1
|
Benhassoun R, Morel AP, Jacquot V, Puisieux A, Ouzounova M. The epipliancy journey: Tumor initiation at the mercy of identity crisis and epigenetic drift. Biochim Biophys Acta Rev Cancer 2025; 1880:189307. [PMID: 40174706 DOI: 10.1016/j.bbcan.2025.189307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Cellular pliancy refers to the unique disposition of different stages of cellular differentiation to transform when exposed to specific oncogenic insults. This concept highlights a strong interconnection between cellular identity and tumorigenesis, and implies overcoming of epigenetic barriers defining cellular states. Emerging evidence suggests that the cell-type-specific response to intrinsic and extrinsic stresses is modulated by accessibility to certain areas of the genome. Understanding the interplay between epigenetic mechanisms, cellular differentiation, and oncogenic insults is crucial for deciphering the complex nature of tumorigenesis and developing targeted therapies. Hence, cellular pliancy relies on a dynamic cooperation between the cellular identity and the cellular context through epigenetic control, including the reactivation of cellular mechanisms, such as epithelial-to-mesenchymal transition (EMT). Such mechanisms and pathways confer plasticity to the cell allowing it to adapt to a hostile environment in a context of tumor initiation, thus changing its cellular identity. Indeed, growing evidence suggests that cancer is a disease of cell identity crisis, whereby differentiated cells lose their defined identity and gain progenitor characteristics. The loss of cell fate commitment is a central feature of tumorigenesis and appears to be a prerequisite for neoplastic transformation. In this context, EMT-inducing transcription factors (EMT-TFs) cooperate with mitogenic oncoproteins to foster malignant transformation. The aberrant activation of EMT-TFs plays an active role in tumor initiation by alleviating key oncosuppressive mechanisms and by endowing cancer cells with stem cell-like properties, including the ability to self-renew, thus changing the course of tumorigenesis. This highly dynamic phenotypic change occurs concomitantly to major epigenome reorganization, a key component of cell differentiation and cancer cell plasticity regulation. The concept of pliancy was initially proposed to address a fundamental question in cancer biology: why are some cells more likely to become cancerous in response to specific oncogenic events at particular developmental stages? We propose the concept of epipliancy, whereby a difference in epigenetic configuration leads to malignant transformation following an oncogenic insult. Here, we present recent studies furthering our understanding of how the epigenetic landscape may impact the modulation of cellular pliancy during early stages of cancer initiation.
Collapse
Affiliation(s)
- Rahma Benhassoun
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Anne-Pierre Morel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France
| | - Victoria Jacquot
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France
| | - Alain Puisieux
- Equipe labellisée Ligue contre le cancer, U1339 Inserm - UMR3666 CNRS, Paris, France; Institut Curie, PSL Research University, Paris, France
| | - Maria Ouzounova
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, France; LabEx DEVweCAN, Université de Lyon, France.
| |
Collapse
|
2
|
Forouzanfar F, Moreno DF, Plassard D, Furst A, Oliveira KA, Reina-San-Martin B, Tora L, Molina N, Mendoza M. Gene-specific transcript buffering revealed by perturbation of coactivator complexes. SCIENCE ADVANCES 2025; 11:eadr1492. [PMID: 40106549 PMCID: PMC11922027 DOI: 10.1126/sciadv.adr1492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Abstract
Transcript buffering entails reciprocal modulation of mRNA synthesis and degradation to maintain stable RNA levels under varying cellular conditions. Current models depict a global connection between mRNA synthesis and degradation, but underlying mechanisms remain unclear. Here, we show that changes in RNA metabolism following depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, reveal that transcript buffering occurs at a gene-specific level. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesized transcript fractions with biophysical modeling in mouse embryonic stem cells, we demonstrate that transcriptional changes caused by TIP60 depletion are offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering. Disruption of the unrelated ATAC coactivator complex also causes gene-specific transcript buffering. We propose that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.
