1
|
Raghavan AR, Hochwagen A. Keeping it safe: control of meiotic chromosome breakage. Trends Genet 2025; 41:315-329. [PMID: 39672680 PMCID: PMC11981862 DOI: 10.1016/j.tig.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/15/2024]
Abstract
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability. To mitigate these risks, meiotic cells have evolved an intricate network of controls that modulates the timing, levels, and genomic location of meiotic DSBs. This Review summarizes our current understanding of these controls with a particular focus on the mechanisms that prevent meiotic DSB formation at the wrong time or place, thereby guarding the genome from potentially catastrophic meiotic errors.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Coelho MA, David-Palma M, Marincowitz S, Aylward J, Pham NQ, Yurkov AM, Wingfield BD, Wingfield MJ, Sun S, Heitman J. Tracing the evolution and genomic dynamics of mating-type loci in Cryptococcus pathogens and closely related species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637874. [PMID: 39990455 PMCID: PMC11844451 DOI: 10.1101/2025.02.12.637874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sexual reproduction in basidiomycete fungi is governed by MAT loci (P/R and HD), which exhibit remarkable evolutionary plasticity, characterized by expansions, rearrangements, and gene losses often associated with mating system transitions. The sister genera Cryptococcus and Kwoniella provide a powerful framework for studying MAT loci evolution owing to their diverse reproductive strategies and distinct architectures, spanning bipolar and tetrapolar systems with either linked or unlinked MAT loci. Building on recent large-scale comparative genomic analyses, we generated additional chromosome-level assemblies uncovering distinct evolutionary trajectories shaping MAT loci organization. Contrasting with the small-scale expansions and gene acquisitions observed in Kwoniella, our analyses revealed independent expansions of the P/R locus in tetrapolar Cryptococcus, possibly driven by pheromone gene duplications. Notably, these expansions coincided with an enrichment of AT-rich codons and a pronounced GC-content reduction, likely associated with recombination suppression and relaxed codon usage selection. Diverse modes of MAT locus linkage were also identified, including three previously unrecognized transitions: one resulting in a pseudobipolar arrangement and two leading to bipolarity. All the three transitions involved translocations. In the pseudobipolar configuration, the P/R and HD loci remained on the same chromosome but genetically unlinked, whereas the bipolar transitions additionally featured rearrangements that fused the two loci into a nonrecombining region. Mating assays confirmed a sexual cycle in C. decagattii, demonstrating its ability to undergo mating and sporulation. Progeny analysis in K. mangrovensis revealed substantial ploidy variation and aneuploidy, likely stemming from haploid-diploid mating, yet evidence of recombination and loss of heterozygosity indicates that meiotic exchange occurs despite irregular chromosome segregation. Our findings underscore the importance of continued diversity sampling and provides further evidence for convergent evolution of fused MAT loci in basidiomycetes, offering new insights into the genetic and chromosomal changes driving reproductive transitions.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Seonju Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Nam Q. Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Tran P, Mishra P, Williams L, Moskalenko R, Sharma S, Nilsson A, Watt D, Andersson P, Bergh A, Pursell Z, Chabes A. Altered dNTP pools accelerate tumor formation in mice. Nucleic Acids Res 2024; 52:12475-12486. [PMID: 39360631 PMCID: PMC11551754 DOI: 10.1093/nar/gkae843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Alterations in deoxyribonucleoside triphosphate (dNTP) pools have been linked to increased mutation rates and genome instability in unicellular organisms and cell cultures. However, the role of dNTP pool changes in tumor development in mammals remains unclear. In this study, we present a mouse model with a point mutation at the allosteric specificity site of ribonucleotide reductase, RRM1-Y285A. This mutation reduced ribonucleotide reductase activity, impairing the synthesis of deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP). Heterozygous Rrm1+/Y285A mice exhibited distinct alterations in dNTP pools across various organs, shorter lifespans and earlier tumor onset compared with wild-type controls. Mutational spectrum analysis of tumors revealed two distinct signatures, one resembling a signature extracted from a human cancer harboring a mutation of the same amino acid residue in ribonucleotide reductase, RRM1Y285C. Our findings suggest that mutations in enzymes involved in dNTP metabolism can serve as drivers of cancer development.
Collapse
Affiliation(s)
- Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Pradeep Mishra
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, Kharkivska st. 116, Sumy 40007, Ukraine
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Danielle L Watt
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
- School of Medicine and School of Dental Medicine, UConn Health, 300 UConn Health Blvd, Farmington, CT 06030, USA
| | - Pernilla Andersson
- Pathology Unit, Department of Medical Biosciences, Umeå University, Daniel Naezéns väg 6M, Umeå, SE 90737, Sweden
| | - Anders Bergh
- Pathology Unit, Department of Medical Biosciences, Umeå University, Daniel Naezéns väg 6M, Umeå, SE 90737, Sweden
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| |
Collapse
|
4
|
Xie B, Sanford EJ, Hung SH, Wagner M, Heyer WD, Smolka MB. Multi-step control of homologous recombination via Mec1/ATR suppresses chromosomal rearrangements. EMBO J 2024; 43:3027-3043. [PMID: 38839993 PMCID: PMC11251156 DOI: 10.1038/s44318-024-00139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds and phosphorylated by Mec1 to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Xie B, Sanford EJ, Hung SH, Wagner MM, Heyer WD, Smolka MB. Multi-Step Control of Homologous Recombination by Mec1/ATR Ensures Robust Suppression of Gross Chromosomal Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568146. [PMID: 38045423 PMCID: PMC10690203 DOI: 10.1101/2023.11.21.568146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection. Upon loss of Rad53 signaling and resection control, Mec1 becomes hyperactivated and triggers a salvage pathway in which the Sgs1 helicase is recruited to sites of DNA lesions via the 911-Dpb11 scaffolds to favor heteroduplex rejection and limit HR-driven GCR accumulation. Fusing an ssDNA recognition domain to Sgs1 bypasses the requirement of Mec1 signaling for GCR suppression and nearly eliminates D-loop formation, thus preventing non-allelic recombination events. We propose that Mec1 regulates multiple steps of HR to prevent GCRs while ensuring balanced HR usage when needed for promoting tolerance to replication stress.
