1
|
Zhang W, Westhof E. The Biology of tRNA t 6A Modification and Hypermodifications-Biogenesis and Disease Relevance. J Mol Biol 2025:169091. [PMID: 40155300 DOI: 10.1016/j.jmb.2025.169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
The structure and function of transfer RNAs (tRNAs) are highly dependent on post-transcriptional chemical modifications that attach distinct chemical groups to various nucleobase atoms at selected tRNA positions via enzymatic reactions. In all three domains of life, the greatest diversity of chemical modifications is concentrated at positions 34 and 37 of the tRNA anticodon loops. N6-threonylcarbamoyladenosine (t6A) is an essential and universal modification occurring at position 37 of tRNAs that decode codons beginning with an adenine. In a subset of tRNAs from specific organisms, t6A is converted into a variety of hypermodified forms, including cyclic N6-threonylcarbamoyladenosine (ct6A), hydroxy-N6-threonylcarbamoyladenosine (ht6A), N6-methyl-N6-threonylcarbamoyladenosine (m6t6A), 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) and 2-methylthio-cyclic N6-threonylcarbamoyladenosine (ms2ct6A). The tRNAs carrying t6A or one of its hypermodified derivatives are dubbed as the t6A family. The t6A family modifications pre-organize the anticodon loop in a conformation that enhances binding to the cognate mRNA codons, thereby promoting translational fidelity. The dysfunctional installation of modifications in the tRNA t6A family leads to translation errors, compromises proteostasis and cell viability, interferes with the growth and development of higher eukaryotes and is implicated in several human diseases, such as neurological disorders, mitochondrial encephalomyopathies, type 2 diabetes and cancers. In addition, loss-of-function mutations in KEOPS complex-the tRNA t6A-modifying enzyme-are associated with shortened telomeres, defects in DNA damage response and transcriptional dysregulation in eukaryotes. The chemical structures, the molecular functions, the known cellular roles and the biosynthetic pathways of the t6A tRNA family are described by integrating and linking biochemical and structural data on these modifications to their biological functions.
Collapse
Affiliation(s)
- Wenhua Zhang
- School of Life Sciences, Lanzhou University, 730000 Lanzhou, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000 Lanzhou, China.
| | - Eric Westhof
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, 325000 Wenzhou, China; Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg 67084 Strasbourg, France
| |
Collapse
|
2
|
Ona Chuquimarca SM, Beenstock J, Daou S, Porat J, Keszei AFA, Yin JZ, Beschauner T, Bayfield MA, Mazhab-Jafari MT, Sicheri F. Structures of KEOPS bound to tRNA reveal functional roles of the kinase Bud32. Nat Commun 2024; 15:10633. [PMID: 39639027 PMCID: PMC11621456 DOI: 10.1038/s41467-024-54787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
The enzyme complex KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) installs the universally conserved and essential N6-threonylcarbamoyl adenosine modification (t6A) on ANN-decoding tRNAs in eukaryotes and in archaea. KEOPS consists of Cgi121, Kae1, Pcc1, Gon7 and the atypical kinase/ATPase Bud32. Except Gon7, all KEOPS subunits are needed for tRNA modification, and in humans, mutations in all five genes underlie the lethal genetic disease Galloway Mowat Syndrome (GAMOS). Kae1 catalyzes the modification of tRNA, but the specific contributions of Bud32 and the other subunits are less clear. Here we solved cryogenic electron microscopy structures of KEOPS with and without a tRNA substrate. We uncover distinct flexibility of KEOPS-bound tRNA revealing a conformational change that may enable its modification by Kae1. We further identified a contact between a flipped-out base of the tRNA and an arginine residue in C-terminal tail of Bud32 that correlates with the conformational change in the tRNA. We also uncover contact surfaces within the KEOPS-tRNA holo-enzyme substrate complex that are required for Bud32 ATPase regulation and t6A modification activity. Our findings uncover inner workings of KEOPS including a basis for substrate specificity and why Kae1 depends on all other subunits.
Collapse
Affiliation(s)
- Samara Mishelle Ona Chuquimarca
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada.
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Jennifer Porat
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tobias Beschauner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Frank Sicheri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Lu S, Jin M, Yu Z, Zhang W. Structure-function analysis of tRNA t 6A-catalysis, assembly, and thermostability of Aquifex aeolicus TsaD 2B 2 tetramer in complex with TsaE. J Biol Chem 2024; 300:107962. [PMID: 39510188 DOI: 10.1016/j.jbc.2024.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
The universal N6-threonylcarbamoyladenosine (t6A) at position 37 of tRNAs is one of the core post-transcriptional modifications that are needed for promoting translational fidelity. In bacteria, TsaC uses L-threonine, bicarbonate, and ATP to generate an intermediate threonylcarbamoyladenylate (TC-AMP), of which the TC moiety is transferred to N6 atom of tRNA A37 to generate t6A by TsaD with the support of TsaB and TsaE. TsaD and TsaB form a TsaDB dimer to which tRNA and TsaE are competitively bound. The catalytic mechanism of TsaD and auxiliary roles of TsaB and TsaE remain to be fully elucidated. In this study, we reconstituted tRNA t6A biosynthesis using TsaC, TsaD, TsaB, and TsaE from Aquifex aeolicus and determined crystal structures of apo-form and ADP-bound form of TsaD2B2 tetramer. Our TsaD2B2-TsaE-tRNA model coupled with functional validations reveal that the binding of tRNA or TsaE to TsaDB is regulated by C-terminal tail of TsaB and a helical hairpin α1-α2 of TsaD. A. aeolicus TsaDB possesses a basal t6A catalytic activity that is stimulated by TsaE at the cost of ATP consumption. Our data suggest that the binding of TsaE to TsaDB induces conformational changes of α1, α2, α6, α7, and α8 of TsaD and C-terminal tail of TsaB, leading to the release of tRNA t6A and AMP. ATP-mediated binding of TsaE to TsaDB resets a t6A active conformation of TsaDB. Dimerization of TsaDB enhances thermostability and promotes t6A catalysis of TsaD2B2-tRNA, of which GC base pairs in anticodon stem are needed for the correct folding of thermophilic tRNA at higher temperatures.
Collapse
Affiliation(s)
- Shuze Lu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China
| | - Mengqi Jin
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China
| | - Zhijiang Yu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China
| | - Wenhua Zhang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Luo M, Luo X, Sun J, Ao X, Han H, Yang X. METTL5 enhances the mRNA stability of TPRKB through m 6A modification to facilitate the aggressive phenotypes of hepatocellular carcinoma cell. Exp Cell Res 2024; 442:114219. [PMID: 39182664 DOI: 10.1016/j.yexcr.2024.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
N6-methyladenosine (m6A) modification plays an important role in RNA molecular functions, therefore affecting the initiation and development of hepatocellular carcinoma (HCC). Herein, multiple datasets were applied to conduct a comprehensive analysis of DEGs within HCC and the analysis revealed significant dysregulation of numerous genes. Functional and signaling pathway enrichment analyses were performed. Further, TP53RK binding protein (TPRKB) emerged as a significant factor, exhibiting high expression level within HCC tissue samples and cells which could predict HCC patients' poor OS. Knockdown investigations of TPRKB in vitro demonstrated the effect of TPRKB knockdown on attenuating the aggressiveness of HCC cells by suppressing the viability, colony formation, invasive ability, and migratory ability, inducing cell cycle arrest, and facilitating the apoptosis of HCC cells. Investigations in vivo revealed that TPRKB knockdown significantly suppressed tumor growth in mice model. Additionally, the study identified methyltransferase 5, N6-adenosine (METTL5) as a potential regulator of TPRKB expression via m6A modification, positively regulating TPRKB expression by enhancing TPRKB mRNA stability. The dynamic effects of METTL5 and TPRKB upon the phenotypes of HCC cells further confirmed that TPRKB overexpression partially abolished the anti-cancer effects of METTL5 knockdown upon the aggressiveness of HCC cells. Conclusively, our findings uncover that TPRKB, significantly overexpressed in HCC, exerts a critical effect on promoting tumor aggressiveness, and its expression shows to be positively regulated by METTL5 via m6A methylation. These insights deepen the understanding of HCC pathogenesis and open new avenues for targeted therapies, highlighting that METTL5-TPRKB axis is an underlying new therapeutic target in HCC management.
Collapse
Affiliation(s)
- Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiong Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jichun Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiang Ao
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Haoyan Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Lv X, Zhang R, Li S, Jin X. tRNA Modifications and Dysregulation: Implications for Brain Diseases. Brain Sci 2024; 14:633. [PMID: 39061374 PMCID: PMC11274612 DOI: 10.3390/brainsci14070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Transfer RNAs (tRNAs) are well-known for their essential function in protein synthesis. Recent research has revealed a diverse range of chemical modifications that tRNAs undergo, which are crucial for various cellular processes. These modifications are necessary for the precise and efficient translation of proteins and also play important roles in gene expression regulation and cellular stress response. This review examines the role of tRNA modifications and dysregulation in the pathophysiology of various brain diseases, including epilepsy, stroke, neurodevelopmental disorders, brain tumors, Alzheimer's disease, and Parkinson's disease. Through a comprehensive analysis of existing research, our study aims to elucidate the intricate relationship between tRNA dysregulation and brain diseases. This underscores the critical need for ongoing exploration in this field and provides valuable insights that could facilitate the development of innovative diagnostic tools and therapeutic approaches, ultimately improving outcomes for individuals grappling with complex neurological conditions.
Collapse
Affiliation(s)
- Xinxin Lv
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Ruorui Zhang
- Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (X.L.); (S.L.)
| |
Collapse
|
6
|
Zheng X, Su C, Duan L, Jin M, Sun Y, Zhu L, Zhang W. Molecular basis of A. thaliana KEOPS complex in biosynthesizing tRNA t6A. Nucleic Acids Res 2024; 52:4523-4540. [PMID: 38477398 PMCID: PMC11077089 DOI: 10.1093/nar/gkae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
In archaea and eukaryotes, the evolutionarily conserved KEOPS is composed of four core subunits-Kae1, Bud32, Cgi121 and Pcc1, and a fifth Gon7/Pcc2 that is found in fungi and metazoa. KEOPS cooperates with Sua5/YRDC to catalyze the biosynthesis of tRNA N6-threonylcarbamoyladenosine (t6A), an essential modification needed for fitness of cellular organisms. Biochemical and structural characterizations of KEOPSs from archaea, yeast and humans have determined a t6A-catalytic role for Kae1 and auxiliary roles for other subunits. However, the precise molecular workings of KEOPSs still remain poorly understood. Here, we investigated the biochemical functions of A. thaliana KEOPS and determined a cryo-EM structure of A. thaliana KEOPS dimer. We show that A. thaliana KEOPS is composed of KAE1, BUD32, CGI121 and PCC1, which adopts a conserved overall arrangement. PCC1 dimerization leads to a KEOPS dimer that is needed for an active t6A-catalytic KEOPS-tRNA assembly. BUD32 participates in direct binding of tRNA to KEOPS and modulates the t6A-catalytic activity of KEOPS via its C-terminal tail and ATP to ADP hydrolysis. CGI121 promotes the binding of tRNA to KEOPS and potentiates the t6A-catalytic activity of KEOPS. These data and findings provide insights into mechanistic understanding of KEOPS machineries.
