1
|
Li Y, Peng J, Chen H, Yue W, Liu Y, Luo X, Yang L. Shape-controlled asymmetric bowl-like PDA@Au substrates for sensitive SERS detection of anabolic androgenic steroids. Talanta 2025; 287:127604. [PMID: 39827478 DOI: 10.1016/j.talanta.2025.127604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The widespread accumulation of androgenic steroid endocrine disruptors in water and food has garnered increasing attention due to their significant risks to ecosystems and human health. These steroids, which cannot be completely eliminated, highlight the urgent need for advanced detection technologies. In this study, we present a novel emulsion-induced interface-anisotropic assembly strategy to synthesize bowl-like mesoporous polydopamine (PDA) particles, which exhibit high sensitivity in surface-enhanced Raman scattering (SERS) detection. In-situ reduction of chloroauric acid leads to the formation of Au nanoparticles (NPs) on the PDA surface, where synergistic Au-N interactions enhance the SERS performance. The distinctive bowl-like structure generates abundant "hot spots" on both sides, resulting in exceptional sensitivity. The low relative standard deviation (RSD) values (<11.7 %) across different PDA@Au NPs, along with real sample analyses (1.9-4.0 %), confirm the high reproducibility and uniformity of the SERS substrates, all achieved without the use of additional reducing agents. This cost-effective and straightforward method eliminates the need for complex surface treatments, making it particularly suitable for real-time detection of anabolic steroids across various matrices. These findings underscore the potential of bowl-like PDA materials for broader applications in clinical diagnostics, environmental monitoring, and sports doping control.
Collapse
Affiliation(s)
- Yuanyuan Li
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China.
| | - Jiayi Peng
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Hong Chen
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China
| | - Weiling Yue
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yixuan Liu
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Lu Yang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai, 200438, PR China; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
2
|
Wei F, Liu Y. Magnetic-plasmonic nanoparticle-based surface-enhanced Raman scattering for biomedical detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126177. [PMID: 40220683 DOI: 10.1016/j.saa.2025.126177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that enables rapid, non-destructive, and susceptible detection of biological samples. The magnetic-plasmonic composite materials composed of magnetic and plasmonic nanoparticles have attracted extensive attention as SERS substrates in the biomedical field because of their ability to enrich, separate, and selectively identify biomolecules. In this review, the state-of-art progress of magnetic-plasmonic nanoparticle (MPNP)-based SERS substrates for biomedical detection is highlighted, covering the design and construction of MPNPs with different morphologies, organic and inorganic surface functionalization strategies adopted to improve the adaptability and applicability in biological systems for MPNPs, application development of MPNPs in biomedical detection, as well as the future challenges and issues to be addressed. It is highly expected that this review will help to fully understand the research status of MPNP-based SERS substrates and facilitate their further development and wider application in biological systems.
Collapse
Affiliation(s)
- Fengxue Wei
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaling Liu
- Chinese Academy of Sciences Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67028-67044. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Cao J, Song Z, Du T, Du X. Antimicrobial materials based on photothermal action and their application in wound treatment. BURNS & TRAUMA 2024; 12:tkae046. [PMID: 39659560 PMCID: PMC11630079 DOI: 10.1093/burnst/tkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 12/12/2024]
Abstract
Considering the increasing abundance of antibiotic-resistant bacteria, novel antimicrobial approaches need to be investigated. Photothermal therapy (PTT), an innovative noninvasive therapeutic technique, has demonstrated significant potential in addressing drug-resistant bacteria and bacterial biofilms. However, when used in isolation, PTT requires higher-temperature conditions to effectively eradicate bacteria, thereby potentially harming healthy tissues and inducing new inflammation. This study aims to present a comprehensive review of nanomaterials with intrinsic antimicrobial properties, antimicrobial materials relying on photothermal action, and nanomaterials using drug delivery antimicrobial action, along with their applications in antimicrobials. Additionally, the synergistic mechanisms of these antimicrobial approaches are elucidated. The review provides a reference for developing multifunctional photothermal nanoplatforms for treating bacterially infected wounds.