Collapse
Affiliation(s)
- Bokun Xie
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Ethan James Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Shih-Hsun Hung
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Mateusz Maciej Wagner
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Li J, Stenberg S, Yue JX, Mikhalev E, Thompson D, Warringer J, Liti G. Genome instability footprint under rapamycin and hydroxyurea treatments. PLoS Genet 2023; 19:e1011012. [PMID: 37931001 PMCID: PMC10653606 DOI: 10.1371/journal.pgen.1011012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The mutational processes dictating the accumulation of mutations in genomes are shaped by genetic background, environment and their interactions. Accurate quantification of mutation rates and spectra under drugs has important implications in disease treatment. Here, we used whole-genome sequencing and time-resolved growth phenotyping of yeast mutation accumulation lines to give a detailed view of the mutagenic effects of rapamycin and hydroxyurea on the genome and cell growth. Mutation rates depended on the genetic backgrounds but were only marginally affected by rapamycin. As a remarkable exception, rapamycin treatment was associated with frequent chromosome XII amplifications, which compensated for rapamycin induced rDNA repeat contraction on this chromosome and served to maintain rDNA content homeostasis and fitness. In hydroxyurea, a wide range of mutation rates were elevated regardless of the genetic backgrounds, with a particularly high occurrence of aneuploidy that associated with dramatic fitness loss. Hydroxyurea also induced a high T-to-G and low C-to-A transversion rate that reversed the common G/C-to-A/T bias in yeast and gave rise to a broad range of structural variants, including mtDNA deletions. The hydroxyurea mutation footprint was consistent with the activation of error-prone DNA polymerase activities and non-homologues end joining repair pathways. Taken together, our study provides an in-depth view of mutation rates and signatures in rapamycin and hydroxyurea and their impact on cell fitness, which brings insights for assessing their chronic effects on genome integrity.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | - Dawn Thompson
- Ginkgo Bioworks, Boston, Massachusetts, United States of America
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| |
Collapse
|
7
|
Ivessa AS, Singh S. The increase in cell death rates in caloric restricted cells of the yeast helicase mutant rrm3 is Sir complex dependent. Sci Rep 2023; 13:17832. [PMID: 37857740 PMCID: PMC10587150 DOI: 10.1038/s41598-023-45125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
Calorie restriction (CR), which is a reduction in calorie intake without malnutrition, usually extends lifespan and improves tissue integrity. This report focuses on the relationship between nuclear genomic instability and dietary-restriction and its effect on cell survival. We demonstrate that the cell survival rates of the genomic instability yeast mutant rrm3 change under metabolic restricted conditions. Rrm3 is a DNA helicase, chromosomal replication slows (and potentially stalls) in its absence with increased rates at over 1400 natural pause sites including sites within ribosomal DNA and tRNA genes. Whereas rrm3 mutant cells have lower cell death rates compared to wild type (WT) in growth medium containing normal glucose levels (i.e., 2%), under CR growth conditions cell death rates increase in the rrm3 mutant to levels, which are higher than WT. The silent-information-regulatory (Sir) protein complex and mitochondrial oxidative stress are required for the increase in cell death rates in the rrm3 mutant when cells are transferred from growth medium containing 2% glucose to CR-medium. The Rad53 checkpoint protein is highly phosphorylated in the rrm3 mutant in response to genomic instability in growth medium containing 2% glucose. Under CR, Rad53 phosphorylation is largely reduced in the rrm3 mutant in a Sir-complex dependent manner. Since CR is an adjuvant treatment during chemotherapy, which may target genomic instability in cancer cells, our studies may gain further insight into how these therapy strategies can be improved.
Collapse
Affiliation(s)
- Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA.
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA
| |
Collapse
|
8
|
Strauss JD, Pursell ZF. Replication DNA polymerases, genome instability and cancer therapies. NAR Cancer 2023; 5:zcad033. [PMID: 37388540 PMCID: PMC10304742 DOI: 10.1093/narcan/zcad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
It has been over a decade since the initial identification of exonuclease domain mutations in the genes encoding the catalytic subunits of replication DNA polymerases ϵ and δ (POLE and POLD1) in tumors from highly mutated endometrial and colorectal cancers. Interest in studying POLE and POLD1 has increased significantly since then. Prior to those landmark cancer genome sequencing studies, it was well documented that mutations in replication DNA polymerases that reduced their DNA synthesis accuracy, their exonuclease activity or their interactions with other factors could lead to increased mutagenesis, DNA damage and even tumorigenesis in mice. There are several recent, well-written reviews of replication DNA polymerases. The aim of this review is to gather and review in some detail recent studies of DNA polymerases ϵ and δ as they pertain to genome instability, cancer and potential therapeutic treatments. The focus here is primarily on recent informative studies on the significance of mutations in genes encoding their catalytic subunits (POLE and POLD1), mutational signatures, mutations in associated genes, model organisms, and the utility of chemotherapy and immune checkpoint inhibition in polymerase mutant tumors.
Collapse
Affiliation(s)
- Juliet D Strauss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, 70118 LA, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, 70118 LA, USA
| |
Collapse
|
9
|
Zhuk AS, Shiriaeva AA, Andreychuk YV, Kochenova OV, Tarakhovskaya ER, Bure VM, Pavlov YI, Inge-Vechtomov SG, Stepchenkova EI. Detection of Primary DNA Lesions by Transient Changes in Mating Behavior in Yeast Saccharomyces cerevisiae Using the Alpha-Test. Int J Mol Sci 2023; 24:12163. [PMID: 37569542 PMCID: PMC10418631 DOI: 10.3390/ijms241512163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Spontaneous or induced DNA lesions can result in stable gene mutations and chromosomal aberrations due to their inaccurate repair, ultimately resulting in phenotype changes. Some DNA lesions per se may interfere with transcription, leading to temporary phenocopies of mutations. The direct impact of primary DNA lesions on phenotype before their removal by repair is not well understood. To address this question, we used the alpha-test, which allows for detecting various genetic events leading to temporary or hereditary changes in mating type α→a in heterothallic strains of yeast Saccharomyces cerevisiae. Here, we compared yeast strains carrying mutations in DNA repair genes, mismatch repair (pms1), base excision repair (ogg1), and homologous recombination repair (rad52), as well as mutagens causing specific DNA lesions (UV light and camptothecin). We found that double-strand breaks and UV-induced lesions have a stronger effect on the phenotype than mismatches and 8-oxoguanine. Moreover, the loss of the entire chromosome III leads to an immediate mating type switch α→a and does not prevent hybridization. We also evaluated the ability of primary DNA lesions to persist through the cell cycle by assessing the frequency of UV-induced inherited and non-inherited genetic changes in asynchronous cultures of a wild-type (wt) strain and in a cdc28-4 mutant arrested in the G1 phase. Our findings suggest that the phenotypic manifestation of primary DNA lesions depends on their type and the stage of the cell cycle in which it occurred.
Collapse
Affiliation(s)
- Anna S. Zhuk
- Institute of Applied Computer Science, ITMO University, 191002 St. Petersburg, Russia
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Anna A. Shiriaeva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
| | - Yulia V. Andreychuk
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Olga V. Kochenova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
- Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - Elena R. Tarakhovskaya
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir M. Bure
- Faculty of Applied Mathematics and Control Processes, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, the University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sergey G. Inge-Vechtomov
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia; (E.R.T.); (S.G.I.-V.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.S.); (O.V.K.)
| |
Collapse
|
10
|
Shuffling the yeast genome using CRISPR/Cas9-generated DSBs that target the transposable Ty1 elements. PLoS Genet 2023; 19:e1010590. [PMID: 36701275 PMCID: PMC9879454 DOI: 10.1371/journal.pgen.1010590] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Although homologous recombination between transposable elements can drive genomic evolution in yeast by facilitating chromosomal rearrangements, the details of the underlying mechanisms are not fully clarified. In the genome of the yeast Saccharomyces cerevisiae, the most common class of transposon is the retrotransposon Ty1. Here, we explored how Cas9-induced double-strand breaks (DSBs) directed to Ty1 elements produce genomic alterations in this yeast species. Following Cas9 induction, we observed a significant elevation of chromosome rearrangements such as deletions, duplications and translocations. In addition, we found elevated rates of mitotic recombination, resulting in loss of heterozygosity. Using Southern analysis coupled with short- and long-read DNA sequencing, we revealed important features of recombination induced in retrotransposons. Almost all of the chromosomal rearrangements reflect the repair of DSBs at Ty1 elements by non-allelic homologous recombination; clustered Ty elements were hotspots for chromosome rearrangements. In contrast, a large proportion (about three-fourths) of the allelic mitotic recombination events have breakpoints in unique sequences. Our analysis suggests that some of the latter events reflect extensive processing of the broken ends produced in the Ty element that extend into unique sequences resulting in break-induced replication. Finally, we found that haploid and diploid strain have different preferences for the pathways used to repair double-stranded DNA breaks. Our findings demonstrate the importance of DNA lesions in retrotransposons in driving genome evolution.