Collapse
Affiliation(s)
- Faezeh Forouzanfar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - David F. Moreno
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Damien Plassard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Audrey Furst
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Karen A. Oliveira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Manuel Mendoza
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Kim YK, Ramalho-Santos M. 20 years of stemness: From stem cells to hypertranscription and back. Stem Cell Reports 2025; 20:102406. [PMID: 39919752 PMCID: PMC11960510 DOI: 10.1016/j.stemcr.2025.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Transcriptional profiling of stem cells came of age at the beginning of the century with the use of microarrays to analyze cell populations in bulk. Since then, stem cell transcriptomics has become increasingly sophisticated, notably with the recent widespread use of single-cell RNA sequencing. Here, we provide a perspective on how an early signature of genes upregulated in embryonic and adult stem cells, identified using microarrays over 20 years ago, serendipitously led to the recent discovery that stem/progenitor cells across organs are in a state of hypertranscription, a global elevation of the transcriptome. Looking back, we find that the 2002 stemness signature is a robust marker of stem cell hypertranscription, even though it was developed well before it was known what hypertranscription meant or how to detect it. We anticipate that studies of stem cell hypertranscription will be rich in novel insights in physiological and disease contexts for years to come.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON M5T 3L9, Canada; Department of Molecular Genetics, University of Toronto, Toronto ON M5G 1X5, Canada.
| |
Collapse
|
4
|
Schüle KM, Probst S. Epigenetic control of cell identities from epiblast to gastrulation. FEBS J 2025. [PMID: 39985220 DOI: 10.1111/febs.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Epigenetic modifications of chromatin are essential for the establishment of cell identities during embryogenesis. Between embryonic days 3.5-7.5 of murine development, major cell lineage decisions are made that discriminate extraembryonic and embryonic tissues, and the embryonic primary germ layers are formed, thereby laying down the basic body plan. In this review, we cover the contribution of dynamic chromatin modifications by DNA methylation, changes of chromatin accessibility, and histone modifications, that in combination with transcription factors control gene expression programs of different cell types. We highlight the differences in regulation of enhancer and promoter marks and discuss their requirement in cell lineage specification. Importantly, in many cases, lineage-specific targeting of epigenetic modifiers is carried out by pioneer or master transcription factors, that in sum mediate the chromatin landscape and thereby control the transcription of cell-type-specific gene programs and thus, cell identities.
Collapse
Affiliation(s)
- Katrin M Schüle
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Simone Probst
- Faculty of Medicine, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Germany
| |
Collapse
|
5
|
Rojas S, Barghouth PG, Karabinis P, Oviedo NJ. The DNA methyltransferase DMAP1 is required for tissue maintenance and planarian regeneration. Dev Biol 2024; 516:196-206. [PMID: 39179016 PMCID: PMC11521571 DOI: 10.1016/j.ydbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's function in adult tissues.
Collapse
Affiliation(s)
- Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Peter Karabinis
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA; Health Sciences Research Institute, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
6
|
Lou Y, Wu L, Cai W, Deng H, Sang R, Xie S, Xu X, Yuan X, Wu C, Xu M, Ge W, Xi Y, Yang X. The FAcilitates Chromatin Transcription complex regulates the ratio of glycolysis to oxidative phosphorylation in neural stem cells. J Mol Cell Biol 2024; 16:mjae017. [PMID: 38719542 PMCID: PMC11467811 DOI: 10.1093/jmcb/mjae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 10/12/2024] Open
Abstract
Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.
