28629808 DOI: 10.1016/j.pbiomolbio.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a family of seven Ca2+ permeable ion channels, named TRPC1 to 7. These channels are abundantly expressed in the mammalian heart, yet mechanisms underlying activation of TRPC channels and their precise role in cardiac physiology remain poorly understood. In this review, we perused original literature regarding TRPC channels in cardiomyocytes. We first reviewed studies on TRPC channel assembly and sub-cellular localization across multiple species and cell types. Our review indicates that TRPC localization in cardiac cells is still a topic of controversy. We then examined common molecular biology tools used to infer on location and physiological roles of TRPC channels in the heart. We subsequently reviewed pharmacological tools used to modulate TRPC activity in both cardiac and non-cardiac cells. Suggested physiological roles in the heart include modulation of heart rate and sensing of mechanical strain. We examined studies on the contribution of TRPC to cardiac pathophysiology, mainly hypertrophic signaling. Several TRPC channels, particularly TRPC1, 3 and 6 were proposed to play a crucial role in hypertrophic signaling. Finally, we discussed gaps in our understanding of the location and physiological role of TRPC channels in cardiomyocytes. Closing these gaps will be crucial to gain a full understanding of the role of TRPC channels in cardiac pathophysiology and to further explore these channels as targets for treatments for cardiac diseases, in particular, hypertrophy.
Collapse
Affiliation(s)
- Azmi A Ahmad
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA
| | - Molly Streiff
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA
| | - Chris Hunter
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| | - Qinghua Hu
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA
| | - Frank B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, USA; Bioengineering Department, University of Utah, Salt Lake City, USA.
| |
Collapse
|
30
|
Park S, Lee S, Park EJ, Kang M, So I, Jeon JH, Chun JN. TGFβ1 induces stress fiber formation through upregulation of TRPC6 in vascular smooth muscle cells. Biochem Biophys Res Commun 2017; 483:129-134. [DOI: 10.1016/j.bbrc.2016.12.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 01/01/2023]
|
31
|
Liu B, Yang L, Zhang B, Kuang C, Huang S, Guo R. NF-κB-Dependent Upregulation of NCX1 Induced by Angiotensin II Contributes to Calcium Influx in Rat Aortic Smooth Muscle Cells. Can J Cardiol 2016; 32:1356.e11-1356.e20. [DOI: 10.1016/j.cjca.2016.02.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022] Open
|
32
|
Soni H, Adebiyi A. TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways. Sci Rep 2016; 6:29041. [PMID: 27383564 PMCID: PMC4935859 DOI: 10.1038/srep29041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023] Open
Abstract
Glomerular mesangial cell (GMC) proliferation and death are involved in the pathogenesis of glomerular disorders. The mechanisms that control GMC survival are poorly understood, but may include signal transduction pathways that are modulated by changes in intracellular Ca2+ ([Ca2+]i) concentration. In this study, we investigated whether activation of the canonical transient receptor potential (TRPC) 6 channels and successive [Ca2+]i elevation alter neonatal GMC survival. Hyperforin (HF)-induced TRPC6 channel activation increased [Ca2+]i concentration, inhibited proliferation, and triggered apoptotic cell death in primary neonatal pig GMCs. HF-induced neonatal GMC apoptosis was not associated with oxidative stress. However, HF-induced TRPC6 channel activation stimulated nuclear translocation of the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). HF also increased cell death surface receptor Fas ligand (FasL) level and caspase-8 activity in the cells; effects mitigated by [Ca2+]i chelator BAPTA, calcineurin/NFAT inhibitor VIVIT, and TRPC6 channel knockdown. Accordingly, HF-induced neonatal GMC apoptosis was attenuated by BAPTA, VIVIT, Fas blocking antibody, and a caspase-3/7 inhibitor. These findings suggest that TRPC6 channel-dependent [Ca2+]i elevation and the ensuing induction of the calcineurin/NFAT, FasL/Fas, and caspase signaling cascades promote neonatal pig GMC apoptosis.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology University of Tennessee Health Science Center, Memphis TN, USA
| | - Adebowale Adebiyi
- Department of Physiology University of Tennessee Health Science Center, Memphis TN, USA
| |
Collapse
|
33
|
Acsai K, Ördög B, Varró A, Nánási PP. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies? Eur J Pharmacol 2016; 779:91-101. [PMID: 26970182 DOI: 10.1016/j.ejphar.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.