Collapse
|
11
|
Zhang X, Hooykaas MJG, van Heusden GP, Hooykaas PJJ. The translocated virulence protein VirD5 causes DNA damage and mutation during Agrobacterium-mediated transformation of yeast. SCIENCE ADVANCES 2022; 8:eadd3912. [PMID: 36383666 PMCID: PMC9668295 DOI: 10.1126/sciadv.add3912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The soil bacterium Agrobacterium tumefaciens is a preferred gene vector not only for plants but also for fungi. Agrobacterium delivers a small set of virulence proteins into host cells concomitantly with transferred DNA (T-DNA) to support the transformation process. Here, we find that expression of one of these proteins, called VirD5, in yeast host cells causes replication stress and DNA damage. This can result in both genomic rearrangements and local mutations, especially small deletions. Delivery of VirD5 during cocultivation with Agrobacterium led to mutations in the yeast genome that were unlinked to the integration of T-DNA. This load of mutations can be prevented by using a virD5 mutant for genome engineering, but this leads to a lower transformation frequency.
Collapse
|
12
|
Wang L, Zhang S, Fang J, Jin X, Mamut R, Li P. The Chloroplast Genome of the Lichen Photobiont Trebouxiophyceae sp. DW1 and Its Phylogenetic Implications. Genes (Basel) 2022; 13:genes13101840. [PMID: 36292725 PMCID: PMC9601494 DOI: 10.3390/genes13101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lichens are symbiotic associations of algae and fungi. The genetic mechanism of the symbiosis of lichens and the influence of symbiosis on the size and composition of the genomes of symbiotic algae have always been intriguing scientific questions explored by lichenologists. However, there were limited data on lichen genomes. Therefore, we isolated and purified a lichen symbiotic alga to obtain a single strain (Trebouxiophyceae sp. DW1), and then obtained its chloroplast genome information by next-generation sequencing (NGS). The chloroplast genome is 129,447 bp in length, and the GC content is 35.2%. Repetitive sequences with the length of 30–35 bp account for 1.27% of the total chloroplast genome. The simple sequence repeats are all mononucleotide repeats. Codon usage analysis showed that the genome tended to use codon ending in A/U. By comparing the length of different regions of Trebouxiophyceae genomes, we found that the changes in the length of exons, introns, and intergenic sequences affect the size of genomes. Trebouxiophyceae had an unstable chloroplast genome structure, with IRs repeatedly losing during evolution. Phylogenetic analysis showed that Trebouxiophyceae is paraphyletic, and Trebouxiophyceae sp. DW1 is sister to the clade of Koliella longiseta and Pabia signiensis.
Collapse
Affiliation(s)
- Lidan Wang
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
| | - Shenglu Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinjin Fang
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Reyim Mamut
- College of Life Sciences and Technology, Xinjiang University, Urumchi 830046, China
- Correspondence: (R.M.); (P.L.)
| | - Pan Li
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (R.M.); (P.L.)
| |
Collapse
|
13
|
Osia B, Twarowski J, Jackson T, Lobachev K, Liu L, Malkova A. Migrating bubble synthesis promotes mutagenesis through lesions in its template. Nucleic Acids Res 2022; 50:6870-6889. [PMID: 35748867 PMCID: PMC9262586 DOI: 10.1093/nar/gkac520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Break-induced replication (BIR) proceeds via a migrating D-loop for hundreds of kilobases and is highly mutagenic. Previous studies identified long single-stranded (ss) nascent DNA that accumulates during leading strand synthesis to be a target for DNA damage and a primary source of BIR-induced mutagenesis. Here, we describe a new important source of mutagenic ssDNA formed during BIR: the ssDNA template for leading strand BIR synthesis formed during D-loop migration. Specifically, we demonstrate that this D-loop bottom template strand (D-BTS) is susceptible to APOBEC3A (A3A)-induced DNA lesions leading to mutations associated with BIR. Also, we demonstrate that BIR-associated ssDNA promotes an additional type of genetic instability: replication slippage between microhomologies stimulated by inverted DNA repeats. Based on our results we propose that these events are stimulated by both known sources of ssDNA formed during BIR, nascent DNA formed by leading strand synthesis, and the D-BTS that we describe here. Together we report a new source of mutagenesis during BIR that may also be shared by other homologous recombination pathways driven by D-loop repair synthesis.
Collapse
Affiliation(s)
| | | | - Tyler Jackson
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kirill Lobachev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GE 30332, USA
| | - Liping Liu
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Anna Malkova
- To whom correspondence should be addressed. Tel: +1 319 384 1285;
| |
Collapse
|
14
|
Global genomic instability caused by reduced expression of DNA polymerase ε in yeast. Proc Natl Acad Sci U S A 2022; 119:e2119588119. [PMID: 35290114 PMCID: PMC8944251 DOI: 10.1073/pnas.2119588119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.
Collapse
|
15
|
Marie L, Symington LS. Mechanism for inverted-repeat recombination induced by a replication fork barrier. Nat Commun 2022; 13:32. [PMID: 35013185 PMCID: PMC8748988 DOI: 10.1038/s41467-021-27443-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 nucleases. Physical analysis of the replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats that can robustly generate chromosome rearrangements. Replication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. Here the authors use a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome to support a model for recombination of closely linked repeats at stalled replication forks.
Collapse
Affiliation(s)
- Léa Marie
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA. .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Jinks-Robertson S, Petes TD. Mitotic recombination in yeast: what we know and what we don't know. Curr Opin Genet Dev 2021; 71:78-85. [PMID: 34311384 PMCID: PMC8671248 DOI: 10.1016/j.gde.2021.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022]
Abstract
Saccharomyces cerevisiae is at the forefront of defining the major recombination mechanisms/models that repair targeted double-strand breaks during mitosis. Each of these models predicts specific molecular intermediates as well as genetic outcomes. Recent use of single-nucleotide polymorphisms to track the exchange of sequences in recombination products has provided an unprecedented level of detail about the corresponding intermediates and the extents to which different mechanisms are utilized. This approach also has revealed complexities that are not predicted by canonical models, suggesting that modifications to these models are needed. Current data are consistent with the initiation of most inter-homolog spontaneous mitotic recombination events by a double-strand break. In addition, the sister chromatid is preferred over the homolog as a repair template.
Collapse
Affiliation(s)
- Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
17
|
Stewart JA, Hillegass MB, Oberlitner JH, Younkin EM, Wasserman BF, Casper AM. Noncanonical outcomes of break-induced replication produce complex, extremely long-tract gene conversion events in yeast. G3 (BETHESDA, MD.) 2021; 11:jkab245. [PMID: 34568913 PMCID: PMC8473981 DOI: 10.1093/g3journal/jkab245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Long-tract gene conversions (LTGC) can result from the repair of collapsed replication forks, and several mechanisms have been proposed to explain how the repair process produces this outcome. We studied LTGC events produced from repair collapsed forks at yeast fragile site FS2. Our analysis included chromosome sizing by contour-clamped homogeneous electric field electrophoresis, next-generation whole-genome sequencing, and Sanger sequencing across repair event junctions. We compared the sequence and structure of LTGC events in our cells to the expected qualities of LTGC events generated by proposed mechanisms. Our evidence indicates that some LTGC events arise from half-crossover during BIR, some LTGC events arise from gap repair, and some LTGC events can be explained by either gap repair or "late" template switch during BIR. Also based on our data, we propose that models of collapsed replication forks be revised to show not a one-end double-strand break (DSB), but rather a two-end DSB in which the ends are separated in time and subject to gap repair.