Collapse
Affiliation(s)
- Yuhan Lou
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Litao Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Wanlin Cai
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Huan Deng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rong Sang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shanshan Xie
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yuan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Man Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanzhong Ge
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohang Yang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
7
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Ariza AJF, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 PMCID: PMC11995519 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
8
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Zohourian N, Coll E, Dever M, Sheahan A, Burns-Lane P, Brown JAL. Evaluating the Cellular Roles of the Lysine Acetyltransferase Tip60 in Cancer: A Multi-Action Molecular Target for Precision Oncology. Cancers (Basel) 2024; 16:2677. [PMID: 39123405 PMCID: PMC11312108 DOI: 10.3390/cancers16152677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Precision (individualized) medicine relies on the molecular profiling of tumors' dysregulated characteristics (genomic, epigenetic, transcriptomic) to identify the reliance on key pathways (including genome stability and epigenetic gene regulation) for viability or growth, and then utilises targeted therapeutics to disrupt these survival-dependent pathways. Non-mutational epigenetic changes alter cells' transcriptional profile and are a key feature found in many tumors. In contrast to genetic mutations, epigenetic changes are reversable, and restoring a normal epigenetic profile can inhibit tumor growth and progression. Lysine acetyltransferases (KATs or HATs) protect genome stability and integrity, and Tip60 is an essential acetyltransferase due to its roles as an epigenetic and transcriptional regulator, and as master regulator of the DNA double-strand break response. Tip60 is commonly downregulated and mislocalized in many cancers, and the roles that mislocalized Tip60 plays in cancer are not well understood. Here we categorize and discuss Tip60-regulated genes, evaluate Tip60-interacting proteins based on cellular localization, and explore the therapeutic potential of Tip60-targeting compounds as epigenetic inhibitors. Understanding the multiple roles Tip60 plays in tumorigenesis will improve our understanding of tumor progression and will inform therapeutic options, including informing potential combinatorial regimes with current chemotherapeutics, leading to improvements in patient outcomes.
Collapse
Affiliation(s)
- Nazanin Zohourian
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Erin Coll
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Muiread Dever
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Anna Sheahan
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - Petra Burns-Lane
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
| | - James A. L. Brown
- Department of Biological Science, University of Limerick, V94 T9PX Limerick, Ireland; (N.Z.)
- Limerick Digital Cancer Research Centre (LDCRC), Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
10
|
Forouzanfar F, Plassard D, Furst A, Moreno D, Oliveira KA, Reina-San-Martin B, Tora L, Molina N, Mendoza M. Gene-specific RNA homeostasis revealed by perturbation of coactivator complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577960. [PMID: 38352321 PMCID: PMC10862879 DOI: 10.1101/2024.01.30.577960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Transcript buffering entails the reciprocal modulation of mRNA synthesis and degradation rates to maintain stable RNA levels under varying cellular conditions. Current research supports a global, non-sequence-specific connection between mRNA synthesis and degradation, but the underlying mechanisms are still unclear. In this study, we investigated changes in RNA metabolism following acute depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, in mouse embryonic stem cells. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesised transcript fractions with biophysical modelling, we demonstrate that TIP60 predominantly enhances transcription of numerous genes, while a smaller set of genes undergoes TIP60-dependent transcriptional repression. Surprisingly, transcription changes caused by TIP60 depletion were offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering mechanisms. Similarly, disruption of the unrelated ATAC coactivator complex also resulted in gene-specific transcript buffering. These findings reveal that transcript buffering functions at a gene-specific level and suggest that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.
Collapse
|
11
|
Mote RD, Tiwari M, Yadavalli N, Rajan R, Subramanyam D. A high-throughput screen in mESCs to identify the cross-talk between signaling, endocytosis, and pluripotency. Cell Biol Int 2024. [PMID: 38706123 DOI: 10.1002/cbin.12168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Embryonic stem cell fate is regulated by various cellular processes. Recently, the process of endocytosis has been implicated in playing a role in the maintenance of self-renewal and pluripotency of mouse embryonic stem cells. A previous siRNA-based screen interrogated the function of core components of the endocytic machinery in maintaining the pluripotency of embryonic stem cells, revealing a crucial role for clathrin mediated endocytosis. A number of other proteins involved in key signaling pathways have also been shown to both regulate and be regulated by endocytosis. We collated a list of 1141 genes in connection to the term "endocytosis" from Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), excluding those previously interrogated, and examined the effect of their knockdown on the pluripotency of mouse embryonic stem cells (mESCs) using levels of green fluorescent protein driven by the Oct4 promoter. We used high-throughput screening followed by an automated MATrix LABoratory (MATLAB)-based analysis pipeline and assessed changes in GFP fluorescence as a readout for ESC pluripotency. Through this screen we identified a number of genes, many hitherto not associated with stem cell pluripotency, which upon knockdown either resulted in a significant increase or decrease of GFP fluorescence. We further present validation for some of these hits. We present a workflow aimed to identify genes involved in signaling pathways which can be regulated by endocytosis, and that affect the pluripotency of ESCs.
