1
|
Hao X, Xiao X, Weng L, Lin Z, Xu Q, Du J, Yang Q, Zhu Y, Liu Y, Xu T, Zhou Y, Liao X, Guo J, Luo S, Wang J, Yan X, Tang B, Li J, Jiao B, Shen L. Genetic risk and plasma biomarkers of dementia with Lewy bodies in a Chinese population. NPJ Parkinsons Dis 2025; 11:128. [PMID: 40374660 PMCID: PMC12081849 DOI: 10.1038/s41531-025-00988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
Genetic investigations and associations with plasma biomarkers of dementia with Lewy bodies (DLB) in East Asian populations are lacking. The aim of our study is to identify candidate pathogenic variants and assess the diagnostic performance of plasma biomarkers among DLB patients in the Chinese population. This cohort included 151 DLB patients and 2010 controls, all of whom underwent whole genome sequencing. Plasma glial fibrillary acidic protein (GFAP), α-synuclein(αSyn), neurofilament light (NfL), and phosphorylated tau 217 (p-tau217) were detected in a subgroup. As a result, the APOE ε4 allele significantly increased DLB risk (p = 1.84E-11), while rare missense variants of USP13 gene were first found to be suggestively associated with DLB risk (p = 1.31E-5). Higher levels of plasma GFAP, αSyn, NfL, and p-tau217 were detected in DLB patients compared to controls (p < 0.001), which combined with polygenic risk scores (PRS) achieving an AUC of 0.927 for DLB diagnosis. Besides, significant correlations were observed between PRS of DLB and age at onset, the cumulative incidence rate, as well as plasma GFAP levels. In conclusion, this is the first study to simultaneously investigate the genetics and plasma biomarkers of DLB, highlighting the discriminative ability for DLB using PRS and plasma biomarker assay.
Collapse
Affiliation(s)
- Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Zhuojie Lin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yiliang Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Shilin Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Brain Research Center, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
- Brain Research Center, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Wendrich K, Gallant K, Recknagel S, Petroulia S, Kazi NH, Hane JA, Führer S, Bezstarosti K, O'Dea R, Demmers J, Gersch M. Discovery and mechanism of K63-linkage-directed deubiquitinase activity in USP53. Nat Chem Biol 2025; 21:746-757. [PMID: 39587316 PMCID: PMC12037411 DOI: 10.1038/s41589-024-01777-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024]
Abstract
Ubiquitin-specific proteases (USPs) represent the largest class of human deubiquitinases (DUBs) and comprise its phylogenetically most distant members USP53 and USP54, which are annotated as catalytically inactive pseudoenzymes. Conspicuously, mutations within the USP domain of USP53 cause progressive familial intrahepatic cholestasis. Here, we report the discovery that USP53 and USP54 are active DUBs with high specificity for K63-linked polyubiquitin. We demonstrate how USP53 mutations abrogate catalytic activity, implicating loss of DUB activity in USP53-mediated pathology. Depletion of USP53 increases K63-linked ubiquitination of tricellular junction components. Assays with substrate-bound polyubiquitin reveal that USP54 cleaves within K63-linked chains, whereas USP53 can en bloc deubiquitinate substrate proteins in a K63-linkage-dependent manner. Biochemical and structural analyses uncover underlying K63-specific S2 ubiquitin-binding sites within their catalytic domains. Collectively, our work revises the annotation of USP53 and USP54, provides reagents and a mechanistic framework to investigate K63-linked polyubiquitin decoding and establishes K63-linkage-directed deubiquitination as a new DUB activity.
Collapse
Affiliation(s)
- Kim Wendrich
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Kai Gallant
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Stavroula Petroulia
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Nafizul Haque Kazi
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jan André Hane
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Siska Führer
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rachel O'Dea
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Malte Gersch
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
3
|
Liu Q, Wang X, Fang ZT, Zhao JN, Rui XX, Zhang BG, He Y, Liu RJ, Chen J, Chai GS, Liu GP. Upregulation of ISG15 induced by MAPT/tau accumulation represses autophagic flux by inhibiting HDAC6 activity: a vicious cycle in Alzheimer disease. Autophagy 2025; 21:807-826. [PMID: 39635882 PMCID: PMC11925114 DOI: 10.1080/15548627.2024.2431472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer disease (AD), a prevalent neurodegenerative condition in the elderly, is marked by a deficit in macroautophagy/autophagy, leading to intracellular MAPT/tau accumulation. While ISG15 (ISG15 ubiquitin like modifier) has been identified as a regulator of selective autophagy in ataxia telangiectasia (A-T), its role in AD remains unexplored. Our study reveals elevated ISG15 levels in the brains of patients with sporadic AD and AD models in vivo and in vitro. ISG15 overexpression in cells and the hippocampus inhibited HDAC6 (histone deacetylase 6) activity through C-terminal LRLRGG binding to HDAC6. Consequently, this increased CTTN (cortactin) acetylation, disrupted CTTN and F-actin recruitment to lysosomes, and impaired autophagosome (AP)-lysosome (LY) fusion. These disruptions led to MAPT/tau accumulation, synaptic damage, neuronal loss, and cognitive deficits. Conversely, ISG15 knockdown in our HsMAPT (human MAPT) pathology model restored HDAC6 activity, promoted AP-LY fusion, and improved cognitive function. This study identifies ISG15 as a key regulator of autophagic flux in AD, suggesting that targeting ISG15-mediated autophagy could offer therapeutic potential for AD.Abbreviation: AAV: adeno-associated virus; AD: Alzheimer disease; ALP: autophagy-lysosomal pathway; ANOVA: analysis of variance; AP: autophagosome; BafA1: bafilomycin A1; CHX: cycloheximide; CQ: chloroquine; CTTN: cortactin; FC: fear conditioning; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GRIN/NMDARs: N-methyl-D-aspartate glutamate ionotropic receptor NMDA types; HDAC6: histone deacetylase 6; HEK293: human embryonic kidney 293; HsMAPT: human MAPT; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; ISG15: ISG15 ubiquitin like modifier; LAMP1: lysosomal associated membrane protein 1; LY: lysosome; MAPT: microtubule associated protein tau; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MWM: Morris water maze; NOR: novel object recognition; SQSTM1/p62: sequestosome 1; ZnF UBP: zinc finger ubiquitin-binding protein.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xin Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Ting Fang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Ning Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Xiang Rui
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing-Ge Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao-Shang Chai
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Modern Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
4
|
Komori H, Rastogi G, Bugay JP, Luo H, Lin S, Angers S, Smibert CA, Lipshitz HD, Lee CY. mRNA decay pre-complex assembly drives timely cell-state transitions during differentiation. Cell Rep 2025; 44:115138. [PMID: 39739530 PMCID: PMC11911916 DOI: 10.1016/j.celrep.2024.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/27/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein brain tumor (Brat) promotes the degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and uncommitted intermediate neural progenitors (immature INPs). We identify ubiquitin-specific protease 5 (Usp5) as a candidate Brat interactor essential for the degradation of Brat target mRNAs. Usp5 promotes the formation of the Brat-deadenylase pre-complex in mitotic neural stem cells (neuroblasts) by facilitating Brat interactions with the scaffolding components of deadenylase complexes. The adaptor protein Miranda binds the RNA-binding domain of Brat, limiting its ability to bind target mRNAs in mitotic neuroblasts. Cortical displacement of Miranda activates Brat-deadenylase complex activity in immature INPs. We propose that the assembly of an enzymatically inactive and RNA-binding-deficient pre-complex poises mRNA degradation machineries for rapid activation, driving timely developmental transitions.
Collapse
Affiliation(s)
- Hideyuki Komori
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Geeta Rastogi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Paul Bugay
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Genetic Medicine, Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Eibach Y, Kreher S, Poetsch MS, Kho AL, Gaertner U, Clemen CS, Schröder R, Guo K, Milting H, Meder B, Potente M, Richter M, Schneider A, Meiners S, Gautel M, Braun T. The deubiquitinase USP5 prevents accumulation of protein aggregates in cardiomyocytes. SCIENCE ADVANCES 2025; 11:eado3852. [PMID: 39841822 PMCID: PMC11753375 DOI: 10.1126/sciadv.ado3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM. CM-specific loss of mUsp5 leads to the accumulation of polyubiquitin chains and protein aggregates, cardiac remodeling, and eventually DCM. USP5 interacts with key components of the proteostasis machinery, including PSMD14, and the absence of USP5 increases activity of the ubiquitin-proteasome system and autophagic flux in CMs. Cardiac-specific hUSP5 overexpression reduces pathological remodeling in pressure-overloaded mouse hearts and attenuates protein aggregate formation in titinopathy and desminopathy models. Since CMs from humans with end-stage DCM show lower USP5 levels and display accumulation of ubiquitinated protein aggregates, we hypothesize that therapeutically increased USP5 activity may reduce protein aggregates during DCM. Our findings demonstrate that USP5 is essential for ubiquitin turnover and proteostasis in mature CMs.
