1
|
Cervera J, Manzanares JA, Levin M, Mafe S. Oscillatory phenomena in electrophysiological networks: The coupling between cell bioelectricity and transcription. Comput Biol Med 2024; 180:108964. [PMID: 39106669 DOI: 10.1016/j.compbiomed.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Morphogenetic regulation during embryogenesis and regeneration rely on information transfer and coordination between different regions. Here, we explore theoretically the coupling between bioelectrical and transcriptional oscillations at the individual cell and multicellular levels. The simulations, based on a set of ion channels and intercellular gap junctions, show that bioelectrical and transcriptional waves can electrophysiologically couple distant regions of a model network in phase and antiphase oscillatory states that include synchronization phenomena. In this way, different multicellular regionalizations can be encoded by cell potentials that oscillate between depolarized and polarized states, thus allowing a spatio-temporal coding. Because the electric potential patterns characteristic of development and regeneration are correlated with the spatial distributions of signaling ions and molecules, bioelectricity can act as a template for slow biochemical signals following a hierarchy of experimental times. In particular, bioelectrical gradients that couple cell potentials to transcription rates give to each single cell a rough idea of its location in the multicellular ensemble, thus controlling local differentiation processes that switch on and off crucial parts of the genome.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain
| | - Michael Levin
- Dept. of Biology, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
2
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
3
|
Zhang X, Cai Q, Li L, Wang L, Hu Y, Chen X, Zhang D, Persson S, Yuan Z. OsMADS6-OsMADS32 and REP1 control palea cellular heterogeneity and morphogenesis in rice. Dev Cell 2024; 59:1379-1395.e5. [PMID: 38593802 DOI: 10.1016/j.devcel.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Precise regulation of cell proliferation and differentiation is vital for organ morphology. Rice palea, serving as sepal, comprises two distinct regions: the marginal region (MRP) and body of palea (BOP), housing heterogeneous cell populations, which makes it an ideal system for studying organ morphogenesis. We report that the transcription factor (TF) REP1 promotes epidermal cell proliferation and differentiation in the BOP, resulting in hard silicified protrusion cells, by regulating the cyclin-dependent kinase gene, OsCDKB1;1. Conversely, TFs OsMADS6 and OsMADS32 are expressed exclusively in the MRP, where they limit cell division rates by inhibiting OsCDKB2;1 expression and promote endoreduplication, yielding elongated epidermal cells. Furthermore, reciprocal inhibition between the OsMADS6-OsMADS32 complex and REP1 fine-tunes the balance between cell division and differentiation during palea morphogenesis. We further show the functional conservation of these organ identity genes in heterogeneous cell growth in Arabidopsis, emphasizing a critical framework for controlling cellular heterogeneity in organ morphogenesis.
Collapse
Affiliation(s)
- Xuelian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Cai
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Plant & Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, China.
| |
Collapse
|
4
|
Zhang L, Xue G, Zhou X, Huang J, Li Z. A mathematical framework for understanding the spontaneous emergence of complexity applicable to growing multicellular systems. PLoS Comput Biol 2024; 20:e1011882. [PMID: 38838038 PMCID: PMC11182560 DOI: 10.1371/journal.pcbi.1011882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
In embryonic development and organogenesis, cells sharing identical genetic codes acquire diverse gene expression states in a highly reproducible spatial distribution, crucial for multicellular formation and quantifiable through positional information. To understand the spontaneous growth of complexity, we constructed a one-dimensional division-decision model, simulating the growth of cells with identical genetic networks from a single cell. Our findings highlight the pivotal role of cell division in providing positional cues, escorting the system toward states rich in information. Moreover, we pinpointed lateral inhibition as a critical mechanism translating spatial contacts into gene expression. Our model demonstrates that the spatial arrangement resulting from cell division, combined with cell lineages, imparts positional information, specifying multiple cell states with increased complexity-illustrated through examples in C.elegans. This study constitutes a foundational step in comprehending developmental intricacies, paving the way for future quantitative formulations to construct synthetic multicellular patterns.
Collapse
Affiliation(s)
- Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaolin Zhou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
5
|
Ripamonti U, Duarte R. Mechanistic insights into the spontaneous induction of bone formation. BIOMATERIALS ADVANCES 2024; 158:213795. [PMID: 38335762 DOI: 10.1016/j.bioadv.2024.213795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The grand discovery of morphogens, or "form-generating substances", revealed that tissue morphogenesis is initiated by soluble molecular signals or morphogens primarily belonging to the transforming growth factor-β (TGF-β) supergene family. The regenerative potential of bone rests on its extracellular matrix, which is the repository of several morphogens that tightly control cellular differentiating pathways, cellular matrix deposition and remodeling. Alluringly, the matrix also contains specific factors transferred from the heterotopic implanted bone matrices initiating "Tissue Induction", as provocatively described in Nature in 1945. Later, it was found that selected genes and gene products of the TGF-β supergene family singly, synchronously, and synergistically mastermind the induction of bone formation. This review describes the phenomenon of the spontaneous and/or intrinsic osteoinductivity of calcium phosphate-based biomaterials and titanium' constructs without the applications of soluble osteogenetic molecular signals. The review shows the spontaneous induction of bone formation initiated by Ca++ activating stem cell differentiation and up-regulation of bone morphogenetic proteins genes. Expressed gene products are embedded into the concavities of the calcium phosphate-based substrata, initiating bone formation as a secondary response. Pure titanium's substrata do not initiate the spontaneous induction of bone formation. The induction of bone is solely dependent on acid, alkali and heat treatments to form apatite layers on the treated titanium surfaces. The induction of bone formation is achieved exclusively by apatite-based biomaterial surfaces. The hydroxyapatite, in its various forms and geometric configurations, finely tunes the induction of bone formation in heterotopic sites. Cellular differentiation by fine-tuning of the cellular molecular machinery is initiated by specific geometric modularity of the hydroxyapatite substrata that push cellular buttons that start the ripple-like cascade of "Tissue Induction", generating newly formed ossicles with bone marrow in heterotopic extraskeletal sites. The highlighted mechanistic insights into the spontaneous induction of bone formation are a research platform invocating selected molecular elements to construct the induction of bone formation.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Raquel Duarte
- Bone Research Laboratory, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Internal Medicine Research Laboratory, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Lee HC, Oliveira NMM, Hastings C, Baillie-Benson P, Moverley AA, Lu HC, Zheng Y, Wilby EL, Weil TT, Page KM, Fu J, Moris N, Stern CD. Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity. Nat Commun 2024; 15:1463. [PMID: 38368410 PMCID: PMC10874436 DOI: 10.1038/s41467-024-45772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
Many amniote vertebrate species including humans can form identical twins from a single embryo, but this only occurs rarely. It has been suggested that the primitive-streak-forming embryonic region emits signals that inhibit streak formation elsewhere but the signals involved, how they are transmitted and how they act has not been elucidated. Here we show that short tracks of calcium firing activity propagate through extraembryonic tissue via gap junctions and prevent ectopic primitive streak formation in chick embryos. Cross-regulation of calcium activity and an inhibitor of primitive streak formation (Bone Morphogenetic Protein, BMP) via NF-κB and NFAT establishes a long-range BMP gradient spanning the embryo. This mechanism explains how embryos of widely different sizes can maintain positional information that determines embryo polarity. We provide evidence for similar mechanisms in two different human embryo models and in Drosophila, suggesting an ancient evolutionary origin.