Collapse
Affiliation(s)
- Ridim D Mote
- Stem Cell Biology Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Mahak Tiwari
- Stem Cell Biology Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
- SP Pune University, Pune, India
| | - Narayana Yadavalli
- Stem Cell Biology Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Raghav Rajan
- Indian Institute of Science Education and Research, Pune, India
| | - Deepa Subramanyam
- Stem Cell Biology Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
12
|
Tian Q, Yin Y, Tian Y, Wang Y, Wang Y, Fukunaga R, Fujii T, Liao A, Li L, Zhang W, He X, Xiang W, Zhou L. Chromatin Modifier EP400 Regulates Oocyte Quality and Zygotic Genome Activation in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308018. [PMID: 38493496 PMCID: PMC11132066 DOI: 10.1002/advs.202308018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Epigenetic modifiers that accumulate in oocytes, play a crucial role in steering the developmental program of cleavage embryos and initiating life. However, the identification of key maternal epigenetic regulators remains elusive. In the findings, the essential role of maternal Ep400, a chaperone for H3.3, in oocyte quality and early embryo development in mice is highlighted. Depletion of Ep400 in oocytes resulted in a decline in oocyte quality and abnormalities in fertilization. Preimplantation embryos lacking maternal Ep400 exhibited reduced major zygotic genome activation (ZGA) and experienced developmental arrest at the 2-to-4-cell stage. The study shows that EP400 forms protein complex with NFYA, occupies promoters of major ZGA genes, modulates H3.3 distribution between euchromatin and heterochromatin, promotes transcription elongation, activates the expression of genes regulating mitochondrial functions, and facilitates the expression of rate-limiting enzymes of the TCA cycle. This intricate process driven by Ep400 ensures the proper execution of the developmental program, emphasizing its critical role in maternal-to-embryonic transition.
Collapse
Affiliation(s)
- Qing Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ying Yin
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yu Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yufan Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yong‐feng Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Rikiro Fukunaga
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Toshihiro Fujii
- Department of BiochemistryOsaka Medical and Pharmaceutical UniversityTakatsukiOsaka569‐1094Japan
| | - Ai‐hua Liao
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
| | - Wei Zhang
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Ximiao He
- Department of PhysiologySchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Center for Genomics and Proteomics ResearchSchool of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li‐quan Zhou
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| |
Collapse
|
13
|
Patty BJ, Hainer SJ. Widespread impact of nucleosome remodelers on transcription at cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589208. [PMID: 38659863 PMCID: PMC11042195 DOI: 10.1101/2024.04.12.589208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nucleosome remodeling complexes and other regulatory factors work in concert to build a chromatin environment that directs the expression of a distinct set of genes in each cell using cis-regulatory elements (CREs), such as promoters and enhancers, that drive transcription of both mRNAs and CRE-associated non-coding RNAs (ncRNAs). Two classes of CRE-associated ncRNAs include upstream antisense RNAs (uaRNAs), which are transcribed divergently from a shared mRNA promoter, and enhancer RNAs (eRNAs), which are transcribed bidirectionally from active enhancers. The complicated network of CRE regulation by nucleosome remodelers remains only partially explored, with a focus on a select, limited number of remodelers. We endeavored to elucidate a remodeler-based regulatory network governing CRE-associated transcription (mRNA, eRNA, and uaRNA) in murine embryonic stem (ES) cells to test the hypothesis that many SNF2-family nucleosome remodelers collaborate to regulate the coding and non-coding transcriptome via alteration of underlying nucleosome architecture. Using depletion followed by transient transcriptome sequencing (TT-seq), we identified thousands of misregulated mRNAs and CRE-associated ncRNAs across the remodelers examined, identifying novel contributions by understudied remodelers in the regulation of coding and noncoding transcription. Our findings suggest that mRNA and eRNA transcription are coordinately co-regulated, while mRNA and uaRNAs sharing a common promoter are independently regulated. Subsequent mechanistic studies suggest that while remodelers SRCAP and CHD8 modulate transcription through classical mechanisms such as transcription factors and histone variants, a broad set of remodelers including SMARCAL1 indirectly contribute to transcriptional regulation through maintenance of genomic stability and proper Integrator complex localization. This study systematically examines the contribution of SNF2-remodelers to the CRE-associated transcriptome, identifying at least two classes for remodeler action.
