1
|
Chan C, Mukai K, Groisman EA. Infection-relevant conditions dictate differential versus coordinate expression of Salmonella chaperones and cochaperones. mBio 2025; 16:e0022725. [PMID: 40162747 PMCID: PMC12077118 DOI: 10.1128/mbio.00227-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Molecular chaperones are critical for protein homeostasis. In bacteria, chaperone trigger factor (TF) folds proteins co-translationally, and chaperone DnaK requires a J-domain cochaperone and nucleotide exchange factor GrpE to fold proteins largely post-translationally. However, when the pathogen Salmonella enterica serovar Typhimurium faces the infection-relevant condition of cytoplasmic Mg2+ starvation, DnaK reduces protein synthesis independently. This raises the possibility that bacteria differentially express chaperones and cochaperones. We now report that S. Typhimurium responds to cytoplasmic Mg2+ starvation by increasing mRNA amounts of dnaK while decreasing those of the TF-encoding gene tig and J-domain cochaperone genes dnaJ and djlA. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence PhoP, which increases dnaK mRNA amounts by lowering the ATP concentration, thereby hindering proteolysis of the alternative sigma factor RpoH responsible for dnaK transcription. We also establish that DnaK exerts negative feedback on the RpoH protein and RpoH-dependent transcripts independently of J-domain cochaperones. Thus, bacteria express chaperones and cochaperones coordinately or differentially depending on the specific stress perturbing protein homeostasis.IMPORTANCEMolecular chaperones typically require cochaperones to fold proteins and to prevent protein aggregation, and the corresponding genes are thus coordinately expressed. We have now identified an infection-relevant stress condition in which the genes specifying chaperone DnaK and cochaperone DnaJ are differentially expressed despite belonging to the same operon. This differential strategy requires the master regulator of Mg2+ homeostasis and virulence in the pathogen Salmonella enterica serovar Typhimurium. Moreover, it likely reflects that Salmonella requires dnaK, but not J-domain cochaperone-encoding genes, for survival against cytoplasmic Mg2+ starvation and expresses genes only when needed. Thus, the specific condition impacting protein homeostasis determines the coordinate versus differential expression of molecular chaperones and cochaperones.
Collapse
Affiliation(s)
- Carissa Chan
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keiichiro Mukai
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Rennie ML, Oliver MR. Emerging frontiers in protein structure prediction following the AlphaFold revolution. J R Soc Interface 2025; 22:20240886. [PMID: 40233800 PMCID: PMC11999738 DOI: 10.1098/rsif.2024.0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Models of protein structures enable molecular understanding of biological processes. Current protein structure prediction tools lie at the interface of biology, chemistry and computer science. Millions of protein structure models have been generated in a very short space of time through a revolution in protein structure prediction driven by deep learning, led by AlphaFold. This has provided a wealth of new structural information. Interpreting these predictions is critical to determining where and when this information is useful. But proteins are not static nor do they act alone, and structures of proteins interacting with other proteins and other biomolecules are critical to a complete understanding of their biological function at the molecular level. This review focuses on the application of state-of-the-art protein structure prediction to these advanced applications. We also suggest a set of guidelines for reporting AlphaFold predictions.
Collapse
|
3
|
Cheng M, Liu Y, Yan X. MmoD and MmoG Are Crucial for the Synthesis of Soluble Methane Monooxygenase in Methanotrophs. Mol Microbiol 2025; 123:362-377. [PMID: 39932830 DOI: 10.1111/mmi.15345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Soluble methane monooxygenase (sMMO) from methanotrophs has been extensively investigated for decades. However, major knowledge gaps persist regarding the synthesis mechanism of sMMO, particularly concerning the ambiguous roles of mmoD and mmoG in the sMMO gene cluster. Here, the functions of mmoD and mmoG were investigated in a model methanotrophic strain, Methylotuvimicrobium buryatense 5GB1C. Both genes were found to be essential for the functional expression of sMMO. Genetic and biochemical data supported the hypothesis that MmoG acts as a folding chaperone for both MmoX and MmoR, while MmoD serves as an assembly chaperone for the hydroxylase component. The functional expression of sMMO in Escherichia coli was achieved in an mmoD- and mmoG-dependent manner. In addition, deletion of mmoD dramatically reduced the transcription of the sMMO cluster in M. buryatense 5GB1C, implying that MmoD may regulate the sMMO cluster via an unknown mechanism. Knockout of neither mmoD nor mmoG abolished the essential feature of "copper switch", indicating that they do not serve as the initial regulators of "copper switch". These results demonstrate the crucial roles of mmoD and mmoG in sMMO synthesis and offer new insights into heterologous expression of sMMO.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongchuang Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xin Yan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Diaz Arenas C, Alvarez M, Wilson RH, Shakhnovich EI, Ogbunugafor CB. Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria. Genome Biol Evol 2025; 17:evaf010. [PMID: 39837347 PMCID: PMC11789785 DOI: 10.1093/gbe/evaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Maristella Alvarez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert H Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
5
|
Méndez V, Sepúlveda M, Izquierdo-Fiallo K, Macaya CC, Esparza T, Báez-Matus X, Durán RE, Levicán G, Seeger M. Surfing in the storm: how Paraburkholderia xenovorans thrives under stress during biodegradation of toxic aromatic compounds and other stressors. FEMS Microbiol Rev 2025; 49:fuaf021. [PMID: 40388301 PMCID: PMC12117332 DOI: 10.1093/femsre/fuaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025] Open
Abstract
The adaptive mechanisms of Burkholderiales during the catabolism of aromatic compounds and abiotic stress are crucial for their fitness and performance. The aims of this report are to review the bacterial adaptation mechanisms to aromatic compounds, oxidative stress, and environmental stressful conditions, focusing on the model aromatic-degrading Paraburkholderia xenovorans LB400, other Burkholderiales, and relevant degrading bacteria. These mechanisms include (i) the stress response during aromatic degradation, (ii) the oxidative stress response to aromatic compounds, (iii) the metabolic adaptation to oxidative stress, (iv) the osmoadaptation to saline stress, (v) the synthesis of siderophore during iron limitation, (vi) the proteostasis network, which plays a crucial role in cellular function maintenance, and (vii) the modification of cellular membranes, morphology, and bacterial lifestyle. Remarkably, we include, for the first time, novel genomic analyses on proteostasis networks, carbon metabolism modulation, and the synthesis of stress-related molecules in P. xenovorans. We analyzed these metabolic features in silico to gain insights into the adaptive strategies of P. xenovorans to challenging environmental conditions. Understanding how to enhance bacterial stress responses can lead to the selection of more robust strains capable of thriving in polluted environments, which is critical for improving biodegradation and bioremediation strategies.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Mario Sepúlveda
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Constanza C Macaya
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Teresa Esparza
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Ximena Báez-Matus
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Roberto E Durán
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology, Department of Chemistry & Center of Biotechnology Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
6
|
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2025; 26:528. [PMID: 39859244 PMCID: PMC11764788 DOI: 10.3390/ijms26020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors. Bacteria have evolved a range of defensive and adaptive mechanisms to thrive under varying environmental conditions. One such mechanism involves the induction of chaperone proteins that belong to the heat shock protein (Hsp) family. Together with proteases, these proteins are integral components of the protein quality control system (PQCS), which is essential for maintaining cellular proteostasis. However, knowledge of their action is considerably less extensive than that of human and animal pathogens. This study discusses the modulation of Hsp levels by phytopathogenic bacteria in response to stress conditions, including elevated temperature, oxidative stress, changes in pH or osmolarity of the environment, and variable host conditions during infection. All these factors influence bacterial virulence. Finally, the secretion of GroEL and DnaK proteins outside the bacterial cell is considered a potentially important virulence trait.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