Collapse
Affiliation(s)
- Jiangli Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| |
Collapse
|
5
|
Wang J, Wei X, Chen J, Zhang J, Guo Y, Xin Y. Versatile Ce(III)‐Terephthalic Acid@Au Metal Organic Frameworks for ROS Elimination and Photothermal Sterilization. CHEMNANOMAT 2024; 10. [DOI: 10.1002/cnma.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 10/01/2024]
Abstract
AbstractNanozymes have been widely used for treating reactive oxygen species (ROS) caused diseases. However, the ROS‐dependent antibacterial property is inevitably damaged during the process of scavenging ROS, which is unfavorable for the treatment of diseases related to both ROS accumulation and bacterial infections. To address the issues, biomedical materials with both ROS‐elimination ability and ROS‐independent antibacterial capacity are fabricated via in situ depositing spherical Au nanoparticles (Au NPs) on rough surface of metal organic frameworks composed of Ce(III) and terephthalic acid (Ce‐BDC@Au MOFs). The synthesized Ce‐BDC@Au MOFs show multi‐enzymatic activities owing to the reversible conversion between Ce3+ and Ce4+, and can significantly scavenge ROS in cells. The deposition of spherical Au NPs on surface of Ce‐BDC MOFs causes Au NPs to come close proximity for forming plasmon resonance coupling, inducing the resonance wavelength of Au NPs red shifted to NIR region. Based on this, Ce‐BDC@Au MOFs show good photothermal conversion efficiency under NIR laser (808 nm) irradiation. Benefitting from rough surface and photothermal conversion ability, Ce‐BDC@Au MOFs have high antibacterial efficiency against staphylococcus aureus through both mechanically damaging and photothermal destruction. This strategy is biosafety and effectiveness for treating diseases related to both ROS accumulation and bacterial infections.
Collapse
Affiliation(s)
- Jing Wang
- Department of Child and Adolescent Health School of Public Health Zhengzhou University Zhengzhou Henan 450001 P.R. China
| | - Xue Wei
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Jian Chen
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Jing Zhang
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Yanzhen Guo
- Henan Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional Materials Huanghe Science and Technology College Zhengzhou Henan 450006 P.R. China
| | - Yongjuan Xin
- Department of Child and Adolescent Health School of Public Health Zhengzhou University Zhengzhou Henan 450001 P.R. China
| |
Collapse
|
6
|
Huang X, Liu M, Lu Q, Lv K, Wang L, Yin S, Yuan M, Li Q, Li X, Zhao T, Zhao D. Physical-Chemical Coupling Coassembly Approach to Branched Magnetic Mesoporous Nanochains with Adjustable Surface Roughness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309564. [PMID: 38582520 PMCID: PMC11187885 DOI: 10.1002/advs.202309564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/19/2024] [Indexed: 04/08/2024]
Abstract
Self-assembly processes triggered by physical or chemical driving forces have been applied to fabricate hierarchical materials with subtle nanostructures. However, various physicochemical processes often interfere with each other, and their precise control has remained a great challenge. Here, in this paper, a rational synthesis of 1D magnetite-chain and mesoporous-silica-nanorod (Fe3O4&mSiO2) branched magnetic nanochains via a physical-chemical coupling coassembly approach is reported. Magnetic-field-induced assembly of magnetite Fe3O4 nanoparticles and isotropic/anisotropic assembly of mesoporous silica are coupled to obtain the delicate 1D branched magnetic mesoporous nanochains. The nanochains with a length of 2-3 µm in length are composed of aligned Fe3O4@mSiO2 nanospheres with a diameter of 150 nm and sticked-out 300 nm long mSiO2 branches. By properly coordinating the multiple assembly processes, the density and length of mSiO2 branches can well be adjusted. Because of the unique rough surface and length in correspondence to bacteria, the designed 1D Fe3O4&mSiO2 branched magnetic nanochains show strong bacterial adhesion and pressuring ability, performing bacterial inhibition over 60% at a low concentration (15 µg mL-1). This cooperative coassembly strategy deepens the understanding of the micro-nanoscale assembly process and lays a foundation for the preparation of the assembly with adjustable surface structures and the subsequent construction of complex multilevel structures.