Collapse
Affiliation(s)
- Benjamin J. Patty
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
14
|
Rojas S, Barghouth PG, Karabinis P, Oviedo NJ. The DNA Methyltransferase DMAP1 is Required for Tissue Maintenance and Planarian Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588909. [PMID: 38645093 PMCID: PMC11030423 DOI: 10.1101/2024.04.10.588909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in histone tails and direct DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's epigenetic regulation in adult tissues.
Collapse
Affiliation(s)
- Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Paul G. Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Peter Karabinis
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Néstor J. Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
- Health Sciences Research Institute, University of California, Merced, CA, 95343
| |
Collapse
|
15
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
16
|
Lu X. Regulation of endogenous retroviruses in murine embryonic stem cells and early embryos. J Mol Cell Biol 2024; 15:mjad052. [PMID: 37604781 PMCID: PMC10794949 DOI: 10.1093/jmcb/mjad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Endogenous retroviruses (ERVs) are important components of transposable elements that constitute ∼40% of the mouse genome. ERVs exhibit dynamic expression patterns during early embryonic development and are engaged in numerous biological processes. Therefore, ERV expression must be closely monitored in cells. Most studies have focused on the regulation of ERV expression in mouse embryonic stem cells (ESCs) and during early embryonic development. This review touches on the classification, expression, and functions of ERVs in mouse ESCs and early embryos and mainly discusses ERV modulation strategies from the perspectives of transcription, epigenetic modification, nucleosome/chromatin assembly, and post-transcriptional control.
Collapse
Affiliation(s)
- Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Zhang F, Chen S, Cui T, Zhang C, Dai T, Hao J, Liu X. Novel function of the PsDMAP1 protein in regulating the growth and pathogenicity of Phytophthora sojae. Int J Biol Macromol 2023; 253:127198. [PMID: 37802447 DOI: 10.1016/j.ijbiomac.2023.127198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
The DNA methyltransferase 1-associated protein (DMAP1) was initially identified as an activator of DNA methyltransferase 1 (DNMT1), a conserved eukaryotic enzyme involved in diverse molecular processes, including histone acetylation and chromatin remodeling. However, the roles and regulatory mechanisms of DMAP1 in filamentous pathogens are still largely unknown. Here, employing bioinformatic analysis, we identified PsDMAP1 in P. sojae, which features a canonical histone tail-binding domain, as the ortholog of the human DMAP1. A phylogenetic analysis of DMAP1 protein sequences across diverse eukaryotic organisms revealed the remarkable conservation and distinctiveness of oomycete DMAP1 orthologs. Homozygous knockout of PsDMAP1 resulted in the mortality of P. sojae. Furthermore, silencing of PsDMAP1 caused a pronounced reduction in mycelial growth, production of sporangia and zoospore, cystospore germination, and virulence. PsDMAP1 also played a crucial role in the response of P. sojae to reactive oxygen species (ROS) and osmotic stresses. Moreover, PsDMAP1 interacted with DNA N6-methyladenine (6 mA) methyltransferase PsDAMT1, thereby enhancing its catalytic activity and effectively regulating 6 mA abundance in P. sojae. Our findings reveal the functional importance of PsDAMP1 in the development and infection of P. sojae, and this marks the initial exploration of the novel 6 mA regulator PsDMAP1 in plant pathogens.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanshan Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tongshan Cui
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tan Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| |
Collapse
|
18
|
Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR, Adelman K. Global identification of SWI/SNF targets reveals compensation by EP400. Cell 2023; 186:5290-5307.e26. [PMID: 37922899 PMCID: PMC11307202 DOI: 10.1016/j.cell.2023.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Eileen F Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Goglia
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piero R Espinel-Cabrera