Collapse
Affiliation(s)
- Hyung Chul Lee
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Korea.
| | - Nidia M M Oliveira
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- College of Professional Services, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Cato Hastings
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Adam A Moverley
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Chun Lu
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower, London, SE1 9RT, UK
| | - Yi Zheng
- Departments of Mechanical Engineering, Biomedical Engineering, and Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
- BioInspired Syracuse Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Karen M Page
- Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jianping Fu
- Departments of Mechanical Engineering, Biomedical Engineering, and Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Harish RK, Gupta M, Zöller D, Hartmann H, Gheisari A, Machate A, Hans S, Brand M. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development 2023; 150:dev201559. [PMID: 37665167 PMCID: PMC10565248 DOI: 10.1242/dev.201559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.
Collapse
Affiliation(s)
- Rohit Krishnan Harish
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Mansi Gupta
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Daniela Zöller
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Hella Hartmann
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ali Gheisari
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Anja Machate
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Stefan Hans
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Michael Brand
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| |
Collapse
|
8
|
Iyer KS, Prabhakara C, Mayor S, Rao M. Cellular compartmentalisation and receptor promiscuity as a strategy for accurate and robust inference of position during morphogenesis. eLife 2023; 12:e79257. [PMID: 36877545 PMCID: PMC9988261 DOI: 10.7554/elife.79257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/14/2023] [Indexed: 03/07/2023] Open
Abstract
Precise spatial patterning of cell fate during morphogenesis requires accurate inference of cellular position. In making such inferences from morphogen profiles, cells must contend with inherent stochasticity in morphogen production, transport, sensing and signalling. Motivated by the multitude of signalling mechanisms in various developmental contexts, we show how cells may utilise multiple tiers of processing (compartmentalisation) and parallel branches (multiple receptor types), together with feedback control, to bring about fidelity in morphogenetic decoding of their positions within a developing tissue. By simultaneously deploying specific and nonspecific receptors, cells achieve a more accurate and robust inference. We explore these ideas in the patterning of Drosophila melanogaster wing imaginal disc by Wingless morphogen signalling, where multiple endocytic pathways participate in decoding the morphogen gradient. The geometry of the inference landscape in the high dimensional space of parameters provides a measure for robustness and delineates stiff and sloppy directions. This distributed information processing at the scale of the cell highlights how local cell autonomous control facilitates global tissue scale design.
Collapse
Affiliation(s)
- Krishnan S Iyer
- Simons Center for the Study of Living Machines, National Center for Biological Sciences - TIFRBangaloreIndia
| | | | - Satyajit Mayor
- National Center for Biological Sciences - TIFRBangaloreIndia
| | - Madan Rao
- Simons Center for the Study of Living Machines, National Center for Biological Sciences - TIFRBangaloreIndia
| |
Collapse
|
9
|
Araújo NAM, Janssen LMC, Barois T, Boffetta G, Cohen I, Corbetta A, Dauchot O, Dijkstra M, Durham WM, Dussutour A, Garnier S, Gelderblom H, Golestanian R, Isa L, Koenderink GH, Löwen H, Metzler R, Polin M, Royall CP, Šarić A, Sengupta A, Sykes C, Trianni V, Tuval I, Vogel N, Yeomans JM, Zuriguel I, Marin A, Volpe G. Steering self-organisation through confinement. SOFT MATTER 2023; 19:1695-1704. [PMID: 36779972 PMCID: PMC9977364 DOI: 10.1039/d2sm01562e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.
Collapse
Affiliation(s)
- Nuno A M Araújo
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Liesbeth M C Janssen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Thomas Barois
- University of Bordeaux, CNRS, LOMA, UMR 5798, F-33400, Talence, France
| | - Guido Boffetta
- Department of Physics and INFN, University of Torino, via Pietro Giuria 1, 10125, Torino, Italy
| | - Itai Cohen
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York, USA
| | - Alessandro Corbetta
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005, Paris, France
| | - Marjolein Dijkstra
- Soft condensed matter, Department of Physics, Debye institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - William M Durham
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, AD, France
| | - Simon Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Hanneke Gelderblom
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Applied Physics and J. M. Burgers Center for Fluid Dynamics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093, Zürich, Switzerland
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, D-14476, Potsdam-Golm, Germany
| | - Marco Polin
- Mediterranean Institute for Advanced Studies, IMEDEA UIB-CSIC, C/Miquel Marqués 21, 07190, Esporles, Spain
- Department of Physics, University of Warwick, Gibbet Hill road, CV4 7AL, Coventry, UK
| | - C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005, Paris, France
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, L-1511, Luxembourg
| | - Cécile Sykes
- Laboratoire de Physique de lÉcole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France
| | - Vito Trianni
- Institute of Cognitive Sciences and Technologies, CNR, Via San Martino della Battaglia 44, 00185, Rome, Italy
| | - Idan Tuval
- Mediterranean Institute for Advanced Studies, IMEDEA UIB-CSIC, C/Miquel Marqués 21, 07190, Esporles, Spain
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Iker Zuriguel
- Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Alvaro Marin
- Physics of Fluids Group, Mesa+ Institute, Max Planck Center for Complex Fluid Dynamics and J. M. Burgers Center for Fluid Dynamics, University of Twente, 7500AE, Enschede, The Netherlands.