Collapse
Affiliation(s)
- Joseph A Stewart
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Joseph H Oberlitner
- Department of Biology, Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Ellen M Younkin
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Beth F Wasserman
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Anne M Casper
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
18
|
Al-Zain AM, Symington LS. The dark side of homology-directed repair. DNA Repair (Amst) 2021; 106:103181. [PMID: 34311272 DOI: 10.1016/j.dnarep.2021.103181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
DNA double strand breaks (DSB) are cytotoxic lesions that can lead to genome rearrangements and genomic instability, which are hallmarks of cancer. The two main DSB repair pathways are non-homologous end joining and homologous recombination (HR). While HR is generally highly accurate, it has the potential for rearrangements that occur directly or through intermediates generated during the repair process. Whole genome sequencing of cancers has revealed numerous types of structural rearrangement signatures that are often indicative of repair mediated by sequence homology. However, it can be challenging to delineate repair mechanisms from sequence analysis of rearrangement end products from cancer genomes, or even model systems, because the same rearrangements can be generated by different pathways. Here, we review homology-directed repair pathways and their consequences. Exploring those pathways can lead to a greater understanding of rearrangements that occur in cancer cells.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
19
|
Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22020786. [PMID: 33466757 PMCID: PMC7830279 DOI: 10.3390/ijms22020786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal rearrangements comprise unbalanced structural variations resulting in gain or loss of DNA copy numbers, as well as balanced events including translocation and inversion that are copy number neutral, both of which contribute to phenotypic evolution in organisms. The exquisite genetic assay and gene editing tools available for the model organism Saccharomyces cerevisiae facilitate deep exploration of the mechanisms underlying chromosomal rearrangements. We discuss here the pathways and influential factors of chromosomal rearrangements in S. cerevisiae. Several methods have been developed to generate on-demand chromosomal rearrangements and map the breakpoints of rearrangement events. Finally, we highlight the contributions of chromosomal rearrangements to drive phenotypic evolution in various S. cerevisiae strains. Given the evolutionary conservation of DNA replication and recombination in organisms, the knowledge gathered in the small genome of yeast can be extended to the genomes of higher eukaryotes.
Collapse
|
20
|
Abstract
DNA break lesions pose a serious threat to the integrity of the genome. Eukaryotic cells can repair these lesions using the homologous recombination pathway that guides the repair reaction by using a homologous DNA template. The budding yeast Saccharomyces cerevisiae is an excellent model system with which to study this repair mechanism and the resulting patterns of genomic change resulting from it. In this chapter, we describe an approach that utilizes whole-genome sequencing data to support the analysis of tracts of loss-of-heterozygosity (LOH) that can arise from mitotic recombination in the context of the entire diploid yeast genome. The workflow and the discussion in this chapter are intended to enable classically trained molecular biologists and geneticists with limited experience in computational methods to conceptually understand and execute the steps of genome-wide LOH analysis as well as to adapt and apply them to their own specific studies and experimental models.
Collapse
Affiliation(s)
- Lydia R Heasley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nadia M V Sampaio
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
21
|
Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol Mol Biol Rev 2020; 85:85/1/e00110-20. [PMID: 33361270 DOI: 10.1128/mmbr.00110-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duplex DNA naturally folds into a right-handed double helix in physiological conditions. Some sequences of unusual base composition may nevertheless form alternative structures, as was shown for many repeated sequences in vitro However, evidence for the formation of noncanonical structures in living cells is difficult to gather. It mainly relies on genetic assays demonstrating their function in vivo or through genetic instability reflecting particular properties of such structures. Efforts were made to reveal their existence directly in a living cell, mainly by generating antibodies specific to secondary structures or using chemical ligands selected for their affinity to these structures. Among secondary structure-forming DNAs are G-quadruplexes, human fragile sites containing minisatellites, AT-rich regions, inverted repeats able to form cruciform structures, hairpin-forming CAG/CTG triplet repeats, and triple helices formed by homopurine-homopyrimidine GAA/TTC trinucleotide repeats. Many of these alternative structures are involved in human pathologies, such as neurological or developmental disorders, as in the case of trinucleotide repeats, or cancers triggered by translocations linked to fragile sites. This review will discuss and highlight evidence supporting the formation of alternative DNA structures in vivo and will emphasize the role of the mismatch repair machinery in binding mispaired DNA duplexes, triggering genetic instability.
Collapse
|
22
|
Sui Y, Qi L, Wu JK, Wen XP, Tang XX, Ma ZJ, Wu XC, Zhang K, Kokoska RJ, Zheng DQ, Petes TD. Genome-wide mapping of spontaneous genetic alterations in diploid yeast cells. Proc Natl Acad Sci U S A 2020; 117:28191-28200. [PMID: 33106417 PMCID: PMC7668089 DOI: 10.1073/pnas.2018633117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genomic alterations including single-base mutations, deletions and duplications, translocations, mitotic recombination events, and chromosome aneuploidy generate genetic diversity. We examined the rates of all of these genetic changes in a diploid strain of Saccharomyces cerevisiae by whole-genome sequencing of many independent isolates (n = 93) subcloned about 100 times in unstressed growth conditions. The most common alterations were point mutations and small (<100 bp) insertion/deletions (n = 1,337) and mitotic recombination events (n = 1,215). The diploid cells of most eukaryotes are heterozygous for many single-nucleotide polymorphisms (SNPs). During mitotic cell divisions, recombination can produce derivatives of these cells that have become homozygous for the polymorphisms, termed loss-of-heterozygosity (LOH) events. LOH events can change the phenotype of the cells and contribute to tumor formation in humans. We observed two types of LOH events: interstitial events (conversions) resulting in a short LOH tract (usually less than 15 kb) and terminal events (mostly cross-overs) in which the LOH tract extends to the end of the chromosome. These two types of LOH events had different distributions, suggesting that they may have initiated by different mechanisms. Based on our results, we present a method of calculating the probability of an LOH event for individual SNPs located throughout the genome. We also identified several hotspots for chromosomal rearrangements (large deletions and duplications). Our results provide insights into the relative importance of different types of genetic alterations produced during vegetative growth.