Collapse
Affiliation(s)
- Xinxing Zheng
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Chenchen Su
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Lei Duan
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Mengqi Jin
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yongtao Sun
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Li Zhu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Musmaker K, Wells J, Tsai MC, Comeron JM, Malkova A. Alternative Lengthening of Telomeres in Yeast: Old Questions and New Approaches. Biomolecules 2024; 14:113. [PMID: 38254712 PMCID: PMC10813009 DOI: 10.3390/biom14010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Alternative lengthening of telomeres (ALT) is a homologous recombination-based pathway utilized by 10-15% of cancer cells that allows cells to maintain their telomeres in the absence of telomerase. This pathway was originally discovered in the yeast Saccharomyces cerevisiae and, for decades, yeast has served as a robust model to study ALT. Using yeast as a model, two types of ALT (RAD51-dependent and RAD51-independent) have been described. Studies in yeast have provided the phenotypic characterization of ALT survivors, descriptions of the proteins involved, and implicated break-induced replication (BIR) as the mechanism responsible for ALT. Nevertheless, many questions have remained, and answering them has required the development of new quantitative methods. In this review we discuss the historic aspects of the ALT investigation in yeast as well as new approaches to investigating ALT, including ultra-long sequencing, computational modeling, and the use of population genetics. We discuss how employing new methods contributes to our current understanding of the ALT mechanism and how they may expand our understanding of ALT in the future.
Collapse
Affiliation(s)
- Kendra Musmaker
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
| | - Jacob Wells
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
| | - Meng-Chia Tsai
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
| | - Josep M. Comeron
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA (J.W.)
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Jin M, Zhang Z, Yu Z, Chen W, Wang X, Lei D, Zhang W. Structure-function analysis of an ancient TsaD-TsaC-SUA5-TcdA modular enzyme reveals a prototype of tRNA t6A and ct6A synthetases. Nucleic Acids Res 2023; 51:8711-8729. [PMID: 37427786 PMCID: PMC10484737 DOI: 10.1093/nar/gkad587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
N 6-threonylcarbamoyladenosine (t6A) is a post-transcriptional modification found uniquely at position 37 of tRNAs that decipher ANN-codons in the three domains of life. tRNA t6A plays a pivotal role in promoting translational fidelity and maintaining protein homeostasis. The biosynthesis of tRNA t6A requires members from two evolutionarily conserved protein families TsaC/Sua5 and TsaD/Kae1/Qri7, and a varying number of auxiliary proteins. Furthermore, tRNA t6A is modified into a cyclic hydantoin form of t6A (ct6A) by TcdA in bacteria. In this work, we have identified a TsaD-TsaC-SUA5-TcdA modular protein (TsaN) from Pandoraviruses and determined a 3.2 Å resolution cryo-EM structure of P. salinus TsaN. The four domains of TsaN share strong structural similarities with TsaD/Kae1/Qri7 proteins, TsaC/Sua5 proteins, and Escherichia coli TcdA. TsaN catalyzes the formation of threonylcarbamoyladenylate (TC-AMP) using L-threonine, HCO3- and ATP, but does not participate further in tRNA t6A biosynthesis. We report for the first time that TsaN catalyzes a tRNA-independent threonylcarbamoyl modification of adenosine phosphates, leading to t6ADP and t6ATP. Moreover, TsaN is also active in catalyzing tRNA-independent conversion of t6A nucleoside to ct6A. Our results imply that TsaN from Pandoraviruses might be a prototype of the tRNA t6A- and ct6A-modifying enzymes in some cellular organisms.
Collapse
Affiliation(s)
- Mengqi Jin
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Zelin Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Zhijiang Yu
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Wei Chen
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Dongsheng Lei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Sciences, Key Laboratory of Cell Activities and Stress Adaptation of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Wu M, Jin Q, Xu X, Fan J, Chen W, Miao M, Gu R, Zhang S, Guo Y, Huang S, Zhang Y, Zhang A, Jia Z. TP53RK Drives the Progression of Chronic Kidney Disease by Phosphorylating Birc5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301753. [PMID: 37382161 PMCID: PMC10477881 DOI: 10.1002/advs.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 06/30/2023]
Abstract
Renal fibrosis is a common characteristic of various chronic kidney diseases (CKDs) driving the loss of renal function. During this pathological process, persistent injury to renal tubular epithelial cells and activation of fibroblasts chiefly determine the extent of renal fibrosis. In this study, the role of tumor protein 53 regulating kinase (TP53RK) in the pathogenesis of renal fibrosis and its underlying mechanisms is investigated. TP53RK is upregulated in fibrotic human and animal kidneys with a positive correlation to kidney dysfunction and fibrotic markers. Interestingly, specific deletion of TP53RK either in renal tubule or in fibroblasts in mice can mitigate renal fibrosis in CKD models. Mechanistic investigations reveal that TP53RK phosphorylates baculoviral IAP repeat containing 5 (Birc5) and facilitates its nuclear translocation; enhanced Birc5 displays a profibrotic effect possibly via activating PI3K/Akt and MAPK pathways. Moreover, pharmacologically inhibiting TP53RK and Birc5 using fusidic acid (an FDA-approved antibiotic) and YM-155(currently in clinical phase 2 trials) respectively both ameliorate kidney fibrosis. These findings demonstrate that activated TP53RK/Birc5 signaling in renal tubular cells and fibroblasts alters cellular phenotypes and drives CKD progression. A genetic or pharmacological blockade of this axis serves as a potential strategy for treating CKDs.
Collapse
Affiliation(s)
- Mengqiu Wu
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Qianqian Jin
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Xinyue Xu
- School of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Jiaojiao Fan
- School of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Weiyi Chen
- Department of Emergency MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
| | - Mengqiu Miao
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Ran Gu
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Shengnan Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Yan Guo
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Songming Huang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Yue Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Aihua Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Zhanjun Jia
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| |
Collapse
|
10
|
Wu P, Gan Q, Zhang X, Yang Y, Xiao Y, She Q, Ni J, Huang Q, Shen Y. The archaeal KEOPS complex possesses a functional Gon7 homolog and has an essential function independent of the cellular t 6A modification level. MLIFE 2023; 2:11-27. [PMID: 38818338 PMCID: PMC10989989 DOI: 10.1002/mlf2.12051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2024]
Abstract
Kinase, putative Endopeptidase, and Other Proteins of Small size (KEOPS) is a multisubunit protein complex conserved in eukaryotes and archaea. It is composed of Pcc1, Kae1, Bud32, Cgi121, and Gon7 in eukaryotes and is primarily involved in N6-threonylcarbamoyl adenosine (t6A) modification of transfer RNAs (tRNAs). Recently, it was reported that KEOPS participates in homologous recombination (HR) repair in yeast. To characterize the KEOPS in archaea (aKEOPS), we conducted genetic and biochemical analyses of its encoding genes in the hyperthermophilic archaeon Saccharolobus islandicus. We show that aKEOPS also possesses five subunits, Pcc1, Kae1, Bud32, Cgi121, and Pcc1-like (or Gon7-like), just like eukaryotic KEOPS. Pcc1-like has physical interactions with Kae1 and Pcc1 and can mediate the monomerization of the dimeric subcomplex (Kae1-Pcc1-Pcc1-Kae1), suggesting that Pcc1-like is a functional homolog of the eukaryotic Gon7 subunit. Strikingly, none of the genes encoding aKEOPS subunits, including Pcc1 and Pcc1-like, can be deleted in the wild type and in a t6A modification complementary strain named TsaKI, implying that the aKEOPS complex is essential for an additional cellular process in this archaeon. Knock-down of the Cgi121 subunit leads to severe growth retardance in the wild type that is partially rescued in TsaKI. These results suggest that aKEOPS plays an essential role independent of the cellular t6A modification level. In addition, archaeal Cgi121 possesses dsDNA-binding activity that relies on its tRNA 3' CCA tail binding module. Our study clarifies the subunit organization of archaeal KEOPS and suggests an origin of eukaryotic Gon7. The study also reveals a possible link between the function in t6A modification and the additional function, presumably HR.
Collapse
Affiliation(s)
- Pengju Wu
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qi Gan
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xuemei Zhang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yunfeng Yang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yuanxi Xiao
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qunxin She
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qihong Huang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| |
Collapse
|
11
|
Daugeron MC, Missoury S, Da Cunha V, Lazar N, Collinet B, van Tilbeurgh H, Basta T. A paralog of Pcc1 is the fifth core subunit of the KEOPS tRNA-modifying complex in Archaea. Nat Commun 2023; 14:526. [PMID: 36720870 PMCID: PMC9889334 DOI: 10.1038/s41467-023-36210-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
In Archaea and Eukaryotes, the synthesis of a universal tRNA modification, N6-threonyl-carbamoyl adenosine (t6A), is catalyzed by the KEOPS complex composed of Kae1, Bud32, Cgi121, and Pcc1. A fifth subunit, Gon7, is found only in Fungi and Metazoa. Here, we identify and characterize a fifth KEOPS subunit in Archaea. This protein, dubbed Pcc2, is a paralog of Pcc1 and is widely conserved in Archaea. Pcc1 and Pcc2 form a heterodimer in solution, and show modest sequence conservation but very high structural similarity. The five-subunit archaeal KEOPS does not form dimers but retains robust tRNA binding and t6A synthetic activity. Pcc2 can substitute for Pcc1 but the resulting KEOPS complex is inactive, suggesting a distinct function for the two paralogs. Comparative sequence and structure analyses point to a possible evolutionary link between archaeal Pcc2 and eukaryotic Gon7. Our work indicates that Pcc2 regulates the oligomeric state of the KEOPS complex, a feature that seems to be conserved from Archaea to Eukaryotes.