7
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
8
|
Takagi S, Suzuki N, Ishihama Y. Revisiting Protein Reversed-Phase Chromatography for Bottom-Up Proteomics. J Proteome Res 2024; 23:4704-4714. [PMID: 39293027 DOI: 10.1021/acs.jproteome.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We revisited protein reversed-phase chromatography (RP), using state-of-the-art RP columns developed for biopharmaceuticals, such as monoclonal antibodies, in order to evaluate the suitability of this methodology as a prefractionation step for bottom-up proteomics. The protein RP prefractionation (Prot-RP) method was compared with two other widely used prefractionation methods, SDS-PAGE and high-pH peptide RP (Pept-RP) by using cell lysates as samples. The overlap between fractions of Prot-RP was comparable to that of SDS-PAGE, and the protein recovery was approximately 2-fold higher. On the other hand, the overlap between fractions of Prot-RP was slightly larger than that of Pept-RP, but Prot-RP was able to identify more protein termini and more isoform-specific peptides than Pept-RP. Our results indicate that the combination of highly efficient protein prefractionation with modern mass spectrometers is particularly effective for proteoform profiling from cellular samples.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Nobuyuki Suzuki
- Analytical and Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., Hiratsuka, Kanagawa 254-0014, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
9
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
10
|
Taguchi H, Niwa T. Reconstituted Cell-free Translation Systems for Exploring Protein Folding and Aggregation. J Mol Biol 2024; 436:168726. [PMID: 39074633 DOI: 10.1016/j.jmb.2024.168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Protein folding is crucial for achieving functional three-dimensional structures. However, the process is often hampered by aggregate formation, necessitating the presence of chaperones and quality control systems within the cell to maintain protein homeostasis. Despite a long history of folding studies involving the denaturation and subsequent refolding of translation-completed purified proteins, numerous facets of cotranslational folding, wherein nascent polypeptides are synthesized by ribosomes and folded during translation, remain unexplored. Cell-free protein synthesis (CFPS) systems are invaluable tools for studying cotranslational folding, offering a platform not only for elucidating mechanisms but also for large-scale analyses to identify aggregation-prone proteins. This review provides an overview of the extensive use of CFPS in folding studies to date. In particular, we discuss a comprehensive aggregation formation assay of thousands of Escherichia coli proteins conducted under chaperone-free conditions using a reconstituted translation system, along with its derived studies.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
11
|
Wang C, Xing A, Li Y, Wang X, Wang X, Xu X, An G, Hu Z. Dominant-negative chaperonin mutation ptCPN60α1 S57F uncovers redundancy in chloroplast rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2937-2950. [PMID: 39115043 DOI: 10.1111/tpj.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/13/2024] [Indexed: 11/15/2024]
Abstract
The biogenesis of functional forms of chloroplast ribosomal RNAs (rRNAs) is crucial for the translation of chloroplast mRNAs into polypeptides. However, the molecular mechanisms underlying the proper processing and maturation of chloroplast rRNA species are poorly understood. Through a genetic approach, we isolated and characterized an Arabidopsis mutant, α1-4, harboring a missense mutation in the plastid chaperonin-60α1 gene. Using allelism tests and transgenic manipulation, we determined functional redundancy among ptCPN60 subunits. The ptCPN60α1S57F mutation caused specific defects in the formation of chloroplast rRNA species, including 23S, 5S, and 4.5S rRNAs, but not 16S rRNAs. Allelism tests suggested that the dysfunctional ptCPN60α1S57F competes with other members of the ptCPN60 family. Indeed, overexpression of the ptCPN60α1S57F protein in wild-type plants mimicked the phenotypes observed in the α1-4 mutant, while increasing the endogenous transcriptional levels of ptCPN60α2, β1, β2, and β3 in the α1-4 mutant partially mitigated the abnormal fragmentation processing of chloroplast 23S, 5S, and 4.5S rRNAs. Furthermore, we demonstrated functional redundancy between ptCPN60β1 and ptCPN60β2 in chloroplast rRNA processing through double-mutant analysis. Collectively, our data reveal a novel physiological role of ptCPN60 subunits in generating the functional rRNA species of the large 50S ribosomal subunit in Arabidopsis chloroplasts.
Collapse
Affiliation(s)
- Chunfei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Aiming Xing
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xingsong Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoqing Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiumei Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Guoyong An
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Zhubing Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| |
Collapse
|
12
|
Wagner J, Carvajal AI, Bracher A, Beck F, Wan W, Bohn S, Körner R, Baumeister W, Fernandez-Busnadiego R, Hartl FU. Visualizing chaperonin function in situ by cryo-electron tomography. Nature 2024; 633:459-464. [PMID: 39169181 PMCID: PMC11390479 DOI: 10.1038/s41586-024-07843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Chaperonins are large barrel-shaped complexes that mediate ATP-dependent protein folding1-3. The bacterial chaperonin GroEL forms juxtaposed rings that bind unfolded protein and the lid-shaped cofactor GroES at their apertures. In vitro analyses of the chaperonin reaction have shown that substrate protein folds, unimpaired by aggregation, while transiently encapsulated in the GroEL central cavity by GroES4-6. To determine the functional stoichiometry of GroEL, GroES and client protein in situ, here we visualized chaperonin complexes in their natural cellular environment using cryo-electron tomography. We find that, under various growth conditions, around 55-70% of GroEL binds GroES asymmetrically on one ring, with the remainder populating symmetrical complexes. Bound substrate protein is detected on the free ring of the asymmetrical complex, defining the substrate acceptor state. In situ analysis of GroEL-GroES chambers, validated by high-resolution structures obtained in vitro, showed the presence of encapsulated substrate protein in a folded state before release into the cytosol. Based on a comprehensive quantification and conformational analysis of chaperonin complexes, we propose a GroEL-GroES reaction cycle that consists of linked asymmetrical and symmetrical subreactions mediating protein folding. Our findings illuminate the native conformational and functional chaperonin cycle directly within cells.
Collapse
Affiliation(s)
- Jonathan Wagner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Research Group Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Alonso I Carvajal
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Beck
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - William Wan
- Vanderbilt University Center for Structural Biology, Nashville, TN, USA
| | - Stefan Bohn
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Structural Biology, Helmholtz Center Munich, Oberschleissheim, Germany
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Research Group Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ruben Fernandez-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Faculty of Physics, University of Göttingen, Göttingen, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
13
|
Reingewertz TH, Ben-Maimon M, Zafrir Z, Tuller T, Horovitz A. Synonymous and non-synonymous codon substitutions can alleviate dependence on GroEL for folding. Protein Sci 2024; 33:e5087. [PMID: 39074255 DOI: 10.1002/pro.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
The Escherichia coli GroEL/ES chaperonin system facilitates protein folding in an ATP-driven manner. There are <100 obligate clients of this system in E. coli although GroEL can interact and assist the folding of a multitude of proteins in vitro. It has remained unclear, however, which features distinguish obligate clients from all the other proteins in an E. coli cell. To address this question, we established a system for selecting mutations in mouse dihydrofolate reductase (mDHFR), a GroEL interactor, that diminish its dependence on GroEL for folding. Strikingly, both synonymous and non-synonymous codon substitutions were found to reduce mDHFR's dependence on GroEL. The non-synonymous substitutions increase the rate of spontaneous folding whereas computational analysis indicates that the synonymous substitutions appear to affect translation rates at specific sites.