Collapse
Affiliation(s)
- Xirui Huang
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Minchao Liu
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Qianqian Lu
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Kexin Lv
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Lipeng Wang
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Sixing Yin
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Minjia Yuan
- Shanghai Qiran Biotechnology Co., LtdShanghai201702China
| | - Qi Li
- Shanghai Qiran Biotechnology Co., LtdShanghai201702China
| | - Xiaomin Li
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Tiancong Zhao
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| | - Dongyuan Zhao
- College of Chemistry and MaterialsDepartment of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of PolymersCollaborative Innovation Center of Chemistry for Energy Materials (2011‐iChEM)Fudan UniversityShanghai200433China
| |
Collapse
|
7
|
Guo Q, Li P, Zhang Y, Yan H, Yan Q, Su R, Su W. Polydopamine-curcumin coating of titanium for remarkable antibacterial activity via synergistic photodynamic and photothermal properties. Photochem Photobiol 2024; 100:699-711. [PMID: 37882412 DOI: 10.1111/php.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Combined photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a novel and effective antibacterial strategy. In order to endow titanium (Ti) with antibacterial properties, the Ti-PDA-Cur composite was prepared using the excellent adhesion properties of polydopamine (PDA) to load curcumin (Cur) on the surface of Ti. The Ti-PDA-Cur coating can produce singlet oxygen (1O2) and heat under 405 + 808 nm light irradiation, which can effectively kill Staphylococcus aureus and Escherichia coli. Moreover, the cytotoxicity and hemolysis rate of Ti-PDA-Cur were low, indicating its good biocompatibility. Therefore, this study provided a new strategy for the development of new Ti implants.
Collapse
Affiliation(s)
- Qing Guo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Qiuyan Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rixiang Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| |
Collapse
|
8
|
Zhang S, Hussain S, Tang Y, Wang K, Wang X, Zhang L, Liao Y, Wang C, Hao Y, Gao R. Enzyme-triggered on-demand release of a H 2O 2-self-supplying CuO 2@Fe 3O 4 nanoagent for enhanced chemodyamic antimicrobial therapy and wound healing. J Mater Chem B 2024; 12:3404-3416. [PMID: 38487992 DOI: 10.1039/d3tb02762g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nanoagents for chemodynamic therapy (CDT) hold a promising future in the field of antimicrobials, especially copper peroxide (CuO2) (CP) nanomaterials which have garnered significant attention due to their ability to self-supply H2O2. Nevertheless, the poor stability of CuO2 remains a critical challenge which restricts its practical application in the antibacterial field. In this study, an advanced nano-antimicrobial system HA-CP@Fe3O4 with enzyme-responsive properties is developed by coating hyaluronic acid (HA) on CuO2-loaded iron tetraoxide nanoparticles. The coating of HA not only stabilizes the CuO2 nanomaterials but also provides responsiveness towards the enzyme hyaluronidase, which is typically secreted by some bacteria. The outer layer of HA in HA-CP@Fe3O4 undergoes decomposition in the presence of hyaluronidase-secreting bacteria, resulting in the release of CuO2@Fe3O4. The released CuO2@Fe3O4 then self-supplies H2O2 and generates reactive oxygen species (ROS) within the infected microenvironment through Fenton and Russell effects, to ultimately achieve effective and precise antimicrobial activity. Simultaneously, the magnetic property provided by Fe3O4 allows the substance to be directed towards the infection site. Both in vitro and in vivo tests demonstrated that HA-CP@Fe3O4 exhibited excellent antimicrobial capabilities at low concentration (30 μg mL-1), exceptional biocompatibility and the ability to accelerate wound healing. The findings of this work offer a new and promising approach for targeted and precise CDT.
Collapse
Affiliation(s)
- Sijie Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yuhai Tang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Kaili Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xingyan Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Long Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuheng Liao
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chen Wang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Hao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
9
|
Zhou Q, Lei P, Cheng S, Wang H, Dong W, Pan X. Recent progress in magnetic polydopamine composites for pollutant removal in wastewater treatment. Int J Biol Macromol 2024; 262:130023. [PMID: 38340929 DOI: 10.1016/j.ijbiomac.2024.130023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.