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
10
|
Xue Y, Krishnan A, Chahda JS, Schweickart RA, Sousa-Neves R, Mizutani CM. The epithelial polarity genes frazzled and GUK-holder adjust morphogen gradients to coordinate changes in cell position with cell fate specification. PLoS Biol 2023; 21:e3002021. [PMID: 36913435 PMCID: PMC10035841 DOI: 10.1371/journal.pbio.3002021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/23/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Morphogenetic gradients specify distinct cell populations within tissues. Originally, morphogens were conceived as substances that act on a static field of cells, yet cells usually move during development. Thus, the way cell fates are defined in moving cells remains a significant and largely unsolved problem. Here, we investigated this issue using spatial referencing of cells and 3D spatial statistics in the Drosophila blastoderm to reveal how cell density responds to morphogenetic activity. We show that the morphogen decapentaplegic (DPP) attracts cells towards its peak levels in the dorsal midline, whereas dorsal (DL) stalls them ventrally. We identified frazzled and GUK-holder as the downstream effectors regulated by these morphogens that constrict cells and provide the mechanical force necessary to draw cells dorsally. Surprisingly, GUKH and FRA modulate the DL and DPP gradient levels and this regulation creates a very precise mechanism of coordinating cell movement and fate specification.
Collapse
Affiliation(s)
- Yongqiang Xue
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Aravindan Krishnan
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juan Sebastian Chahda
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert Allen Schweickart
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rui Sousa-Neves
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Claudia Mieko Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
11
|
Copeland J, Wilson K, Simoes-Costa M. Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development. FEBS J 2022; 289:5166-5175. [PMID: 34310060 DOI: 10.1111/febs.16139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kayla Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
12
|
Richardson MK, Keuck G. The revolutionary developmental biology of Wilhelm His, Sr. Biol Rev Camb Philos Soc 2022; 97:1131-1160. [PMID: 35106889 PMCID: PMC9304566 DOI: 10.1111/brv.12834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Swiss-born embryologist Wilhelm His, Sr. (1831-1904) was the first scientist to study embryos using paraffin histology, serial sectioning and three-dimensional modelling. With these techniques, His made many important discoveries in vertebrate embryology and developmental neurobiology, earning him two Nobel Prize nominations. He also developed several theories of mechanical and evolutionary developmental biology. His argued that adult form is determined by the differential growth of developmental primordia. Furthermore, he suggested that changes in the growth parameters of those primordia are responsible for generating new phenotypes during evolution. His developed these theories in his book 'Our Bodily Form' (Unsere Körperform). Here, we review His's work with special emphasis on its potential importance to the disciplines of evolutionary developmental biology (evo-devo) and mechanobiology.
Collapse
Affiliation(s)
- Michael K. Richardson
- Institute of Biology, University of Leiden, Sylvius LaboratorySylviusweg 72Leiden2333 BEThe Netherlands
| | | |
Collapse
|
13
|
Richardson MK. Theories, laws, and models in evo-devo. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:36-61. [PMID: 34570438 PMCID: PMC9292786 DOI: 10.1002/jez.b.23096] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary developmental biology (evo-devo) is the study of the evolution of developmental mechanisms. Here, I review some of the theories, models, and laws in evo-devo, past and present. Nineteenth-century evo-devo was dominated by recapitulation theory and archetypes. It also gave us germ layer theory, the vertebral theory of the skull, floral organs as modified leaves, and the "inverted invertebrate" theory, among others. Newer theories and models include the frameshift theory, the genetic toolkit for development, the ABC model of flower development, the developmental hourglass, the zootype, Urbilateria, and the hox code. Some of these new theories show the influence of archetypes and recapitulation. Interestingly, recent studies support the old "primordial leaf," "inverted invertebrate," and "segmented head" theories. Furthermore, von Baer's first three laws may now need to be rehabilitated, and the hourglass model modified, in view of what Abzhanov has pointed out about the maternal-zygotic transition. There are many supposed "laws" of evo-devo but I argue that these are merely generalizations about trends in particular lineages. I argue that the "body plan" is an archetype, and is often used in such a way that it lacks any scientific meaning. Looking to the future, one challenge for evo-devo will be to develop new theories and models to accommodate the wealth of new data from high-throughput sequencing, including single-cell sequencing. One step in this direction is the use of sophisticated in silico analyses, as in the "transcriptomic hourglass" models.
Collapse
|
14
|
Van der Mude A. A proposed Information-Based modality for the treatment of cancer. Biosystems 2021; 211:104587. [PMID: 34915101 DOI: 10.1016/j.biosystems.2021.104587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/20/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Treatment modalities for cancer involve physical manipulations such as surgery, immunology, radiation, chemotherapy or gene editing. This is a proposal for an information-based modality. This modality does not change the internal state of the cancer cell directly - instead, the cancer cell is manipulated by giving it information to instruct the cell to perform an action. This modality is based on a theory of Structure Encoding in DNA, where information about body part structure controls the epigenetic state of cells in the process of development from pluripotent cells to fully differentiated cells. It has been noted that cancer is often due to errors in morphogenetic differentiation accompanied by associated epigenetic processes. This implies a model of cancer called the Epigenetic Differentiation Model. A major feature of the Structure Encoding Theory is that the characteristics of the differentiated cell are affected by inter-cellular information passed in the tissue microenvironment, which specifies the exact location of a cell in a body part structure. This is done by exosomes that carry fragments of long non-coding RNA and transposons, which convey structure information. In the normal process of epigenetic differentiation, the information passed may lead to apoptosis due to the constraints of a particular body part structure. The proposed treatment involves determining what structure information is being passed in a particular tumor, then adding artificial exosomes that overwhelm the current information with commands for the cells to go into apoptosis.
Collapse
|
15
|
Stapornwongkul KS, Vincent JP. Generation of extracellular morphogen gradients: the case for diffusion. Nat Rev Genet 2021; 22:393-411. [PMID: 33767424 DOI: 10.1038/s41576-021-00342-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Cells within developing tissues rely on morphogens to assess positional information. Passive diffusion is the most parsimonious transport model for long-range morphogen gradient formation but does not, on its own, readily explain scaling, robustness and planar transport. Here, we argue that diffusion is sufficient to ensure robust morphogen gradient formation in a variety of tissues if the interactions between morphogens and their extracellular binders are considered. A current challenge is to assess how the affinity for extracellular binders, as well as other biophysical and cell biological parameters, determines gradient dynamics and shape in a diffusion-based transport system. Technological advances in genome editing, tissue engineering, live imaging and in vivo biophysics are now facilitating measurement of these parameters, paving the way for mathematical modelling and a quantitative understanding of morphogen gradient formation and modulation.