Collapse
Affiliation(s)
- Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Miki Ben-Maimon
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Zafrir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Liu X, Xiong Y, Peng R, Zhang Y, Cai S, Deng Q, Yu Z, Wen Z, Chen Z, Hou T. Antibacterial activity and mechanisms of D-3263 against Staphylococcus aureus. BMC Microbiol 2024; 24:224. [PMID: 38926818 PMCID: PMC11201875 DOI: 10.1186/s12866-024-03377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Multi-drug-resistant Staphylococcus aureus infections necessitate novel antibiotic development. D-3263, a transient receptor potential melastatin member 8 (TRPM8) agonist, has potential antineoplastic properties. Here, we reported the antibacterial and antibiofilm activities of D-3263. Minimum inhibitory concentrations (MICs) against S. aureus, Enterococcus faecalis and E. faecium were ≤ 50 µM. D-3263 exhibited bactericidal effects against clinical methicillin-resistant S. aureus (MRSA) and E. faecalis strains at 4× MIC. Subinhibitory D-3263 concentrations effectively inhibited S. aureus and E. faecalis biofilms, with higher concentrations also clearing mature biofilms. Proteomic analysis revealed differential expression of 29 proteins under 1/2 × MIC D-3263, influencing amino acid biosynthesis and carbohydrate metabolism. Additionally, D-3263 enhanced membrane permeability of S. aureus and E. faecalis. Bacterial membrane phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) dose-dependently increased D-3263 MICs. Overall, our data suggested that D-3263 exhibited potent antibacterial and antibiofilm activities against S. aureus by targeting the cell membrane.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Yanpeng Xiong
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Renhai Peng
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Yufang Zhang
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St Louis, MO, 63130, USA
| | - Shuyu Cai
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zewen Wen
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhong Chen
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Tieying Hou
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| |
Collapse
|
15
|
Muñoz-Villagrán C, Acevedo-Arbunic J, Härtig E, Issotta F, Mascayano C, Jahn D, Jahn M, Levicán G. The Thioredoxin Fold Protein (TFP2) from Extreme Acidophilic Leptospirillum sp. CF-1 Is a Chaperedoxin-like Protein That Prevents the Aggregation of Proteins under Oxidative Stress. Int J Mol Sci 2024; 25:6905. [PMID: 39000017 PMCID: PMC11241051 DOI: 10.3390/ijms25136905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extreme acidophilic bacteria like Leptospirillum sp. require an efficient enzyme system to counteract strong oxygen stress conditions in their natural habitat. The genome of Leptospirillum sp. CF-1 encodes the thioredoxin-fold protein TFP2, which exhibits a high structural similarity to the thioredoxin domain of E. coli CnoX. CnoX from Escherichia coli is a chaperedoxin that protects protein substrates from oxidative stress conditions using its holdase function and a subsequent transfer to foldase chaperones for refolding. Recombinantly produced and purified Leptospirillum sp. TFP2 possesses both thioredoxin and chaperone holdase activities in vitro. It can be reduced by thioredoxin reductase (TrxR). The tfp2 gene co-locates with genes for the chaperone foldase GroES/EL on the chromosome. The "tfp2 cluster" (ctpA-groES-groEL-hyp-tfp2-recN) was found between 1.9 and 8.8-fold transcriptionally up-regulated in response to 1 mM hydrogen peroxide (H2O2). Leptospirillum sp. tfp2 heterologously expressed in E. coli wild type and cnoX mutant strains lead to an increased tolerance of these E. coli strains to H2O2 and significantly reduced intracellular protein aggregates. Finally, a proteomic analysis of protein aggregates produced in E. coli upon exposition to oxidative stress with 4 mM H2O2, showed that Leptospirillum sp. tfp2 expression caused a significant decrease in the aggregation of 124 proteins belonging to fifteen different metabolic categories. These included several known substrates of DnaK and GroEL/ES. These findings demonstrate that Leptospirillum sp. TFP2 is a chaperedoxin-like protein, acting as a key player in the control of cellular proteostasis under highly oxidative conditions that prevail in extreme acidic environments.
Collapse
Affiliation(s)
- Claudia Muñoz-Villagrán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Javiera Acevedo-Arbunic
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (E.H.)
| | - Francisco Issotta
- Departamento Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Carolina Mascayano
- Laboratorio de Simulación Computacional y Diseño Racional de Fármacos, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (E.H.)
- Braunschweig Integrated Centre of Systems Biology BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (E.H.)
| | - Gloria Levicán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| |
Collapse
|
16
|
Hertle E, Ursinus A, Martin J. Low-temperature features of the psychrophilic chaperonin from Pseudoalteromonas haloplanktis. Arch Microbiol 2024; 206:299. [PMID: 38861015 PMCID: PMC11166852 DOI: 10.1007/s00203-024-04019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.
Collapse
Affiliation(s)
- Eva Hertle
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Astrid Ursinus
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| |
Collapse
|
17
|
Dupuy E, Collet JF. Entering deeper into the mysteries of the GroEL-GroES nanomachine. Curr Opin Microbiol 2024; 79:102480. [PMID: 38714141 DOI: 10.1016/j.mib.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
In the densely populated intracellular milieu, polypeptides are at constant risk of nonspecific interactions and aggregation, posing a threat to essential cellular functions. Cells rely on a network of protein folding factors to deal with this challenge. The Hsp60 family of molecular chaperones, which depend on ATP for function, stands out in the proteostasis network by a characteristic structure comprising two multimeric rings arranged back to back. This review provides an updated overview of GroEL, the bacterial Hsp60, and its GroES (Hsp10) cofactor. Specifically, we highlight recent breakthroughs in understanding the intricate folding mechanisms of the GroEL-GroES nanomachine and explore the newly discovered interaction between GroEL and the chaperedoxin CnoX. Despite considerable research on the GroEL-GroES system, numerous questions remain to be explored.
Collapse
Affiliation(s)
- Emile Dupuy
- WELBIO department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Jean-François Collet
- WELBIO department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
18
|
Litberg TJ, Horowitz S. Roles of Nucleic Acids in Protein Folding, Aggregation, and Disease. ACS Chem Biol 2024; 19:809-823. [PMID: 38477936 PMCID: PMC11149768 DOI: 10.1021/acschembio.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The role of nucleic acids in protein folding and aggregation is an area of continued research, with relevance to understanding both basic biological processes and disease. In this review, we provide an overview of the trajectory of research on both nucleic acids as chaperones and their roles in several protein misfolding diseases. We highlight key questions that remain on the biophysical and biochemical specifics of how nucleic acids have large effects on multiple proteins' folding and aggregation behavior and how this pertains to multiple protein misfolding diseases.