Collapse
Affiliation(s)
- Qinglin Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Pengli Lei
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Siyao Cheng
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Hao Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Xihao Pan
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
10
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
11
|
Wei W, Ai L, Li M, Hou F, Xiong C, Li Y, Wei A. Liquid Metal Encased in Biomimic Polydopamine Armor to Reinforce Photothermal Conversion and Photothermal Stability. Chem Asian J 2024:e202301038. [PMID: 38311860 DOI: 10.1002/asia.202301038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
Liquid metal (LM) faces numerous obstacles like spontaneous coalescence, prone oxidizability, and deterioration in photothermal conversion, impeding the potential application as photothermal agent. To tackle these issues, several studies have focused on surface engineering strategy. Developing a feasible and efficient surface engineering strategy is crucial to prevent the aggregation and coalescence of LM, while also ensuring exceptional photothermal conversion and biosecurity. In order to achieve these goals in this work, the biomimetic polydopamine (PDA) armor was chosen to encase a typical LM (eutectic gallium-indium-tin alloy) via self-polymerization. Characterization results showed that the PDA encased LM nanoparticle exhibited enhanced photothermal stability, photothermal conversion, and biosecurity, which could be derived from the following factors: (1) The PDA protective shell acted as an "armor", isolating LM from dissolved oxygen and water, inhibiting heating-accelerated oxidation and shape morphing. (2) The exceptional near-infrared absorption of PDA was conducive to the photothermal conversion. (3) The biomimetic characteristic of polydopamine (PDA) was advantageous for improving the biosecurity. Hence, this work presented a new surface engineering strategy to reinforce LM for photothermal conversion application.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Libang Ai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Kunshan Innovation Institute of Xidian University, Suzhou, 215316, P. R. China
| | - Minhao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Fengming Hou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Can Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Nantong Institute of Nanjing University of Posts and Telecommunications Co. Ltd., Nantong, 226001, P. R. China
| | - Yihang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Ang Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
12
|
Ci D, Wang N, Xu Y, Wu S, Wang J, Li H, Xuan S, Fang Q. SiO 2@AuAg/PDA hybrid nanospheres with photo-thermally enhanced synergistic antibacterial and catalytic activity. RSC Adv 2024; 14:4518-4532. [PMID: 38312727 PMCID: PMC10836413 DOI: 10.1039/d3ra07607e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Wastewater discharged from industrial, agricultural and livestock production contains a large number of harmful bacteria and organic pollutants, which usually cause serious harm to human health. Therefore, it is urgent to find a "one-stone-two-birds" strategy with good antimicrobial and pollutant degradation activity for treating waste water. In this paper, SiO2@AuAg/Polydopamine (SiO2@AuAg/PDA) core/shell nanospheres, which possessed synergistic "Ag+-release-photothermal" antibacterial and catalytic behaviors, have been successfully prepared via a simple in situ redox polymerization method. The SiO2@AuAg/PDA nanospheres showed good catalytic activity in reducing 4-nitrophenol to 4-aminophenol (0.576 min-1 mg-1). Since the AuAg nanoclusters contain both gold and silver elements, they provided a high photothermal conversion efficiency (48.1%). Under NIR irradiation (808 nm, 2.5 W-2), the catalytic kinetics were improved by 2.2 times. Besides the intrinsic Ag+-release, the photothermal behavior originating from the AuAg bimetallic nanoclusters and the PDA component of SiO2@AuAg/PDA also critically improved the antibacterial performance. Both E. coli and S. aureus could be basically killed by SiO2@AuAg/PDA nanospheres at a concentration of 90 μg mL-1 under NIR irradiation. This "Ag+-release-photothermal" coupled sterilization offers a straightforward and effective approach to antimicrobial therapy, and further exhibits high potential in nanomedicine for combating bacterial contamination in environmental treatment and biological fields.
Collapse
Affiliation(s)
- Dazheng Ci
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| | - Ning Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China Hefei 230027 PR China
| | - Shanshan Wu
- School of Materials and Chemical Engineering, Anhui Jianzhu University Hefei PR China
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| | - Haoran Li
- School of Materials and Chemical Engineering, Anhui Jianzhu University Hefei PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China Hefei 230027 PR China
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 PR China +86-551-62904353 +86-151-55934837 +86-551-62904353
| |
Collapse
|
13
|
Zeng W, Qian J, Wang Y, Shou M, Kai G. Bletilla Striata polysaccharides thermosensitive gel for photothermal treatment of bacterial infection. Int J Biol Macromol 2023; 253:127430. [PMID: 37838114 DOI: 10.1016/j.ijbiomac.2023.127430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Skin is the most important defense shield which touched external environment directly. Effectively clearing microbes in infected wound via non-antibiotic therapy is crucial for the promotion of recovery in complex biological environments, and the wound healing is a crucial process after sterilization to avoid superinfection. Herein, a kind of Prussian blue-based photothermal responsive gel, Bletilla striata polysaccharide-mingled, isatin-functionalized Prussian blue gel (PB-ISA/BSP gel) was reported for effective treatment of bacterial infection and wound healing. The introduction of effective components of traditional Chinese medicine (TCM), isatin (ISA), enhanced the efficiency of sterilization synergistically. Furthermore, the process of wound healing was promoted by Bletilla striata polysaccharides (BSP). PB-ISA@BSP had a considerable antibacterial rate with 98.5 % under an 808 nm laser for 10 min in vitro. Besides, PB-ISA/BSP gel showed an effective antibacterial efficacy in vivo and a fast wound healing rate as well. The as-prepared functional particles can invade and destroy bacteria membrane to kill microbes. This work highlights that PB-ISA/BSP gel is a promising antibacterial agent based on synergistically enhanced photothermal effect and wound healing promotion ability and provides inspiration for future therapy based on the synergy between photothermal agent and active components in TCM.