Collapse
Affiliation(s)
- Károly Acsai
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
34
|
Tao H, Yang JJ, Shi KH, Li J. Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism 2016; 65:30-40. [PMID: 26773927 DOI: 10.1016/j.metabol.2015.10.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/19/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Wnt signaling pathway significantly participates in cardiac fibrosis and CFs activation. Therefore, we reviewed current evidence on the new perspectives and biological association between Wnt signaling pathway and cardiac fibrosis. DESIGN AND METHODS A PubMed database search was performed for studies of Wnt signaling pathway in cardiac fibrosis and CFs activation. RESULTS Numerous studies have shown that the Wnt signaling pathway significantly participates in cardiac fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway significantly participating in cardiac fibrosis and CFs activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different insights that interact with the Wnt signaling pathway-regulated cardiac fibrosis. The Wnt proteins are glycoproteins that bind to the Fz receptors on the cell surface, which lead to several important biological functions, such as cell differentiation and proliferation. There are several signals among the characterized pathways of cardiac fibrosis, including Wnt/β-catenin signaling. In this review, new insight into the Wnt signaling pathway in cardiac fibrosis pathogenesis is discussed, with special emphasis on Wnt/β-catenin. CONCLUSION It seems reasonable to suggest the potential targets of Wnt signaling pathway and it can be developed as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China 230601; Cardiovascular Research Center, Anhui Medical University, Hefei, China 230601
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China 230601.
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China 230601; Cardiovascular Research Center, Anhui Medical University, Hefei, China 230601.
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei, China 230032
| |
Collapse
|
35
|
Sassoli C, Chellini F, Squecco R, Tani A, Idrizaj E, Nosi D, Giannelli M, Zecchi-Orlandini S. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment. Lasers Surg Med 2015; 48:318-32. [PMID: 26660509 DOI: 10.1002/lsm.22441] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. MATERIALS AND METHODS NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. RESULTS Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the expression of Smad3, the TGF-β1 downstream signaling molecule. CONCLUSION Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-β1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Chiara Sassoli
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Flaminia Chellini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Daniele Nosi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, Via dell' Olivuzzo 162, 50143, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
36
|
Li FZ, Cai PC, Song LJ, Zhou LL, Zhang Q, Rao SS, Xia Y, Xiang F, Xin JB, Greer PA, Shi HZ, Su Y, Ma WL, Ye H. Crosstalk between calpain activation and TGF-β1 augments collagen-I synthesis in pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1796-804. [DOI: 10.1016/j.bbadis.2015.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/10/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
|
37
|
Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N. Evidence of a Role for Fibroblast Transient Receptor Potential Canonical 3 Ca2+ Channel in Renal Fibrosis. J Am Soc Nephrol 2015; 26:1855-76. [PMID: 25479966 PMCID: PMC4520158 DOI: 10.1681/asn.2014010065] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential canonical (TRPC) Ca(2+)-permeant channels, especially TRPC3, are increasingly implicated in cardiorenal diseases. We studied the possible role of fibroblast TRPC3 in the development of renal fibrosis. In vitro, a macromolecular complex formed by TRPC1/TRPC3/TRPC6 existed in isolated cultured rat renal fibroblasts. However, specific blockade of TRPC3 with the pharmacologic inhibitor pyr3 was sufficient to inhibit both angiotensin II- and 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry in these cells, which was detected by fura-2 Ca(2+) imaging. TRPC3 blockade or Ca(2+) removal inhibited fibroblast proliferation and myofibroblast differentiation by suppressing the phosphorylation of extracellular signal-regulated kinase (ERK1/2). In addition, pyr3 inhibited fibrosis and inflammation-associated markers in a noncytotoxic manner. Furthermore, TRPC3 knockdown by siRNA confirmed these pharmacologic findings. In adult male Wistar rats or wild-type mice subjected to unilateral ureteral obstruction, TRPC3 expression increased in the fibroblasts of obstructed kidneys and was associated with increased Ca(2+) entry, ERK1/2 phosphorylation, and fibroblast proliferation. Both TRPC3 blockade in rats and TRPC3 knockout in mice inhibited ERK1/2 phosphorylation and fibroblast activation as well as myofibroblast differentiation and extracellular matrix remodeling in obstructed kidneys, thus ameliorating tubulointerstitial damage and renal fibrosis. In conclusion, TRPC3 channels are present in renal fibroblasts and control fibroblast proliferation, differentiation, and activation through Ca(2+)-mediated ERK signaling. TRPC3 channels might constitute important therapeutic targets for improving renal remodeling in kidney disease.