Collapse
|
16
|
Vargesson N. Lewis Wolpert (1929-2021). Cells Dev 2021; 166:203673. [PMID: 34051671 DOI: 10.1016/j.cdev.2021.203673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
Lewis Wolpert was a brilliant and inspiring scientist who made hugely significant contributions which underpin and influence our understanding of developmental biology today. He spent his career interested in how the fertilised egg can give rise to the whole embryo (and ultimately the adult) with one head, two arms, two legs, all its organs and importantly how cells become different from each other and how they 'know' what to become. His ideas revolutionised the way developmental biology was perceived and also reinvigorated, in particular, the key question of how pattern formation in embryonic development is achieved. He published over 200 scientific articles and received many accolades over his career for his work and services to science in the UK. These included a CBE (Commander of the Order of the British Empire) from the Queen, being elected a Fellow of the Royal Society and a Fellow of the Royal Society of Literature. He was also a recipient of the Waddington Medal from the British Society for Developmental Biology and was awarded The Royal Society's top honour, the Royal Medal in 2018. Lewis was also a gifted teacher and communicator, including being the author of a textbook on developmental biology used around the world to train the next generation of developmental biologists. This contribution was recognised in 2003, by the award of the Viktor Hamburger Outstanding Educator Award from the Society of Developmental Biology in the USA. Lewis always enjoyed giving talks and lectures, having an infectious and persuasive enthusiasm coupled with a sharp sense of humour. He also published articles in popular science journals (aimed at the public) such as New Scientist, Scientific American and The Scientist. Lewis also wrote several popular science books. He was a passionate advocate for the public understanding of science and was the Chair of The Royal Society/Royal Institution/British Association for the Advancement of Science Committee for Public Understanding of Science (1994-1998). For this contribution he was awarded The Royal Society Michael Faraday Medal for "excellence in communicating science to UK audiences". He presented the prestigious Royal Institution Christmas Lectures in 1986 entitled 'Frankenstein's Quest: development of life'. These lectures, six in total, are presented by leading scientists and aimed at the general public and broadcast on national television. On a personal level, Lewis influenced all who came into contact with him, shaped his students and postdocs careers and instilled in them, and the community as whole, a life-long love of developmental biology.
Collapse
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
17
|
Abstract
Understanding the mechanisms of cell-to-cell communication is one of the fundamental questions in biology and medicine. In particular, long-range signalling where cells communicate over several cell diameters is vital during development and homeostasis. The major morphogens, their receptors and intracellular signalling cascades have largely been identified; however, there is a gap in our knowledge of how such signalling factors are propagated over a long distance. In addition to the diffusion-based propagation model, new modalities of disseminating signalling molecules have been identified. It has been shown that cells can communicate with direct contact through long, thin cellular protrusions between signal sending and receiving cells at a distance. Recent studies have revealed a type of cellular protrusion termed 'airinemes' in zebrafish pigment cell types. They share similarities with previously reported cellular protrusions; however, they also exhibit distinct morphology and features. Airinemes are indispensable for pigment pattern development by mediating long-distance Delta-Notch signalling between different pigment cell types. Notably, airineme-mediated signalling is dependent on skin-resident macrophages. Key findings of airineme-mediated intercellular signalling in pattern development, their interplay with macrophages and their implications for the understanding of cellular protrusion-mediated intercellular communication will be discussed.
Collapse
Affiliation(s)
- Dae Seok Eom
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Gordon NK, Chen Z, Gordon R, Zou Y. French flag gradients and Turing reaction-diffusion versus differentiation waves as models of morphogenesis. Biosystems 2020; 196:104169. [PMID: 32485350 DOI: 10.1016/j.biosystems.2020.104169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
The Turing reaction-diffusion model and the French Flag Model are widely accepted in the field of development as the best models for explaining embryogenesis. Virtually all current attempts to understand cell differentiation in embryos begin and end with the assumption that some combination of these two models works. The result may become a bias in embryogenesis in assuming the problem has been solved by these two-chemical substance-based models. Neither model is applied consistently. We review the differences between the French Flag, Turing reaction-diffusion model, and a mechanochemical model called the differentiation wave/cell state splitter model. The cytoskeletal cell state splitter and the embryonic differentiation waves was first proposed in 1987 as a combined physics and chemistry model for cell differentiation in embryos, based on empirical observations on urodele amphibian embryos. We hope that the development of theory can be advanced and observations relevant to distinguishing the embryonic differentiation wave model from the French Flag model and reaction-diffusion equations will be taken up by experimentalists. Experimentalists rely on mathematical biologists for theory, and therefore depend on them for what parameters they choose to measure and ignore. Therefore, mathematical biologists need to fully understand the distinctions between these three models.
Collapse
Affiliation(s)
| | - Zhan Chen
- Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, USA.
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive, Panacea, FL, 32346, USA; C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI, 48201, USA.
| | - Yuting Zou
- Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, USA.
| |
Collapse
|
19
|
Van der Mude A. Structure encoding in DNA. J Theor Biol 2020; 492:110205. [PMID: 32070719 DOI: 10.1016/j.jtbi.2020.110205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/29/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
It is proposed that transposons and related long non-coding RNA define the fine structure of body parts. Although morphogens have long been known to direct the formation of many gross structures in early embryonic development, they do not have the necessary precision to define a structure down to the individual cellular level. Using the distinction between procedural and declarative knowledge in information processing as an analogy, it is hypothesized that DNA encodes fine structure in a manner that is different from the genetic code for proteins. The hypothesis states that repeated or near-repeated sequences that are in transposons and non-coding RNA define body part structures. As the cells in a body part go through the epigenetic process of differentiation, the action of methylation serves to inactivate all but the relevant structure definitions and some associated cell type genes. The transposons left active will then physically modify the DNA sequence in the heterochromatin to establish the local context in the three-dimensional body part structure. This brings the encoded definition of the cell type to the histone. The histone code for that cell type starts the regulatory cascade that turns on the genes associated with that particular type of cell, transforming it from a multipotent cell to a fully differentiated cell. This mechanism creates structures in the musculoskeletal system, the organs of the body, the major parts of the brain, and other systems.
Collapse
|
20
|
Abstract
Two phrases attributed to Lewis Wolpert - 'positional information' and 'The French Flag Model' - have become so intertwined that they are now used almost interchangeably. Here, I argue that this represents an unfortunate oversimplification of Wolpert's ideas that arose gradually in the developmental biology community, some significant time after his key papers were published. In contrast to common belief, Wolpert did not use the phrase French Flag 'Model' but instead introduced the French Flag 'Problem'. This famous metaphor was not a proposal of how patterning works, but rather an abstraction of the question to be addressed. More specifically, the French flag metaphor was an attempt to de-couple the problem from the multiple possible models that could solve it. In this spirit, Wolpert's first article on this topic also proposed (in addition to the well-known gradient model) an alternative solution to the French Flag Problem that was self-organising and had no gradients, and in which each cell 'cannot compute where it is in the system', i.e. there is no positional information. I discuss the history and evolution of these terms, and how they influence the way we study patterning.