Collapse
Affiliation(s)
- Marie-Claire Daugeron
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sophia Missoury
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Department of structural biology and chemistry, Institut Pasteur, Paris, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Noureddine Lazar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Bruno Collinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne-Université, UMR7590 CNRS, MNHN, Paris, France
| | - Herman van Tilbeurgh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Abstract
The KEOPS (kinase, putative endopeptidase, and other proteins of small size) complex has critical functions in eukaryotes; however, its role in fungal pathogens remains elusive. Herein, we comprehensively analyzed the pathobiological functions of the fungal KEOPS complex in Cryptococcus neoformans (Cn), which causes fatal meningoencephalitis in humans. We identified four CnKEOPS components: Pcc1, Kae1, Bud32, and Cgi121. Deletion of PCC1, KAE1, or BUD32 caused severe defects in vegetative growth, cell cycle control, sexual development, general stress responses, and virulence factor production, whereas deletion of CGI121 led to similar but less severe defects. This suggests that Pcc1, Kae1, and Bud32 are the core KEOPS components, and Cgi121 may play auxiliary roles. Nevertheless, all KEOPS components were essential for C. neoformans pathogenicity. Although the CnKEOPS complex appeared to have a conserved linear arrangement of Pcc1-Kae1-Bud32-Cgi121, as supported by physical interaction between Pcc1-Kae1 and Kae1-Bud32, CnBud32 was found to have a unique extended loop region that was critical for the KEOPS functions. Interestingly, CnBud32 exhibited both kinase activity-dependent and -independent functions. Supporting its pleiotropic roles, the CnKEOPS complex not only played conserved roles in t6A modification of ANN codon-recognizing tRNAs but also acted as a major transcriptional regulator, thus controlling hundreds of genes involved in various cellular processes, particularly ergosterol biosynthesis. In conclusion, the KEOPS complex plays both evolutionarily conserved and divergent roles in controlling the pathobiological features of C. neoformans and could be an anticryptococcal drug target. IMPORTANCE The cellular function and structural configuration of the KEOPS complex have been elucidated in some eukaryotes and archaea but have never been fully characterized in fungal pathogens. Here, we comprehensively analyzed the pathobiological roles of the KEOPS complex in the globally prevalent fungal meningitis-causing pathogen C. neoformans. The CnKEOPS complex, composed of a linear arrangement of Pcc1-Kae1-Bud32-Cgi121, not only played evolutionarily conserved roles in growth, sexual development, stress responses, and tRNA modification but also had unique roles in controlling virulence factor production and pathogenicity. Notably, a unique extended loop structure in CnBud32 is critical for the KEOPS complex in C. neoformans. Supporting its pleiotropic roles, transcriptome analysis revealed that the CnKEOPS complex governs several hundreds of genes involved in carbon and amino acid metabolism, pheromone response, and ergosterol biosynthesis. Therefore, this study provides novel insights into the fungal KEOPS complex that could be exploited as a potential antifungal drug target.
Collapse
|
13
|
Kae1 of Saccharomyces cerevisiae KEOPS complex possesses ADP/GDP nucleotidase activity. Biochem J 2022; 479:2433-2447. [PMID: 36416748 DOI: 10.1042/bcj20220290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/24/2022]
Abstract
The KEOPS complex is an evolutionarily conserved protein complex in all three domains of life (Bacteria, Archaea, and Eukarya). In budding yeast Saccharomyces cerevisiae, the KEOPS complex (ScKEOPS) consists of five subunits, which are Kae1, Bud32, Cgi121, Pcc1, and Gon7. The KEOPS complex is an ATPase and is required for tRNA N6-threonylcarbamoyladenosine modification, telomere length maintenance, and efficient DNA repair. Here, recombinant ScKEOPS full complex and Kae1-Pcc1-Gon7 and Bud32-Cgi121 subcomplexes were purified and their biochemical activities were examined. KEOPS was observed to have ATPase and GTPase activities, which are predominantly attributed to the Bud32 subunit, as catalytically dead Bud32, but not catalytically dead Kae1, largely eliminated the ATPase/GTPase activity of KEOPS. In addition, KEOPS could hydrolyze ADP to adenosine or GDP to guanosine, and produce PPi, indicating that KEOPS is an ADP/GDP nucleotidase. Further mutagenesis characterization of Bud32 and Kae1 subunits revealed that Kae1, but not Bud32, is responsible for the ADP/GDP nucleotidase activity. In addition, the Kae1V309D mutant exhibited decreased ADP/GDP nucleotidase activity in vitro and shortened telomeres in vivo, but showed only a limited defect in t6A modification, suggesting that the ADP/GDP nucleotidase activity of KEOPS contributes to telomere length regulation.
Collapse
|
14
|
Treimer E, Kalayci T, Schumann S, Suer I, Greco S, Schanze D, Schmeisser MJ, Kühl SJ, Zenker M. Functional characterization of a novel TP53RK mutation identified in a family with Galloway-Mowat syndrome. Hum Mutat 2022; 43:1866-1871. [PMID: 36116039 DOI: 10.1002/humu.24472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
Galloway-Mowat syndrome (GAMOS) is a very rare condition characterized by early-onset nephrotic syndrome and microcephaly with variable neurologic features. While considerable genetic heterogeneity of GAMOS has been identified, the majority of cases are caused by pathogenic variants in genes encoding the four components of the Kinase, endopeptidase, and other proteins of small size (KEOPS) complex, one of which is TP53RK. Here we describe a 3-year-old male with progressive microcephaly, neurodevelopmental deficits, and glomerular proteinuria. He was found to carry a novel homozygous TP53RK missense variant, c.163C>G (p.Arg55Gly), which was considered as potentially disease-causing. We generated a morpholino tp53rk knockdown model in Xenopus laevis showing that the depletion of endogenous Tp53rk caused abnormal eye and head development. This phenotype could be rescued by the expression of human wildtype TP53RK but not by the c.163C>G mutant nor by another previously described GAMOS-associated mutant c.125G>A (p.Gly42Asp). These findings support the pathogenic role of the novel TP53RK variant.
Collapse
Affiliation(s)
- Ernestine Treimer
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.,Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tugba Kalayci
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sara Greco
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
15
|
Su C, Jin M, Zhang W. Conservation and Diversification of tRNA t 6A-Modifying Enzymes across the Three Domains of Life. Int J Mol Sci 2022; 23:13600. [PMID: 36362385 PMCID: PMC9654439 DOI: 10.3390/ijms232113600] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The universal N6-threonylcarbamoyladenosine (t6A) modification occurs at position 37 of tRNAs that decipher codons starting with adenosine. Mechanistically, t6A stabilizes structural configurations of the anticodon stem loop, promotes anticodon-codon pairing and safeguards the translational fidelity. The biosynthesis of tRNA t6A is co-catalyzed by two universally conserved protein families of TsaC/Sua5 (COG0009) and TsaD/Kae1/Qri7 (COG0533). Enzymatically, TsaC/Sua5 protein utilizes the substrates of L-threonine, HCO3-/CO2 and ATP to synthesize an intermediate L-threonylcarbamoyladenylate, of which the threonylcarbamoyl-moiety is subsequently transferred onto the A37 of substrate tRNAs by the TsaD-TsaB -TsaE complex in bacteria or by the KEOPS complex in archaea and eukaryotic cytoplasm, whereas Qri7/OSGEPL1 protein functions on its own in mitochondria. Depletion of tRNA t6A interferes with protein homeostasis and gravely affects the life of unicellular organisms and the fitness of higher eukaryotes. Pathogenic mutations of YRDC, OSGEPL1 and KEOPS are implicated in a number of human mitochondrial and neurological diseases, including autosomal recessive Galloway-Mowat syndrome. The molecular mechanisms underscoring both the biosynthesis and cellular roles of tRNA t6A are presently not well elucidated. This review summarizes current mechanistic understandings of the catalysis, regulation and disease implications of tRNA t6A-biosynthetic machineries of three kingdoms of life, with a special focus on delineating the structure-function relationship from perspectives of conservation and diversity.
Collapse
Affiliation(s)
| | | | - Wenhua Zhang
- School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730030, China
| |
Collapse
|
16
|
Gawlik J, Koper M, Bogdanowicz A, Weglenski P, Dzikowska A. Nuclear Functions of KaeA, a Subunit of the KEOPS Complex in Aspergillus nidulans. Int J Mol Sci 2022; 23:ijms231911138. [PMID: 36232439 PMCID: PMC9570407 DOI: 10.3390/ijms231911138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Kae1 is a subunit of the highly evolutionarily conserved KEOPS/EKC complex, which is involved in universal (t6A37) tRNA modification. Several reports have discussed the participation of this complex in transcription regulation in yeast and human cells, including our previous observations of KaeA, an Aspergillus nidulans homologue of Kae1p. The aim of this project was to confirm the role of KaeA in transcription, employing high-throughput transcriptomic (RNA-Seq and ChIP-Seq) and proteomic (LC-MS) analysis. We confirmed that KaeA is a subunit of the KEOPS complex in A. nidulans. An analysis of kaeA19 and kaeA25 mutants showed that, although the (t6A37) tRNA modification is unaffected in both mutants, they reveal significantly altered transcriptomes compared to the wild type. The finding that KaeA is localized in chromatin and identifying its protein partners allows us to postulate an additional nuclear function for the protein. Our data shed light on the universal bi-functional role of this factor and proves that the activity of this protein is not limited to tRNA modification in cytoplasm, but also affects the transcriptional activity of a number of nuclear genes. Data are available via the NCBI’s GEO database under identifiers GSE206830 (RNA-Seq) and GSE206874 (ChIP-Seq), and via ProteomeXchange with identifier PXD034554 (proteomic).
Collapse
Affiliation(s)
- Joanna Gawlik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michal Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Albert Bogdanowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Piotr Weglenski
- Centre of New Technologies, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Dzikowska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
- Correspondence: or
| |
Collapse
|
17
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
18
|
A suite of in vitro and in vivo assays for monitoring the activity of the pseudokinase Bud32. Methods Enzymol 2022; 667:729-773. [PMID: 35525560 DOI: 10.1016/bs.mie.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bud32 is a member of the protein kinase superfamily that is invariably conserved in all eukaryotic and archaeal organisms. In both of these kingdoms, Bud32 forms part of the KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) complex together with the three other core subunits Kae1, Cgi121 and Pcc1. KEOPS functions to generate the universal and essential tRNA post-transcriptional modification N6-theronylcarbamoyl adenosine (t6A), which is present at position A37 in all tRNAs that bind to codons with an A in the first position (ANN decoding tRNAs) and is essential for the fidelity of translation. Mutations in KEOPS genes in humans underlie the severe genetic disease Galloway-Mowat syndrome, which results in childhood death. KEOPS activity depends on two major functions of Bud32. Firstly, Bud32 facilitates efficient tRNA substrate recruitment to KEOPS and helps in positioning the A37 site of the tRNA in the active site of Kae1, which carries out the t6A modification reaction. Secondly, the enzymatic activity of Bud32 is required for the ability of KEOPS to modify tRNA. Unlike conventional protein kinases, which employ their enzymatic activity for phosphorylation of protein substrates, Bud32 employs its enzymatic activity to function as an ATPase. Herein, we present a comprehensive suite of assays to monitor the activity of Bud32 in KEOPS in vitro and in vivo. We present protocols for the purification of the archaeal KEOPS proteins and of a tRNA substrate, as well as protocols for monitoring the ATPase activity of Bud32 and for analyzing its role in tRNA binding. We further present a complementary protocol for monitoring the role Bud32 has in cell growth in yeast.