Collapse
Affiliation(s)
- Yang Sui
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705
| | - Lei Qi
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705
| | - Jian-Kun Wu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xue-Ping Wen
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xing-Xing Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Zhong-Jun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Science, Zhejiang University, 310058 Hangzhou, China
| | - Ke Zhang
- Institute of Microbiology, College of Life Science, Zhejiang University, 310058 Hangzhou, China;
| | - Robert J Kokoska
- Physical Sciences Directorate, United States Army Research Office, Research Triangle Park, NC 27709
| | - Dao-Qiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021 Zhoushan, China;
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27705;
| |
Collapse
|
23
|
Ravishankar A, Pupo A, Gallagher JEG. Resistance Mechanisms of Saccharomyces cerevisiae to Commercial Formulations of Glyphosate Involve DNA Damage Repair, the Cell Cycle, and the Cell Wall Structure. G3 (BETHESDA, MD.) 2020; 10:2043-2056. [PMID: 32299824 PMCID: PMC7263678 DOI: 10.1534/g3.120.401183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
The use of glyphosate-based herbicides is widespread and despite their extensive use, their effects are yet to be deciphered completely. The additives in commercial formulations of glyphosate, though labeled inert when used individually, have adverse effects when used in combination with other additives along with the active ingredient. As a species, Saccharomyces cerevisiae has a wide range of resistance to glyphosate-based herbicides. To investigate the underlying genetic differences between sensitive and resistant strains, global changes in gene expression were measured, when yeast were exposed to a glyphosate-based herbicide (GBH). Expression of genes involved in numerous pathways crucial to the cell's functioning, such as DNA replication, MAPK signaling, meiosis, and cell wall synthesis changed. Because so many diverse pathways were affected, these strains were then subjected to in-lab-evolutions (ILE) to select mutations that confer increased resistance. Common fragile sites were found to play a role in adaptation to resistance to long-term exposure of GBHs. Copy number increased in approximately 100 genes associated with cell wall proteins, mitochondria, and sterol transport. Taking ILE and transcriptomic data into account it is evident that GBHs affect multiple biological processes in the cell. One such component is the cell wall structure which acts as a protective barrier in alleviating the stress caused by exposure to inert additives in GBHs. Sed1, a GPI-cell wall protein, plays an important role in tolerance of a GBH. Hence, a detailed study of the changes occurring at the genome and transcriptome levels is essential to better understand the effects of an environmental stressor such as a GBH, on the cell as a whole.
Collapse
Affiliation(s)
| | - Amaury Pupo
- Department of Biology, West Virginia University
| | | |
Collapse
|
24
|
Porcella SY, Koussa NC, Tang CP, Kramer DN, Srivastava P, Smith DJ. Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation. PLoS Genet 2020; 16:e1008755. [PMID: 32379761 PMCID: PMC7237047 DOI: 10.1371/journal.pgen.1008755] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 05/19/2020] [Accepted: 04/03/2020] [Indexed: 01/17/2023] Open
Abstract
During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting. Half of each eukaryotic genome is replicated continuously as the leading strand, while the other half is synthesized discontinuously as Okazaki fragments on the lagging strand. The bulk of DNA replication is completed by DNA polymerases ε and δ on the leading and lagging strand respectively, while synthesis on each strand is initiated by DNA polymerase α-primase (Pol α). Using the model eukaryote S. cerevisiae, we modulate cellular levels of Pol α and interrogate the impact of this perturbation on both replication initiation on DNA synthesis and cellular viability. We observe that Pol α can associate dynamically at the replication fork for initiation on both strands. Although the initiation of both strands is widely thought to be mechanistically similar, we determine that Ctf4, a hub that connects proteins to the replication fork, stimulates lagging-strand priming to a greater extent than leading-strand initiation. We also find that decreased leading-strand initiation results in a checkpoint response that is necessary for viability when Pol α is limiting. Because the DNA replication machinery is highly conserved from budding yeast to humans, this research provides insights into how DNA replication is accomplished throughout eukaryotes.
Collapse
Affiliation(s)
- Sarina Y. Porcella
- Department of Biology, New York University, New York, NY, United States of America
| | - Natasha C. Koussa
- Department of Biology, New York University, New York, NY, United States of America
| | - Colin P. Tang
- Department of Biology, New York University, New York, NY, United States of America
| | - Daphne N. Kramer
- Department of Biology, New York University, New York, NY, United States of America
| | - Priyanka Srivastava
- Department of Biology, New York University, New York, NY, United States of America
| | - Duncan J. Smith
- Department of Biology, New York University, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
25
|
Svetec Miklenić M, Gatalica N, Matanović A, Žunar B, Štafa A, Lisnić B, Svetec IK. Size-dependent antirecombinogenic effect of short spacers on palindrome recombinogenicity. DNA Repair (Amst) 2020; 90:102848. [PMID: 32388488 DOI: 10.1016/j.dnarep.2020.102848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 01/01/2023]
Abstract
Palindromic sequences in DNA can instigate genetic recombination and genome instability, which can result in devastating conditions such as the Emmanuel syndrome. Palindrome recombinogenicity increases with its size and sequence similarity between palindrome arms, while quasipalindromes with long spacers are less recombinogenic. However, the minimal spacer length, which could reduce or abolish palindrome recombinogenicity in the eukaryotic genome, was never determined. Therefore, we constructed a series of palindromes containing spacers of lengths ranging from 0 (perfect palindrome) to 10 bp and tested their recombinogenicity in yeast Saccharomyces cerevisiae. We found that a 7 bp spacer significantly reduces 126 bp palindrome recombinogenicity, while a 10 bp spacer completely stabilizes palindromes up to 150 bp long. Additionally, we showed that palindrome stimulated recombination rate is not dependent on Mus81 and Yen1 endonucleases. We also compared the recombinogenicity of a perfect 126 bp palindrome and a corresponding quasipalindrome consisting of the same palindrome arms with a stabilising 10 bp spacer in sgs1Δ and rad27Δ backgrounds, since both Sgs1 helicase and Rad27 endonuclease are implicated in preventing hairpin formation at palindromic sequences during replication.
Collapse
Affiliation(s)
- Marina Svetec Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Nikolina Gatalica
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Angela Matanović
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Bojan Žunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ivan Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
26
|
Luo Z, Hoffmann SA, Jiang S, Cai Y, Dai J. Probing eukaryotic genome functions with synthetic chromosomes. Exp Cell Res 2020; 390:111936. [PMID: 32165165 DOI: 10.1016/j.yexcr.2020.111936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
The ability to redesign and reconstruct a cell at whole-genome level provides new platforms for biological study. The international synthetic yeast genome project-Sc2.0, designed by interrogating knowledge amassed by the yeast community to date, exemplifies how a classical synthetic biology "design-build-test-learn" engineering cycle can effectively test hypotheses about various genome fundamentals. The genome reshuffling SCRaMbLE system implemented in synthetic yeast strains also provides unprecedented diversified resources for genotype-phenotype study and yeast metabolic engineering. Further development of genome synthesis technology will shed new lights on complex biological processes in higher eukaryotes.
Collapse
Affiliation(s)
- Zhouqing Luo
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Shuangying Jiang
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yizhi Cai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK.
| | - Junbiao Dai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
27
|
Sui Y, Qi L, Zhang K, Saini N, Klimczak LJ, Sakofsky CJ, Gordenin DA, Petes TD, Zheng DQ. Analysis of APOBEC-induced mutations in yeast strains with low levels of replicative DNA polymerases. Proc Natl Acad Sci U S A 2020; 117:9440-9450. [PMID: 32277034 PMCID: PMC7196835 DOI: 10.1073/pnas.1922472117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast strains with low levels of the replicative DNA polymerases (alpha, delta, and epsilon) have high levels of chromosome deletions, duplications, and translocations. By examining the patterns of mutations induced in strains with low levels of DNA polymerase by the human protein APOBEC3B (a protein that deaminates cytosine in single-stranded DNA), we show dramatically elevated amounts of single-stranded DNA relative to a wild-type strain. During DNA replication, one strand (defined as the leading strand) is replicated processively by DNA polymerase epsilon and the other (the lagging strand) is replicated as short fragments initiated by DNA polymerase alpha and extended by DNA polymerase delta. In the low DNA polymerase alpha and delta strains, the APOBEC-induced mutations are concentrated on the lagging-strand template, whereas in the low DNA polymerase epsilon strain, mutations occur on the leading- and lagging-strand templates with similar frequencies. In addition, for most genes, the transcribed strand is mutagenized more frequently than the nontranscribed strand. Lastly, some of the APOBEC-induced clusters in strains with low levels of DNA polymerase alpha or delta are greater than 10 kb in length.