Collapse
Affiliation(s)
- Theodore J. Litberg
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and The Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, 80208, USA
| |
Collapse
|
19
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
20
|
Apostolidou D, Zhang P, Pandya D, Bock K, Liu Q, Yang W, Marszalek PE. Tandem repeats of highly bioluminescent NanoLuc are refolded noncanonically by the Hsp70 machinery. Protein Sci 2024; 33:e4895. [PMID: 38284490 PMCID: PMC10804678 DOI: 10.1002/pro.4895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.
Collapse
Affiliation(s)
- Dimitra Apostolidou
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| | - Pan Zhang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Devanshi Pandya
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Kaden Bock
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUnited States
| | - Weitao Yang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| |
Collapse
|
21
|
Nishida H, Kanao E, Ishihama Y. Centrifugal Gel Crushing Tips for Gel-Based Proteome Analysis. Anal Chem 2023; 95:18311-18315. [PMID: 38055789 DOI: 10.1021/acs.analchem.3c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
We have developed a centrifugal gel-crushing method using a pipet tip. Polyacrylamide gel slices are extruded from the narrowing cavity of a pipet tip by centrifugation in a few minutes to crush them into pieces of appropriate size. The size of the crushed gel could be controlled by several parameters, including centrifugal force and pipet tip cavity. In shotgun proteomics, gel-based LC/MS/MS, so-called GeLC/MS/MS, involves the essential but tedious processes of prefractionation by SDS-PAGE, followed by dicing the entire gel lane into several parts, fine dicing, and in-gel digestion after the diced gel is manually transferred to a microtube. In this study, we developed an alternative way to crush the prefractionated gel slice into optionally small and irregular-shaped gels by centrifugal extrusion of the sliced gel from the narrow cavity of a pipet tip. As a result, we observed improved recovery and reproducibility of digested proteins compared to the conventional method of manual dicing. We believe that this simple and rapid method of crushing polyacrylamide gels, which allows for parallel operations and automation, is useful for GeLC/MS/MS analysis and applicable to other approaches, including top-down proteomics.
Collapse
Affiliation(s)
- Hiroshi Nishida
- Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Eisuke Kanao
- Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Yasushi Ishihama
- Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
22
|
Gardner S, Darrow MC, Lukoyanova N, Thalassinos K, Saibil HR. Structural basis of substrate progression through the bacterial chaperonin cycle. Proc Natl Acad Sci U S A 2023; 120:e2308933120. [PMID: 38064510 PMCID: PMC10723157 DOI: 10.1073/pnas.2308933120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.
Collapse
Affiliation(s)
- Scott Gardner
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| | | | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, LondonWC1E 6BT, United Kingdom
| | - Helen R. Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, LondonWC1E 7HX, United Kingdom
| |
Collapse
|
23
|
Sahoo R, Chauhan TKS, Lalhmangaihzuali L, Sinha E, Qureshi S, Mahawar M. Pan msr gene deleted strain of Salmonella Typhimurium suffers oxidative stress, depicts macromolecular damage and attenuated virulence. Sci Rep 2023; 13:21852. [PMID: 38071209 PMCID: PMC10710478 DOI: 10.1038/s41598-023-48734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Salmonella encounters but survives host inflammatory response. To defend host-generated oxidants, Salmonella encodes primary antioxidants and protein repair enzymes. Methionine (Met) residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO) which compromises protein functions and subsequently cellular survival. However, by reducing Met-SO to Met, methionine sulfoxide reductases (Msrs) enhance cellular survival under stress conditions. Salmonella encodes five Msrs which are specific for particular Met-SO (free/protein bound), and 'R'/'S' types. Earlier studies assessed the effect of deletions of one or two msrs on the stress physiology of S. Typhimurium. We generated a pan msr gene deletion (Δ5msr) strain in S. Typhimurium. The Δ5msr mutant strain shows an initial lag in in vitro growth. However, the Δ5msr mutant strain depicts very high sensitivity (p < 0.0001) to hypochlorous acid (HOCl), chloramine T (ChT) and superoxide-generating oxidant paraquat. Further, the Δ5msr mutant strain shows high levels of malondialdehyde (MDA), protein carbonyls, and protein aggregation. On the other side, the Δ5msr mutant strain exhibits lower levels of free amines. Further, the Δ5msr mutant strain is highly susceptible to neutrophils and shows defective fitness in the spleen and liver of mice. The results of the current study suggest that the deletions of all msrs render S. Typhimurium highly prone to oxidative stress and attenuate its virulence.
Collapse
Affiliation(s)
- Raj Sahoo
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India
| | | | | | - Esha Sinha
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Salauddin Qureshi
- Division of Biological Standardization, ICAR-IVRI, Izatnagar, 243122, India
| | - Manish Mahawar
- Division of Biochemistry, ICAR-IVRI, Izatnagar, 243122, India.
| |
Collapse
|
24
|
Ries F, Weil HL, Herkt C, Mühlhaus T, Sommer F, Schroda M, Willmund F. Competition co-immunoprecipitation reveals the interactors of the chloroplast CPN60 chaperonin machinery. PLANT, CELL & ENVIRONMENT 2023; 46:3371-3391. [PMID: 37606545 DOI: 10.1111/pce.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Plant Physiology/Synmikro, University of Marburg, Marburg, Germany
| |
Collapse
|
25
|
Richards A, Lupoli TJ. Peptide-based molecules for the disruption of bacterial Hsp70 chaperones. Curr Opin Chem Biol 2023; 76:102373. [PMID: 37516006 PMCID: PMC11217992 DOI: 10.1016/j.cbpa.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.
Collapse
Affiliation(s)
- Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
26
|
Zhu D, Fan Y, Wang X, Li P, Huang Y, Jiao J, Zhao C, Li Y, Wang S, Du X. Characterization of Molecular Chaperone GroEL as a Potential Virulence Factor in Cronobacter sakazakii. Foods 2023; 12:3404. [PMID: 37761113 PMCID: PMC10528849 DOI: 10.3390/foods12183404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular chaperone GroEL of C. sakazakii, a highly conserved protein encoded by the gene grol, has the basic function of responding to heat shock, thus enhancing the bacterium's adaptation to dry and high-temperature environments, which poses a threat to food safety and human health. Our previous study demonstrated that GroEL was found in the bacterial membrane fraction and caused a strong immune response in C. sakazakii. In this study, we tried to elucidate the subcellular location and virulent effects of GroEL. In live C. sakazakii cells, GroEL existed in both the soluble and insoluble fractions. To study the secretory mechanism of GroEL protein, a non-reduced Western immunoblot was used to analyze the form of the protein, and the result showed that the exported GroEL protein was mainly in monomeric form. The exported GroEL could also be located on bacterial surface. To further research the virulent effect of C. sakazakii GroEL, an indirect immunofluorescence assay was used to detect the adhesion of recombinant GroEL protein to HCT-8 cells. The results indicated that the recombinant GroEL protein could adhere to HCT-8 cells in a short period of time. The recombinant GroEL protein could activate the NF-κB signaling pathway to release more pro-inflammatory cytokines (TNF-α, IL-6 and IL-8), downregulating the expression of tight-junction proteins (claudin-1, occluding, ZO-1 and ZO-2), which collectively resulted in dose-dependent virulent effects on host cells. Inhibition of the grol gene expression resulted in a significant decrease in bacterial adhesion to and invasion of HCT-8 cells. Moreover, the deficient GroEL also caused slow growth, decreased biofilm formation, defective motility and abnormal filamentation of the bacteria. In brief, C. sakazakii GroEL was an important virulence factor. This protein was not only crucial for the physiological activity of C. sakazakii but could also be secreted to enhance the bacterium's adhesion and invasion capabilities.