Collapse
|
19
|
Beenstock J, Sicheri F. The structural and functional workings of KEOPS. Nucleic Acids Res 2021; 49:10818-10834. [PMID: 34614169 PMCID: PMC8565320 DOI: 10.1093/nar/gkab865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) is a five-subunit protein complex that is highly conserved in eukaryotes and archaea and is essential for the fitness of cells and for animal development. In humans, mutations in KEOPS genes underlie Galloway-Mowat syndrome, which manifests in severe microcephaly and renal dysfunction that lead to childhood death. The Kae1 subunit of KEOPS catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine (t6A), while the auxiliary subunits Cgi121, the kinase/ATPase Bud32, Pcc1 and Gon7 play a supporting role. Kae1 orthologs are also present in bacteria and mitochondria but function in distinct complexes with proteins that are not related in structure or function to the auxiliary subunits of KEOPS. Over the past 15 years since its discovery, extensive study in the KEOPS field has provided many answers towards understanding the roles that KEOPS plays in cells and in human disease and how KEOPS carries out these functions. In this review, we provide an overview into recent advances in the study of KEOPS and illuminate exciting future directions.
Collapse
Affiliation(s)
- Jonah Beenstock
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
20
|
Boyer O, Mollet G, Dorval G. Neurological involvement in monogenic podocytopathies. Pediatr Nephrol 2021; 36:3571-3583. [PMID: 33791874 DOI: 10.1007/s00467-020-04903-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023]
Abstract
Genetic studies of hereditary nephrotic syndrome (NS) have identified more than 50 genes that, if mutated, are responsible for monogenic forms of steroid-resistant NS (SRNS), either isolated or syndromic. Most of these genes encode proteins expressed in the podocyte with various functions such as transcription factors, mitochondrial proteins, or enzymes, but mainly structural proteins of the slit diaphragm (SD) as well as cytoskeletal binding and regulator proteins. Syndromic NS is sometimes associated with neurological features. Over recent decades, various studies have established links between the physiology of podocytes and neurons, both morphologically (slit diaphragm and synapse) and functionally (signaling platforms). Variants in genes expressed in different compartments of the podocyte and neurons are responsible for phenotypes associating kidney lesions with proteinuria (mainly Focal and Segmental Glomerulosclerosis (FSGS) or Diffuse Mesangial Sclerosis (DMS)) and central and/or peripheral neurological disorders. The Galloway-Mowat syndrome (GAMOS, OMIM#251300) associates neurological defects, microcephaly, and proteinuria and is caused by variants in genes encoding proteins of various functions (microtubule cytoskeleton regulation (WDR73), regulation of protein synthesis via transfer RNAs (KEOPS and WDR4 complexes)). Pierson syndrome (OMIM#609049) associating congenital nephrotic syndrome and central neurological and ophthalmological anomalies is secondary to variants in LAMB2, involved in glomerular and ocular basement membranes. Finally, Charcot-Marie-Tooth-FSGS (OMIM#614455) combines peripheral sensory-motor neuropathy and proteinuria and arises from INF2 variants, resulting in cytoskeletal polymerization defects. This review focuses on genetic syndromes associating nephrotic range proteinuria and neurological involvement and provides the latest advances in the description of these neuro-renal disorders.
Collapse
Affiliation(s)
- Olivia Boyer
- Service de Néphrologie Pédiatrique, AP-HP, Centre de Référence de maladies rénales rares de l'enfant et de l'adulte (MARHEA), Hôpital Necker - Enfants Malades, 149 Rue de Sèvres, 75015, Paris, France.
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France.
| | - Géraldine Mollet
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France
| | - Guillaume Dorval
- Institut Imagine, Laboratoire des maladies rénales héréditaires, INSERM UMR 1163, Université de Paris, Paris, France
- Service de Génétique Moléculaire, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
21
|
Holland CL, Sanderson BA, Titus JK, Weis MF, Riojas AM, Malczewskyj E, Wasko BM, Lewis LK. Suppression of telomere capping defects of Saccharomyces cerevisiae yku70 and yku80 mutants by telomerase. G3-GENES GENOMES GENETICS 2021; 11:6395363. [PMID: 34718547 PMCID: PMC8664480 DOI: 10.1093/g3journal/jkab359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
The Ku complex performs multiple functions inside eukaryotic cells, including protection of chromosomal DNA ends from degradation and fusion events, recruitment of telomerase, and repair of double-strand breaks (DSBs). Inactivation of Ku complex genes YKU70 or YKU80 in cells of the yeast Saccharomyces cerevisiae gives rise to mutants that exhibit shortened telomeres and temperature-sensitive growth. In this study, we have investigated the mechanism by which overexpression of telomerase suppresses the temperature sensitivity of yku mutants. Viability of yku cells was restored by overexpression of the Est2 reverse transcriptase and TLC1 RNA template subunits of telomerase, but not the Est1 or Est3 proteins. Overexpression of other telomerase- and telomere-associated proteins (Cdc13, Stn1, Ten1, Rif1, Rif2, Sir3, and Sir4) did not suppress the growth defects of yku70 cells. Mechanistic features of suppression were assessed using several TLC1 RNA deletion derivatives and Est2 enzyme mutants. Supraphysiological levels of three catalytically inactive reverse transcriptase mutants (Est2-D530A, Est2-D670A, and Est2-D671A) suppressed the loss of viability as efficiently as the wild-type Est2 protein, without inducing cell senescence. Roles of proteins regulating telomere length were also determined. The results support a model in which chromosomes in yku mutants are stabilized via a replication-independent mechanism involving structural reinforcement of protective telomere cap structures.
Collapse
Affiliation(s)
- Cory L Holland
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Brian A Sanderson
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - James K Titus
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Monica F Weis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Angelica M Riojas
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Eric Malczewskyj
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Brian M Wasko
- Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX, 77058, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
22
|
Treimer E, Niedermayer K, Schumann S, Zenker M, Schmeisser MJ, Kühl SJ. Galloway-Mowat syndrome: New insights from bioinformatics and expression during Xenopus embryogenesis. Gene Expr Patterns 2021; 42:119215. [PMID: 34619372 DOI: 10.1016/j.gep.2021.119215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
Galloway-Mowat syndrome (GAMOS) is a rare developmental disease. Patients suffer from congenital brain anomalies combined with renal abnormalities often resulting in an early-onset steroid-resistant nephrotic syndrome. The etiology of GAMOS has a heterogeneous genetic contribution. Mutations in more than 10 different genes have been reported in GAMOS patients. Among these are mutations in four genes encoding members of the human KEOPS (kinase, endopeptidase and other proteins of small size) complex, including OSGEP, TP53RK, TPRKB and LAGE3. Until now, these components have been functionally mainly investigated in bacteria, eukarya and archaea and in humans in the context of the discovery of its role in GAMOS, but the KEOPS complex members' expression and function during embryogenesis in vertebrates is still unknown. In this study, in silico analysis showed that both gene localization and the protein sequences of the three core KEOPS complex members Osgep, Tp53rk and Tprkb are highly conserved across different species including Xenopus laevis. In addition, we examined the spatio-temporal expression pattern of osgep, tp53rk and tprkb using RT-PCR and whole mount in situ hybridization approaches during early Xenopus development. We observed that all three genes were expressed during early embryogenesis and enriched in tissues and organs affected in GAMOS. More precisely, KEOPS complex genes are expressed in the pronephros, but also in neural tissue such as the developing brain, eye and cranial cartilage. These findings suggest that the KEOPS complex plays an important role during vertebrate embryonic development.
Collapse
Affiliation(s)
- Ernestine Treimer
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute for Biochemistry and Molecular Biology, University Ulm, Ulm, Germany
| | - Kathrin Niedermayer
- Institute for Biochemistry and Molecular Biology, University Ulm, Ulm, Germany
| | - Sven Schumann
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Susanne J Kühl
- Institute for Biochemistry and Molecular Biology, University Ulm, Ulm, Germany.
| |
Collapse
|
23
|
De Wyn J, Zimmerman MW, Weichert-Leahey N, Nunes C, Cheung BB, Abraham BJ, Beckers A, Volders PJ, Decaesteker B, Carter DR, Look AT, De Preter K, Van Loocke W, Marshall GM, Durbin AD, Speleman F, Durinck K. MEIS2 Is an Adrenergic Core Regulatory Transcription Factor Involved in Early Initiation of TH-MYCN-Driven Neuroblastoma Formation. Cancers (Basel) 2021; 13:cancers13194783. [PMID: 34638267 PMCID: PMC8508013 DOI: 10.3390/cancers13194783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Neuroblastoma is a pediatric tumor originating from the sympathetic nervous system responsible for 10–15% of all childhood cancer deaths. Half of all neuroblastoma patients present with high-risk disease, of which nearly 50% relapse and die of their disease. In addition, standard therapies cause serious lifelong side effects and increased risk for secondary tumors. Further research is crucial to better understand the molecular basis of neuroblastomas and to identify novel druggable targets. Neuroblastoma tumorigenesis has to this end been modeled in both mice and zebrafish. Here, we present a detailed dissection of the gene expression patterns that underlie tumor formation in the murine TH-MYCN-driven neuroblastoma model. We identified key factors that are putatively important for neuroblastoma tumor initiation versus tumor progression, pinpointed crucial regulators of the observed expression patterns during neuroblastoma development and scrutinized which factors could be innovative and vulnerable nodes for therapeutic intervention. Abstract Roughly half of all high-risk neuroblastoma patients present with MYCN amplification. The molecular consequences of MYCN overexpression in this aggressive pediatric tumor have been studied for decades, but thus far, our understanding of the early initiating steps of MYCN-driven tumor formation is still enigmatic. We performed a detailed transcriptome landscaping during murine TH-MYCN-driven neuroblastoma tumor formation at different time points. The neuroblastoma dependency factor MEIS2, together with ASCL1, was identified as a candidate tumor-initiating factor and shown to be a novel core regulatory circuit member in adrenergic neuroblastomas. Of further interest, we found a KEOPS complex member (gm6890), implicated in homologous double-strand break repair and telomere maintenance, to be strongly upregulated during tumor formation, as well as the checkpoint adaptor Claspin (CLSPN) and three chromosome 17q loci CBX2, GJC1 and LIMD2. Finally, cross-species master regulator analysis identified FOXM1, together with additional hubs controlling transcriptome profiles of MYCN-driven neuroblastoma. In conclusion, time-resolved transcriptome analysis of early hyperplastic lesions and full-blown MYCN-driven neuroblastomas yielded novel components implicated in both tumor initiation and maintenance, providing putative novel drug targets for MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Jolien De Wyn
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (M.W.Z.); (N.W.-L.); (A.T.L.)
| | - Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (M.W.Z.); (N.W.-L.); (A.T.L.)
| | - Carolina Nunes
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Belamy B. Cheung
- Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, UNSW Sydney, Randwick, NSW 2031, Australia; (B.B.C.); (D.R.C.); (G.M.M.)