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Saha D, Hailu S, Hada A, Lee J, Luo J, Ranish JA, Lin YC, Feola K, Persinger J, Jain A, Liu B, Lu Y, Sen P, Bartholomew B. The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming. Nat Commun 2023; 14:4682. [PMID: 37542049 PMCID: PMC10403523 DOI: 10.1038/s41467-023-40386-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The SWI/SNF ATP-dependent chromatin remodeler is a master regulator of the epigenome, controlling pluripotency and differentiation. Towards the C-terminus of the catalytic subunit of SWI/SNF is a motif called the AT-hook that is evolutionary conserved. The AT-hook is present in many chromatin modifiers and generally thought to help anchor them to DNA. We observe however that the AT-hook regulates the intrinsic DNA-stimulated ATPase activity aside from promoting SWI/SNF recruitment to DNA or nucleosomes by increasing the reaction velocity a factor of 13 with no accompanying change in substrate affinity (KM). The changes in ATP hydrolysis causes an equivalent change in nucleosome movement, confirming they are tightly coupled. The catalytic subunit's AT-hook is required in vivo for SWI/SNF remodeling activity in yeast and mouse embryonic stem cells. The AT-hook in SWI/SNF is required for transcription regulation and activation of stage-specific enhancers critical in cell lineage priming. Similarly, growth assays suggest the AT-hook is required in yeast SWI/SNF for activation of genes involved in amino acid biosynthesis and metabolizing ethanol. Our findings highlight the importance of studying SWI/SNF attenuation versus eliminating the catalytic subunit or completely shutting down its enzymatic activity.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Solomon Hailu
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
- Illumina, 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Arjan Hada
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Junwoo Lee
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jeff A Ranish
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Yuan-Chi Lin
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
- BioAgilytix, Durham, NC, 27713, USA
| | - Kyle Feola
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- Department of Internal Medicine (Nephrology) and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jim Persinger
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Univ. of Texas MD Anderson Cancer Center, Houston, TX, 77230, USA.
- University of Texas MD Anderson Cancer Center, Center for Cancer Epigenetics, Houston, TX, 77230, USA.
| |
Collapse
|
20
|
Klein DC, Lardo SM, McCannell KN, Hainer SJ. FACT regulates pluripotency through proximal and distal regulation of gene expression in murine embryonic stem cells. BMC Biol 2023; 21:167. [PMID: 37542287 PMCID: PMC10403911 DOI: 10.1186/s12915-023-01669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kurtis N McCannell
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Ruan Y, Wang J, Yu M, Wang F, Wang J, Xu Y, Liu L, Cheng Y, Yang R, Zhang C, Yang Y, Wang J, Wu W, Huang Y, Tian Y, Chen G, Zhang J, Jian R. A multi-omics integrative analysis based on CRISPR screens re-defines the pluripotency regulatory network in ESCs. Commun Biol 2023; 6:410. [PMID: 37059858 PMCID: PMC10104827 DOI: 10.1038/s42003-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/13/2023] [Indexed: 04/16/2023] Open
Abstract
A comprehensive and precise definition of the pluripotency gene regulatory network (PGRN) is crucial for clarifying the regulatory mechanisms in embryonic stem cells (ESCs). Here, after a CRISPR/Cas9-based functional genomics screen and integrative analysis with other functional genomes, transcriptomes, proteomes and epigenome data, an expanded pluripotency-associated gene set is obtained, and a new PGRN with nine sub-classes is constructed. By integrating the DNA binding, epigenetic modification, chromatin conformation, and RNA expression profiles, the PGRN is resolved to six functionally independent transcriptional modules (CORE, MYC, PAF, PRC, PCGF and TBX). Spatiotemporal transcriptomics reveal activated CORE/MYC/PAF module activity and repressed PRC/PCGF/TBX module activity in both mouse ESCs (mESCs) and pluripotent cells of early embryos. Moreover, this module activity pattern is found to be shared by human ESCs (hESCs) and cancers. Thus, our results provide novel insights into elucidating the molecular basis of ESC pluripotency.