Collapse
Affiliation(s)
- Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Xiaoyi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yaping Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (D.Z.); (Y.F.); (X.W.); (P.L.); (Y.H.); (J.J.); (C.Z.); (Y.L.); (S.W.)
| |
Collapse
|
27
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Orellana O, Sjoberg R, Levicán G. Comparative genomics of the proteostasis network in extreme acidophiles. PLoS One 2023; 18:e0291164. [PMID: 37682893 PMCID: PMC10490939 DOI: 10.1371/journal.pone.0291164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Extreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance. Thus, the analysis of protein chaperones is critical for understanding how these organisms deal with proteostasis under such environmental conditions. In this work, using a bioinformatics approach, we performed a comparative genomic analysis of the genes encoding classical, periplasmic and stress chaperones, and the protease systems. The analysis included 35 genomes from iron- or sulfur-oxidizing autotrophic, heterotrophic, and mixotrophic acidophilic bacteria. The results showed that classical ATP-dependent chaperones, mostly folding chaperones, are widely distributed, although they are sub-represented in some groups. Acidophilic bacteria showed redundancy of genes coding for the ATP-independent holdase chaperones RidA and Hsp20. In addition, a systematically high redundancy of genes encoding periplasmic chaperones like HtrA and YidC was also detected. In the same way, the proteolytic ATPase complexes ClpPX and Lon presented redundancy and broad distribution. The presence of genes that encoded protein variants was noticeable. In addition, genes for chaperones and protease systems were clustered within the genomes, suggesting common regulation of these activities. Finally, some genes were differentially distributed between bacteria as a function of the autotrophic or heterotrophic character of their metabolism. These results suggest that acidophiles possess an abundant and flexible proteostasis network that protects proteins in organisms living in energy-limiting and extreme environmental conditions. Therefore, our results provide a means for understanding the diversity and significance of proteostasis mechanisms in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rachid Sjoberg
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Gloria Levicán
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
28
|
Piplani B, Kumar CMS, Lund PA, Chaudhuri TK. Mycobacterial chaperonins in cellular proteostasis: Evidence for chaperone function of Cpn60.1 and Cpn60.2-mediated protein folding. Mol Microbiol 2023; 120:210-223. [PMID: 37350285 PMCID: PMC10952152 DOI: 10.1111/mmi.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Mycobacterium tuberculosis encodes two chaperonin proteins, MtbCpn60.1 and MtbCpn60.2, that share substantial sequence similarity with the Escherichia coli chaperonin, GroEL. However, unlike GroEL, MtbCpn60.1 and MtbCpn60.2 purify as lower-order oligomers. Previous studies have shown that MtbCpn60.2 can functionally replace GroEL in E. coli, while the function of MtbCpn60.1 remained an enigma. Here, we demonstrate the molecular chaperone function of MtbCpn60.1 and MtbCpn60.2, by probing their ability to assist the folding of obligate chaperonin clients, DapA, FtsE and MetK, in an E. coli strain depleted of endogenous GroEL. We show that both MtbCpn60.1 and MtbCpn60.2 support cell survival and cell division by assisting the folding of DapA and FtsE, but only MtbCpn60.2 completely rescues GroEL-depleted E. coli cells. We also show that, unlike MtbCpn60.2, MtbCpn60.1 has limited ability to support cell growth and proliferation and assist the folding of MetK. Our findings suggest that the client pools of GroEL and MtbCpn60.2 overlap substantially, while MtbCpn60.1 folds only a small subset of GroEL clients. We conclude that the differences between MtbCpn60.1 and MtbCpn60.2 may be a consequence of their intrinsic sequence features, which affect their thermostability, efficiency, clientomes and modes of action.
Collapse
Affiliation(s)
- Bakul Piplani
- Kusuma School of Biological SciencesIndian Institute of Technology DelhiIndia
| | - C. M. Santosh Kumar
- School of BiosciencesUniversity of BirminghamBirmingham
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Peter A. Lund
- School of BiosciencesUniversity of BirminghamBirmingham
- Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Tapan K. Chaudhuri
- Kusuma School of Biological SciencesIndian Institute of Technology DelhiIndia
| |
Collapse
|
29
|
Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. J Phys Chem Lett 2023:6513-6521. [PMID: 37440608 PMCID: PMC10388350 DOI: 10.1021/acs.jpclett.3c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.
Collapse
|
30
|
Halder R, Nissley DA, Sitarik I, Jiang Y, Rao Y, Vu QV, Li MS, Pritchard J, O'Brien EP. How soluble misfolded proteins bypass chaperones at the molecular level. Nat Commun 2023; 14:3689. [PMID: 37344452 DOI: 10.1038/s41467-023-38962-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Subpopulations of soluble, misfolded proteins can bypass chaperones within cells. The extent of this phenomenon and how it happens at the molecular level are unknown. Through a meta-analysis of the experimental literature we find that in all quantitative protein refolding studies there is always a subpopulation of soluble but misfolded protein that does not fold in the presence of one or more chaperones, and can take days or longer to do so. Thus, some misfolded subpopulations commonly bypass chaperones. Using multi-scale simulation models we observe that the misfolded structures that bypass various chaperones can do so because their structures are highly native like, leading to a situation where chaperones do not distinguish between the folded and near-native-misfolded states. More broadly, these results provide a mechanism by which long-time scale changes in protein structure and function can persist in cells because some misfolded states can bypass components of the proteostasis machinery.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiyun Rao
- Molecular, Cellular and Integrative Biosciences Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Quyen V Vu
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences; Al. Lotnikow 32/46, 02-668, Warsaw, Poland
- Institute for Computational Sciences and Technology; Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Justin Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
31
|
Liu D, Bai X, Helmick HDB, Samaddar M, Amalaradjou MAR, Li X, Tenguria S, Gallina NLF, Xu L, Drolia R, Aryal UK, Moreira GMSG, Hust M, Seleem MN, Kokini JL, Ostafe R, Cox A, Bhunia AK. Cell-surface anchoring of Listeria adhesion protein on L. monocytogenes is fastened by internalin B for pathogenesis. Cell Rep 2023; 42:112515. [PMID: 37171960 DOI: 10.1016/j.celrep.2023.112515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023] Open
Abstract
Listeria adhesion protein (LAP) is a secreted acetaldehyde alcohol dehydrogenase (AdhE) that anchors to an unknown molecule on the Listeria monocytogenes (Lm) surface, which is critical for its intestinal epithelium crossing. In the present work, immunoprecipitation and mass spectrometry identify internalin B (InlB) as the primary ligand of LAP (KD ∼ 42 nM). InlB-deleted and naturally InlB-deficient Lm strains show reduced LAP-InlB interaction and LAP-mediated pathology in the murine intestine and brain invasion. InlB-overexpressing non-pathogenic Listeria innocua also displays LAP-InlB interplay. In silico predictions reveal that a pocket region in the C-terminal domain of tetrameric LAP is the binding site for InlB. LAP variants containing mutations in negatively charged (E523S, E621S) amino acids in the C terminus confirm altered binding conformations and weaker affinity for InlB. InlB transforms the housekeeping enzyme, AdhE (LAP), into a moonlighting pathogenic factor by fastening on the cell surface.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | | | - Manalee Samaddar
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Mary Anne Roshni Amalaradjou
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Department of Animal Sciences, University of Connecticut, Storrs, CT, USA
| | - Xilin Li
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Shivendra Tenguria
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Nicholas L F Gallina
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Rishi Drolia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA; Department of Biological Science, Eastern Kentucky University, Richmond, KY, USA