- School of Women’s and Children’s Health, UNSW Sydney, Randwick, NSW 2031, Australia
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| | - Anneleen Beckers
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Pieter-Jan Volders
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Bieke Decaesteker
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Daniel R. Carter
- Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, UNSW Sydney, Randwick, NSW 2031, Australia; (B.B.C.); (D.R.C.); (G.M.M.)
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Alfred Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; (M.W.Z.); (N.W.-L.); (A.T.L.)
| | - Katleen De Preter
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Wouter Van Loocke
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Glenn M. Marshall
- Lowy Cancer Research Centre, Children’s Cancer Institute Australia for Medical Research, UNSW Sydney, Randwick, NSW 2031, Australia; (B.B.C.); (D.R.C.); (G.M.M.)
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Adam D. Durbin
- Department of Oncology, Division of Molecular Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678, USA;
| | - Frank Speleman
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
| | - Kaat Durinck
- Department for Biomolecular Medicine, Ghent University, Medical Research Building (MRB1), Corneel Heymanslaan 10, B-9000 Ghent, Belgium; (J.D.W.); (C.N.); (A.B.); (P.-J.V.); (B.D.); (K.D.P.); (W.V.L.); (F.S.)
- Correspondence: ; Tel.: +32-9-332-24-51
| |
Collapse
|
24
|
Schmidt J, Goergens J, Pochechueva T, Kotter A, Schwenzer N, Sitte M, Werner G, Altmüller J, Thiele H, Nürnberg P, Isensee J, Li Y, Müller C, Leube B, Reinhardt HC, Hucho T, Salinas G, Helm M, Jachimowicz RD, Wieczorek D, Kohl T, Lehnart SE, Yigit G, Wollnik B. Biallelic variants in YRDC cause a developmental disorder with progeroid features. Hum Genet 2021; 140:1679-1693. [PMID: 34545459 PMCID: PMC8553732 DOI: 10.1007/s00439-021-02347-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
The highly conserved YrdC domain-containing protein (YRDC) interacts with the well-described KEOPS complex, regulating specific tRNA modifications to ensure accurate protein synthesis. Previous studies have linked the KEOPS complex to a role in promoting telomere maintenance and controlling genome integrity. Here, we report on a newborn with a severe neonatal progeroid phenotype including generalized loss of subcutaneous fat, microcephaly, growth retardation, wrinkled skin, renal failure, and premature death at the age of 12 days. By trio whole-exome sequencing, we identified a novel homozygous missense mutation, c.662T > C, in YRDC affecting an evolutionary highly conserved amino acid (p.Ile221Thr). Functional characterization of patient-derived dermal fibroblasts revealed that this mutation impairs YRDC function and consequently results in reduced t6A modifications of tRNAs. Furthermore, we established and performed a novel and highly sensitive 3-D Q-FISH analysis based on single-telomere detection to investigate the impact of YRDC on telomere maintenance. This analysis revealed significant telomere shortening in YRDC-mutant cells. Moreover, single-cell RNA sequencing analysis of YRDC-mutant fibroblasts revealed significant transcriptome-wide changes in gene expression, specifically enriched for genes associated with processes involved in DNA repair. We next examined the DNA damage response of patient’s dermal fibroblasts and detected an increased susceptibility to genotoxic agents and a global DNA double-strand break repair defect. Thus, our data suggest that YRDC may affect the maintenance of genomic stability. Together, our findings indicate that biallelic variants in YRDC result in a developmental disorder with progeroid features and might be linked to increased genomic instability and telomere shortening.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
| | - Jonas Goergens
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tatiana Pochechueva
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Annika Kotter
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Niko Schwenzer
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maren Sitte
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gesa Werner
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Christian Müller
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Barbara Leube
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - H Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ron D Jachimowicz
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Kohl
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, Göttingen, Germany.,Collaborative Research Unit SFB 1002, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Collaborative Research Unit SFB 1190, University of Göttingen, Göttingen, Germany.,Transatlantic Network of Excellence CURE-PLaN, Fondation Leducq, Paris, France
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
25
|
Abel ME, Zhang X, Asah SM, Wolfinger A, McCullumsmith RE, O'Donovan SM. KEOPS complex expression in the frontal cortex in major depression and schizophrenia. World J Biol Psychiatry 2021; 22:446-455. [PMID: 32914678 PMCID: PMC8005497 DOI: 10.1080/15622975.2020.1821917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Recently, the presence of a complete five subunit Kinase, Endopeptidase and Other Proteins of small Size (KEOPS) complex was confirmed in humans. The highly conserved KEOPS protein complex has established roles in tRNA modification, protein translation and telomere homeostasis in yeast, but little is known about KEOPS mRNA expression and function in human brain and disease. Here, we characterise KEOPS expression in post-mortem tissue from subjects diagnosed with major depression (MDD) and schizophrenia and assess whether KEOPS is associated with telomere length dysregulation in neuropsychiatric disorders. METHODS We assessed mRNA expression of KEOPS complex subunits TP53RK, TPRKB, GON7, LAGE3, OSGEP, and OSGEP mitochondrial ortholog OSGEPL1 in the dorsolateral prefrontal cortex (DLPFC) of subjects with MDD, schizophrenia and matched non-psychiatrically ill controls (n = 20 per group) using qPCR. We conducted bioinformatic analysis using Kaleidoscope, data mining post-mortem transcriptomic datasets to characterise KEOPS expression in human brain. Finally, we assayed relative telomere length in the DLPFC using a qPCR-based assay and carried out correlation analysis with KEOPS subunit mRNA expression to determine if the KEOPS complex is associated with telomere length dysregulation in neuropsychiatric disorders. RESULTS There were no significant changes in KEOPS mRNA expression in the DLPFC in MDD or schizophrenia compared to non-psychiatrically ill controls. Relative telomere length was not significantly altered in MDD or schizophrenia, nor was there an association between relative telomere length and KEOPS subunit gene expression in these subjects. CONCLUSIONS This study is the first to describe KEOPS complex expression in post-mortem brain and neuropsychiatric disorders. KEOPS subunit mRNA expression is not significantly altered in the DLPFC in MDD or schizophrenia. Unlike in yeast, the KEOPS complex does not appear to play a role in telomere length regulation in humans or in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mackenzie E Abel
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Xiaolu Zhang
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Alyssa Wolfinger
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, Promedica, Toledo, OH, USA
| | | |
Collapse
|
26
|
Fernandez-Guerra P, Gonzalez-Ebsen AC, Boonen SE, Courraud J, Gregersen N, Mehlsen J, Palmfeldt J, Olsen RKJ, Brinth LS. Bioenergetic and Proteomic Profiling of Immune Cells in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients: An Exploratory Study. Biomolecules 2021; 11:961. [PMID: 34209852 PMCID: PMC8301912 DOI: 10.3390/biom11070961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous, debilitating, and complex disease. Along with disabling fatigue, ME/CFS presents an array of other core symptoms, including autonomic nervous system (ANS) dysfunction, sustained inflammation, altered energy metabolism, and mitochondrial dysfunction. Here, we evaluated patients' symptomatology and the mitochondrial metabolic parameters in peripheral blood mononuclear cells (PBMCs) and plasma from a clinically well-characterised cohort of six ME/CFS patients compared to age- and gender-matched controls. We performed a comprehensive cellular assessment using bioenergetics (extracellular flux analysis) and protein profiles (quantitative mass spectrometry-based proteomics) together with self-reported symptom measures of fatigue, ANS dysfunction, and overall physical and mental well-being. This ME/CFS cohort presented with severe fatigue, which correlated with the severity of ANS dysfunction and overall physical well-being. PBMCs from ME/CFS patients showed significantly lower mitochondrial coupling efficiency. They exhibited proteome alterations, including altered mitochondrial metabolism, centred on pyruvate dehydrogenase and coenzyme A metabolism, leading to a decreased capacity to provide adequate intracellular ATP levels. Overall, these results indicate that PBMCs from ME/CFS patients have a decreased ability to fulfill their cellular energy demands.
Collapse
Affiliation(s)
- Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
- KMEB, Department of Endocrinology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Ana C. Gonzalez-Ebsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Susanne E. Boonen
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark;
| | - Julie Courraud
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institute, 2300 Copenhagen, Denmark;
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Jesper Mehlsen
- Section for Surgical Pathophysiology, Juliane Marie Center, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Rikke K. J. Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark; (A.C.G.-E.); (N.G.); (J.P.)
| | - Louise Schouborg Brinth
- Department of Clinical Physiology and Nuclear Medicine, Nordsjaellands Hospital, 2400 Hilleroed, Denmark;
| |
Collapse
|
27
|
Lin YY, Li MH, Chang YC, Fu PY, Ohniwa RL, Li HW, Lin JJ. Dynamic DNA Shortening by Telomere-Binding Protein Cdc13. J Am Chem Soc 2021; 143:5815-5825. [PMID: 33831300 DOI: 10.1021/jacs.1c00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Telomeres are essential for chromosome maintenance. Cdc13 is a single-stranded telomeric DNA binding protein that caps telomeres and regulates telomerase function in yeast. Although specific binding of Cdc13 to telomeric DNA is critical for telomere protection, the detail mechanism how Cdc13-DNA complex protects telomere is unclear. Using two single-molecule methods, tethered particle motion and atomic force microscopy, we demonstrate that specific binding of Cdc13 on single-stranded telomeric DNA shortens duplex DNA into distinct states differed by ∼70-80 base pairs. DNA shortening by Cdc13 is dynamic and independent of duplex DNA sequences or length. Significantly, we found that Pif1 helicase is incapable of removing Cdc13 from the shortened DNA-Cdc13 complex, suggesting that Cdc13 forms structurally stable complex by shortening of the bound DNA. Together our data identified shortening of DNA by Cdc13 and provided an indication for efficient protection of telomere ends by the shortened DNA-Cdc13 complex.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Min-Hsuan Li
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Yen-Chan Chang
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Peng-Yu Fu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan.,Center for Biotechnology, National Taiwan University, Taipei City 10617, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan.,Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| |
Collapse
|
28
|
Li R, Deed RC. Reciprocal hemizygosity analysis reveals that the Saccharomyces cerevisiae CGI121 gene affects lag time duration in synthetic grape must. G3-GENES GENOMES GENETICS 2021; 11:6157830. [PMID: 33681985 PMCID: PMC8759811 DOI: 10.1093/g3journal/jkab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
It is standard practice to ferment white wines at low temperatures (10–18°C). However, low temperatures increase fermentation duration and risk of problem ferments, leading to significant costs. The lag duration at fermentation initiation is heavily impacted by temperature; therefore, identification of Saccharomyces cerevisiae genes influencing fermentation kinetics is of interest for winemaking. We selected 28 S. cerevisiae BY4743 single deletants, from a prior list of open reading frames (ORFs) mapped to quantitative trait loci (QTLs) on Chr. VII and XIII, influencing the duration of fermentative lag time. Five BY4743 deletants, Δapt1, Δcgi121, Δclb6, Δrps17a, and Δvma21, differed significantly in their fermentative lag duration compared to BY4743 in synthetic grape must (SGM) at 15 °C, over 72 h. Fermentation at 12.5°C for 528 h confirmed the longer lag times of BY4743 Δcgi121, Δrps17a, and Δvma21. These three candidates ORFs were deleted in S. cerevisiae RM11-1a and S288C to perform single reciprocal hemizygosity analysis (RHA). RHA hybrids and single deletants of RM11-1a and S288C were fermented at 12.5°C in SGM and lag time measurements confirmed that the S288C allele of CGI121 on Chr. XIII, encoding a component of the EKC/KEOPS complex, increased fermentative lag phase duration. Nucleotide sequences of RM11-1a and S288C CGI121 alleles differed by only one synonymous nucleotide, suggesting that intron splicing, codon bias, or positional effects might be responsible for the impact on lag phase duration. This research demonstrates a new role of CGI121 and highlights the applicability of QTL analysis for investigating complex phenotypic traits in yeast.