Collapse
Affiliation(s)
- Yvonne Eibach
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Silke Kreher
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| | - Mareike S. Poetsch
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Ulrich Gaertner
- University of Giessen, Institute of Anatomy and Cell Biology, Giessen, Germany
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Schröder
- Institute for Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Guo
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Benjamin Meder
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Michael Potente
- Berlin Institute of Health (BIH) and Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Silke Meiners
- Research Center Borstel/Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, BHF Centre of Excellence, London, UK
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany
| |
Collapse
|
6
|
Agrata R, Komander D. Ubiquitin-A structural perspective. Mol Cell 2025; 85:323-346. [PMID: 39824171 DOI: 10.1016/j.molcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.
Collapse
Affiliation(s)
- Rashmi Agrata
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - David Komander
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Zhang Q, Gu R, Dai Y, Chen J, Ye P, Zhu H, He W, Nie X. Molecular mechanisms of ubiquitination in wound healing. Biochem Pharmacol 2025; 231:116670. [PMID: 39613112 DOI: 10.1016/j.bcp.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound healing is a complex biological process involving multiple cellular and molecular mechanisms. Ubiquitination, a crucial post-translational modification, plays a vital role in regulating various aspects of wound healing through protein modification and degradation. This review comprehensively examines the molecular mechanisms of ubiquitination in wound healing, focusing on its regulation of inflammatory responses, macrophage polarization, angiogenesis, and the activities of fibroblasts and keratinocytes. We discuss how ubiquitination modifies key signaling pathways, including TGF-β/Smad3, NF-κB, and HIF-α, which are essential for proper wound healing. Understanding these mechanisms provides insights into potential therapeutic strategies for treating impaired wound healing, particularly in conditions such as diabetes. The review highlights recent advances in understanding ubiquitination's role in wound healing and discusses future research directions for developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; School Medical Office, Zunyi Medical University, Zunyi 563006, PR China.
| | - Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Wenping He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
8
|
Qiao Z, Li D, Zhang F, Zhu J, Liu S, Bai X, Yao H, Chen Z, Yan Y, Xu X, Ma F. USP5 inhibits anti-RNA viral innate immunity by deconjugating K48-linked unanchored and K63-linked anchored ubiquitin on IRF3. PLoS Pathog 2025; 21:e1012843. [PMID: 39761299 PMCID: PMC11737852 DOI: 10.1371/journal.ppat.1012843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Interferon regulatory factor 3 (IRF3) is a central hub transcription factor that controls host antiviral innate immunity. The expression and function of IRF3 are tightly regulated by the post-translational modifications. However, it is unknown whether unanchored ubiquitination and deubiquitination of IRF3 involve modulating antiviral innate immunity against RNA viruses. Here, we find that USP5, a deubiquitinase (DUB) regulating unanchored polyubiquitin, is downregulated during host anti-RNA viral innate immunity in a type I interferon (IFN-I) receptor (IFNAR)-dependent manner. USP5 is further identified to inhibit IRF3-triggered antiviral immune responses through its DUB enzyme activity. K48-linked unanchored ubiquitin promotes IRF3-driven transcription of IFN-β and induction of IFN-stimulated genes (ISGs) in a dose-dependent manner. USP5 simultaneously removes both K48-linked unanchored and K63-linked anchored polyubiquitin chains on IRF3. Our study not only provides evidence that unanchored ubiquitin regulates anti-RNA viral innate immunity but also proposes a novel mechanism for DUB-controlled IRF3 activation, suggesting that USP5 is a potential target for the treatment of RNA viral infectious diseases.
Collapse
Affiliation(s)
- Zigang Qiao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dapei Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Fan Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Jingfei Zhu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Xue Bai
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, China
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| |
Collapse
|
9
|
Wang A, Wang Y, Ma Q, Chen X. The carcinogenesis of esophageal squamous cell cancer is positively regulated by USP13 through WISP1 deubiquitination. Biofactors 2025; 51:e2139. [PMID: 39468941 DOI: 10.1002/biof.2139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
The objective was to determine whether USP13 stabilizes WISP1 protein and contributes to tumorigenicity and metastasis in ESCC through the Wnt/CTNNB1 signaling pathway. ESCC cell lines (KYSE150 and TE10) were treated with the proteasome inhibitor MG-132, followed by siRNA screening of deubiquitinases (DUBs) to identify regulators of WISP1. Mass spectrometry, immunoprecipitation, and in vitro functional assays were conducted to explore the interaction between USP13 and WISP1 and to assess the effects of USP13 downregulation on cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and apoptosis. Additionally, in vivo experiments using mouse models were performed to evaluate the impact of USP13 knockdown on tumor growth and metastasis. USP13 was identified as a key regulator of WISP1, stabilizing its protein levels through deubiquitination. Downregulation of USP13 resulted in reduced WISP1 protein stability, decreased cell proliferation, migration, and EMT, and increased apoptosis in vitro. In vivo, USP13 knockdown significantly inhibited tumor growth and lung metastasis. WISP1 overexpression in USP13-knockdown cells partially rescued these phenotypes, confirming the functional role of the USP13/WISP1 axis. Furthermore, knockdown of USP13 or WISP1 impaired the activation of the Wnt/CTNNB1 signaling pathway and reduced immune checkpoint marker expression, indicating a mechanism by which USP13 promotes immune evasion in ESCC. USP13 stabilizes WISP1 through deubiquitination, enhancing ESCC progression by activating the Wnt/CTNNB1 pathway and promoting immune evasion, making USP13 a potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- An Wang
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Youbo Wang
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qinyun Ma
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Ai H, He Z, Deng Z, Chu GC, Shi Q, Tong Z, Li JB, Pan M, Liu L. Structural and mechanistic basis for nucleosomal H2AK119 deubiquitination by single-subunit deubiquitinase USP16. Nat Struct Mol Biol 2024; 31:1745-1755. [PMID: 38918638 DOI: 10.1038/s41594-024-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Epigenetic regulators have a crucial effect on gene expression based on their manipulation of histone modifications. Histone H2AK119 monoubiquitination (H2AK119Ub), a well-established hallmark in transcription repression, is dynamically regulated by the opposing activities of Polycomb repressive complex 1 (PRC1) and nucleosome deubiquitinases including the primary human USP16 and Polycomb repressive deubiquitinase (PR-DUB) complex. Recently, the catalytic mechanism for the multi-subunit PR-DUB complex has been described, but how the single-subunit USP16 recognizes the H2AK119Ub nucleosome and cleaves the ubiquitin (Ub) remains unknown. Here we report the cryo-EM structure of USP16-H2AK119Ub nucleosome complex, which unveils a fundamentally distinct mode of H2AK119Ub deubiquitination compared to PR-DUB, encompassing the nucleosome recognition pattern independent of the H2A-H2B acidic patch and the conformational heterogeneity in the Ub motif and the histone H2A C-terminal tail. Our work highlights the mechanism diversity of H2AK119Ub deubiquitination and provides a structural framework for understanding the disease-causing mutations of USP16.
Collapse
Affiliation(s)
- Huasong Ai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China
| | - Zaozhen He
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Guo-Chao Chu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Chemistry and Chemical Engineering, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Kim Y, Min S, Kim S, Lee S, Park YJ, Heo Y, Park S, Park T, Lee JH, Kang H, Ji JH, Cho H. PARP1-TRIM44-MRN loop dictates the response to PARP inhibitors. Nucleic Acids Res 2024; 52:11720-11737. [PMID: 39217466 PMCID: PMC11514498 DOI: 10.1093/nar/gkae756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
PARP inhibitors (PARPi) show selective efficacy in tumors with homologous recombination repair (HRR)-defects but the activation mechanism of HRR pathway in PARPi-treated cells remains enigmatic. To unveil it, we searched for the mediator bridging PARP1 to ATM pathways by screening 211 human ubiquitin-related proteins. We discovered TRIM44 as a crucial mediator that recruits the MRN complex to damaged chromatin, independent of PARP1 activity. TRIM44 binds PARP1 and regulates the ubiquitination-PARylation balance of PARP1, which facilitates timely recruitment of the MRN complex for DSB repair. Upon exposure to PARPi, TRIM44 shifts its binding from PARP1 to the MRN complex via its ZnF UBP domain. Knockdown of TRIM44 in cells significantly enhances the sensitivity to olaparib and overcomes the resistance to olaparib induced by 53BP1 deficiency. These observations emphasize the central role of TRIM44 in tethering PARP1 to the ATM-mediated repair pathway. Suppression of TRIM44 may enhance PARPi effectiveness and broaden their use even to HR-proficient tumors.