| | - Uma K Aryal
- Bindley Bioscience, Purdue University, West Lafayette, IN, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Gustavo Marçal Schmidt Garcia Moreira
- Technische Universität Braunschweig University of Technology, Institute for Biochemistry, Biotechnology, and Bioinformatics, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig University of Technology, Institute for Biochemistry, Biotechnology, and Bioinformatics, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jozef L Kokini
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Raluca Ostafe
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
32
|
Horovitz A, Azem A. Editorial: A focus on chaperone clients. Front Mol Biosci 2023; 10:1180739. [PMID: 37006613 PMCID: PMC10064806 DOI: 10.3389/fmolb.2023.1180739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Amnon Horovitz,
| | - Abdussalam Azem
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Minami S, Niwa T, Uemura E, Koike R, Taguchi H, Ota M. Prediction of chaperonin GroE substrates using small structural patterns of proteins. FEBS Open Bio 2023; 13:779-794. [PMID: 36869604 PMCID: PMC10068320 DOI: 10.1002/2211-5463.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023] Open
Abstract
Molecular chaperones are indispensable proteins that assist the folding of aggregation-prone proteins into their functional native states, thereby maintaining organized cellular systems. Two of the best-characterized chaperones are the Escherichia coli chaperonins GroEL and GroES (GroE), for which in vivo obligate substrates have been identified by proteome-wide experiments. These substrates comprise various proteins but exhibit remarkable structural features. They include a number of α/β proteins, particularly those adopting the TIM β/α barrel fold. This observation led us to speculate that GroE obligate substrates share a structural motif. Based on this hypothesis, we exhaustively compared substrate structures with the MICAN alignment tool, which detects common structural patterns while ignoring the connectivity or orientation of secondary structural elements. We selected four (or five) substructures with hydrophobic indices that were mostly included in substrates and excluded in others, and developed a GroE obligate substrate discriminator. The substructures are structurally similar and superimposable on the 2-layer 2α4β sandwich, the most popular protein substructure, implying that targeting this structural pattern is a useful strategy for GroE to assist numerous proteins. Seventeen false positives predicted by our methods were experimentally examined using GroE-depleted cells, and 9 proteins were confirmed to be novel GroE obligate substrates. Together, these results demonstrate the utility of our common substructure hypothesis and prediction method.
Collapse
Affiliation(s)
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Eri Uemura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Japan.,Institute for Glyco-core Research, Nagoya University, Japan
| |
Collapse
|
34
|
Taguchi H, Koike-Takeshita A. In vivo client proteins of the chaperonin GroEL-GroES provide insight into the role of chaperones in protein evolution. Front Mol Biosci 2023; 10:1091677. [PMID: 36845542 PMCID: PMC9950496 DOI: 10.3389/fmolb.2023.1091677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Protein folding is often hampered by intermolecular protein aggregation, which can be prevented by a variety of chaperones in the cell. Bacterial chaperonin GroEL is a ring-shaped chaperone that forms complexes with its cochaperonin GroES, creating central cavities to accommodate client proteins (also referred as substrate proteins) for folding. GroEL and GroES (GroE) are the only indispensable chaperones for bacterial viability, except for some species of Mollicutes such as Ureaplasma. To understand the role of chaperonins in the cell, one important goal of GroEL research is to identify a group of obligate GroEL/GroES clients. Recent advances revealed hundreds of in vivo GroE interactors and obligate chaperonin-dependent clients. This review summarizes the progress on the in vivo GroE client repertoire and its features, mainly for Escherichia coli GroE. Finally, we discuss the implications of the GroE clients for the chaperone-mediated buffering of protein folding and their influences on protein evolution.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Tokyo Institute of Technology, Yokohama, Japan,*Correspondence: Hideki Taguchi,
| | - Ayumi Koike-Takeshita
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| |
Collapse
|
35
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
36
|
Iyengar BR, Wagner A. Bacterial Hsp90 predominantly buffers but does not potentiate the phenotypic effects of deleterious mutations during fluorescent protein evolution. Genetics 2022; 222:iyac154. [PMID: 36227141 PMCID: PMC9713429 DOI: 10.1093/genetics/iyac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Chaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype. On the other hand, they can potentiate the effects of mutations and thus enhance the phenotypic changes caused by a mutation. We study that how the bacterial Hsp90 chaperone (HtpG) affects the evolution of green fluorescent protein. To this end, we performed directed evolution of green fluorescent protein under low and high cellular concentrations of Hsp90. Specifically, we evolved green fluorescent protein under both stabilizing selection for its ancestral (green) phenotype and directional selection toward a new (cyan) phenotype. While Hsp90 did only affect the rate of adaptive evolution transiently, it did affect the phenotypic effects of mutations that occurred during adaptive evolution. Specifically, Hsp90 allowed strongly deleterious mutations to accumulate in evolving populations by buffering their effects. Our observations show that the role of a chaperone for adaptive evolution depends on the organism and the trait being studied.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- Institute for Evolution and Biodiversity, Westfalian Wilhelms—University of Münster, 48149 Münster, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|
37
|
Stan G, Lorimer GH, Thirumalai D. Friends in need: How chaperonins recognize and remodel proteins that require folding assistance. Front Mol Biosci 2022; 9:1071168. [PMID: 36479385 PMCID: PMC9720267 DOI: 10.3389/fmolb.2022.1071168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 08/19/2023] Open
Abstract
Chaperonins are biological nanomachines that help newly translated proteins to fold by rescuing them from kinetically trapped misfolded states. Protein folding assistance by the chaperonin machinery is obligatory in vivo for a subset of proteins in the bacterial proteome. Chaperonins are large oligomeric complexes, with unusual seven fold symmetry (group I) or eight/nine fold symmetry (group II), that form double-ring constructs, enclosing a central cavity that serves as the folding chamber. Dramatic large-scale conformational changes, that take place during ATP-driven cycles, allow chaperonins to bind misfolded proteins, encapsulate them into the expanded cavity and release them back into the cellular environment, regardless of whether they are folded or not. The theory associated with the iterative annealing mechanism, which incorporated the conformational free energy landscape description of protein folding, quantitatively explains most, if not all, the available data. Misfolded conformations are associated with low energy minima in a rugged energy landscape. Random disruptions of these low energy conformations result in higher free energy, less folded, conformations that can stochastically partition into the native state. Two distinct mechanisms of annealing action have been described. Group I chaperonins (GroEL homologues in eubacteria and endosymbiotic organelles), recognize a large number of misfolded proteins non-specifically and operate through highly coordinated cooperative motions. By contrast, the less well understood group II chaperonins (CCT in Eukarya and thermosome/TF55 in Archaea), assist a selected set of substrate proteins. Sequential conformational changes within a CCT ring are observed, perhaps promoting domain-by-domain substrate folding. Chaperonins are implicated in bacterial infection, autoimmune disease, as well as protein aggregation and degradation diseases. Understanding the chaperonin mechanism and the specific proteins they rescue during the cell cycle is important not only for the fundamental aspect of protein folding in the cellular environment, but also for effective therapeutic strategies.