Collapse
Affiliation(s)
- Runze Li
- School of Chemical Sciences and School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences and School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
29
|
Kopina BJ, Missoury S, Collinet B, Fulton MG, Cirio C, van Tilbeurgh H, Lauhon CT. Structure of a reaction intermediate mimic in t6A biosynthesis bound in the active site of the TsaBD heterodimer from Escherichia coli. Nucleic Acids Res 2021; 49:2141-2160. [PMID: 33524148 PMCID: PMC7913687 DOI: 10.1093/nar/gkab026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/14/2022] Open
Abstract
The tRNA modification N6-threonylcarbamoyladenosine (t6A) is universally conserved in all organisms. In bacteria, the biosynthesis of t6A requires four proteins (TsaBCDE) that catalyze the formation of t6A via the unstable intermediate l-threonylcarbamoyl-adenylate (TC-AMP). While the formation and stability of this intermediate has been studied in detail, the mechanism of its transfer to A37 in tRNA is poorly understood. To investigate this step, the structure of the TsaBD heterodimer from Escherichia coli has been solved bound to a stable phosphonate isosteric mimic of TC-AMP. The phosphonate inhibits t6A synthesis in vitro with an IC50 value of 1.3 μM in the presence of millimolar ATP and L-threonine. The inhibitor binds to TsaBD by coordination to the active site Zn atom via an oxygen atom from both the phosphonate and the carboxylate moieties. The bound conformation of the inhibitor suggests that the catalysis exploits a putative oxyanion hole created by a conserved active site loop of TsaD and that the metal essentially serves as a binding scaffold for the intermediate. The phosphonate bound crystal structure should be useful for the rational design of potent, drug-like small molecule inhibitors as mechanistic probes or potentially novel antibiotics.
Collapse
Affiliation(s)
- Brett J Kopina
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Sophia Missoury
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Bruno Collinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne-Université, UMR7590 CNRS, MNHN, Paris, France
| | - Mark G Fulton
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Charles Cirio
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Herman van Tilbeurgh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Charles T Lauhon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
30
|
Work JJ, Brandman O. Adaptability of the ubiquitin-proteasome system to proteolytic and folding stressors. J Cell Biol 2021; 220:211650. [PMID: 33382395 PMCID: PMC7780722 DOI: 10.1083/jcb.201912041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 10/02/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Aging, disease, and environmental stressors are associated with failures in the ubiquitin-proteasome system (UPS), yet a quantitative understanding of how stressors affect the proteome and how the UPS responds is lacking. Here we assessed UPS performance and adaptability in yeast under stressors using quantitative measurements of misfolded substrate stability and stress-dependent UPS regulation by the transcription factor Rpn4. We found that impairing degradation rates (proteolytic stress) and generating misfolded proteins (folding stress) elicited distinct effects on the proteome and on UPS adaptation. Folding stressors stabilized proteins via aggregation rather than overburdening the proteasome, as occurred under proteolytic stress. Still, the UPS productively adapted to both stressors using separate mechanisms: proteolytic stressors caused Rpn4 stabilization while folding stressors increased RPN4 transcription. In some cases, adaptation completely prevented loss of UPS substrate degradation. Our work reveals the distinct effects of proteotoxic stressors and the versatility of cells in adapting the UPS.
Collapse
Affiliation(s)
- Jeremy J Work
- Department of Biochemistry, Stanford University, Stanford, CA
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, CA
| |
Collapse
|
31
|
Abstract
Mutations of the p53-related protein kinase (PRPK) and TP53RK-binding protein (TPRKB) cause Galloway-Mowat syndrome (GAMOS) and are found in various human cancers. We have previously shown that small compounds targeting PRPK showed anti-cancer activity against colon and skin cancer. Here we present the 2.53 Å crystal structure of the human PRPK-TPRKB-AMPPNP (adenylyl-imidodiphosphate) complex. The structure reveals details in PRPK-AMPPNP coordination and PRPK-TPRKB interaction. PRPK appears in an active conformation, albeit lacking the conventional kinase activation loop. We constructed a structural model of the human EKC/KEOPS complex, composed of PRPK, TPRKB, OSGEP, LAGE3, and GON7. Disease mutations in PRPK and TPRKB are mapped into the structure, and we show that one mutation, PRPK K238Nfs*2, lost the binding to OSGEP. Our structure also makes the virtual screening possible and paves the way for more rational drug design. Jian Li and Xinli Ma et al. present a 2.53 Å crystal structure of a complex consisting of the human p53-related protein kinase (PRPK), TP53RK-binding protein, and adenylyl-imidodiphosphate. They find that one disease mutation, PRPK K238Nfs*2, is important for PRPK’s binding to O-sialoglycoprotein endopeptidase, providing insights into rational drug design.
Collapse
|
32
|
Liu JC, Li QJ, He MH, Hu C, Dai P, Meng FL, Zhou BO, Zhou JQ. Swc4 positively regulates telomere length independently of its roles in NuA4 and SWR1 complexes. Nucleic Acids Res 2021; 48:12792-12803. [PMID: 33270890 PMCID: PMC7736797 DOI: 10.1093/nar/gkaa1150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Telomeres at the ends of eukaryotic chromosomes are essential for genome integrality and stability. In order to identify genes that sustain telomere maintenance independently of telomerase recruitment, we have exploited the phenotype of over-long telomeres in the cells that express Cdc13-Est2 fusion protein, and examined 195 strains, in which individual non-essential gene deletion causes telomere shortening. We have identified 24 genes whose deletion results in dramatic failure of Cdc13-Est2 function, including those encoding components of telomerase, Yku, KEOPS and NMD complexes, as well as quite a few whose functions are not obvious in telomerase activity regulation. We have characterized Swc4, a shared subunit of histone acetyltransferase NuA4 and chromatin remodeling SWR1 (SWR1-C) complexes, in telomere length regulation. Deletion of SWC4, but not other non-essential subunits of either NuA4 or SWR1-C, causes significant telomere shortening. Consistently, simultaneous disassembly of NuA4 and SWR1-C does not affect telomere length. Interestingly, inactivation of Swc4 in telomerase null cells accelerates both telomere shortening and senescence rates. Swc4 associates with telomeric DNA in vivo, suggesting a direct role of Swc4 at telomeres. Taken together, our work reveals a distinct role of Swc4 in telomere length regulation, separable from its canonical roles in both NuA4 and SWR1-C.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qian-Jin Li
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengfei Dai
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei-Long Meng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo O Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
33
|
Beenstock J, Ona SM, Porat J, Orlicky S, Wan LCK, Ceccarelli DF, Maisonneuve P, Szilard RK, Yin Z, Setiaputra D, Mao DYL, Khan M, Raval S, Schriemer DC, Bayfield MA, Durocher D, Sicheri F. A substrate binding model for the KEOPS tRNA modifying complex. Nat Commun 2020; 11:6233. [PMID: 33277478 PMCID: PMC7718258 DOI: 10.1038/s41467-020-19990-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
The KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway-Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3' CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.
Collapse
MESH Headings
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/metabolism
- Crystallography, X-Ray
- Methanocaldococcus/genetics
- Methanocaldococcus/metabolism
- Models, Molecular
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Nucleic Acid Conformation
- Protein Binding
- Protein Domains
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
Collapse
Affiliation(s)
- Jonah Beenstock
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Samara Mishelle Ona
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jennifer Porat
- Department of Biology, York University, Toronto, ON, Canada
| | - Stephen Orlicky
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Leo C K Wan
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek F Ceccarelli
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Pierre Maisonneuve
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rachel K Szilard
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Zhe Yin
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Dheva Setiaputra
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Y L Mao
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Morgan Khan
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Shaunak Raval
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Daniel Durocher
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Zhou JB, Wang Y, Zeng QY, Meng SX, Wang ED, Zhou XL. Molecular basis for t6A modification in human mitochondria. Nucleic Acids Res 2020; 48:3181-3194. [PMID: 32047918 PMCID: PMC7102964 DOI: 10.1093/nar/gkaa093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
N6-Threonylcarbamoyladenosine (t6A) is a universal tRNA modification essential for translational accuracy and fidelity. In human mitochondria, YrdC synthesises an l-threonylcarbamoyl adenylate (TC-AMP) intermediate, and OSGEPL1 transfers the TC-moiety to five tRNAs, including human mitochondrial tRNAThr (hmtRNAThr). Mutation of hmtRNAs, YrdC and OSGEPL1, affecting efficient t6A modification, has been implicated in various human diseases. However, little is known about the tRNA recognition mechanism in t6A formation in human mitochondria. Herein, we showed that OSGEPL1 is a monomer and is unique in utilising C34 as an anti-determinant by studying the contributions of individual bases in the anticodon loop of hmtRNAThr to t6A modification. OSGEPL1 activity was greatly enhanced by introducing G38A in hmtRNAIle or the A28:U42 base pair in a chimeric tRNA containing the anticodon stem of hmtRNASer(AGY), suggesting that sequences of specific hmtRNAs are fine-tuned for different modification levels. Moreover, using purified OSGEPL1, we identified multiple acetylation sites, and OSGEPL1 activity was readily affected by acetylation via multiple mechanisms in vitro and in vivo. Collectively, we systematically elucidated the nucleotide requirement in the anticodon loop of hmtRNAs, and revealed mechanisms involving tRNA sequence optimisation and post-translational protein modification that determine t6A modification levels.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yong Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Hai Ke Road, Shanghai 201210, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Shi-Xin Meng
- Biology Department, College of Science, Purdue University, 150 N. University St, West Lafayette, IN 47907, USA
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Hai Ke Road, Shanghai 201210, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
35
|
Zhang Y, Chen J, Wang Y, Li Y, Rui W, Zhang J, Luo D. Expression and protease characterization of a conserved protein YgjD in Vibrio harveyi. PeerJ 2020; 8:e9061. [PMID: 32477834 PMCID: PMC7241418 DOI: 10.7717/peerj.9061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/04/2020] [Indexed: 11/20/2022] Open
Abstract
The glycopeptidase GCP and its homologue proteins are conserved and essential for survival of bacteria. The ygjD gene (Glycopeptidase homologue) was cloned from Vibrio harveyi strain SF-1. The gene consisted of 1,017 bp, which encodes a 338 amino acid polypeptide. The nucleotide sequence similarity of the ygjD gene with that of V. harveyi FDAARGOS 107 was 95%. The ygjD gene also showed similarities of 68%, 67% and 50% with those of Salmonella enterica, Escherichia coli and Bacillus cereus. The ygjD gene was expressed in E. coli BL21 (DE3) and the recombinant YgjD was purified by Ni2+ affinity chromatography column. The purified YgjD showed a specific 37 kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and exhibited protease activities of 59,000 units/mg, 53,700 units/mg and 8,100 units/mg, respectively, on N-Acetyl-L-tyrosine ethyl ester monohydrate (ATEE), N-Benzoyl-L-tyrosine ethyl ester (BTEE) and N-Benzoyl-DL-arginine-4-nitroanilide hydrochloride (BAPNA) substrates. When the conserved amino acids of His111, Glu113 and His115 in the YgjD were replaced with alanine, respectively, the protease activities of the mutants were partly decreased. The two conserved His111 and His115 of YgjD were mutated and the protein lost the protease activity, which implied that the two amino acid played very important roles in maintaining its protease activity. The addition of the purified YgjD to the culture medium of V. harveyi strain SF-1 can effectively promote the bacteria growth. These results indicated that the protease activities may be involved in the survival of bacteria.