Collapse
Affiliation(s)
- Yonghyeon Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sunwoo Min
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seo Yun Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeon-Ji Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yungyeong Heo
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon Sang Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Ho Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, TX 78229-3000, USA
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
12
|
Wang J, Fang S, Jiang Y, Hua Q. Unraveling the Mechanism of Action of Ubiquitin-Specific Protease 5 and Its Inhibitors in Tumors. Clin Med Insights Oncol 2024; 18:11795549241281932. [PMID: 39391229 PMCID: PMC11465303 DOI: 10.1177/11795549241281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5), a member of the ubiquitin-specific proteases (USPs) family, functions by specifically removing ubiquitin chains from target proteins for stabilization and degrading unbound polyubiquitin chains to maintain a steady-state monoubiquitin pool. Ubiquitin-specific protease 5 regulates various cellular activities, including DNA double-strand break repair, transmission of neuropathic and inflammatory pain signals, immune response, and tumor cell proliferation. Furthermore, USP5 is involved in the development of multiple tumors such as liver, lung, pancreatic, and breast cancers as well as melanoma. Downstream regulatory mechanisms associated with USP5 are complex and diverse. Ubiquitin-specific protease 5 has been revealed as an emerging target for tumor treatment. This study has introduced some molecules upstream to control the expression of USP5 at the levels of transcription, translation, and post-translation. Furthermore, the study incorporated inhibitors known to be associated with USP5, including partially selective deubiquitinase (DUB) inhibitors such as WP1130, EOAI3402143, vialinin A, and chalcone derivatives. It also included the ubiquitin-activating enzyme E1 inhibitor, PYR-41. These small molecule inhibitors impact the occurrence and development of various tumors. Therefore, this article comprehensively reviews the pivotal role of USP5 in different signaling pathways during tumor progression and resumes the progress made in developing USP5 inhibitors, providing a theoretical foundation for their clinical translation.
Collapse
Affiliation(s)
| | | | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Tundo GR, Cavaterra D, Pandino I, Zingale GA, Giammaria S, Boccaccini A, Michelessi M, Roberti G, Tanga L, Carnevale C, Figus M, Grasso G, Coletta M, Bocedi A, Oddone F, Sbardella D. The Delayed Turnover of Proteasome Processing of Myocilin upon Dexamethasone Stimulation Introduces the Profiling of Trabecular Meshwork Cells' Ubiquitylome. Int J Mol Sci 2024; 25:10017. [PMID: 39337505 PMCID: PMC11432723 DOI: 10.3390/ijms251810017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains. Western blotting and native-gel electrophoresis first uncovered that, in the presence of dexamethasone, myocilin turnover by proteasome particles was slower than in the absence of the drug. Thereafter, co-immunoprecipitation, RT-PCR and gene-silencing studies identified STUB1/CHIP as a candidate E3-ligase of myocilin. In this regard, dexamethasone treatment was found to downregulate STUB1/CHIP levels by likely promoting its proteasome-mediated turnover. Hence, to strengthen the working hypothesis about global alterations of ubiquitin-signaling, the first profiling of TMCs ubiquitylome, in the presence and absence of dexamethasone, was here undertaken by diGLY proteomics. Application of this workflow effectively highlighted a robust dysregulation of key pathways (e.g., phospholipid signaling, β-catenin, cell cycle regulation) in dexamethasone-treated Trabecular Meshwork Cells, providing an ubiquitin-centered perspective around the effect of glucocorticoids on metabolism and glaucoma pathogenesis.
Collapse
Affiliation(s)
- Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Dario Cavaterra
- Department of Chemical Sciences and Technologies, University of Tor Vergata, 00133 Rome, Italy (A.B.)
| | - Irene Pandino
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | - Sara Giammaria
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | | | - Gloria Roberti
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | - Lucia Tanga
- IRCCS-Fondazione Bietti, 00168 Rome, Italy (G.R.); (M.C.)
| | | | - Michele Figus
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy;
| | | | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Tor Vergata, 00133 Rome, Italy (A.B.)
| | | | | |
Collapse
|
14
|
Garadi Suresh H, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, Masinas MPD, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment. Mol Cell 2024; 84:2337-2352.e9. [PMID: 38870935 PMCID: PMC11193623 DOI: 10.1016/j.molcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland; Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
15
|
Gharios R, Li A, Kopyeva I, Francis RM, DeForest CA. One-Step Purification and N-Terminal Functionalization of Bioactive Proteins via Atypically Split Inteins. Bioconjug Chem 2024; 35:750-757. [PMID: 38815180 PMCID: PMC11262789 DOI: 10.1021/acs.bioconjchem.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Site-specific installation of non-natural functionality onto proteins has enabled countless applications in biotechnology, chemical biology, and biomaterials science. Though the N-terminus is an attractive derivatization location, prior methodologies targeting this site have suffered from low selectivity, a limited selection of potential chemical modifications, and/or challenges associated with divergent protein purification/modification steps. In this work, we harness the atypically split VidaL intein to simultaneously N-functionalize and purify homogeneous protein populations in a single step. Our method─referred to as VidaL-tagged expression and protein ligation (VEPL)─enables modular and scalable production of N-terminally modified proteins with native bioactivity. Demonstrating its flexibility and ease of use, we employ VEPL to combinatorially install 4 distinct (multi)functional handles (e.g., biotin, alkyne, fluorophores) to the N-terminus of 4 proteins that span three different classes: fluorescent (Enhanced Green Fluorescent Protein, mCherry), enzymatic (β-lactamase), and growth factor (epidermal growth factor). Moving forward, we anticipate that VEPL's ability to rapidly generate and isolate N-modified proteins will prove useful across the growing fields of applied chemical biology.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Annabella Li
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
| | - Ryan M Francis
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98105, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98105, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98105, United States
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington 98105, United States
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98105, United States
- Institute for Protein Design, University of Washington, Seattle ,Washington 98105, United States
| |
Collapse
|
16
|
Velez-Brochero M, Behera P, Afreen KS, Odle A, Rajsbaum R. Ubiquitination in viral entry and replication: Mechanisms and implications. Adv Virus Res 2024; 119:1-38. [PMID: 38897707 DOI: 10.1016/bs.aivir.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.
Collapse
Affiliation(s)
- Maria Velez-Brochero
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Abby Odle
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Ricardo Rajsbaum
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
17
|
Patel RS, Pannala NM, Das C. Reading and Writing the Ubiquitin Code Using Genetic Code Expansion. Chembiochem 2024; 25:e202400190. [PMID: 38588469 PMCID: PMC11161312 DOI: 10.1002/cbic.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Deciphering ubiquitin proteoform signaling and its role in disease has been a long-standing challenge in the field. The effects of ubiquitin modifications, its relation to ubiquitin-related machineries, and its signaling output has been particularly limited by its reconstitution and means of characterization. Advances in genetic code expansion have contributed towards addressing these challenges by precision incorporation of unnatural amino acids through site selective codon suppression. This review discusses recent advances in studying the 'writers', 'readers', and 'erasers' of the ubiquitin code using genetic code expansion. Highlighting strategies towards genetically encoded protein ubiquitination, ubiquitin phosphorylation, acylation, and finally surveying ubiquitin interactions, we strive to bring attention to this unique approach towards addressing a widespread proteoform problem.
Collapse
Affiliation(s)
- Rishi S Patel
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Nipuni M Pannala
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
18
|
Wang Y, Shi Y, Niu K, Yang R, Lv Q, Zhang W, Feng K, Zhang Y. Ubiquitin specific peptidase 3: an emerging deubiquitinase that regulates physiology and diseases. Cell Death Discov 2024; 10:243. [PMID: 38773075 PMCID: PMC11109179 DOI: 10.1038/s41420-024-02010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Proteins are the keystone for the execution of various life activities, and the maintenance of protein normalization is crucial for organisms. Ubiquitination, as a post-transcriptional modification, is widely present in organisms, and it relies on the sophisticated ubiquitin-proteasome (UPS) system that controls protein quality and modulates protein lifespan. Deubiquitinases (DUBs) counteract ubiquitination and are essential for the maintenance of homeostasis. Ubiquitin specific peptidase 3 (USP3) is a member of the DUBs that has received increasing attention in recent years. USP3 is a novel chromatin modifier that tightly regulates the DNA damage response (DDR) and maintains genome integrity. Meanwhile, USP3 acts as a key regulator of inflammatory vesicles and sustains the normal operation of the innate immune system. In addition, USP3 is aberrantly expressed in a wide range of cancers, such as gastric cancer, glioblastoma and neuroblastoma, implicating that USP3 could be an effective target for targeted therapies. In this review, we retrace all the current researches of USP3, describe the structure of USP3, elucidate its functions in DNA damage, immune and inflammatory responses and the cell cycle, and summarize the important role of USP3 in multiple cancers and diseases.