Collapse
Affiliation(s)
- Yang Sui
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Lei Qi
- Ocean College, Zhejiang University, 316021 Zhoushan, China
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Ke Zhang
- Ocean College, Zhejiang University, 316021 Zhoushan, China
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Cynthia J Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710;
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, 316021 Zhoushan, China;
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
28
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
29
|
Puppo IL, Saifitdinova AF, Tonyan ZN. The Role of Satellite DNA in Causing Structural Rearrangements in Human Karyotype. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795419080155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Puddu F, Herzog M, Selivanova A, Wang S, Zhu J, Klein-Lavi S, Gordon M, Meirman R, Millan-Zambrano G, Ayestaran I, Salguero I, Sharan R, Li R, Kupiec M, Jackson SP. Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature 2019; 573:416-420. [PMID: 31511699 PMCID: PMC6774800 DOI: 10.1038/s41586-019-1549-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Despite major progress in defining the functional roles of genes, a complete understanding of their influences is far from being realized, even in relatively simple organisms. A major milestone in this direction arose via the completion of the yeast Saccharomyces cerevisiae gene-knockout collection (YKOC), which has enabled high-throughput reverse genetics, phenotypic screenings and analyses of synthetic-genetic interactions1-3. Ensuing experimental work has also highlighted some inconsistencies and mistakes in the YKOC, or genome instability events that rebalance the effects of specific knockouts4-6, but a complete overview of these is lacking. The identification and analysis of genes that are required for maintaining genomic stability have traditionally relied on reporter assays and on the study of deletions of individual genes, but whole-genome-sequencing technologies now enable-in principle-the direct observation of genome instability globally and at scale. To exploit this opportunity, we sequenced the whole genomes of nearly all of the 4,732 strains comprising the homozygous diploid YKOC. Here, by extracting information on copy-number variation of tandem and interspersed repetitive DNA elements, we describe-for almost every single non-essential gene-the genomic alterations that are induced by its loss. Analysis of this dataset reveals genes that affect the maintenance of various genomic elements, highlights cross-talks between nuclear and mitochondrial genome stability, and shows how strains have genetically adapted to life in the absence of individual non-essential genes.
Collapse
Affiliation(s)
- Fabio Puddu
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Mareike Herzog
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Alexandra Selivanova
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Siyue Wang
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jin Zhu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shir Klein-Lavi
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Molly Gordon
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roi Meirman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gonzalo Millan-Zambrano
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Iñigo Ayestaran
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Israel Salguero
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Stephen P Jackson
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
31
|
Essential Saccharomyces cerevisiae genome instability suppressing genes identify potential human tumor suppressors. Proc Natl Acad Sci U S A 2019; 116:17377-17382. [PMID: 31409704 DOI: 10.1073/pnas.1906921116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gross Chromosomal Rearrangements (GCRs) play an important role in human diseases, including cancer. Although most of the nonessential Genome Instability Suppressing (GIS) genes in Saccharomyces cerevisiae are known, the essential genes in which mutations can cause increased GCR rates are not well understood. Here 2 S. cerevisiae GCR assays were used to screen a targeted collection of temperature-sensitive mutants to identify mutations that caused increased GCR rates. This identified 94 essential GIS (eGIS) genes in which mutations cause increased GCR rates and 38 candidate eGIS genes that encode eGIS1 protein-interacting or family member proteins. Analysis of TCGA data using the human genes predicted to encode the proteins and protein complexes implicated by the S. cerevisiae eGIS genes revealed a significant enrichment of mutations affecting predicted human eGIS genes in 10 of the 16 cancers analyzed.
Collapse
|
32
|
Unique structure (construction and configuration) and evolution of the array of small serum protein genes of Protobothrops flavoviridis snake. Biosci Rep 2019; 39:BSR20190560. [PMID: 31213576 PMCID: PMC6609765 DOI: 10.1042/bsr20190560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 11/27/2022] Open
Abstract
The nucleotide sequence of Protobothrops flavoviridis (Pf) 30534 bp genome segment which contains genes encoding small serum proteins (SSPs) was deciphered. The genome segment contained five SSP genes (PfSSPs), PfSSP-4, PfSSP-5, PfSSP-1, PfSSP-2, and PfSSP-3 in this order and had characteristic configuration and constructions of the particular nucleotide sequences inserted. Comparison between the configurations of the inserted chicken repeat-1 (CR1) fragments of P. flavoviridis and Ophiophagus hannah (Oh) showed that the nucleotide segment encompassing from PfSSP-1 to PfSSP-2 was inverted. The inactive form of PfSSP-1, named PfSSP-1δ(Ψ), found in the intergenic region (I-Reg) between PfSSP-5 and PfSSP-1 had also been destroyed by insertions of the plural long interspersed nuclear elements (LINEs) and DNA transposons. The L2 LINE inserted into the third intron or the particular repetitive sequences inserted into the second intron structurally divided five PfSSPs into two subgroups, the Long SSP subgroup of PfSSP-1, PfSSP-2 and PfSSP-5 or the Short SSP subgroup of PfSSP-3 and PfSSP-4. The mathematical analysis also showed that PfSSPs of the Long SSP subgroup evolved alternately in an accelerated and neutral manner, whereas those of the Short SSP subgroup evolved in an accelerated manner. Moreover, the ortholog analysis of SSPs of various snakes showed that the evolutionary emerging order of SSPs was as follows: SSP-5, SSP-4, SSP-2, SSP-1, and SSP-3. The unique interpretation about accelerated evolution and the novel idea that the transposable elements such as LINEs and DNA transposons are involved in maintaining the host genome besides its own transposition natures were proposed.
Collapse
|
33
|
Mapping chromosomal instability induced by small-molecular therapeutics in a yeast model. Appl Microbiol Biotechnol 2019; 103:4869-4880. [PMID: 31053912 DOI: 10.1007/s00253-019-09845-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
The yeast Saccharomyces cerevisiae has been widely used as a model system for studying the physiological and pharmacological action of small-molecular drugs. Here, a heterozygous diploid S. cerevisiae strain QSS4 was generated to determine whether drugs could induce chromosomal instability by determining the frequency of mitotic recombination. Using the combination of a custom SNP microarray and yeast screening system, the patterns of chromosomal instability induced by drugs were explored at the whole genome level in QSS4. We found that Zeocin (a member of the bleomycin family) treatment increased the rate of genomic alterations, including aneuploidy, loss of heterozygosity (LOH), and chromosomal rearrangement over a hundred-fold. Most recombination events are likely to be initiated by DNA double-stand breaks directly generated by Zeocin. Another remarkable finding is that G4-motifs and low GC regions were significantly underrepresented within the gene conversion tracts of Zeocin-induced LOH events, indicating that certain DNA regions are less preferred Zeocin-binding sites in vivo. This study provides a novel paradigm for evaluating genetic toxicity of small-molecular drugs using yeast models.
Collapse
|
34
|
tRNA Genes Affect Chromosome Structure and Function via Local Effects. Mol Cell Biol 2019; 39:MCB.00432-18. [PMID: 30718362 DOI: 10.1128/mcb.00432-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.