Collapse
Affiliation(s)
- Yayuan Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of life science and enginerring, Lanzhou University of Technology, Lanzhou, China
| | - Yanlin Li
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wenhong Rui
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jiyi Zhang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Dan Luo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
36
|
He MH, Liu JC, Lu YS, Wu ZJ, Liu YY, Wu Z, Peng J, Zhou JQ. KEOPS complex promotes homologous recombination via DNA resection. Nucleic Acids Res 2019; 47:5684-5697. [PMID: 30937455 PMCID: PMC6582355 DOI: 10.1093/nar/gkz228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/01/2022] Open
Abstract
KEOPS complex is one of the most conserved protein complexes in eukaryotes. It plays important roles in both telomere uncapping and tRNA N6-threonylcarbamoyladenosine (t6A) modification in budding yeast. But whether KEOPS complex plays any roles in DNA repair remains unknown. Here, we show that KEOPS complex plays positive roles in both DNA damage response and homologous recombination-mediated DNA repair independently of its t6A synthesis function. Additionally, KEOPS displays DNA binding activity in vitro, and is recruited to the chromatin at DNA breaks in vivo, suggesting a direct role of KEOPS in DSB repair. Mechanistically, KEOPS complex appears to promote DNA end resection through facilitating the association of Exo1 and Dna2 with DNA breaks. Interestingly, inactivation of both KEOPS and Mre11/Rad50/Xrs2 (MRX) complexes results in synergistic defect in DNA resection, revealing that KEOPS and MRX have some redundant functions in DNA resection. Thus we uncover a t6A-independent role of KEOPS complex in DNA resection, and propose that KEOPS might be a DSB sensor to assist cells in maintaining chromosome stability.
Collapse
Affiliation(s)
- Ming-Hong He
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi-Si Lu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhi-Jing Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying-Ying Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201201, China
| | - Zhenfang Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Peng
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201201, China
| |
Collapse
|
37
|
Santos SM, Hartman JL. A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer Metab 2019; 7:9. [PMID: 31660150 PMCID: PMC6806529 DOI: 10.1186/s40170-019-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. METHODS Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. RESULTS Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions. CONCLUSIONS Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.
Collapse
Affiliation(s)
- Sean M. Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
38
|
Defects in t 6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nat Commun 2019; 10:3967. [PMID: 31481669 PMCID: PMC6722078 DOI: 10.1038/s41467-019-11951-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex. The biosynthesis of N6-threonylcarbamoylated adenosine 37 in tRNA (t6A) involves the YRDC enzyme and the KEOPS complex. Here, the authors report mutations in YRDC and the KEOPS component GON7 in Galloway-Mowat syndrome and determine the crystal structure of a GON7-containg subcomplex that suggests a role in KEOPS complex stability.
Collapse
|
39
|
Al-Khadairi G, Decock J. Cancer Testis Antigens and Immunotherapy: Where Do We Stand in the Targeting of PRAME? Cancers (Basel) 2019; 11:cancers11070984. [PMID: 31311081 PMCID: PMC6678383 DOI: 10.3390/cancers11070984] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
PRAME or PReferentially expressed Antigen in Melanoma is a testis-selective cancer testis antigen (CTA) with restricted expression in somatic tissues and re-expression in various cancers. It is one of the most widely studied CTAs and has been associated with the outcome and risk of metastasis. Although little is known about its pathophysiological function, PRAME has gained interest as a candidate target for immunotherapy. This review provides an update on our knowledge on PRAME expression and function in healthy and malignant cells and the current immunotherapeutic strategies targeting PRAME with their specific challenges and opportunities. We also highlight some of the features that position PRAME as a unique cancer testis antigen to target.
Collapse
Affiliation(s)
- Ghaneya Al-Khadairi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar.
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar.
| |
Collapse
|
40
|
Negative Regulation of the Mis17-Mis6 Centromere Complex by mRNA Decay Pathway and EKC/KEOPS Complex in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2019; 9:1815-1823. [PMID: 30967422 PMCID: PMC6553542 DOI: 10.1534/g3.119.400227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mitotic kinetochore forms at the centromere for proper chromosome segregation. Deposition of the centromere-specific histone H3 variant, spCENP-A/Cnp1, is vital for the formation of centromere-specific chromatin and the Mis17-Mis6 complex of the fission yeast Schizosaccharomyces pombe is required for this deposition. Here we identified extragenic suppressors for a Mis17-Mis6 complex temperature-sensitive (ts) mutant, mis17-S353P, using whole-genome sequencing. The large and small daughter nuclei phenotype observed in mis17-S353P was greatly rescued by these suppressors. Suppressor mutations in two ribonuclease genes involved in the mRNA decay pathway, exo2 and pan2, may affect Mis17 protein level, as mis17 mutant protein level was recovered in mis17-S353P exo2 double mutant cells. Suppressor mutations in EKC/KEOPS complex genes may not regulate Mis17 protein level, but restored centromeric localization of spCENP-A/Cnp1, Mis6 and Mis15 in mis17-S353P. Therefore, the EKC/KEOPS complex may inhibit Mis17-Mis6 complex formation or centromeric localization. Mutational analysis in protein structure indicated that suppressor mutations in the EKC/KEOPS complex may interfere with its kinase activity or complex formation. Our results suggest that the mRNA decay pathway and the EKC/KEOPS complex negatively regulate Mis17-Mis6 complex-mediated centromere formation by distinct and unexpected mechanisms.
Collapse
|
41
|
Goswami MT, VanDenBerg KR, Han S, Wang LL, Singh B, Weiss T, Barlow M, Kamberov S, Wilder-Romans K, Rhodes DR, Feng FY, Tomlins SA. Identification of TP53RK-Binding Protein (TPRKB) Dependency in TP53-Deficient Cancers. Mol Cancer Res 2019; 17:1652-1664. [PMID: 31110156 DOI: 10.1158/1541-7786.mcr-19-0144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/28/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023]
Abstract
Tumor protein 53 (TP53; p53) is the most frequently altered gene in human cancer. Identification of vulnerabilities imposed by TP53 alterations may enable effective therapeutic approaches. Through analyzing short hairpin RNA (shRNA) screening data, we identified TP53RK-Binding Protein (TPRKB), a poorly characterized member of the tRNA-modifying EKC/KEOPS complex, as the most significant vulnerability in TP53-mutated cancer cell lines. In vitro and in vivo, across multiple benign-immortalized and cancer cell lines, we confirmed that TPRKB knockdown in TP53-deficient cells significantly inhibited proliferation, with minimal effect in TP53 wild-type cells. TP53 reintroduction into TP53-null cells resulted in loss of TPRKB sensitivity, confirming the importance of TP53 status in this context. In addition, cell lines with mutant TP53 or amplified MDM2 (E3-ubiquitin ligase for TP53) also showed high sensitivity to TPRKB knockdown, consistent with TPRKB dependence in a wide array of TP53-altered cancers. Depletion of other EKC/KEOPS complex members exhibited TP53-independent effects, supporting complex-independent functions of TPRKB. Finally, we found that TP53 indirectly mediates TPRKB degradation, which was rescued by coexpression of PRPK, an interacting member of the EKC/KEOPS complex, or proteasome inhibition. Together, these results identify a unique and specific requirement of TPRKB in a variety of TP53-deficient cancers. IMPLICATIONS: Cancer cells with genomic alterations in TP53 are dependent on TPRKB.
Collapse
Affiliation(s)
- Moloy T Goswami
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kelly R VanDenBerg
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sumin Han
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lei Lucy Wang
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bhavneet Singh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Travis Weiss
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Myles Barlow
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Steven Kamberov
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan. .,Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
42
|
The emerging impact of tRNA modifications in the brain and nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:412-428. [PMID: 30529455 DOI: 10.1016/j.bbagrm.2018.11.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
Abstract
A remarkable number of neurodevelopmental disorders have been linked to defects in tRNA modifications. These discoveries place tRNA modifications in the spotlight as critical modulators of gene expression pathways that are required for proper organismal growth and development. Here, we discuss the emerging molecular and cellular functions of the diverse tRNA modifications linked to cognitive and neurological disorders. In particular, we describe how the structure and location of a tRNA modification influences tRNA folding, stability, and function. We then highlight how modifications in tRNA can impact multiple aspects of protein translation that are instrumental for maintaining proper cellular proteostasis. Importantly, we describe how perturbations in tRNA modification lead to a spectrum of deleterious biological outcomes that can disturb neurodevelopment and neurological function. Finally, we summarize the biological themes shared by the different tRNA modifications linked to cognitive disorders and offer insight into the future questions that remain to decipher the role of tRNA modifications. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
|
43
|
Pichard-Kostuch A, Zhang W, Liger D, Daugeron MC, Létoquart J, Li de la Sierra-Gallay I, Forterre P, Collinet B, van Tilbeurgh H, Basta T. Structure-function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t 6A tRNA modification. RNA (NEW YORK, N.Y.) 2018; 24:926-938. [PMID: 29650678 PMCID: PMC6004061 DOI: 10.1261/rna.066092.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis, we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-l-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use a different mechanism for TC-AMP synthesis.