Collapse
Affiliation(s)
- Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
19
|
Komori H, Rastogi G, Bugay JP, Luo H, Lin S, Angers S, Smibert CA, Lipshitz HD, Lee CY. Post-transcriptional regulatory pre-complex assembly drives timely cell-state transitions during differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591706. [PMID: 38746105 PMCID: PMC11092521 DOI: 10.1101/2024.04.29.591706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein Brain tumor (Brat) promotes degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and in uncommitted intermediate neural progenitors (immature INPs). We identified Ubiquitin-specific protease 5 (Usp5) as a Brat interactor essential for the degradation of Brat target mRNAs in both cell types. Usp5 promotes Brat-dedadenylase pre-complex assembly in mitotic neural stem cells (neuroblasts) by bridging Brat and the scaffolding components of deadenylase complexes lacking their catalytic subunits. The adaptor protein Miranda binds the RNA-binding domain of Brat, limiting its ability to bind target mRNAs in mitotic neuroblasts. Cortical displacement of Miranda activates Brat-mediated mRNA decay in immature INPs. We propose that the assembly of an enzymatically inactive and RNA-binding-deficient pre-complex poises mRNA degradation machineries for rapid activation driving timely developmental transitions.
Collapse
|
20
|
Gao ST, Xin X, Wang ZY, Hu YY, Feng Q. USP5: Comprehensive insights into structure, function, biological and disease-related implications, and emerging therapeutic opportunities. Mol Cell Probes 2024; 73:101944. [PMID: 38049041 DOI: 10.1016/j.mcp.2023.101944] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Si-Ting Gao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Zhuo-Yuan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China; Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| |
Collapse
|
21
|
Rodríguez-Salazar CA, van Tol S, Mailhot O, Gonzalez-Orozco M, Galdino GT, Warren AN, Teruel N, Behera P, Afreen KS, Zhang L, Juelich TL, Smith JK, Zylber MI, Freiberg AN, Najmanovich RJ, Giraldo MI, Rajsbaum R. Ebola virus VP35 interacts non-covalently with ubiquitin chains to promote viral replication. PLoS Biol 2024; 22:e3002544. [PMID: 38422166 PMCID: PMC10942258 DOI: 10.1371/journal.pbio.3002544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the cofactor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface, and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity. Treatment with the compounds reduced replication of infectious EBOV in cells and in vivo in a mouse model. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.
Collapse
Affiliation(s)
- Carlos A. Rodríguez-Salazar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Olivier Mailhot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gabriel T. Galdino
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Abbey N. Warren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - María Inés Zylber
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
22
|
Li W, Garcia-Rivera EM, Mitchell DC, Chick JM, Maetani M, Knapp JM, Matthews GM, Shirasaki R, de Matos Simoes R, Viswanathan V, Pulice JL, Rees MG, Roth JA, Gygi SP, Mitsiades CS, Kadoch C, Schreiber SL, Ostrem JML. Highly specific intracellular ubiquitination of a small molecule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577493. [PMID: 38328167 PMCID: PMC10849632 DOI: 10.1101/2024.01.26.577493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ubiquitin is a small, highly conserved protein that acts as a posttranslational modification in eukaryotes. Ubiquitination of proteins frequently serves as a degradation signal, marking them for disposal by the proteasome. Here, we report a novel small molecule from a diversity-oriented synthesis library, BRD1732, that is directly ubiquitinated in cells, resulting in dramatic accumulation of inactive ubiquitin monomers and polyubiquitin chains causing broad inhibition of the ubiquitin-proteasome system. Ubiquitination of BRD1732 and its associated cytotoxicity are stereospecific and dependent upon two homologous E3 ubiquitin ligases, RNF19A and RNF19B. Our finding opens the possibility for indirect ubiquitination of a target through a ubiquitinated bifunctional small molecule, and more broadly raises the potential for posttranslational modification in trans .
Collapse
|
23
|
Li Y, Liu X, Fujinaga K, Gross JD, Frankel AD. Enhanced NF-κB activation via HIV-1 Tat-TRAF6 cross-talk. SCIENCE ADVANCES 2024; 10:eadi4162. [PMID: 38241362 PMCID: PMC10798561 DOI: 10.1126/sciadv.adi4162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
The Tat proteins of HIV-1 and simian immunodeficiency virus (SIV) are essential for activating viral transcription. In addition, Tat stimulates nuclear factor κB (NF-κB) signaling pathways to regulate viral gene expression although its molecular mechanism is unclear. Here, we report that Tat directly activates NF-κB through the interaction with TRAF6, which is an essential upstream signaling molecule of the canonical NF-κB pathway. This interaction increases TRAF6 oligomerization and auto-ubiquitination, as well as the synthesis of K63-linked polyubiquitin chains to further activate the NF-κB pathway and HIV-1 transcription. Moreover, ectopic expression of TRAF6 significantly activates HIV-1 transcription, whereas TRAF6 knockdown inhibits transcription. Furthermore, Tat-mediated activation of NF-κB through TRAF6 is conserved among HIV-1, HIV-2, and SIV isolates. Our study uncovers yet another mechanism by which HIV-1 subverts host transcriptional pathways to enhance its own transcription.
Collapse
Affiliation(s)
- Yang Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Xi Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alan D. Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
24
|
Zafar S, Fatima SI, Schmitz M, Zerr I. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration. Biomolecules 2024; 14:118. [PMID: 38254718 PMCID: PMC10813409 DOI: 10.3390/biom14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are identified and characterized by the progressive loss of neurons and neuronal dysfunction, resulting in cognitive and motor impairment. Recent research has shown the importance of PTMs, such as phosphorylation, acetylation, methylation, ubiquitination, sumoylation, nitration, truncation, O-GlcNAcylation, and hydroxylation, in the progression of neurodegenerative disorders. PTMs can alter protein structure and function, affecting protein stability, localization, interactions, and enzymatic activity. Aberrant PTMs can lead to protein misfolding and aggregation, impaired degradation, and clearance, and ultimately, to neuronal dysfunction and death. The main objective of this review is to provide an overview of the PTMs involved in neurodegeneration, their underlying mechanisms, methods to isolate PTMs, and the potential therapeutic targets for these disorders. The PTMs discussed in this article include tau phosphorylation, α-synuclein and Huntingtin ubiquitination, histone acetylation and methylation, and RNA modifications. Understanding the role of PTMs in neurodegenerative diseases may provide new therapeutic strategies for these devastating disorders.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Shehzadi Irum Fatima
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
25
|
Mann M, Wolf E, Silva M, Kwak HA, Wilson B, Bolotokova A, Wilson DJ, Harding RJ, Schapira M. Small Molecule Screen Identifies Non-catalytic USP3 Chemical Handle. ACS OMEGA 2024; 9:917-924. [PMID: 38222562 PMCID: PMC10785082 DOI: 10.1021/acsomega.3c07070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024]
Abstract
Zinc-finger ubiquitin-binding domains (ZnF-UBDs) are noncatalytic domains mostly found in deubiquitylases (DUBs) such as USP3. They represent an underexplored opportunity for the development of deubiquitylase-targeting chimeras (DUBTACs) to pharmacologically induce the deubiquitylation of target proteins. We previously showed that ZnF-UBDs are ligandable domains. Here, a focused small molecule library screen against a panel of 11 ZnF-UBDs led to the identification of compound 59, a ligand engaging the ZnF-UBD of USP3 with a KD of 14 μM. The compound binds the expected C-terminal ubiquitin binding pocket of USP3 as shown by hydrogen-deuterium exchange mass spectrometry experiments and does not inhibit the cleavage of K48-linked diubiquitin by USP3. As such, this molecule is a chemical starting point toward chemical tools that could be used to interrogate the function of the USP3 Znf-UBD and the consequences of recruiting USP3 to ubiquitylated proteins.