Collapse
|
35
|
Piazza A, Heyer WD. Homologous Recombination and the Formation of Complex Genomic Rearrangements. Trends Cell Biol 2019; 29:135-149. [PMID: 30497856 PMCID: PMC6402879 DOI: 10.1016/j.tcb.2018.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of genome integrity involves multiple independent DNA damage avoidance and repair mechanisms. However, the origin and pathways of the focal chromosomal reshuffling phenomena collectively referred to as chromothripsis remain mechanistically obscure. We discuss here the role, mechanisms, and regulation of homologous recombination (HR) in the formation of simple and complex chromosomal rearrangements. We emphasize features of the recently characterized multi-invasion (MI)-induced rearrangement (MIR) pathway which uniquely amplifies the initial DNA damage. HR intermediates and cellular contexts that endanger genomic stability are discussed as well as the emerging roles of various classes of nucleases in the formation of genome rearrangements. Long-read sequencing and improved mapping of repeats should enable better appreciation of the significance of recombination in generating genomic rearrangements.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Spatial Regulation of Genomes, Department of Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 3525, Institut Pasteur, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
36
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
37
|
Zheng DQ, Petes TD. Genome Instability Induced by Low Levels of Replicative DNA Polymerases in Yeast. Genes (Basel) 2018; 9:genes9110539. [PMID: 30405078 PMCID: PMC6267110 DOI: 10.3390/genes9110539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022] Open
Abstract
Most cells of solid tumors have very high levels of genome instability of several different types, including deletions, duplications, translocations, and aneuploidy. Much of this instability appears induced by DNA replication stress. As a model for understanding this type of instability, we have examined genome instability in yeast strains that have low levels of two of the replicative DNA polymerases: DNA polymerase α and DNA polymerase δ (Polα and Polδ). We show that low levels of either of these DNA polymerases results in greatly elevated levels of mitotic recombination, chromosome rearrangements, and deletions/duplications. The spectrum of events in the two types of strains, however, differs in a variety of ways. For example, a reduced level of Polδ elevates single-base alterations and small deletions considerably more than a reduced level of Polα. In this review, we will summarize the methods used to monitor genome instability in yeast, and how this analysis contributes to understanding the linkage between genome instability and DNA replication stress.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Ramakrishnan S, Kockler Z, Evans R, Downing BD, Malkova A. Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences. PLoS Genet 2018; 14:e1007543. [PMID: 30091972 PMCID: PMC6103520 DOI: 10.1371/journal.pgen.1007543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/21/2018] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Double strand DNA breaks (DSBs) are dangerous events that can result from various causes including environmental assaults or the collapse of DNA replication. While the efficient and precise repair of DSBs is essential for cell survival, faulty repair can lead to genetic instability, making the choice of DSB repair an important step. Here we report that inverted DNA repeats (IRs) placed near a DSB can channel its repair from an accurate pathway that leads to gene conversion to instead a break-induced replication (BIR) pathway that leads to genetic instabilities. The effect of IRs is explained by their ability to form unusual DNA structures when present in ssDNA that is formed by DSB resection. We demonstrate that IRs can form two types of unusual DNA structures, and the choice between these structures depends on the length of the spacer separating IRs. In particular, IRs separated by a long (1-kb) spacer are predominantly involved in inter-molecular single-strand annealing (SSA) leading to the formation of inverted dimers; IRs separated by a short (12-bp) spacer participate in intra-molecular SSA, leading to the formation of fold-back (FB) structures. Both of these structures interfere with an accurate DSB repair by gene conversion and channel DSB repair into BIR, which promotes genomic destabilization. We also report that different protein complexes participate in the processing of FBs containing short (12-bp) versus long (1-kb) ssDNA loops. Specifically, FBs with short loops are processed by the MRX-Sae2 complex, whereas the Rad1-Rad10 complex is responsible for the processing of long loops. Overall, our studies uncover the mechanisms of genomic destabilization resulting from re-routing DSB repair into unusual pathways by IRs. Given the high abundance of IRs in the human genome, our findings may contribute to the understanding of IR-mediated genomic destabilization associated with human disease. Efficient and accurate repair of double-strand DNA breaks (DSBs), resulting from the exposure of cells to ionizing radiation or various chemicals, is crucial for cell survival. Conversely, faulty DSB repair can generate genomic instability that can lead to birth defects or cancer in humans. Here we demonstrate that inverted DNA repeats (IRs) placed in the vicinity of a DSB, interfere with the accurate repair of DSBs and promote genomic rearrangements and chromosome loss. This results from annealing between inverted repeats, located either in different DNA molecules or in the same molecule. In addition, we describe a new role for the Rad1-Rad10 protein complex in processing fold-back (FB) structures formed by intra-molecular annealing involving IRs separated by long spacers. In contrast, FBs with short spacers are processed by the Mre11-Rad50-Xrs2/-Sae2 complex. Overall, we describe several pathways of DSB promoted interaction between IRs that can lead to genomic instability. Given the large number of IRs in the human genome, our findings are relevant to the mechanisms driving genomic destabilization in humans contributing to the development of cancer and other diseases.
Collapse
Affiliation(s)
- Sreejith Ramakrishnan
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Zachary Kockler
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
| | - Robert Evans
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Brandon D. Downing
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
- Indiana University Purdue University Indianapolis, Indianapolis, IN, United States of America
- * E-mail:
| |
Collapse
|
39
|
Lemos Junior WJF, da Silva Duarte V, Treu L, Campanaro S, Nadai C, Giacomini A, Corich V. Whole genome comparison of two Starmerella bacillaris strains with other wine yeasts uncovers genes involved in modulating important winemaking traits. FEMS Yeast Res 2018; 18:5046425. [DOI: 10.1093/femsyr/foy069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wilson Josè Fernandes Lemos Junior
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
| | - Vinicius da Silva Duarte
- Department of Microbiology, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, 36570 000, Viçosa, Brazil
| | - Laura Treu
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58b, 35121, Padova, Italy
| | - Chiara Nadai
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| |
Collapse
|
40
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
41
|
Abstract
The ability to rapidly assess chromosome instability (CIN) has enabled profiling of most yeast genes for potential effects on genome stability. The A-like faker (ALF) assay is one of several qualitative and quantitative marker loss assays that indirectly measure loss or conversion of genetic material using a counterselection step. The ALF assay relies on the ability to count spurious mating events that occur upon loss of the MATα locus of haploid Saccharomyces cerevisiae strains. Here, we describe the deployment of the ALF assay for both rapid and simple qualitative, and more in-depth quantitative analysis allowing determination of absolute ALF frequencies.
Collapse
Affiliation(s)
- Carolina A Novoa
- Terry Fox Laboratory, BC Cancer Agency, 675 W. 10th Ave, Vancouver, Canada
| | - J Sidney Ang
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, 675 W. 10th Ave, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
42
|
Kramara J, Osia B, Malkova A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet 2018; 34:518-531. [PMID: 29735283 DOI: 10.1016/j.tig.2018.04.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/27/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
Break-induced replication (BIR) is a pathway that repairs one-ended double-strand breaks (DSBs). For decades, yeast model systems offered the only opportunities to study eukaryotic BIR. These studies described an unusual mode of BIR synthesis that is carried out by a migrating bubble and shows conservative inheritance of newly synthesized DNA, leading to genomic instabilities like those associated with cancer in humans. Yet, evidence of BIR functioning in mammals or during repair of other DNA breaks has been missing. Recent studies have uncovered multiple examples of BIR working in replication restart and repair of eroded telomeres in yeast and mammals, as well as some unexpected findings, including the RAD51 independence of BIR. Strong interest remains in determining the variations in molecular mechanisms that drive and regulate BIR in different genetic backgrounds, across organisms, and particularly in the context of human disease.