Collapse
Affiliation(s)
- James Sharpe
- EMBL Barcelona, Carrer Dr. Aiguader 88, Barcelona 08003, Spain
- ICREA Research Professor, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Vargesson N. Positional Information—A concept underpinning our understanding of developmental biology. Dev Dyn 2019; 249:298-312. [DOI: 10.1002/dvdy.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023] Open
Affiliation(s)
- Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of Aberdeen Aberdeen UK
| |
Collapse
|
22
|
Stasolla C, Huang S, Hill RD, Igamberdiev AU. Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4365-4377. [PMID: 30838401 DOI: 10.1093/jxb/erz084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 05/12/2023]
Abstract
Plant growth and development rely on the orchestration of cell proliferation, differentiation, and ultimately death. After varying rounds of divisions, cells respond to positional cues by acquiring a specific fate and embarking upon distinct developmental pathways which might differ significantly from those of adjacent cells exposed to diverse cues. Differential cell behavior is most apparent in response to stress, when some cells might be more vulnerable than others to the same stress condition. This appears to be the case for stem cells which show abnormal features of differentiation and ultimately signs of deterioration at the onset of specific types of stress such as hypoxia and water deficit. A determining factor influencing cell behavior during growth and development, and cell response during conditions of stress is nitric oxide (NO), the level of which can be regulated by phytoglobins (Pgbs), known scavengers of NO. The modulation of NO by Pgbs can be cell, tissue, and/or organ specific, as revealed by the expression patterns of Pgbs dictated by the presence of distinct cis-regulatory elements in their promoters. This review discusses how the temporal and spatial Pgb expression pattern influences NO-mediated responses and ultimately cell fate acquisition in plant developmental processes.
Collapse
Affiliation(s)
- Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
23
|
Miller WB, Torday JS, Baluška F. The N-space Episenome unifies cellular information space-time within cognition-based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:112-139. [PMID: 31415772 DOI: 10.1016/j.pbiomolbio.2019.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Self-referential cellular homeostasis is maintained by the measured assessment of both internal status and external conditions based within an integrated cellular information field. This cellular field attachment to biologic information space-time coordinates environmental inputs by connecting the cellular senome, as the sum of the sensory experiences of the cell, with its genome and epigenome. In multicellular organisms, individual cellular information fields aggregate into a collective information architectural matrix, termed a N-space Episenome, that enables mutualized organism-wide information management. It is hypothesized that biological organization represents a dual heritable system constituted by both its biological materiality and a conjoining N-space Episenome. It is further proposed that morphogenesis derives from reciprocations between these inter-related facets to yield coordinated multicellular growth and development. The N-space Episenome is conceived as a whole cell informational projection that is heritable, transferable via cell division and essential for the synchronous integration of the diverse self-referential cells that constitute holobionts.
Collapse
Affiliation(s)
| | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| | | |
Collapse
|
24
|
Erkurt M. Emergence of form in embryogenesis. J R Soc Interface 2018; 15:20180454. [PMID: 30429261 PMCID: PMC6283983 DOI: 10.1098/rsif.2018.0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/12/2018] [Indexed: 11/23/2022] Open
Abstract
The development of form in an embryo is the result of a series of topological and informational symmetry breakings. We introduce the vector-reaction-diffusion-drift (VRDD) system where the limit cycle of spatial dynamics is morphogen concentrations with Dirac delta-type distributions. This is fundamentally different from the Turing reaction-diffusion system, as VRDD generates system-wide broken symmetry. We developed 'fundamental forms' from spherical blastula with a single organizing axis (rotational symmetry), double axis (mirror symmetry) and triple axis (no symmetry operator in three dimensions). We then introduced dynamics for cell differentiation, where genetic regulatory states are modelled as a finite-state machine (FSM). The state switching of an FSM is based on local morphogen concentrations as epigenetic information that changes dynamically. We grow complicated forms hierarchically in spatial subdomains using the FSM model coupled with the VRDD system. Using our integrated simulation model with four layers (topological, physical, chemical and regulatory), we generated life-like forms such as hydra. Genotype-phenotype mapping was investigated with continuous and jump mutations. Our study can have applications in morphogenetic engineering, soft robotics and biomimetic design.
Collapse
Affiliation(s)
- Murat Erkurt
- Department of Mathematics, Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
25
|
Braun E, Keren K. HydraRegeneration: Closing the Loop with Mechanical Processes in Morphogenesis. Bioessays 2018; 40:e1700204. [DOI: 10.1002/bies.201700204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/29/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Erez Braun
- Department of Physics & Network Biology Research LaboratoriesTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Kinneret Keren
- Department of Physics & Network Biology Research LaboratoriesTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
26
|
Fradin C. On the importance of protein diffusion in biological systems: The example of the Bicoid morphogen gradient. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1676-1686. [PMID: 28919007 DOI: 10.1016/j.bbapap.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Morphogens are proteins that form concentration gradients in embryos and developing tissues, where they act as postal codes, providing cells with positional information and allowing them to behave accordingly. Bicoid was the first discovered morphogen, and remains one of the most studied. It regulates segmentation in flies, forming a striking exponential gradient along the anterior-posterior axis of early Drosophila embryos, and activating the transcription of multiple target genes in a concentration-dependent manner. In this review, the work done by us and by others to characterize the mobility of Bicoid in D. melanogaster embryos is presented. The central role played by the diffusion of Bicoid in both the establishment of the gradient and the activation of target genes is discussed, and placed in the context of the need for these processes to be all at once rapid, precise and robust. The Bicoid system, and morphogen gradients in general, remain amongst the most amazing examples of the coexistence, often observed in living systems, of small-scale disorder and large-scale spatial order. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Cécile Fradin
- Dept. of Physics and Astronomy, McMaster University, 1280 Main St W., Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
27
|
Kornberg TB. Distributing signaling proteins in space and time: the province of cytonemes. Curr Opin Genet Dev 2017; 45:22-27. [PMID: 28242479 PMCID: PMC5502195 DOI: 10.1016/j.gde.2017.02.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
During development, cells use specialized filopodia called cytonemes to deploy the signaling proteins that coordinate growth and direct morphogenesis. Cytonemes are dynamic structures that can extend long distances across tissues to either deliver or take up signaling proteins. Signaling proteins transfer between cells at the tips of cytonemes where specific contacts termed morphogenetic synapses form. This review summarizes our current understanding of the roles and functions of cytonemes, and it explores some of the conceptual issues relevant to the cytoneme mechanism of contact-dependent cell-cell signaling.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143, United States.