Collapse
Affiliation(s)
- Mandeep
K. Mann
- Structural
Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower,
Suite 700, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Esther Wolf
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Madhushika Silva
- Structural
Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower,
Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Haejin Angela Kwak
- Structural
Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower,
Suite 700, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Brian Wilson
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Albina Bolotokova
- Structural
Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower,
Suite 700, Toronto, Ontario M5G 1L7, Canada
| | - Derek J. Wilson
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Rachel J. Harding
- Structural
Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower,
Suite 700, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Matthieu Schapira
- Structural
Genomics Consortium, University of Toronto, 101 College Street, MaRS South Tower,
Suite 700, Toronto, Ontario M5G 1L7, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
26
|
Chen X, Tian L, Zhang L, Gao W, Yu M, Li Z, Zhang W. Deubiquitinase USP39 promotes SARS-CoV-2 replication by deubiquitinating and stabilizing the envelope protein. Antiviral Res 2024; 221:105790. [PMID: 38158131 DOI: 10.1016/j.antiviral.2023.105790] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The SARS-CoV-2 envelope (E) protein is highly conserved among different viral variants and important for viral assembly and production. Our recent study found that the E protein is ubiquitinated and degraded by the E3 ligase RNF5 through the proteasome pathway. However, whether E ubiquitination can be reversed by host deubiquitinase has not yet been determined. Here, we identify by mass spectrum analysis that the deubiquitinases USP14 and USP39 specifically interact with E, while USP39 potently reverses E polyubiquitination. USP39 interacts with E via the arginine-rich motif (AR) and deubiquitinates E polyubiquitination via the inactive ubiquitin-specific protease domain. Therefore, USP39 protects E from RNF5-mediated degradation, resulting in the enhancement of E stability and E-induced cytokine storms. Moreover, loss-and-gain assays demonstrated that USP39 promotes the replication of various SARS-CoV-2 strains by stabilizing protein level of E that can be ubiquitinated but not other viral proteins. Our findings provide useful targets for the development of novel anti-SARS-CoV-2 strategies.
Collapse
Affiliation(s)
- Xiang Chen
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Li Tian
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Linran Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenying Gao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Miao Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhaolong Li
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130021, Jilin, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Wenyan Zhang
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130021, Jilin, China; Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
27
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
28
|
Liu Y, Dong C, Ren J. Deubiquitination Detection of p53 Protein in Living Cells by Fluorescence Cross-Correlation Spectroscopy. ACS OMEGA 2023; 8:36588-36596. [PMID: 37810700 PMCID: PMC10552112 DOI: 10.1021/acsomega.3c06078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Deubiquitination is a reverse post-translational modification of ubiquitination and plays significant roles in various signal transduction cascades and protein stability. The p53 is a very important tumor-suppressor protein and closely implicates more than 50% of human cancers. Although extracellular studies on the deubiquitination of p53 were reported, the process of p53 deubiquitination in living cells due to the shortage of an efficient in situ method for single living cells is still not clear. In this study, we described an in situ method for studying p53 deubiquitination in living cells by combining fluorescence cross-correlation spectroscopy with a fluorescent protein labeling technique. We first constructed the stable cell line expressing EGFP-Ub-p53-mCherry as the substrate of p53 deubiquitination. Then, we established a method for in situ monitoring of the deubiquitination of p53 in living cells. Based on the amplitudes of fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy curves from living cells, we obtained the deubiquitination percentage for evaluating the level of p53 protein deubiquitination. Furthermore, we studied the effects of ubiquitin structures on p53 deubiquitination in living cells and found that the C-terminal Gly75-Gly76 motif of ubiquitin is a key location for p53 deubiquitination and the deubiquitination cannot occur when ubiquitin lacks the C-terminal Gly75-Gly76 motif. Our results documented that the developed strategy is an efficient method for in situ study of deubiquitination of proteins in living cells.
Collapse
Affiliation(s)
- Yaoqi Liu
- School of Chemistry and Chemical Engineering,
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s
Republic of China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering,
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s
Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering,
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s
Republic of China
| |
Collapse
|
29
|
Liu F, Zhuang W, Song B, Yang Y, Liu J, Zheng Y, Liu B, Zheng J, Zhao W, Gao C. MAVS-loaded unanchored Lys63-linked polyubiquitin chains activate the RIG-I-MAVS signaling cascade. Cell Mol Immunol 2023; 20:1186-1202. [PMID: 37582970 PMCID: PMC10542333 DOI: 10.1038/s41423-023-01065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023] Open
Abstract
The adaptor molecule MAVS forms prion-like aggregates to govern the RIG-I-like receptor (RLR) signaling cascade. Lys63 (K63)-linked polyubiquitination is critical for MAVS aggregation, yet the underlying mechanism and the corresponding E3 ligases and deubiquitinating enzymes (DUBs) remain elusive. Here, we found that the K63-linked polyubiquitin chains loaded on MAVS can be directly recognized by RIG-I to initiate RIG-I-mediated MAVS aggregation with the prerequisite of the CARDRIG-I-CARDMAVS interaction. Interestingly, many K63-linked polyubiquitin chains attach to MAVS via an unanchored linkage. We identified Ube2N as a major ubiquitin-conjugating enzyme for MAVS and revealed that Ube2N cooperates with the E3 ligase Riplet and TRIM31 to promote the unanchored K63-linked polyubiquitination of MAVS. In addition, we identified USP10 as a direct DUB that removes unanchored K63-linked polyubiquitin chains from MAVS. Consistently, USP10 attenuates RIG-I-mediated MAVS aggregation and the production of type I interferon. Mice with a deficiency in USP10 show more potent resistance to RNA virus infection. Our work proposes a previously unknown mechanism for the activation of the RLR signaling cascade triggered by MAVS-attached unanchored K63-linked polyubiquitin chains and establishes the DUB USP10 and the E2:E3 pair Ube2N-Riplet/TRIM31 as a specific regulatory system for the unanchored K63-linked ubiquitination and aggregation of MAVS upon viral infection.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Wanxin Zhuang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, P.R. China
| | - Yuan Yang
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Junqi Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Yi Zheng
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Bingyu Liu
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, P.R. China
| | - Wei Zhao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China
- Department of Pathogenic Biology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, P.R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, P.R. China.
| |
Collapse
|
30
|
Patel R, Negrón Terón K, Zhou M, Nakayasu E, Drown B, Das C. Genetically Encoded Crosslinking Enables Identification of Multivalent Ubiquitin-Deubiquitylating Enzyme Interactions. Chembiochem 2023; 24:e202300305. [PMID: 37262077 PMCID: PMC11088939 DOI: 10.1002/cbic.202300305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Ubiquitin (Ub) proteoforms control nearly every aspect of eukaryotic cell biology through their diversity. Inspired by the widely used Ub C-terminal electrophiles (Ub-E), here we report the identification of multivalent binding of Ub with deubiquitylating enzymes (Dubs) using genetic code expansion (GCE) and crosslinking mass spectrometry. While the Ub-Es only gather structural information with the S1 Dub sites, we demonstrate that GCE of Ub with p-benzoyl-L-phenylalanine enables identification of interaction modes beyond the S1 site with a panel of Dubs of both eukaryotic and prokaryotic origin. Collectively, this represents the next generation of Ub-based affinity probes with a unique ability to unravel Ub interaction landscapes beyond what is afforded by cysteine-based chemistries.