Collapse
Affiliation(s)
- Weihuan Zeng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Jun Qian
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Yue Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Minyu Shou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
14
|
Xu Y, Wang K, Zhu Y, Wang J, Ci D, Sang M, Fang Q, Deng H, Gong X, Leung KCF, Xuan S. Size-dependent magnetomechanically enhanced photothermal antibacterial effect of Fe 3O 4@Au/PDA nanodurian. Dalton Trans 2023; 52:17148-17162. [PMID: 37947135 DOI: 10.1039/d3dt03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The global health crisis of bacterial resistance to antibiotics requires innovative antibacterial strategies. One promising solution is the exploitation of multifunctional nanoplatforms based on non-resistant antibacterial mechanisms. This work reports a novel Fe3O4@Au/polydopamine (PDA) nanodurian with excellent photothermal-magnetomechanic synergistic antibacterial effects. The one-step formed Au/PDA hybrid shell provides good photothermal properties and spiky surfaces for enhanced magnetomechanic effects. Upon near-infrared (NIR) irradiation, the Fe3O4@Au/PDA nanodurian (200 μg mL-1) achieved nearly 100% antibacterial effect against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The efficiency of photothermal antimicrobial activity was further enhanced by the application of a rotating magnetic field (RMF), with the sterilization efficiency being increased by up to more than a half compared to the action alone. Interestingly, the size of the nanodurian has a significant impact on the synergistic sterilization effect, with larger particles showing a superior performance due to stronger chain-like structures in the magnetic field. Finally, the Fe3O4@Au/PDA nanodurian also demonstrates effective biofilm removal, with larger particles exhibiting the best eradication effect under the photothermal-magnetomechanic treatment. Overall, this magnetic field enhanced photothermal antibacterial strategy provides a promising broad-spectrum antimicrobial solution to combat bacterial infections. Thus, it possesses great potential in future nanomedicine and pollution treatment.
Collapse
Affiliation(s)
- Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Kang Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Yi Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China.
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Dazheng Ci
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Huaxia Deng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon, Hong Kong SAR, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
15
|
Wang Z, Fu L, Liu D, Tang D, Liu K, Rao L, Yang J, Liu Y, Li Y, Chen H, Yang X. Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels. Gels 2023; 9:571. [PMID: 37504450 PMCID: PMC10379193 DOI: 10.3390/gels9070571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail.
Collapse
Affiliation(s)
- Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongxu Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Huangqin Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
16
|
Chen H, Wu L, Wang T, Zhang F, Song J, Fu J, Kong X, Shi J. PTT/ PDT-induced Microbial Apoptosis and Wound Healing Depend on Immune Activation and Macrophage Phenotype Transformation. Acta Biomater 2023:S1742-7061(23)00350-1. [PMID: 37369265 DOI: 10.1016/j.actbio.2023.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Antibiotics show unsuccessful application in biofilm destruction, which induce chronic infections and emergence of antibiotic resistant bacteria. Photodynamic therapy (PDT) and photothermal therapy (PTT), as widely accepted antimicrobial tools of phototherapy, could effectively activate the immune system and promote the proliferation of wound tissue, thus becoming the most promising therapeutic strategy to replace antibiotics and avoid drug-resistant strains. However, there is no consensus on whether antibacterial and wound healing achieved by PDT/PTT depend not only on the cytotoxic effect of the treatment itself, but also on the activation of host immune system. In this study, CaSiO3-ClO2@PDA-ICG nanoparticles (CCPI NPs) were designed as PDT/PTT antimicrobial model material. With the comparison of healing effect between wide-type mice and severely immunodeficient (C-NKG) mice, the dependence of PDT/PTT-induced microbial apoptosis and wound healing on immune activation and macrophage phenotype transformation was explored and verified. Furthermore, the induced phenotypic transformation of macrophages during PDT/PTT treatment was demonstrated to play crucial role in the improvement of epithelial-mesenchymal transformation (EMT). In summary, this study represents great significance for further identifying the role of immune system activation in antibacterial phototherapy and developing new treatment strategies for biofilm-infected wound healing. STATEMENT OF SIGNIFICANCE: A PDT/PTT combination therapy model nanoparticle was established for biofilm-infected wounds. Both microbial apoptosis and wound healing achieved by PDT/PTT combination therapy were highly dependent on the activated immune system, especially the M2 macrophage phenotype. PDT/PTT could promote the polarization of monocytes to the phenotype of M2 macrophages, which promotes EMT behavior of the tissue at the edge of the wound through the secretion of TGF-β1, thus accelerating wound healing.