| |
Collapse
|
28
|
García-Morales V, Manzanares JA, Mafe S. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states. Phys Rev E 2017; 95:042324. [PMID: 28505740 DOI: 10.1103/physreve.95.042324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 12/26/2022]
Abstract
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
Collapse
Affiliation(s)
- Vladimir García-Morales
- Departamento de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - José A Manzanares
- Departamento de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Mafe
- Departamento de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
29
|
Tickle C, Towers M. Sonic Hedgehog Signaling in Limb Development. Front Cell Dev Biol 2017; 5:14. [PMID: 28293554 PMCID: PMC5328949 DOI: 10.3389/fcell.2017.00014] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of BathBath, UK
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of SheffieldWestern Bank, Sheffield, UK
| |
Collapse
|
30
|
Climbing Brain Levels of Organisation from Genes to Consciousness. Trends Cogn Sci 2017; 21:168-181. [PMID: 28161289 DOI: 10.1016/j.tics.2017.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/24/2022]
Abstract
Given the tremendous complexity of brain organisation, here I propose a strategy that dynamically links stages of brain organisation from genes to consciousness, at four privileged structural levels: genes; transcription factors (TFs)-gene networks; synaptic epigenesis; and long-range connectivity. These structures are viewed as nested and reciprocally inter-regulated, with a hierarchical organisation that proceeds on different timescales during the course of evolution and development. Interlevel bridging mechanisms include intrinsic variation-selection mechanisms, which offer a community of bottom-up and top-down models linking genes to consciousness in a stepwise manner.
Collapse
|
31
|
Hillenbrand P, Gerland U, Tkačik G. Beyond the French Flag Model: Exploiting Spatial and Gene Regulatory Interactions for Positional Information. PLoS One 2016; 11:e0163628. [PMID: 27676252 PMCID: PMC5038966 DOI: 10.1371/journal.pone.0163628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
A crucial step in the early development of multicellular organisms involves the establishment of spatial patterns of gene expression which later direct proliferating cells to take on different cell fates. These patterns enable the cells to infer their global position within a tissue or an organism by reading out local gene expression levels. The patterning system is thus said to encode positional information, a concept that was formalized recently in the framework of information theory. Here we introduce a toy model of patterning in one spatial dimension, which can be seen as an extension of Wolpert’s paradigmatic “French Flag” model, to patterning by several interacting, spatially coupled genes subject to intrinsic and extrinsic noise. Our model, a variant of an Ising spin system, allows us to systematically explore expression patterns that optimally encode positional information. We find that optimal patterning systems use positional cues, as in the French Flag model, together with gene-gene interactions to generate combinatorial codes for position which we call “Counter” patterns. Counter patterns can also be stabilized against noise and variations in system size or morphogen dosage by longer-range spatial interactions of the type invoked in the Turing model. The simple setup proposed here qualitatively captures many of the experimentally observed properties of biological patterning systems and allows them to be studied in a single, theoretically consistent framework.
Collapse
Affiliation(s)
- Patrick Hillenbrand
- Physics of Complex Biosystems, Physics Department,Technical University of Munich, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Ulrich Gerland
- Physics of Complex Biosystems, Physics Department,Technical University of Munich, James-Franck-Str. 1, D-85748 Garching, Germany
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
- * E-mail:
| |
Collapse
|
32
|
McGuigan AP, Javaherian S. Tissue Patterning: Translating Design Principles from In Vivo to In Vitro. Annu Rev Biomed Eng 2016; 18:1-24. [DOI: 10.1146/annurev-bioeng-083115-032943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry and
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E5, Canada;
| | | |
Collapse
|
33
|
Martin O, Krzywicki A, Zagorski M. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function. Phys Life Rev 2016; 17:124-58. [DOI: 10.1016/j.plrev.2016.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/25/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022]
|
34
|
Korn RW. Modelling the vasculature of the stem of Cyperus involucratus Rottb.: evidence for three patterns of vascular bundles. PLANTA 2016; 244:103-110. [PMID: 26969023 DOI: 10.1007/s00425-016-2495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
Three independent patterns of vein formation in Cyperus involucratus Rottb. were identified based on rare spontaneous interruptions of scape vein development. A number of developmental anomalies of vascular bundles in Cyperus involucratus Rottb. were identified and they include "turnabout", "absent", "twins", "doublet", amphivasal and various stages of "arrested". These were used to develop a computer program to explain the three vasculature patterns of the scape of (a) ordered deployment of vascular bundles, (b) arrangement of tissues within vascular bundles and (c) orientation of vascular bundles with respect to stem edge. The computer model is a cell-by-cell determination of cell types and facet states.
Collapse
Affiliation(s)
- Robert W Korn
- Biology Department, Bellarmine University, 2001 Newburg Rd., Louisville, KY, 40219, USA.
| |
Collapse
|
35
|
Bryant SV, Gardiner DM. The relationship between growth and pattern formation. REGENERATION (OXFORD, ENGLAND) 2016; 3:103-22. [PMID: 27499882 PMCID: PMC4895327 DOI: 10.1002/reg2.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Successful development depends on the creation of spatial gradients of transcription factors within developing fields, and images of graded distributions of gene products populate the pages of developmental biology journals. Therefore the challenge is to understand how the graded levels of intracellular transcription factors are generated across fields of cells. We propose that transcription factor gradients are generated as a result of an underlying gradient of cell cycle lengths. Very long cell cycles will permit accumulation of a high level of a gene product encoded by a large transcription unit, whereas shorter cell cycles will permit progressively fewer transcripts to be completed due to gating of transcription by the cell cycle. We also propose that the gradients of cell cycle lengths are generated by gradients of extracellular morphogens/growth factors. The model of cell cycle gated transcriptional regulation brings focus back to the functional role of morphogens as cell cycle regulators, and proposes a specific and testable mechanism by which morphogens, in their roles as growth factors (how they were originally discovered), also determine cell fate.