Collapse
Affiliation(s)
- Rishi Patel
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Kristos Negrón Terón
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Ernesto Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Bryon Drown
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Yan B, Guo J, Wang Z, Ning J, Wang H, Shu L, Hu K, Chen L, Shi Y, Zhang L, Liu S, Tao Y, Xiao D. The ubiquitin-specific protease 5 mediated deubiquitination of LSH links metabolic regulation of ferroptosis to hepatocellular carcinoma progression. MedComm (Beijing) 2023; 4:e337. [PMID: 37492786 PMCID: PMC10363799 DOI: 10.1002/mco2.337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Epigenetic regulators and posttranslational modifications of proteins play important roles in various kinds of cancer cell death, including ferroptosis, a non-apoptotic form of cell death. However, the interplay of chromatin modifiers and deubiquitinase (DUB) in ferroptosis remains unclear. Here, we found that ubiquitin-specific protease 5 (USP5) is regarded as a bona fide DUB of lymphoid-specific helicase (LSH), a DNA methylation repressor, in hepatocellular carcinoma (HCC). Functional studies reveal that USP5 interacts with LSH and stabilizes LSH by a deubiquitylation activity-dependent process. Furthermore, the USP5-mediated deubiquitination of LSH facilitates the tumorigenesis of HCC by upregulating solute carrier family 7 member 11 (SLC7A11) to suppress ferroptosis of liver cancer cells. Moreover, the USP5 inhibitor degrasyn inhibits DUB activities of USP5 to LSH to suppress the progression of HCC. Additionally, USP5 and LSH are positively correlated and both are overexpressed and linked to poor prognosis in HCC patients. Together, our findings show that USP5 interacts with LSH directly and enhances LSH protein stability through deubiquitination, which, in turn, promotes the development of HCC by suppressing ferroptosis of liver cancer cells, suggesting that USP5 may be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Bokang Yan
- Department of PathologyZhuzhou Hospital Affiliated to Xiangya School of MedicineCentral South UniversityZhuzhouHunanChina
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Jiaxing Guo
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Zuli Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Jieling Ning
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Haiyan Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Long Shu
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Kuan Hu
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Hepatobiliary SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ling Chen
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Ying Shi
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterBeijing Institute of Radiation MedicineCollaborative Innovation Center for Cancer MedicineBeijingChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of Carcinogenesis (Central South University), Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Cancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of Thoracic SurgeryHunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung CancerSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
32
|
Rodríguez-Salazar CA, van Tol S, Mailhot O, Galdino G, Teruel N, Zhang L, Warren AN, González-Orozco M, Freiberg AN, Najmanovich RJ, Giraldo MI, Rajsbaum R. Ebola Virus VP35 Interacts Non-Covalently with Ubiquitin Chains to Promote Viral Replication Creating New Therapeutic Opportunities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549057. [PMID: 37503276 PMCID: PMC10369991 DOI: 10.1101/2023.07.14.549057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the co-factor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex. In addition, VP35 can also interact non-covalently with ubiquitin (Ub); however, the function of this interaction is unknown. Here, we report that VP35 interacts with free (unanchored) K63-linked polyUb chains. Ectopic expression of Isopeptidase T (USP5), which is known to degrade unanchored polyUb chains, reduced VP35 association with Ub and correlated with diminished polymerase activity in a minigenome assay. Using computational methods, we modeled the VP35-Ub non-covalent interacting complex, identified the VP35-Ub interacting surface and tested mutations to validate the interface. Docking simulations identified chemical compounds that can block VP35-Ub interactions leading to reduced viral polymerase activity that correlated with reduced replication of infectious EBOV. In conclusion, we identified a novel role of unanchored polyUb in regulating Ebola virus polymerase function and discovered compounds that have promising anti-Ebola virus activity.
Collapse
Affiliation(s)
- Carlos A. Rodríguez-Salazar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia 630003, Colombia
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Olivier Mailhot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Gabriel Galdino
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Natalia Teruel
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Abbey N. Warren
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey 07103
| | - María González-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Rafael J. Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - María I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, Texas, USA
- Center for Virus-Host-Innate Immunity and Department of Medicine; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, New Jersey 07103
| |
Collapse
|
33
|
Hou XN, Tang C. The pros and cons of ubiquitination on the formation of protein condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1084-1098. [PMID: 37294105 PMCID: PMC10423694 DOI: 10.3724/abbs.2023096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chun Tang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Center for Quantitate BiologyPKU-Tsinghua Center for Life ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
34
|
Zheng Y, Wang L, Liu Q, Xian H, Zhang C, Cai S, Yang S, Jin S, Cui J. Modulation of virus-induced neuroinflammation by the autophagy receptor SHISA9 in mice. Nat Microbiol 2023; 8:958-972. [PMID: 37081201 DOI: 10.1038/s41564-023-01357-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Microglia and astrocytes are subgroups of brain glia cells that support and protect neurons within the central nervous system (CNS). At early stages of viral infection in the CNS, they are predominant responding cells and lead to recruitment of peripheral immune cells for viral clearance. Inhibitor of nuclear factor κB kinase subunit epsilon (IKKi) is critical for type I interferon signalling and inflammation, which modulate heterogenic immune responses during CNS infection. Balanced autophagy is vital to maintain brain integrity, yet regulation of autophagy and immune activity within brain glia cells is poorly understood. Here we identify SHISA9 as an autophagy cargo receptor that mediates the autophagy-dependent degradation of IKKi during herpes simplex virus type 1 infection. IKKi is recognized by SHISA9 through unanchored K48-linked poly-ubiquitin chains and bridged to autophagosome membrane components GABARAPL1. Single-cell RNA sequencing analysis shows that SHISA9 has temporal characteristics while modulating both antiviral and inflammatory responses in microglia and astrocytes at different stages during viral infection. We found that Shisa9-/- mice are highly susceptible to herpes simplex virus encephalitis, have pathogenic astrocytes and display more severe neuroinflammation compared with wild-type mice. Taken together, our study unravels a critical role of selective autophagy by orchestrating immune heterogeneity of different CNS resident cells through the SHISA9-IKKi axis.
Collapse
Affiliation(s)
- Yanyan Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, USA
| | - Liqiu Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingxiang Liu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Mayo Clinic Alix School of Medicine, College of Medicine and Science, Rochester, MN, USA
| | - Huifang Xian
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chenqiu Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sihui Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuai Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
35
|
Zhao B, Huo W, Yu X, Shi X, Lv L, Yang Y, Kang J, Li S, Wu H. USP13 promotes breast cancer metastasis through FBXL14-induced Twist1 ubiquitination. Cell Oncol (Dordr) 2023; 46:717-733. [PMID: 36732432 DOI: 10.1007/s13402-023-00779-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Epithelial-to-mesenchymal transition (EMT) is an important cause of high mortality in breast cancer. Twist1 is one of the EMT transcription factors (EMT-TFs) with a noticeably short half-life, which is regulated by proteasome degradation pathways. Recent studies have found that USP13 stabilizes several specific oncogenic proteins. As yet, however, the relationship between Twist1 and USP13 has not been investigated. METHODS Co-Immunoprecipitation, GST-pulldown, Western blot, qRT-PCR and immunofluorescence assays were used to investigate the role of USP13 in de-ubiquitination of Twist1. Chromatin immunoprecipitation and Luciferase reporter assays were used to investigate the role of Twist1 in inhibiting USP13 reporter transcription. Scratch wound healing, cell migration and invasion assays, and a mouse lung metastases assay were used to investigate the roles of USP13 and Twist1 in promoting breast cancer metastasis. RESULTS We found that Twist1 can be de-ubiquitinated by USP13. In addition, we found that the protein levels of Twist1 dose-dependently increased with USP13 overexpression, while USP13 knockdown resulted in a decreased expression of endogenous Twist1. We also found that USP13 can directly interact with Twist1 and specifically cleave the K48-linked polyubiquitin chains of Twist1 induced by FBXL14. We found that the effect of USP13 in promoting the migration and invasion capacities of breast cancer cells can at least partly be achieved through its regulation of Twist1, while Twist1 can inhibit the transcriptional activity of USP13. CONCLUSIONS Our data indicate that an interplay between Twist1 and USP13 can form a negative physiological feedback loop. Our findings show that USP13 may play an essential role in breast cancer metastasis by regulating Twist1 and, as such, provide a potential target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Wei Huo
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaomin Yu
- Central Hospital affiliated to Dalian University of Technology, Dalian, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| |
Collapse
|
36
|
Choi YS, Cohen RE. Real-Time Deubiquitination Assays Using a Free Ubiquitin Sensor. Methods Mol Biol 2023; 2591:255-267. [PMID: 36350553 DOI: 10.1007/978-1-0716-2803-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deubiquitinating enzymes cleave ubiquitin (Ub) from its attachment to another Ub, other proteins, peptides, or non-peptide adducts. In all cases, substrate hydrolysis by DUBs releases free Ub or polyubiquitin (polyUb) chains. Whereas most quantitative DUB assays depend on fluorescently labeled artificial substrates, employing a sensor able to detect Ub release in real time makes it possible to monitor DUB activity using virtually any Ub conjugate as a substrate. The protocols here describe the preparation of Atto532-tUI, a high-affinity sensor for free Ub, and its use in real-time deubiquitination assays.