Collapse
Affiliation(s)
- J Kramara
- These authors contributed equally to this work
| | - B Osia
- These authors contributed equally to this work
| | - A Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
43
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
44
|
Abstract
Genome rearrangements underlie different human diseases including many cancers. Determining the rates at which genome rearrangements arise and isolating unique, independent genome rearrangements is critical to understanding the genes and pathways that prevent or promote genome rearrangements. Here, we describe quantitative S. cerevisiae genetic assays for measuring the rates of accumulating genome rearrangements including deletions, translocations, and broken chromosomes healed by de novo telomere addition that result in the deletion of two counter-selectable genes, CAN1 and URA3, placed in the nonessential regions of the S. cerevisiae genome. The assays also allow for the isolation of individual genome rearrangements for structural studies, and a method for analyzing genome rearrangements by next-generation DNA sequencing is provided.
Collapse
Affiliation(s)
- Anjana Srivatsan
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
- Department of Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA.
| |
Collapse
|
45
|
Gorter FA, Derks MFL, van den Heuvel J, Aarts MGM, Zwaan BJ, de Ridder D, de Visser JAGM. Genomics of Adaptation Depends on the Rate of Environmental Change in Experimental Yeast Populations. Mol Biol Evol 2017; 34:2613-2626. [PMID: 28957501 DOI: 10.1093/molbev/msx185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The rate of directional environmental change may have profound consequences for evolutionary dynamics and outcomes. Yet, most evolution experiments impose a sudden large change in the environment, after which the environment is kept constant. We previously cultured replicate Saccharomyces cerevisiae populations for 500 generations in the presence of either gradually increasing or constant high concentrations of the heavy metals cadmium, nickel, and zinc. Here, we investigate how each of these treatments affected genomic evolution. Whole-genome sequencing of evolved clones revealed that adaptation occurred via a combination of SNPs, small indels, and whole-genome duplications and other large-scale structural changes. In contrast to some theoretical predictions, gradual and abrupt environmental change caused similar numbers of genomic changes. For cadmium, which is toxic already at comparatively low concentrations, mutations in the same genes were used for adaptation to both gradual and abrupt increase in concentration. Conversely, for nickel and zinc, which are toxic at high concentrations only, mutations in different genes were used for adaptation depending on the rate of change. Moreover, evolution was more repeatable following a sudden change in the environment, particularly for nickel and zinc. Our results show that the rate of environmental change and the nature of the selection pressure are important drivers of evolutionary dynamics and outcomes, which has implications for a better understanding of societal problems such as climate change and pollution.
Collapse
Affiliation(s)
- Florien A Gorter
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Martijn F L Derks
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands.,Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Joost van den Heuvel
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - J Arjan G M de Visser
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
46
|
Cabral M, Cheng X, Singh S, Ivessa AS. Absence of Non-histone Protein Complexes at Natural Chromosomal Pause Sites Results in Reduced Replication Pausing in Aging Yeast Cells. Cell Rep 2017; 17:1747-1754. [PMID: 27829146 DOI: 10.1016/j.celrep.2016.10.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/08/2016] [Accepted: 10/14/2016] [Indexed: 11/26/2022] Open
Abstract
There is substantial evidence that genomic instability increases during aging. Replication pausing (and stalling) at difficult-to-replicate chromosomal sites may induce genomic instability. Interestingly, in aging yeast cells, we observed reduced replication pausing at various natural replication pause sites (RPSs) in ribosomal DNA (rDNA) and non-rDNA locations (e.g., silent replication origins and tRNA genes). The reduced pausing occurs independent of the DNA helicase Rrm3p, which facilitates replication past these non-histone protein-complex-bound RPSs, and is independent of the deacetylase Sir2p. Conditions of caloric restriction (CR), which extend life span, also cause reduced replication pausing at the 5S rDNA and at tRNA genes. In aged and CR cells, the RPSs are less occupied by their specific non-histone protein complexes (e.g., the preinitiation complex TFIIIC), likely because members of these complexes have primarily cytosolic localization. These conditions may lead to reduced replication pausing and may lower replication stress at these sites during aging.
Collapse
Affiliation(s)
- Marleny Cabral
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Xin Cheng
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Sukhwinder Singh
- Pathology and Laboratory Medicine/Flow Cytometry and Immunology Core Laboratory, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA
| | - Andreas S Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, 185 South Orange Avenue, Newark, NJ 07101-1709, USA.
| |
Collapse
|
47
|
McGinty RJ, Rubinstein RG, Neil AJ, Dominska M, Kiktev D, Petes TD, Mirkin SM. Nanopore sequencing of complex genomic rearrangements in yeast reveals mechanisms of repeat-mediated double-strand break repair. Genome Res 2017; 27:2072-2082. [PMID: 29113982 PMCID: PMC5741057 DOI: 10.1101/gr.228148.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/26/2017] [Indexed: 01/25/2023]
Abstract
Improper DNA double-strand break (DSB) repair results in complex genomic rearrangements (CGRs) in many cancers and various congenital disorders in humans. Trinucleotide repeat sequences, such as (GAA)n repeats in Friedreich's ataxia, (CTG)n repeats in myotonic dystrophy, and (CGG)n repeats in fragile X syndrome, are also subject to double-strand breaks within the repetitive tract followed by DNA repair. Mapping the outcomes of CGRs is important for understanding their causes and potential phenotypic effects. However, high-resolution mapping of CGRs has traditionally been a laborious and highly skilled process. Recent advances in long-read DNA sequencing technologies, specifically Nanopore sequencing, have made possible the rapid identification of CGRs with single base pair resolution. Here, we have used whole-genome Nanopore sequencing to characterize several CGRs that originated from naturally occurring DSBs at (GAA)n microsatellites in Saccharomyces cerevisiae. These data gave us important insights into the mechanisms of DSB repair leading to CGRs.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | | - Alexander J Neil
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Denis Kiktev
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
48
|
Kramara J, Osia B, Malkova A. Break-induced replication: an unhealthy choice for stress relief? Nat Struct Mol Biol 2017; 24:11-12. [PMID: 28054567 DOI: 10.1038/nsmb.3361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Beth Osia
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
49
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
50
|
Sasaki M, Kobayashi T. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks. Mol Cell 2017; 66:533-545.e5. [PMID: 28525744 DOI: 10.1016/j.molcel.2017.04.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
Arrested replication forks lead to DNA double-strand breaks (DSBs), which are a major source of genome rearrangements. Yet DSB repair in the context of broken forks remains poorly understood. Here we demonstrate that DSBs that are formed at arrested forks in the budding yeast ribosomal RNA gene (rDNA) locus are normally repaired by pathways dependent on the Mre11-Rad50-Xrs2 complex but independent of HR. HR is also dispensable for DSB repair at stalled forks at tRNA genes. In contrast, in cells lacking the core replisome component Ctf4, DSBs are formed more frequently, and these DSBs undergo end resection and HR-mediated repair that is prone to rDNA hyper-amplification; this highlights Ctf4 as a key regulator of DSB end resection at arrested forks. End resection also occurs during physiological rDNA amplification even in the presence of Ctf4. Suppression of end resection is thus important for protecting DSBs at arrested forks from chromosome rearrangements.
Collapse
MESH Headings
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA Replication
- DNA, Fungal/biosynthesis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/metabolism
- Gene Rearrangement
- Microbial Viability
- Mutation
- Nucleic Acid Conformation
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Replication Origin
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|