Collapse
|
36
|
Teimouri H, Bozorgui B, Kolomeisky AB. Development of Morphogen Gradients with Spatially Varying Degradation Rates. J Phys Chem B 2016; 120:2745-50. [DOI: 10.1021/acs.jpcb.6b00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hamid Teimouri
- Department of Chemistry and
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, United States
| | - Behnaz Bozorgui
- Department of Chemistry and
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, United States
| | - Anatoly B. Kolomeisky
- Department of Chemistry and
Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, United States
| |
Collapse
|
37
|
Cervera J, Alcaraz A, Mafe S. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics. Sci Rep 2016; 6:20403. [PMID: 26841954 PMCID: PMC4740742 DOI: 10.1038/srep20403] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023] Open
Abstract
Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Antonio Alcaraz
- Dept. de Física, Laboratori de Biofísica Molecular, Universitat “Jaume I”, E-12080 Castelló, Spain
| | - Salvador Mafe
- Dept. de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
38
|
Abstract
The concept of positional information proposes that cells acquire positional values as in a coordinate system, which they interpret by developing in particular ways to give rise to spatial patterns. Some of the best evidence for positional information comes from regeneration experiments, and the patterning of the leg and antenna in Drosophila, and the vertebrate limb. Central problems are how positional information is set up, how it is recorded, and then how it is interpreted by the cells. A number of models have been proposed for the setting up of positional gradients, and most are based on diffusion of a morphogen and its interactions with extracellular molecules; however, diffusion may not be reliable mechanism. There are also mechanisms based on timing. There is no good evidence for the quantitative aspects of any of the proposed gradients and details how they are set up. The way in which a signaling gradient regulates differential gene expression in a concentration-dependent manner also raises several technical and quite difficult issues. A key feature of positional information being the basis for pattern formation is that there is no prepattern in the embryo.
Collapse
|
39
|
Abstract
The field of developmental biology is not the same one that I entered in 1975. At that time, it seemed that most of its practitioners used various kinds of microscopes to watch animals as they matured, described morphological details with impressive temporal and spatial resolution, and recorded responses to physical and genetic insults. The number of genes whose mutant phenotypes offered insights into developmental mechanisms was small, the expression and functionalities of these genes were unknown, and because the extent of evolutionary conservation between different animals or even different organs in the same animal was also unknown, the vocabularies that were used to describe development were unique to each system. The distance between the descriptors and inferred molecular mechanisms was vast; it was a descriptive discipline. Today genome sequences are available for the animals that developmental biologists study, saturation genetic screens are possible, transgenesis offers powerful ways to modify genomes, and the proteins that direct and implement developmental processes can be imaged in real time. These advances have transformed the field into one that merges with cell biology, physiology, neurobiology, and immunology, and they have transformed our understanding of development. In this essay, I offer my perspectives and my sense of some principles that have emerged.
Collapse
Affiliation(s)
- Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, California, USA.
| |
Collapse
|
40
|
Teimouri H, Kolomeisky AB. New Model for Understanding Mechanisms of Biological Signaling: Direct Transport via Cytonemes. J Phys Chem Lett 2016; 7:180-185. [PMID: 26695836 DOI: 10.1021/acs.jpclett.5b02703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biological signaling is a crucial natural process that governs the formation of all multicellular organisms. It relies on efficient and fast transfer of information between different cells and tissues. It has been presumed for a long time that these long-distance communications in most systems can take place only indirectly via the diffusion of signaling molecules, also known as morphogens, through the extracellular fluid; however, recent experiments indicate that there is also an alternative direct delivery mechanism. It utilizes dynamic tubular cellular extensions, called cytonemes, that directly connect cells, supporting the flux of morphogens to specific locations. We present a first quantitative analysis of the cytoneme-mediated mechanism of biological signaling. Dynamics of the formation of signaling molecule profiles, which are also known as morphogen gradients, is discussed. It is found that the direct-delivery mechanism is more robust with respect to fluctuations in comparison with the passive diffusion mechanism. In addition, we show that the direct transport of morphogens through cytonemes simultaneously delivers the information to all cells, which is also different from the diffusional indirect delivery; however, it requires energy dissipation and it might be less efficient at large distances due to intermolecular interactions of signaling molecules.
Collapse
Affiliation(s)
- Hamid Teimouri
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005-1892, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University , Houston, Texas 77005-1892, United States
| |
Collapse
|
41
|
Giese W, Eigel M, Westerheide S, Engwer C, Klipp E. Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys Biol 2015; 12:066014. [DOI: 10.1088/1478-3975/12/6/066014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Affiliation(s)
- Lewis Wolpert
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
43
|
Makhija S, Gupta R, Toteja R. Lithium-induced developmental anomalies in the spirotrich ciliate Stylonychia lemnae (Ciliophora, Hypotrichida). Eur J Protistol 2015; 51:290-8. [PMID: 26164817 DOI: 10.1016/j.ejop.2015.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Lithium is known to have profound biological effects of varying intensity in different life forms. In the present investigation, the effect of lithium was studied on the spirotrich ciliate Stylonychia lemnae. Lithium treatment brings about quantitative changes in the patterning of ciliary structures in S. lemnae. The dorsal surface of the affected cells develops supernumerary ciliary kineties due to excessive proliferation of the kinetosomes. The ventral surface on the other hand develops fewer than normal cirri formed from reduced numbers of ciliary primordia. The adoral zone of membranelles (AZM) fails to remodel properly as, in certain segments, membranelles become disarranged and misaligned. Lithium-induced changes are transitory as the normal pattern is restored during recovery after the cells are shifted to normal medium, suggesting non-genic regulation of cortical pattern. Lithium also affects the process of cell proliferation as the number of cells undergoing division is negligible as compared to reorganizing cells. The results point to the extremely complex and heterogeneous organization of the cellular cortex (plasma membrane and cytoskeleton) which is capable of exerting autonomous control over the phenotype and cortical pattern.
Collapse
Affiliation(s)
- Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India.
| | - Renu Gupta
- Maitreyi College, University of Delhi, Delhi, India.
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| |
Collapse
|
44
|
Abstract
Signaling classically involves the secretion of diverse molecules that bind specific cell-surface receptors and engage intracellular transduction cascades. Some exceptions-namely, lipophilic agents-can cross plasma membranes to bind intracellular receptors and be carried to the nucleus to regulate transcription. Homeoprotein transcription factors are among the few proteins with such a capacity. Here, we review the signaling activities of homeoproteins in the developing and adult nervous system, with particular emphasis on axon/cell migration and postnatal critical periods of cerebral cortex plasticity. We also describe homeoprotein non-cell-autonomous mechanisms and explore how this "novel" signaling pathway impacts emerging research in brain development and physiology. In this context, we explore hypotheses on the evolution of signaling, the role of homeoproteins as early morphogens, and their therapeutic potential for neurological and psychiatric diseases.