Collapse
Affiliation(s)
- Haoyu Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China
| | - Lijuan Wu
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China
| | - Tianyi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China
| | - Fenglan Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China
| | - Junyao Song
- University of Health and Rehabilitation Sciences, Qingdao 266113, Shandong, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China
| | - Jun Fu
- Bassars college of future agricultural science and technology, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China.
| | - Xiaoying Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China.
| | - Jinsheng Shi
- University of Health and Rehabilitation Sciences, Qingdao 266113, Shandong, China; School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan Road East, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. Trends in Photothermal Nanostructures for Antimicrobial Applications. Int J Mol Sci 2023; 24:9375. [PMID: 37298326 PMCID: PMC10253355 DOI: 10.3390/ijms24119375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid development of antimicrobial resistance due to broad antibiotic utilisation in the healthcare and food industries and the non-availability of novel antibiotics represents one of the most critical public health issues worldwide. Current advances in nanotechnology allow new materials to address drug-resistant bacterial infections in specific, focused, and biologically safe ways. The unique physicochemical properties, biocompatibility, and wide range of adaptability of nanomaterials that exhibit photothermal capability can be employed to develop the next generation of photothermally induced controllable hyperthermia as antibacterial nanoplatforms. Here, we review the current state of the art in different functional classes of photothermal antibacterial nanomaterials and strategies to optimise antimicrobial efficiency. The recent achievements and trends in developing photothermally active nanostructures, including plasmonic metals, semiconductors, and carbon-based and organic photothermal polymers, and antibacterial mechanisms of action, including anti-multidrug-resistant bacteria and biofilm removal, will be discussed. Insights into the mechanisms of the photothermal effect and various factors influencing photothermal antimicrobial performance, emphasising the structure-performance relationship, are discussed. We will examine the photothermal agents' functionalisation for specific bacteria, the effects of the near-infrared light irradiation spectrum, and active photothermal materials for multimodal synergistic-based therapies to minimise side effects and maintain low costs. The most relevant applications are presented, such as antibiofilm formation, biofilm penetration or ablation, and nanomaterial-based infected wound therapy. Practical antibacterial applications employing photothermal antimicrobial agents, alone or in synergistic combination with other nanomaterials, are considered. Existing challenges and limitations in photothermal antimicrobial therapy and future perspectives are presented from the structural, functional, safety, and clinical potential points of view.
Collapse
Affiliation(s)
- Violeta Dediu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Jana Ghitman
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
- NUS College, National University of Singapore, 18 College Avenue East, Singapore 138593, Singapore
| | - Florina Silvia Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Ciprian Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
18
|
Fang Q, Wang J, Wu S, Leung KCF, Xu Y, Xuan S. NIR-induced improvement of catalytic activity and antibacterial performance over AuAg nanorods in Rambutan-like Fe 3O 4@AgAu@PDA magnetic nanospheres. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130616. [PMID: 37056020 DOI: 10.1016/j.jhazmat.2022.130616] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/19/2023]
Abstract
Pathogenic bacteria and difficult-to-degrade pollutants in water have been serious problems that always plague people. Therefore, finding a "one stone-two birds" method that can quickly catalyze the degradation of pollutants and show effective antibacterial behavior become an urgent requirement. This work reports a facile one-step strategy for fabricating a Rambutan-like Fe3O4@AgAu@PDA (Fe3O4@AgAu@Polydopamine) core/shell nanosphere with both catalytic and antibacterial activities which can be critically improved by externally applying an NIR laser irradiation (NIR, 808 nm) and a rotating magnetic field. Typically, the Rambutan-like Fe3O4@AgAu@PDA nanosphere have a rather rough surface due to the AuAg bimetallic nanorods sandwiched between the Fe3O4 core and the PDA shell. Owing to the penetrated PDA shell, AgAu nanorods show high and magnetically recyclable photothermal-enhanced catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol and they can also be applied to initiate TMB oxidation under the help of NIR heating condition. Moreover, Fe3O4@AgAu@PDA shows a moderate antibacterial activity due to the weak release of Ag+. Under applying a rotating external magnetic field, the rough-surface Fe3O4@AgAu@PDA nanospheres produce a controllable magnetolytic force on the bacterial due to their good affinity. As a result, the Fe3O4@AgAu@PDA nanospheres show a "magnetolytic-photothermal-Ag+" synergistic antibacterial behavior against E. coli and S. aureus.