Collapse
Affiliation(s)
- Adeline Pichard-Kostuch
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Wenhua Zhang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Dominique Liger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie-Claire Daugeron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Juliette Létoquart
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, 75014 Paris, France
| | - Bruno Collinet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Tamara Basta
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
44
|
Missoury S, Plancqueel S, Li de la Sierra-Gallay I, Zhang W, Liger D, Durand D, Dammak R, Collinet B, van Tilbeurgh H. The structure of the TsaB/TsaD/TsaE complex reveals an unexpected mechanism for the bacterial t6A tRNA-modification. Nucleic Acids Res 2018; 46:5850-5860. [PMID: 29741707 PMCID: PMC6009658 DOI: 10.1093/nar/gky323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 12/25/2022] Open
Abstract
The universal N6-threonylcarbamoyladenosine (t6A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA. We determined the crystal structure of the TsaB-TsaE-TsaD (TsaBDE) complex of Thermotoga maritima in presence of a non-hydrolysable AMPCPP. TsaE is positioned at the entrance of the active site pocket of TsaD, contacting both the TsaB and TsaD subunits and prohibiting simultaneous tRNA binding. AMPCPP occupies the ATP binding site of TsaE and is sandwiched between TsaE and TsaD. Unexpectedly, the binding of TsaE partially denatures the active site of TsaD causing loss of its essential metal binding sites. TsaE interferes in a pre- or post-catalytic step and its binding to TsaBD is regulated by ATP hydrolysis. This novel binding mode and activation mechanism of TsaE offers good opportunities for antimicrobial drug development.
Collapse
Affiliation(s)
- Sophia Missoury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Stéphane Plancqueel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Wenhua Zhang
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Dominique Liger
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Raoudha Dammak
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| | - Bruno Collinet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR7590 CNRS/Sorbonne-Université, UPMC, Paris, France
| | - Herman van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS UMR 9198, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
45
|
Yeast KEOPS complex regulates telomere length independently of its t 6A modification function. J Genet Genomics 2018; 45:247-257. [PMID: 29804714 DOI: 10.1016/j.jgg.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 11/24/2022]
Abstract
In Saccharomyces cerevisiae, the highly conserved Sua5 and KEOPS complex (including five subunits Kae1, Bud32, Cgi121, Pcc1 and Gon7) catalyze a universal tRNA modification, namely N6-threonylcarbamoyladenosine (t6A), and regulate telomere replication and recombination. However, whether telomere regulation function of Sua5 and KEOPS complex depends on the t6A modification activity remains unclear. Here we show that Sua5 and KEOPS regulate telomere length in the same genetic pathway. Interestingly, the telomere length regulation by KEOPS is independent of its t6A biosynthesis activity. Cytoplasmic overexpression of Qri7, a functional counterpart of KEOPS in mitochondria, restores cytosolic tRNA t6A modification and cell growth, but is not sufficient to rescue telomere length in the KEOPS mutant kae1Δ cells, indicating that a t6A modification-independent function is responsible for the telomere regulation. The results of our in vitro biochemical and in vivo genetic assays suggest that telomerase RNA TLC1 might not be modified by Sua5 and KEOPS. Moreover, deletion of KEOPS subunits results in a dramatic reduction of telomeric G-overhang, suggesting that KEOPS regulates telomere length by promoting G-overhang generation. These findings support a model in which KEOPS regulates telomere replication independently of its function on tRNA modification.
Collapse
|
46
|
Wang S, Xia W, Qiu M, Wang X, Jiang F, Yin R, Xu L. Atlas on substrate recognition subunits of CRL2 E3 ligases. Oncotarget 2018; 7:46707-46716. [PMID: 27107416 PMCID: PMC5216831 DOI: 10.18632/oncotarget.8732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/02/2016] [Indexed: 12/16/2022] Open
Abstract
The Cullin2-type ubiquitin ligases belong to the Cullin-Ring Ligase (CRL) family, which is a crucial determinant of proteasome-based degradation processes in eukaryotes. Because of the finding of von Hippel-Lindau tumor suppressor (VHL), the Cullin2-type ubiquitin ligases gain focusing in the research of many diseases, especially in tumors. These multisubunit enzymes are composed of the Ring finger protein, the Cullin2 scaffold protein, the Elongin B&C linker protein and the variant substrate recognition subunits (SRSs), among which the Cullin2 scaffold protein is the determining factor of the enzyme mechanism. Substrate recognition of Cullin2-type ubiquitin ligases depends on SRSs and results in the degradation of diseases associated substrates by intracellular signaling events. This review focuses on the diversity and the multifunctionality of SRSs in the Cullin2-type ubiquitin ligases, including VHL, LRR-1, FEM1b, PRAME and ZYG11. Recently, as more SRSs are being discovered and more aspects of substrate recognition have been illuminated, insight into the relationship between Cul2-dependent SRSs and substrates provides a new area for cancer research.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
47
|
Tóth R, Cabral V, Thuer E, Bohner F, Németh T, Papp C, Nimrichter L, Molnár G, Vágvölgyi C, Gabaldón T, Nosanchuk JD, Gácser A. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Sci Rep 2018; 8:1346. [PMID: 29358719 PMCID: PMC5777994 DOI: 10.1038/s41598-018-19453-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
Invasive candidiasis is among the most life-threatening infections in patients in intensive care units. Although Candida albicans is the leading cause of candidaemia, the incidence of Candida parapsilosis infections is also rising, particularly among the neonates. Due to differences in their biology, these species employ different antifungal resistance and virulence mechanisms and also induce dissimilar immune responses. Previously, it has been suggested that core virulence effecting transcription regulators could be attractive ligands for future antifungal drugs. Although the virulence regulatory mechanisms of C. albicans are well studied, less is known about similar mechanisms in C. parapsilosis. In order to search for potential targets for future antifungal drugs against this species, we analyzed the fungal transcriptome during host-pathogen interaction using an in vitro infection model. Selected genes with high expression levels were further examined through their respective null mutant strains, under conditions that mimic the host environment or influence pathogenicity. As a result, we identified several mutants with relevant pathogenicity affecting phenotypes. During the study we highlight three potentially tractable signaling regulators that influence C. parapsilosis pathogenicity in distinct mechanisms. During infection, CPAR2_100540 is responsible for nutrient acquisition, CPAR2_200390 for cell wall assembly and morphology switching and CPAR2_303700 for fungal viability.
Collapse
Affiliation(s)
- Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Vitor Cabral
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Ernst Thuer
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Flóra Bohner
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gergő Molnár
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.
| |
Collapse
|
48
|
Guzman H, Sanders K, Idica A, Bochnakian A, Jury D, Daugaard I, Zisoulis DG, Pedersen IM. miR-128 inhibits telomerase activity by targeting TERT mRNA. Oncotarget 2018; 9:13244-13253. [PMID: 29568354 PMCID: PMC5862575 DOI: 10.18632/oncotarget.24284] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Telomerase is a unique cellular reverse transcriptase (RT) essential for maintaining telomere stability and required for the unlimited proliferation of cancer cells. The limiting determinant of telomerase activity is the catalytic component TERT, and TERT expression is closely correlated with telomerase activity and cancer initiation and disease progression. For this reason the regulation of TERT levels in the cell is of great importance. microRNAs (miRs) function as an additional regulatory level in cells, crucial for defining expression boundaries, proper cell fate decisions, cell cycle control, genome integrity, cell death and metastasis. We performed an anti-miR library screen to identity novel miRs, which participate in the control of telomerase. We identified the tumor suppressor miR (miR-128) as a novel endogenous telomerase inhibitor and determined that miR-128 significantly reduces the mRNA and protein levels of Tert in a panel of cancer cell lines. We further evaluated the mechanism by which miR-128 regulates TERT and demonstrated that miR-128 interacts directly with the coding sequence of TERT mRNA in both HeLa cells and teratoma cells. Interestingly, the functional miR-128 binding site in TERT mRNA, is conserved between TERT and the other cellular reverse transcriptase encoded by Long Interspersed Elements-1 (LINE-1 or L1), which can also contribute to the oncogenic phenotype of cancer. This finding supports the novel idea that miRs may function in parallel pathways to inhibit tumorigenesis, by regulating a group of enzymes (such as RT) by targeting conserved binding sites in the coding region of both enzymes.
Collapse
Affiliation(s)
- Herlinda Guzman
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| | - Katie Sanders
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| | - Adam Idica
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| | - Aurore Bochnakian
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| | - Douglas Jury
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| | - Iben Daugaard
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| | - Dimitrios G Zisoulis
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| | - Irene Munk Pedersen
- Department of Molecular Biology and Biochemistry, Francisco J. Ayala School of Biological Sciences, University of California, Irvine 92697-3900, CA, USA
| |
Collapse
|
49
|
Holstein EM, Lawless C, Banks P, Lydall D. Genome-Wide Quantitative Fitness Analysis (QFA) of Yeast Cultures. Methods Mol Biol 2018; 1672:575-597. [PMID: 29043649 DOI: 10.1007/978-1-4939-7306-4_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We provide a detailed protocol for robot-assisted, genome-wide measurement of fitness in the model yeast Saccharomyces cerevisiae using Quantitative Fitness Analysis (QFA). We first describe how we construct thousands of double or triple mutant yeast strains in parallel using Synthetic Genetic Array (SGA) procedures. Strains are inoculated onto solid agar surfaces by liquid spotting followed by repeated photography of agar plates. Growth curves are constructed and the fitness of each strain is estimated. Robot-assisted QFA, can be used to identify genetic interactions and chemical sensitivity/resistance in genome-wide experiments, but QFA can also be used in smaller scale, manual workflows.
Collapse
Affiliation(s)
- Eva-Maria Holstein
- Institute for Cell & Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell & Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Peter Banks
- Institute for Cell & Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - David Lydall
- Institute for Cell & Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
50
|
Chou HJ, Donnard E, Gustafsson HT, Garber M, Rando OJ. Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation. Mol Cell 2017; 68:978-992.e4. [PMID: 29198561 DOI: 10.1016/j.molcel.2017.11.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
Abstract
Covalent nucleotide modifications in noncoding RNAs affect a plethora of biological processes, and new functions continue to be discovered even for well-known modifying enzymes. To systematically compare the functions of a large set of noncoding RNA modifications in gene regulation, we carried out ribosome profiling in budding yeast to characterize 57 nonessential genes involved in tRNA modification. Deletion mutants exhibited a range of translational phenotypes, with enzymes known to modify anticodons, or non-tRNA substrates such as rRNA, exhibiting the most dramatic translational perturbations. Our data build on prior reports documenting translational upregulation of the nutrient-responsive transcription factor Gcn4 in response to numerous tRNA perturbations, and identify many additional translationally regulated mRNAs throughout the yeast genome. Our data also uncover unexpected roles for tRNA-modifying enzymes in regulation of TY retroelements, and in rRNA 2'-O-methylation. This dataset should provide a rich resource for discovery of additional links between tRNA modifications and gene regulation.
Collapse
Affiliation(s)
- Hsin-Jung Chou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - H Tobias Gustafsson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|