Collapse
Affiliation(s)
- Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Ralph Karam
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Viviane Smayra
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Georges Aftimos
- Department of Anatomopathology, National Institute of Pathology, Baabda, Lebanon; and
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nassim Farès
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| |
Collapse
|
38
|
Ju YK, Lee BH, Trajanovska S, Hao G, Allen DG, Lei M, Cannell MB. The involvement of TRPC3 channels in sinoatrial arrhythmias. Front Physiol 2015; 6:86. [PMID: 25859221 PMCID: PMC4373262 DOI: 10.3389/fphys.2015.00086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/04/2015] [Indexed: 01/08/2023] Open
Abstract
Atrial fibrillation (AF) is a significant contributor to cardiovascular morbidity and mortality. The currently available treatments are limited and AF continues to be a major clinical challenge. Clinical studies have shown that AF is frequently associated with dysfunction in the sino-atrial node (SAN). The association between AF and SAN dysfunction is probably related to the communication between the SAN and the surrounding atrial cells that form the SAN-atrial pacemaker complex and/or pathological processes that affect both the SAN and atrial simultaneously. Recent evidence suggests that Ca2+ entry through TRPC3 (Transient Receptor Potential Canonical-3) channels may underlie several pathophysiological conditions -including cardiac arrhythmias. However, it is still not known if atrial and sinoatrial node cells are also involved. In this article we will first briefly review TRPC3 and IP3R signaling that relate to store/receptor-operated Ca2+ entry (SOCE/ROCE) mechanisms and cardiac arrhythmias. We will then present some of our recent research progress in this field. Our experiments results suggest that pacing-induced AF in angiotensin II (Ang II) treated mice are significantly reduced in mice lacking the TRPC3 gene (TRPC3−/− mice) compared to wild type controls. We also show that pacemaker cells express TRPC3 and several other molecular components related to SOCE/ROCE signaling, including STIM1 and IP3R. Activation of G-protein coupled receptors (GPCRs) signaling that is able to modulate SOCE/ROCE and Ang II induced Ca2+ homeostasis changes in sinoatrial complex being linked to TRPC3. The results provide new evidence that TRPC3 may play a role in sinoatrial and atrial arrhythmias that are caused by GPCRs activation.