Collapse
Affiliation(s)
- Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Fengsheng Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ran Yang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Chen Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Guangxing Chen
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
22
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
23
|
Perucho L, Icardi L, Di Simone E, Basso V, Agresti A, Vilas Zornoza A, Lozano T, Prosper F, Lasarte JJ, Mondino A. The transcriptional regulator Sin3A balances IL-17A and Foxp3 expression in primary CD4 T cells. EMBO Rep 2023; 24:e55326. [PMID: 36929576 PMCID: PMC10157306 DOI: 10.15252/embr.202255326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The Sin3 transcriptional regulator homolog A (Sin3A) is the core member of a multiprotein chromatin-modifying complex. Its inactivation at the CD4/CD8 double-negative stage halts further thymocyte development. Among various functions, Sin3A regulates STAT3 transcriptional activity, central to the differentiation of Th17 cells active in inflammatory disorders and opportunistic infections. To further investigate the consequences of conditional Sin3A inactivation in more mature precursors and post-thymic T cell, we have generated CD4-Cre and CD4-CreERT2 Sin3AF/F mice. Sin3A inactivation in vivo hinders both thymocyte development and peripheral T-cell survival. In vitro, in Th17 skewing conditions, Sin3A-deficient cells proliferate and acquire memory markers and yet fail to properly upregulate Il17a, Il23r, and Il22. Instead, IL-2+ and FOXP3+ are mostly enriched for, and their inhibition partially rescues IL-17A+ T cells. Notably, Sin3A deletion also causes an enrichment of genes implicated in the mTORC1 signaling pathway, overt STAT3 activation, and aberrant cytoplasmic RORγt accumulation. Thus, together our data unveil a previously unappreciated role for Sin3A in shaping critical signaling events central to the acquisition of immunoregulatory T-cell phenotypes.
Collapse
Affiliation(s)
- Laura Perucho
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Icardi
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Di Simone
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Agresti
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amaia Vilas Zornoza
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Felipe Prosper
- Departamento de Hematología, Clínica Universidad de Navarra and CCUN, IDISNA, Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), CCUN, IDISNA, University of Navarra, Pamplona, Spain
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Zhang Y, Wan X, Qiu L, Zhou L, Huang Q, Wei M, Liu X, Liu S, Zhang B, Han J. Trim28 citrullination maintains mouse embryonic stem cell pluripotency via regulating Nanog and Klf4 transcription. SCIENCE CHINA. LIFE SCIENCES 2023; 66:545-562. [PMID: 36100837 DOI: 10.1007/s11427-022-2167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Protein citrullination, including histone H1 and H3 citrullination, is important for transcriptional regulation, DNA damage response, and pluripotency of embryonic stem cells (ESCs). Tripartite motif containing 28 (Trim28), an embryonic development regulator involved in ESC self-renewal, has recently been identified as a novel substrate for citrullination by Padi4. However, the physiological functions of Trim28 citrullination and its role in regulating the chromatin structure and gene transcription of ESCs remain unknown. In this paper, we show that Trim28 is specifically citrullinated in mouse ESCs (mESCs), and that the loss of Trim28 citrullination induces loss of pluripotency. Mechanistically, Trim28 citrullination enhances the interaction of Trim28 with Smarcad1 and prevents chromatin condensation. Additionally, Trim28 citrullination regulates mESC pluripotency by promoting transcription of Nanog and Klf4 which it does by increasing the enrichment of H3K27ac and H3K4me3 and decreasing the enrichment of H3K9me3 in the transcriptional regulatory region. Thus, our findings suggest that Trim28 citrullination is the key for the epigenetic activation of pluripotency genes and pluripotency maintenance of ESCs. Together, these results uncover a role Trim28 citrullination plays in pluripotency regulation and provide novel insight into how citrullination of proteins other than histones regulates chromatin compaction.