Collapse
Affiliation(s)
- George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - George H. Lorimer
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX, United States
- Department of Physics, University of Texas, Austin, TX, United States
| |
Collapse
|
38
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
39
|
Patwa N, Deep S. Role of molecular and chemical chaperon in assisting refolding of BMP2 in E. coli. Int J Biol Macromol 2022; 220:204-210. [PMID: 35970369 DOI: 10.1016/j.ijbiomac.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Bone morphogenetic protein 2 (BMP2) when expressed in bacteria forms inclusion bodies (IBs) due to its complex disulfide-rich structure. Chaperons are already well known for their role in assisting protein folding. In our studies, we have used two E. coli strains, BL21(DE3) and SHuffle® T7 cells for overexpressing BMP2 in soluble fraction. We observed that SHuffle® T7 cells successfully expressed soluble functionally active BMP2 in presence of molecular and chemical chaperones at low temperature. The combination of chemical and molecular chaperons further increases the yield of protein. The best-suited chaperon system for overexpression of BMP2 is GroES-GroEL at low temperature. The soluble functionally active BMP2 is confirmed by its binding to its receptor ALK3 through Native PAGE and ELISA assay using BMP2 specific antibody. It is possible to obtain BMP2 expression in soluble active form by using molecular and chemical chaperons which work synergistically in bacterial cells to fold disulphide-rich proteins at low temperature in easy and time saving steps (18 ̊C).
Collapse
Affiliation(s)
- Nitika Patwa
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
40
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
41
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
42
|
Kleiner D, Shapiro Tuchman Z, Shmulevich F, Shahar A, Zarivach R, Kosloff M, Bershtein S. Evolution of homo-oligomerization of methionine S-adenosyltransferases is replete with structure-function constrains. Protein Sci 2022; 31:e4352. [PMID: 35762725 PMCID: PMC9202080 DOI: 10.1002/pro.4352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
Homomers are prevalent in bacterial proteomes, particularly among core metabolic enzymes. Homomerization is often key to function and regulation, and interfaces that facilitate the formation of homomeric enzymes are subject to intense evolutionary change. However, our understanding of the molecular mechanisms that drive evolutionary variation in homomeric complexes is still lacking. How is the diversification of protein interfaces linked to variation in functional regulation and structural integrity of homomeric complexes? To address this question, we studied quaternary structure evolution of bacterial methionine S-adenosyltransferases (MATs)-dihedral homotetramers formed along a large and conserved dimeric interface harboring two active sites, and a small, recently evolved, interdimeric interface. Here, we show that diversity in the physicochemical properties of small interfaces is directly linked to variability in the kinetic stability of MAT quaternary complexes and in modes of their functional regulation. Specifically, hydrophobic interactions within the small interface of Escherichia coli MAT render the functional homotetramer kinetically stable yet impose severe aggregation constraints on complex assembly. These constraints are alleviated by electrostatic interactions that accelerate dimer-dimer assembly. In contrast, Neisseria gonorrhoeae MAT adopts a nonfunctional dimeric state due to the low hydrophobicity of its small interface and the high flexibility of its active site loops, which perturbs small interface integrity. Remarkably, in the presence of methionine and ATP, N. gonorrhoeae MAT undergoes substrate-induced assembly into a functional tetrameric state. We suggest that evolution acts on the interdimeric interfaces of MATs to tailor the regulation of their activity and stability to unique organismal needs.
Collapse
Affiliation(s)
- Daniel Kleiner
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ziva Shapiro Tuchman
- The Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Fannia Shmulevich
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Anat Shahar
- Ilse Katz Institute for Nanoscale Science & TechnologyBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Raz Zarivach
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Macromolecular Crystallography and Cryo‐EM Research Center, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Shimon Bershtein
- Department of Life SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
43
|
Shotgun Proteomics Revealed Preferential Degradation of Misfolded In Vivo Obligate GroE Substrates by Lon Protease in Escherichia coli. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123772. [PMID: 35744894 PMCID: PMC9228906 DOI: 10.3390/molecules27123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
The Escherichia coli chaperonin GroEL/ES (GroE) is one of the most extensively studied molecular chaperones. So far, ~80 proteins in E. coli are identified as GroE substrates that obligately require GroE for folding in vivo. In GroE-depleted cells, these substrates, when overexpressed, tend to form aggregates, whereas the GroE substrates expressed at low or endogenous levels are degraded, probably due to misfolded states. However, the protease(s) involved in the degradation process has not been identified. We conducted a mass-spectrometry-based proteomics approach to investigate the effects of three ATP-dependent proteases, Lon, ClpXP, and HslUV, on the E. coli proteomes under GroE-depleted conditions. A label-free quantitative proteomic method revealed that Lon protease is the dominant protease that degrades the obligate GroE substrates in the GroE-depleted cells. The deletion of DnaK/DnaJ, the other major E. coli chaperones, in the ∆lon strain did not cause major alterations in the expression or folding of the obligate GroE substrates, supporting the idea that the folding of these substrates is predominantly dependent on GroE.
Collapse
|
44
|
Nissley DA, Jiang Y, Trovato F, Sitarik I, Narayan KB, To P, Xia Y, Fried SD, O'Brien EP. Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble and less functional. Nat Commun 2022; 13:3081. [PMID: 35654797 PMCID: PMC9163053 DOI: 10.1038/s41467-022-30548-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/05/2022] [Indexed: 01/12/2023] Open
Abstract
Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit misfolded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be rapidly degraded, with some misfolded states persisting for months or longer. The surface properties of these misfolded states are native-like, suggesting they will remain soluble, while self-entanglements make them long-lived kinetic traps. In terms of function, we predict that one-third of proteins can misfold into soluble less-functional states. For the heavily entangled protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry experiments interrogating misfolded conformations of the protein are consistent with the structural changes predicted by our simulations. These results therefore provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread phenomenon.
Collapse
Affiliation(s)
- Daniel A Nissley
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yang Jiang
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ian Sitarik
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Karthik B Narayan
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Philip To
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yingzi Xia
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
45
|
Sadat A, Tiwari S, Sunidhi S, Chaphalkar A, Kochar M, Ali M, Zaidi Z, Sharma A, Verma K, Narayana Rao KB, Tripathi M, Ghosh A, Gautam D, Atul, Ray A, Mapa K, Chakraborty K. Conserved and divergent chaperoning effects of Hsp60/10 chaperonins on protein folding landscapes. Proc Natl Acad Sci U S A 2022; 119:e2118465119. [PMID: 35486698 PMCID: PMC9170145 DOI: 10.1073/pnas.2118465119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
The GroEL/ES chaperonin cavity surface charge properties, especially the negative charges, play an important role in its capacity to assist intracavity protein folding. Remarkably, the larger fraction of GroEL/ES negative charges are not conserved among different bacterial species, resulting in a large variation in negative-charge density in the GroEL/ES cavity across prokaryotes. Intriguingly, eukaryotic GroEL/ES homologs have the lowest negative-charge density in the chaperonin cavity. This prompted us to investigate if GroEL’s chaperoning mechanism changed during evolution. Using a model in vivo GroEL/ES substrate, we show that the ability of GroEL/ES to buffer entropic traps in the folding pathway of its substrate was partially dependent upon the negative-charge density inside its cavity. While this activity of GroEL/ES was found to be essential for Escherichia coli, it has been perfected in some organisms and diminished in others. However, irrespective of their charges, all the tested homologs retained their ability to regulate polypeptide chain collapse and remove enthalpic traps from folding pathways. The ability of these GroEL/ES homologs to buffer mutational variations in a model substrate correlated with their negative-charge density. Thus, Hsp60/10 chaperonins in different organisms may have changed to accommodate a different spectrum of mutations on their substrates.