Collapse
|
45
|
Quiñinao C, Prochiantz A, Touboul J. Local homeoprotein diffusion can stabilize boundaries generated by graded positional cues. Development 2015; 142:1860-8. [PMID: 25968317 PMCID: PMC5207310 DOI: 10.1242/dev.113688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Boundary formation in the developing neuroepithelium decides on the position and size of compartments in the adult nervous system. In this study, we start from the French Flag model proposed by Lewis Wolpert, in which boundaries are formed through the combination of morphogen diffusion and of thresholds in cell responses. In contemporary terms, a response is characterized by the expression of cell-autonomous transcription factors, very often of the homeoprotein family. Theoretical studies suggest that this sole mechanism results in the formation of boundaries of imprecise shapes and positions. Alan Turing, on the other hand, proposed a model whereby two morphogens that exhibit self-activation and reciprocal inhibition, and are uniformly distributed and diffuse at different rates lead to the formation of territories of unpredictable shapes and positions but with sharp boundaries (the 'leopard spots'). Here, we have combined the two models and compared the stability of boundaries when the hypothesis of local homeoprotein intercellular diffusion is, or is not, introduced in the equations. We find that the addition of homeoprotein local diffusion leads to a dramatic stabilization of the positioning of the boundary, even when other parameters are significantly modified. This novel Turing/Wolpert combined model has thus important theoretical consequences for our understanding of the role of the intercellular diffusion of homeoproteins in the developmental robustness of and the changes that take place in the course of evolution.
Collapse
Affiliation(s)
- Cristóbal Quiñinao
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM 1050, Labex MemoLife, 11 place Marcelin Berthelot, Paris 75231, France Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie (UPMC) - Paris VI, 4 place Jussieu, Paris 75005, France
| | - Alain Prochiantz
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM 1050, Labex MemoLife, 11 place Marcelin Berthelot, Paris 75231, France
| | - Jonathan Touboul
- Collège de France, Centre for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM 1050, Labex MemoLife, 11 place Marcelin Berthelot, Paris 75231, France INRIA Paris Rocquencourt, MYCENAE Team, Domaine de Voluceau, Le Chesnay 78153, France
| |
Collapse
|
46
|
Fundamental origins and limits for scaling a maternal morphogen gradient. Nat Commun 2015; 6:6679. [PMID: 25809405 PMCID: PMC4375784 DOI: 10.1038/ncomms7679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/18/2015] [Indexed: 01/04/2023] Open
Abstract
Tissue expansion and patterning are integral to development, but it is unknown quantitatively how a mother accumulates molecular resources to invest in the future of instructing robust embryonic patterning. Here we develop a model, Tissue Expansion-Modulated Maternal Morphogen Scaling (TEM3S), to study scaled anterior-posterior patterning in Drosophila embryos. Using both ovaries and embryos, we measure a core quantity of the model, the scaling power of the Bicoid (Bcd) morphogen gradient’s amplitude nA. We also evaluate directly model-derived predictions about Bcd gradient and patterning properties. Our results show that scaling of the Bcd gradient in the embryo originates from, and is constrained fundamentally by, a dynamic relationship between maternal tissue expansion and bcd gene copy number expansion in the ovary. This delicate connection between the two transitioning stages of a life cycle, stemming from a finite value of nA ~ 3, underscores a key feature of developmental systems depicted by TEM3S.
Collapse
|
47
|
Dilão R. Bicoid mRNA diffusion as a mechanism of morphogenesis in Drosophila early development. C R Biol 2014; 337:679-82. [PMID: 25433559 DOI: 10.1016/j.crvi.2014.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Abstract
We show that mRNA diffusion is the main morphogenesis mechanism that consistently explains the establishment of Bicoid protein gradients in the embryo of Drosophila, contradicting the current view of protein diffusion. Moreover, we show that if diffusion for both bicoid mRNA and Bicoid protein were assumed, a steady distribution of Bicoid protein with a constant concentration along the embryo would result, contradicting observations.
Collapse
Affiliation(s)
- Rui Dilão
- Non-Linear Dynamics Group, IST, Department of Physics, avenue Rovisco Pais, 1049-001 Lisbon, Portugal; Institut des hautes études scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France.
| |
Collapse
|
48
|
Mechanochemical actuators of embryonic epithelial contractility. Proc Natl Acad Sci U S A 2014; 111:14366-71. [PMID: 25246549 DOI: 10.1073/pnas.1405209111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spatiotemporal regulation of cell contractility coordinates cell shape change to construct tissue architecture and ultimately directs the morphology and function of the organism. Here we show that contractility responses to spatially and temporally controlled chemical stimuli depend much more strongly on intercellular mechanical connections than on biochemical cues in both stimulated tissues and adjacent cells. We investigate how the cell contractility is triggered within an embryonic epithelial sheet by local ligand stimulation and coordinates a long-range contraction response. Our custom microfluidic control system allows spatiotemporally controlled stimulation with extracellular ATP, which results in locally distinct contractility followed by mechanical strain pattern formation. The stimulation-response circuit exposed here provides a better understanding of how morphogenetic processes integrate responses to stimulation and how intercellular responses are transmitted across multiple cells. These findings may enable one to create a biological actuator that actively drives morphogenesis.
Collapse
|
49
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
50
|
Sorre B, Warmflash A, Brivanlou AH, Siggia ED. Encoding of temporal signals by the TGF-β pathway and implications for embryonic patterning. Dev Cell 2014; 30:334-42. [PMID: 25065773 DOI: 10.1016/j.devcel.2014.05.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 02/19/2014] [Accepted: 05/24/2014] [Indexed: 01/15/2023]
Abstract
Genetics and biochemistry have defined the components and wiring of the signaling pathways that pattern the embryo. Among them, the transforming growth factor β (TGF-β) pathway has the potential to behave as a morphogen: in vitro experiments established that it can dictate cell fate in a concentration-dependent manner. How morphogens convey positional information in a developing embryo, when signal levels change with time, is less understood. Using integrated microfluidic cell culture and time-lapse microscopy, we demonstrate here that the speed of ligand presentation has a key and previously unexpected influence on TGF-β signaling outcomes. The response to a TGF-β concentration step is transient and adaptive: slowly increasing the ligand concentration diminishes the response, and well-spaced pulses of ligand combine additively, resulting in greater pathway output than with constant stimulation. Our results suggest that in an embryonic context, the speed of change of ligand concentration is an instructive signal for patterning.
Collapse
Affiliation(s)
- Benoit Sorre
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Aryeh Warmflash
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10065, USA; Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY 10065, USA.
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|