Collapse
Affiliation(s)
- Yue-Kun Ju
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Bon Hyang Lee
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Sofie Trajanovska
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Gouliang Hao
- Department of Pharmacology, University of Oxford Oxford, UK
| | - David G Allen
- Department of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney Sydney, NSW, Australia
| | - Ming Lei
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Mark B Cannell
- Department of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
39
|
Han Y, Jiang Q, Gao H, Fan J, Wang Z, Zhong F, Zheng Y, Gong Z, Wang C. The Anti-apoptotic Effect of Polypeptide from Chlamys farreri (PCF) in UVB-Exposed HaCaT Cells Involves Inhibition of iNOS and TGF-β1. Cell Biochem Biophys 2014; 71:1105-15. [DOI: 10.1007/s12013-014-0315-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Oguri G, Nakajima T, Yamamoto Y, Takano N, Tanaka T, Kikuchi H, Morita T, Nakamura F, Yamasoba T, Komuro I. Effects of methylglyoxal on human cardiac fibroblast: roles of transient receptor potential ankyrin 1 (TRPA1) channels. Am J Physiol Heart Circ Physiol 2014; 307:H1339-52. [PMID: 25172898 DOI: 10.1152/ajpheart.01021.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cardiac fibroblasts contribute to the pathogenesis of cardiac remodeling. Methylglyoxal (MG) is an endogenous carbonyl compound produced under hyperglycemic conditions, which may play a role in the development of pathophysiological conditions including diabetic cardiomyopathy. However, the mechanism by which this occurs and the molecular targets of MG are unclear. We investigated the effects of MG on Ca(2+) signals, its underlying mechanism, and cell cycle progression/cell differentiation in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, Western blot, immunocytochemical analysis, and intracellular Ca(2+) concentration [Ca(2+)]i measurement were applied. Cell cycle progression was assessed using the fluorescence activated cell sorting. MG induced Ca(2+) entry concentration dependently. Ruthenium red (RR), a general cation channel blocker, and HC030031, a selective transient receptor potential ankyrin 1 (TRPA1) antagonist, inhibited MG-induced Ca(2+) entry. Treatment with aminoguanidine, a MG scavenger, also inhibited it. Allyl isothiocyanate, a selective TRPA1 agonist, increased Ca(2+) entry. The use of small interfering RNA to knock down TRPA1 reduced the MG-induced Ca(2+) entry as well as TRPA1 mRNA expression. The quantitative real-time RT-PCR analysis showed the prominent existence of TRPA1 mRNA. Expression of TRPA1 protein was confirmed by Western blotting and immunocytochemical analyses. MG promoted cell cycle progression from G0/G1 to S/G2/M, which was suppressed by HC030031 or RR. MG also enhanced α-smooth muscle actin expression. The present results suggest that methylglyoxal activates TRPA1 and promotes cell cycle progression and differentiation in human cardiac fibroblasts. MG might participate the development of pathophysiological conditions including diabetic cardiomyopathy via activation of TRPA1.
Collapse
Affiliation(s)
- Gaku Oguri
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiaki Nakajima
- Department of Ischemic Circulatory Physiology, University of Tokyo, Tokyo, Japan;
| | - Yumiko Yamamoto
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Nami Takano
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Tomofumi Tanaka
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Hironobu Kikuchi
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Toshihiro Morita
- Department of Ischemic Circulatory Physiology, University of Tokyo, Tokyo, Japan
| | | | - Tatsuya Yamasoba
- Department of Otolaryngology, University of Tokyo, Tokyo, Japan; and
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain. Int J Biochem Cell Biol 2014; 49:98-104. [PMID: 24495875 DOI: 10.1016/j.biocel.2014.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) may switch their phenotype between a quiescent contractile phenotype and a synthetic phenotype in response to cyclic strain, and this switch may contribute to hypertension, atherosclerosis, and restenosis. SIRT 6 is a member of the sirtuin family, and plays an important role in different cell processes, including differentiation. We hypothesized that cyclic strain modulates the differentiation of VSMCs via a transforming growth factor-β1 (TGF-β1)-Smad-SIRT6 pathway. VSMCs were subjected to cyclic strain using a Flexercell strain unit. It was demonstrated that the strain stimulated the secretion of TGF-β1 into the supernatant of VSMCs. After exposed to the strain, the expressions of contractile phenotype markers, including smooth muscle protein 22 alpha, alpha-actin, and calponin, and phosphorylated Smad2, phosphorylated Smad5, SIRT6 and c-fos were up-regulated in VSMCs by western blot and immunofluorescence. And the expression of intercellular-adhesion molecule-1 (ICAM-1) was also increased detected by flow cytometry. The strained-induced up-regulation of SIRT6 was blocked by a TGF-β1 neutralizing antibody. Furthermore, the effects of strain on VSMCs were abrogated by SIRT6-specific siRNA transfection via the suppression c-fos and ICAM-1. These results suggest that SIRT6 may play a critical role in the regulation of VSMC differentiation in response to the cyclic strain.
Collapse
|