Collapse
Affiliation(s)
- Anwar Sadat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Satyam Tiwari
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - S. Sunidhi
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Aseem Chaphalkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manisha Kochar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Zainab Zaidi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Akanksha Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Kanika Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Kannan Boosi Narayana Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manjul Tripathi
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Asmita Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Deepika Gautam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Atul
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Koyeli Mapa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Kausik Chakraborty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| |
Collapse
|
46
|
A Dual-Functional Orphan Response Regulator Negatively Controls the Differential Transcription of Duplicate groELs and Plays a Global Regulatory Role in Myxococcus. mSystems 2022; 7:e0105621. [PMID: 35353010 PMCID: PMC9040617 DOI: 10.1128/msystems.01056-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Differential transcription of functionally divergent duplicate genes is critical for bacterial cells to properly and competitively function in the environment, but the transcriptional regulation mechanisms remain in mystery. Myxococcus xanthus DK1622 possesses two duplicate groELs with divergent functions. Here, we report that MXAN_4468, an orphan gene located upstream of groEL2, encodes a response regulator (RR) and is responsible for the differential expression regulation of duplicate groELs. This RR protein realizes its negative regulatory role via a novel dual-mode functioning manner: binding to the transcription repressor HrcA to enhance its transcriptional inhibition of duplicate groELs and binding to the 3′ end of the MXAN_4468 sequence to specifically decrease the transcription of the following groEL2. Phosphorylation at the conserved 61st aspartic acid is required to trigger the regulatory functions of MXAN_4468. Pull-down experiment and mutation demonstrated that two noncognate CheA proteins, respectively belonging to the Che8 and Che7 chemosensory pathways, are involved in the protein phosphorylation. A transcriptome analysis, as well as the pull-down experiment, suggested that MXAN_4468 plays a global negative regulatory role in M. xanthus. This study elucidates, for the first time, the regulatory mechanism of differential transcription of bacterial duplicate groELs and suggests a global regulatory role of a dual-functional orphan RR. IMPORTANCE Multiply copied groELs require precise regulation of transcriptions for their divergent cellular functions. Here, we reported that an orphan response regulator (RR) tunes the transcriptional discrepancy of the duplicate groELs in Myxococcus xanthus DK1622 in a dual-functional mode. This RR protein has a conserved phosphorylation site, and the phosphorylation is required for the regulatory functions. Transcriptomic analysis, as well as a pull-down experiment, suggests that the RR plays a global regulatory role in M. xanthus. This study highlights that the dual-functional orphan RR might be involved in conducting the transcriptional symphony to stabilize the complex biological functions in cells.
Collapse
|
47
|
Sivinski J, Ngo D, Zerio CJ, Ambrose AJ, Watson ER, Kaneko LK, Kostelic MM, Stevens M, Ray AM, Park Y, Wu C, Marty MT, Hoang QQ, Zhang DD, Lander GC, Johnson SM, Chapman E. Allosteric differences dictate GroEL complementation of E. coli. FASEB J 2022; 36:e22198. [PMID: 35199390 PMCID: PMC8887798 DOI: 10.1096/fj.202101708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.
Collapse
Affiliation(s)
- Jared Sivinski
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Duc Ngo
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Christopher J. Zerio
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Andrew J. Ambrose
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Edmond R. Watson
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Lynn K. Kaneko
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Marius M. Kostelic
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Mckayla Stevens
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Yangshin Park
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520
| | - Michael T. Marty
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Quyen Q. Hoang
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Donna D. Zhang
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Steven M. Johnson
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721,Corresponding author
, Phone: 520-626-2741
| |
Collapse
|
48
|
Blake LI, Cann MJ. Carbon Dioxide and the Carbamate Post-Translational Modification. Front Mol Biosci 2022; 9:825706. [PMID: 35300111 PMCID: PMC8920986 DOI: 10.3389/fmolb.2022.825706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 01/10/2023] Open
Abstract
Carbon dioxide is essential for life. It is at the beginning of every life process as a substrate of photosynthesis. It is at the end of every life process as the product of post-mortem decay. Therefore, it is not surprising that this gas regulates such diverse processes as cellular chemical reactions, transport, maintenance of the cellular environment, and behaviour. Carbon dioxide is a strategically important research target relevant to crop responses to environmental change, insect vector-borne disease and public health. However, we know little of carbon dioxide’s direct interactions with the cell. The carbamate post-translational modification, mediated by the nucleophilic attack by carbon dioxide on N-terminal α-amino groups or the lysine ɛ-amino groups, is one mechanism by which carbon dioxide might alter protein function to form part of a sensing and signalling mechanism. We detail known protein carbamates, including the history of their discovery. Further, we describe recent studies on new techniques to isolate this problematic post-translational modification.
Collapse
|
49
|
Sarsani V, Aldikacti B, He S, Zeinert R, Chien P, Flaherty P. Model-based identification of conditionally-essential genes from transposon-insertion sequencing data. PLoS Comput Biol 2022; 18:e1009273. [PMID: 35255084 PMCID: PMC8929702 DOI: 10.1371/journal.pcbi.1009273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/17/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes in this genetic interaction study without transformations or uniform normalization. An empirical Bayes model for estimating the local false discovery rate combines unique and total count information to test for genes that show a statistically significant change in transposon counts. When applied to RB-TnSeq (randomized barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus using both total and unique count data the model was able to identify a set of conditionally beneficial or conditionally detrimental genes for each target condition that shed light on their functions and roles during various stress conditions.
Collapse
Affiliation(s)
- Vishal Sarsani
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Berent Aldikacti
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Shai He
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Rilee Zeinert
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
50
|
Structural and Kinetic Views of Molecular Chaperones in Multidomain Protein Folding. Int J Mol Sci 2022; 23:ijms23052485. [PMID: 35269628 PMCID: PMC8910466 DOI: 10.3390/ijms23052485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Despite recent developments in protein structure prediction, the process of the structure formation, folding, remains poorly understood. Notably, folding of multidomain proteins, which involves multiple steps of segmental folding, is one of the biggest questions in protein science. Multidomain protein folding often requires the assistance of molecular chaperones. Molecular chaperones promote or delay the folding of the client protein, but the detailed mechanisms are still unclear. This review summarizes the findings of biophysical and structural studies on the mechanism of multidomain protein folding mediated by molecular chaperones and explains how molecular chaperones recognize the client proteins and alter their folding properties. Furthermore, we introduce several recent studies that describe the concept of kinetics-activity relationships to explain the mechanism of functional diversity of molecular chaperones.
Collapse
|