Collapse
Affiliation(s)
- Yun-Seok Choi
- School of Natural Sciences, Black Hills State University, Spearfish, SD, USA
| | - Robert E Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
37
|
Zhang Z, Das C. Characterization of Deubiquitinase Catalytic State Using a Structure-Based Approach. Methods Mol Biol 2023; 2591:1-15. [PMID: 36350539 DOI: 10.1007/978-1-0716-2803-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The activity of deubiquitinases (DUBs) is tightly regulated in eukaryotes via various mechanisms. One of the regulatory strategies is substrate-induced catalytic triad rearrangement, where ubiquitin-binding helps the DUB adopt an active conformation for catalysis. The crystal structure of the apo form of such a DUB, when not bound to ubiquitin, reveals an inactive conformation of the catalytic residues, necessitating the structure of the ubiquitin-bound form to visualize the active state of the DUB. Comparing the apo and ubiquitin-bound structures reveals conformational changes leading to catalytic activation. To capture the deubiquitinase in its ubiquitin-bound form, a series of activity-based ubiquitin probes (Ub-ABPs) harboring C-terminal electrophiles were designed to react with the catalytic nucleophile of cysteine protease DUBs. The resulting covalently linked DUB-ubiquitin complex is amendable for structural studies to probe the DUB-ubiquitin interface and the potential conformational change of the DUB. Here, we present a detailed protocol for the generation and purification of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) in complex with a Ub-ABP, ubiquitin-vinyl methyl ester (UbVME), and the subsequent structural analysis to characterize the catalytic state of the DUB.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
38
|
Li J, Wang Y, Luo Y, Liu Y, Yi Y, Li J, Pan Y, Li W, You W, Hu Q, Zhao Z, Zhang Y, Cao Y, Zhang L, Yuan J, Xiao ZXJ. USP5-Beclin 1 axis overrides p53-dependent senescence and drives Kras-induced tumorigenicity. Nat Commun 2022; 13:7799. [PMID: 36528652 PMCID: PMC9759531 DOI: 10.1038/s41467-022-35557-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancers (NSCLC) frequently contain KRAS mutation but retain wild-type TP53. Abundant senescent cells are observed in premalignant but not in malignant tumors derived from the Kras-driven mouse model, suggesting that KRAS oncogenic signaling would have to overcome the intrinsic senescence burden for cancer progression. Here, we show that the nuclear Beclin 1-mediated inhibition of p53-dependent senescence drives Kras-mediated tumorigenesis. KRAS activates USP5 to stabilize nuclear Beclin 1, leading to MDM2-mediated p53 protein instability. KrasG12D mice lacking Beclin 1 display retarded lung tumor growth. Knockdown of USP5 or knockout of Becn1 leads to increased senescence and reduced autophagy. Mechanistically, KRAS elevates ROS to induce USP5 homodimer formation by forming the C195 disulfide bond, resulting in stabilization and activation of USP5. Together, these results demonstrate that activation of the USP5-Beclin 1 axis is pivotal in overriding intrinsic p53-dependent senescence in Kras-driven lung cancer development.
Collapse
Affiliation(s)
- Juan Li
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yue Luo
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jinsong Li
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Pan
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Weiyuxin Li
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wanbang You
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qingyong Hu
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhiqiang Zhao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Rd, Pudong, Shanghai, 201210, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
39
|
Chen YY, Chen S, Ok K, Duncan FE, O’Halloran TV, Woodruff TK. Zinc dynamics regulate early ovarian follicle development. J Biol Chem 2022; 299:102731. [PMID: 36423685 PMCID: PMC9800340 DOI: 10.1016/j.jbc.2022.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Zinc fluctuations regulate key steps in late oocyte and preimplantation embryo development; however, roles for zinc in preceding stages in early ovarian follicle development, when cooperative interactions exist between the oocyte and somatic cells, are unknown. To understand the roles of zinc during early follicle development, we applied single cell X-ray fluorescence microscopy, a radioactive zinc tracer, and a labile zinc probe to measure zinc in individual mouse oocytes and associated somatic cells within early follicles. Here, we report a significant stage-specific increase and compartmental redistribution in oocyte zinc content upon the initiation of early follicle growth. The increase in zinc correlates with the increased expression of specific zinc transporters, including two that are essential in oocyte maturation. While oocytes in follicles exhibit high tolerance to pronounced changes in zinc availability, somatic survival and proliferation are significantly more sensitive to zinc chelation or supplementation. Finally, transcriptomic, proteomic, and zinc loading analyses reveal enrichment of zinc targets in the ubiquitination pathway. Overall, these results demonstrate that distinct cell type-specific zinc regulations are required for follicle growth and indicate that physiological fluctuation in the localization and availability of this inorganic cofactor has fundamental functions in early gamete development.
Collapse
Affiliation(s)
- Yu-Ying Chen
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - Kiwon Ok
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas V. O’Halloran
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA,Department of Chemistry, Michigan State University, East Lansing, Michigan, USA,Department of Chemistry, Northwestern University, Evanston, Illinois, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA,For correspondence: Thomas V. O’Halloran; Teresa K. Woodruff
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, Michigan, USA,For correspondence: Thomas V. O’Halloran; Teresa K. Woodruff
| |
Collapse
|
40
|
Li L, Zhou A, Wei Y, Liu F, Li P, Fang R, Ma L, Zhang S, Wang L, Liu J, Richard HT, Chen Y, Wang H, Huang S. Critical role of lncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. SCIENCE ADVANCES 2022; 8:eabn2571. [PMID: 36197973 PMCID: PMC9534510 DOI: 10.1126/sciadv.abn2571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Histone 2A (H2A) monoubiquitination is a fundamental epigenetics mechanism of gene expression, which plays a critical role in regulating cell fate. However, it is unknown if H2A ubiquitination is involved in EGFR-driven tumorigenesis. In the current study, we have characterized a previously unidentified oncogenic lncRNA (lncEPAT) that mediates the integration of the dysregulated EGFR pathway with H2A deubiquitination in tumorigenesis. LncEPAT was induced by the EGFR pathway, and high-level lncEPAT expression positively correlated with the glioma grade and predicted poor survival of glioma patients. Mass spectrometry analyses revealed that lncEPAT specifically interacted with deubiquitinase USP16. LncEPAT inhibited USP16's recruitment to chromatin, thereby blocking USP16-mediated H2A deubiquitination and repressing target gene expression, including CDKN1A and CLUSTERIN. Depletion of lncEPAT promoted USP16-induced cell cycle arrest and cellular senescence, and then repressed GBM cell tumorigenesis. Thus, the EGFR-lncEPAT-ubH2A coupling represents a previously unidentified mechanism for epigenetic gene regulation and senescence resistance during GBM tumorigenesis.
Collapse
Affiliation(s)
- Linlin Li
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanjun Wei
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Feng Liu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peng Li
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Runping Fang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Li Ma
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sicong Zhang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, NY 10065, USA
| | - Longqiang Wang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinze Liu
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Hope T. Richard
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yiwen Chen
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Hengbin Wang
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Suyun Huang
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Virginia Commonwealth University Institute of Molecular Medicine, Richmond, VA 23298, USA
| |
Collapse
|
41
|
Lu L, Zhai X, Li X, Wang S, Zhang L, Wang L, Jin X, Liang L, Deng Z, Li Z, Wang Y, Fu X, Hu H, Wang J, Mei Z, He Z, Wang F. Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains. Nat Commun 2022; 13:4672. [PMID: 35945250 PMCID: PMC9363410 DOI: 10.1038/s41467-022-32364-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/26/2022] [Indexed: 01/28/2023] Open
Abstract
Linear (Met1-linked) ubiquitination is involved inflammatory and innate immune signaling. Previous studies have characterized enzymes regulating the addition and removal of this modification in mammalian systems. However, only a few plant-derived deubiquitinases targeting Met1-linked ubiquitin chains have been reported and their mechanism of action remains elusive. Here, using a dehydroalanine-bearing Met1-diubiquitin suicide probe, we discover OTUB1 from Oryza sativa (OsOTUB1) as a Met1-linked ubiquitin chain-targeting deubiquitinase. By solving crystal structures of apo OsOTUB1 and an OsOTUB1/Met1-diubiquitin complex, we find that Met1 activity is conferred by Met1-specific motifs in the S1’ pocket of OsOTUB1. Large-scale sequence alignments and hydrolysis experiments provide evidence that these motifs are a general determinant of Met1 activity in the OTUB subfamily across species. Analysis of the species distribution of OTUBs capable of hydrolysing Met1-linked ubiquitin chains shows that this activity is conserved in green plants (Viridiplantae) and does not exist in metazoans, providing insights into the evolutionary differentiation between primitive plants and animals. Deubiquitinases (DUBs) targeting Met1-linked ubiquitin chains have important functions in mammals but are barely studied in plants. Here, the authors identify rice OTUB1 as a Met1-targeting DUB, characterize the structural determinants of this activity, and show that these features are conserved in green plants.
Collapse
Affiliation(s)
- Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China. .,Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Xiaoguo Zhai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Xiaolong Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Shuansuo Wang
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, 030031, PR China.,The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Lijun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Luyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Xi Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Lujun Liang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Zhiheng Deng
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Zichen Li
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Honggang Hu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Center for Synthetic and Systems Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, PR China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Zhengguo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, PR China.