Collapse
Affiliation(s)
- Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - ShanShan Wu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, PR China
| | - Ken Cham-Fai Leung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, The Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region of China.
| | - Yunqi Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
19
|
Chen Z, Yao J, Zhao J, Wang S. Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis. Int J Biol Macromol 2023; 225:1235-1245. [PMID: 36435472 DOI: 10.1016/j.ijbiomac.2022.11.184] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Currently, hydrogels are widely studied for wound dressings. However, wound healing is often hindered by bacterial infection. In this study, in situ cross-linked carboxymethyl chitosan (CMCS)/oxidized dextran (OD)/poly-γ-glutamic acid (γ-PGA) (COP) hydrogel was prepared for antimicrobial and hemostasis of diffuse wounds. In the COP hydrogel, γ-PGA was able to drain the surface moisture of the wound to enhance the surface adhesion. Moreover, γ-PGA could concentrate blood by absorbing plasma, and CMCS could electrostatically adsorb negative RBCs. The antibacterial properties of CMCS and OD endowed the COP hydrogel with certain antibacterial effects. In the inhibition zone experiment, an obvious inhibition zone appeared around the COP hydrogel. In vivo studies showed that the COP hydrogel significantly inhibited bacterial growth and promoted wound healing. In the rat tail diffuse hemorrhage wound model, the COP hydrogel showed superior hemostasis ability. Therefore, the multifunctional COP hydrogel is expected to find different applications in wound hemostasis and healing.
Collapse
Affiliation(s)
- Zheng Chen
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jinpeng Yao
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, PR China; Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Shige Wang
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
20
|
Xu Y, Cai Y, Xia Y, Wu Q, Li M, Guo N, Tu Y, Yang B, Liu Y. Photothermal nanoagent for anti-inflammation through macrophage repolarization following antibacterial therapy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Xu K, Fang Q, Wang J, Hui A, Xuan S. Magnetic-Field-Induced Improvement of Photothermal Sterilization Performance by Fe 3O 4@SiO 2@Au/PDA Nanochains. MATERIALS (BASEL, SWITZERLAND) 2022; 16:387. [PMID: 36614727 PMCID: PMC9822472 DOI: 10.3390/ma16010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Due to the abuse of antibiotics, the sensitivity of patients to antibiotics is gradually reduced. This work develops a Fe3O4@SiO2@Au/PDA nanochain which shows an interesting magnetic-field-induced improvement of its photothermal antibacterial property. First, SiO2 was wrapped on Fe3O4 nanospheres assembled in a chain to form a Fe3O4@SiO2 nanocomposite with a chain-like nanostructure. Then, the magnetic Fe3O4@SiO2@Au/PDA nanochains were prepared using in situ redox-oxidization polymerization. Under the irradiation of an 808 nm NIR laser, the temperature rise of the Fe3O4@SiO2@Au/PDA nanochain dispersion was obvious, indicating that they possessed a good photothermal effect. Originating from the Fe3O4, the Fe3O4@SiO2@Au/PDA nanochain showed a typical soft magnetic behavior. Both the NIR and magnetic field affected the antimicrobial performance of the Fe3O4@SiO2@Au/PDA nanochains. Escherichia coli and Staphylococcus aureus were used as models to verify the antibacterial properties. The experimental results showed that the Fe3O4@SiO2@Au/PDA nanochains exhibited good antibacterial properties under photothermal conditions. After applying a magnetic field, the bactericidal effect was further significantly enhanced. The above results show that the material has a broad application prospect in inhibiting the growth of bacteria.
Collapse
Affiliation(s)
- Kezhu Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qunling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ailing Hui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
22
|
Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies. ACS NANO 2022; 16:19840-19872. [PMID: 36441973 DOI: 10.1021/acsnano.2c08262] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections remain the leading cause of death worldwide today. The emergence of antibiotic resistance has urged the development of alternative antibacterial technologies to complement or replace traditional antibiotic treatments. In this regard, metal nanomaterials have attracted great attention for their controllable antibacterial functions that are less prone to resistance. This review discusses a particular family of stimuli-activable metal-bearing nanomaterials (denoted as SAMNs) and the associated on-demand antibacterial strategies. The various SAMN-enabled antibacterial strategies stem from basic light and magnet activation, with the addition of bacterial microenvironment responsiveness and/or bacteria-targeting selectivity and therefore offer higher spatiotemporal controllability. The discussion focuses on nanomaterial design principles, antibacterial mechanisms, and antibacterial performance, as well as emerging applications that desire on-demand and selective activation (i.e., medical antibacterial treatments, surface anti-biofilm, water disinfection, and wearable antibacterial materials). The review concludes with the authors' perspectives on the challenges and future directions for developing industrial translatable next-generation antibacterial strategies.
Collapse
Affiliation(s)
- Yingying Zhong
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive 3, 117543 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science Technology and Research (A*STAR), 138634 Singapore
| |
Collapse
|
23
|
Li M, Wang Y, Han X, Liu Y, Ma M, Zhang L. Multifunctional Polydopamine-Based Nanoparticles for Dual-Mode Imaging Guided Targeted Therapy of Lupus Nephritis. Pharmaceutics 2022; 14:pharmaceutics14101988. [PMID: 36297424 PMCID: PMC9611555 DOI: 10.3390/pharmaceutics14101988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Lupus nephritis (LN) is a common and refractory inflammation of the kidneys caused by systemic lupus erythematosus. Diagnosis and therapies at this stage are inefficient or have severe side effects. In recent years, nanomedicines show great potential for imaging diagnosis and controlled drug release. Herein, we developed a polydopamine (PDA)-based nanocarrier modified with Fe3O4 and Pt nanoparticles and loaded with necrostatin-1 (Nec-1) for the bimodal imaging and therapy of LN. Results demonstrate that Nec-1/PDA@Pt-Fe3O4 nanocarrier exhibits good biocompatibility. Nec-1, as an inhibitor of receptor-interacting protein 1 kinase, can be used to inhibit receptor-interacting protein 1 kinase activity and then reduces inflammation due to LN. Experiments in vitro and in the LN mouse model confirmed that the nanocarrier can reduce neutrophil extracellular traps (NETs) production by RIPK1 and alleviate the progression of inflammation. Previous studies proved that Pt nanoparticles can catalyze H2O2 to produce oxygen. A blood oxygen graph of mouse photoacoustic tomography confirmed that Nec-1/PDA@Pt-Fe3O4 can generate oxygen to fight against the hypoxic microenvironment of LN. PDA and Fe3O4 are used as photographic developers for photoacoustic or magnetic resonance imaging. The preliminary imaging results support Nec-1/PDA@Pt-Fe3O4 potential for photoacoustic/magnetic resonance dual-mode imaging, which can accurately and non-invasively monitor microscopic changes due to diseases. Nec-1/PDA@Pt-Fe3O4 combining these advantages exhibited outstanding performance in LN imaging and therapy. This work offers valuable insights into LN diagnosis and therapy.
Collapse
Affiliation(s)
- Mifang Li
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, 6082 Longgang Avenue, Longgang District, Shenzhen 518116, China
| | - Yeying Wang
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 518048, China
| | - Yibiao Liu
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, 6082 Longgang Avenue, Longgang District, Shenzhen 518116, China
| | - Mingliang Ma
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- Correspondence: (M.M.); (L.Z.); Tel.: +86-21-62233026 (M.M.); +86-188-1981-8005 (L.Z.)
| | - Lingyan Zhang
- Department of Medical Imaging, Longgang Central Hospital of Shenzhen, 6082 Longgang Avenue, Longgang District, Shenzhen 518116, China
- Correspondence: (M.M.); (L.Z.); Tel.: +86-21-62233026 (M.M.); +86-188-1981-8005 (L.Z.)
| |
Collapse
|