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
42
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
43
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
44
|
Usp5, Usp34, and Otu1 deubiquitylases mediate DNA repair in Drosophila melanogaster. Sci Rep 2022; 12:5870. [PMID: 35393473 PMCID: PMC8990000 DOI: 10.1038/s41598-022-09703-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Ubiquitylation is critical for preventing aberrant DNA repair and for efficient maintenance of genome stability. As deubiquitylases (DUBs) counteract ubiquitylation, they must have a great influence on many biological processes, including DNA damage response. To elucidate the role of DUBs in DNA repair in Drosophila melanogaster, systematic siRNA screening was applied to identify DUBs with a reduced survival rate following exposure to ultraviolet and X-ray radiations. As a secondary validation, we applied the direct repeat (DR)-white reporter system with which we induced site-specific DSBs and affirmed the importance of the DUBs Ovarian tumor domain-containing deubiquitinating enzyme 1 (Otu1), Ubiquitin carboxyl-terminal hydrolase 5 (Usp5), and Ubiquitin carboxyl-terminal hydrolase 34 (Usp34) in DSB repair pathways using Drosophila. Our results indicate that the loss of Otu1 and Usp5 induces strong position effect variegation in Drosophila eye following I-SceI-induced DSB deployment. Otu1 and Usp5 are essential in DNA damage-induced cellular response, and both DUBs are required for the fine-tuned regulation of the non-homologous end joining pathway. Furthermore, the Drosophila DR-white assay demonstrated that homologous recombination does not occur in the absence of Usp34, indicating an indispensable role of Usp34 in this process.
Collapse
|
45
|
Li X, Yang G, Zhang W, Qin B, Ye Z, Shi H, Zhao X, Chen Y, Song B, Mei Z, Zhao Q, Wang F. USP13: Multiple Functions and Target Inhibition. Front Cell Dev Biol 2022; 10:875124. [PMID: 35445009 PMCID: PMC9014248 DOI: 10.3389/fcell.2022.875124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
As a deubiquitination (DUB) enzyme, ubiquitin-specific protease 13 (USP13) is involved in a myriad of cellular processes, such as mitochondrial energy metabolism, autophagy, DNA damage response, and endoplasmic reticulum-associated degradation (ERAD), by regulating the deubiquitination of diverse key substrate proteins. Thus, dysregulation of USP13 can give rise to the occurrence and development of plenty of diseases, in particular malignant tumors. Given its implications in the stabilization of disease-related proteins and oncology targets, considerable efforts have been committed to the discovery of inhibitors targeting USP13. Here, we summarize an overview of the recent advances of the structure, function of USP13, and its relations to diseases, as well as discovery and development of inhibitors, aiming to provide the theoretical basis for investigation of the molecular mechanism of USP13 action and further development of more potent druggable inhibitors.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zifan Ye
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huijing Shi
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinmeng Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yihang Chen
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Bowei Song
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | | | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Feng Wang,
| |
Collapse
|
46
|
Hage A, Bharaj P, van Tol S, Giraldo MI, Gonzalez-Orozco M, Valerdi KM, Warren AN, Aguilera-Aguirre L, Xie X, Widen SG, Moulton HM, Lee B, Johnson JR, Krogan NJ, García-Sastre A, Shi PY, Freiberg AN, Rajsbaum R. The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Rep 2022; 38:110434. [PMID: 35263596 PMCID: PMC8903195 DOI: 10.1016/j.celrep.2022.110434] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.
Collapse
Affiliation(s)
- Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karl M Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abbey N Warren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), University of California at San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
47
|
Anderson JS, Hernández G, LeMaster DM. Molecular Dynamics-Assisted Optimization of Protein NMR Relaxation Analysis. J Chem Theory Comput 2022; 18:2091-2104. [PMID: 35245056 PMCID: PMC9009080 DOI: 10.1021/acs.jctc.1c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
NMR relaxation analysis
of the mobile residues in globular proteins
is sensitive to the form of the experimentally fitted internal autocorrelation
function, which is used to represent that motion. Different order
parameter representations can precisely fit the same set of 15N R1, R2,
and heteronuclear NOE measurements while yielding significantly divergent
predictions of the underlying autocorrelation functions, indicating
the insufficiency of these experimental relaxation data for assessing
which order parameter representation provides the most physically
realistic predictions. Molecular dynamics simulations offer an unparalleled
capability for discriminating among different order parameter representations
to assess which representation can most accurately model a wide range
of physically realistic autocorrelation functions. Six currently utilized
AMBER and CHARMM force fields were applied to calculate autocorrelation
functions for the backbone H–N bond vectors of ubiquitin as
an operational test set. An optimized time constant-constrained triexponential
(TCCT) representation was shown to markedly outperform the widely
used (Sf2,τs,S2) extended
Lipari–Szabo representation and the more closely related (Sf2,SH2, SN2) Larmor frequency-selective representation.
Optimization of the TCCT representation at both 600 and 900 MHz 1H converged to the same parameterization. The higher magnetic
field yielded systematically larger deviations in the back-prediction
of the autocorrelation functions for the mobile amides, indicating
little added benefit from multiple field measurements in analyzing
amides that lack slower (∼ms) exchange line-broadening effects.
Experimental 15N relaxation data efficiently distinguished
among the different force fields with regard to their prediction of
ubiquitin backbone conformational dynamics in the ps–ns time
frame. While the earlier AMBER 99SB and CHARMM27 force fields underestimate
the scale of backbone dynamics, which occur in this time frame, AMBER
14SB provided the most consistent predictions for the well-averaged
highly mobile C-terminal residues of ubiquitin.
Collapse
Affiliation(s)
- Janet S Anderson
- Department of Chemistry, Union College, Schenectady, New York 12308, United States
| | - Griselda Hernández
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, United States
| | - David M LeMaster
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, United States
| |
Collapse
|
48
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
49
|
USP13 promotes development and metastasis of high-grade serous ovarian carcinoma in a novel mouse model. Oncogene 2022; 41:1974-1985. [PMID: 35173307 PMCID: PMC8956511 DOI: 10.1038/s41388-022-02224-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Epithelial ovarian cancer is the most lethal gynecologic malignancy and one of the most common causes of cancer mortality among women worldwide. Ubiquitin-Specific Peptidase 13 (USP13) gene copy is strongly amplified in human epithelial ovarian cancer, and high USP13 expression is correlated with poor survival outcomes. Yet, its pathological contribution to ovarian tumorigenesis remains unknown. We crossed a conditional Usp13 overexpressing knock-in mouse with a conditional knockout of Trp53 and Pten mouse and generated a novel ovarian cancer genetically engineered mouse model (GEMM), which closely recapitulates the genetic changes driving ovarian cancer in humans. Overexpression of USP13 with deletion of Trp53 and Pten in murine ovarian surface epithelium accelerated ovarian tumorigenesis and led to decreased survival in mice. Notably, USP13 greatly enhanced peritoneal metastasis of ovarian tumors with frequent development of hemorrhagic ascites. The primary and metastatic tumors exhibited morphology and clinical behavior similar to human high-grade serous ovarian cancer. Co-inhibition of USP13 and AKT significantly decreased the viability of the primary murine ovarian cancer cells isolated from the GEMM. USP13 also increased the tumorigenic and metastatic abilities of primary murine ovarian cancer cells in a syngeneic mouse study. These findings suggest a critical role of USP13 in ovarian cancer development and reveal USP13 as a potential therapeutic target for ovarian cancer.
Collapse
|
50
|
Chen R, Pang X, Li L, Zeng Z, Chen M, Zhang S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis 2022; 13:139. [PMID: 35145062 PMCID: PMC8831562 DOI: 10.1038/s41419-022-04566-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
The exact pathogenesis of inflammatory bowel disease (IBD), a chronic gastrointestinal inflammatory disease comprising Crohn’s disease and ulcerative colitis, remains unclear. Studies on ubiquitination, which regulates the degradation of inflammation signalling pathway molecules, and deubiquitination have provided novel insights. Targeting the ubiquitin-specific protease (USP) family of deubiquitinases elucidates IBD signalling pathway mechanisms and possibly, IBD therapeutic solutions. Here, we characterised USPs as chief regulators of pro-inflammatory signalling pathways, including nuclear factor-κB and transforming growth factor-β; analysed the relationship between USPs and IBD pathogenesis in terms of genetic susceptibility, intestinal epithelial barrier, immunity, and gut microbiota; and discussed future research prospects.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobai Pang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|