Collapse
Affiliation(s)
- Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Wan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lian Zhou
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Huang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqin Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sicheng Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Puri D, Kelkar A, Gaurishankar B, Subramanyam D. Balance between autophagy and cell death is maintained by Polycomb-mediated regulation during stem cell differentiation. FEBS J 2023; 290:1625-1644. [PMID: 36380631 DOI: 10.1111/febs.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Autophagy is a conserved cytoprotective process, aberrations in which lead to numerous degenerative disorders. While the cytoplasmic components of autophagy have been extensively studied, the epigenetic regulation of autophagy genes, especially in stem cells, is less understood. Deciphering the epigenetic regulation of autophagy genes becomes increasingly relevant given the therapeutic benefits of small-molecule epigenetic inhibitors in novel treatment modalities. We observe that, during retinoic acid-mediated differentiation of mouse embryonic stem cells (mESCs), autophagy is induced, and identify the Polycomb group histone methyl transferase EZH2 as a regulator of this process. In mESCs, EZH2 represses several autophagy genes, including the autophagy regulator DNA damage-regulated autophagy modulator protein 1 (Dram1). EZH2 facilitates the formation of a bivalent chromatin domain at the Dram1 promoter, allowing gene expression and autophagy induction during differentiation while retaining the repressive H3K27me3 mark. EZH2 inhibition leads to loss of the bivalent domain, with consequent 'hyper-expression' of Dram1, accompanied by extensive cell death. This study shows that Polycomb group proteins help maintain a balance between autophagy and cell death during stem cell differentiation, in part, by regulating the expression of the Dram1 gene.
Collapse
Affiliation(s)
- Deepika Puri
- National Centre for Cell Science, SP Pune University, India
| | - Aparna Kelkar
- National Centre for Cell Science, SP Pune University, India
| | | | | |
Collapse
|
26
|
Chohra I, Chung K, Giri S, Malgrange B. ATP-Dependent Chromatin Remodellers in Inner Ear Development. Cells 2023; 12:cells12040532. [PMID: 36831199 PMCID: PMC9954591 DOI: 10.3390/cells12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
During transcription, DNA replication and repair, chromatin structure is constantly modified to reveal specific genetic regions and allow access to DNA-interacting enzymes. ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to modify chromatin architecture by repositioning and rearranging nucleosomes. These complexes are defined by a conserved SNF2-like, catalytic ATPase subunit and are divided into four families: CHD, SWI/SNF, ISWI and INO80. ATP-dependent chromatin remodellers are crucial in regulating development and stem cell biology in numerous organs, including the inner ear. In addition, mutations in genes coding for proteins that are part of chromatin remodellers have been implicated in numerous cases of neurosensory deafness. In this review, we describe the composition, structure and functional activity of these complexes and discuss how they contribute to hearing and neurosensory deafness.
Collapse
|
27
|
Tominaga K, Sakashita E, Kasashima K, Kuroiwa K, Nagao Y, Iwamori N, Endo H. Tip60/KAT5 Histone Acetyltransferase Is Required for Maintenance and Neurogenesis of Embryonic Neural Stem Cells. Int J Mol Sci 2023; 24:ijms24032113. [PMID: 36768434 PMCID: PMC9916716 DOI: 10.3390/ijms24032113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Epigenetic regulation via epigenetic factors in collaboration with tissue-specific transcription factors is curtail for establishing functional organ systems during development. Brain development is tightly regulated by epigenetic factors, which are coordinately activated or inactivated during processes, and their dysregulation is linked to brain abnormalities and intellectual disability. However, the precise mechanism of epigenetic regulation in brain development and neurogenesis remains largely unknown. Here, we show that Tip60/KAT5 deletion in neural stem/progenitor cells (NSCs) in mice results in multiple abnormalities of brain development. Tip60-deficient embryonic brain led to microcephaly, and proliferating cells in the developing brain were reduced by Tip60 deficiency. In addition, neural differentiation and neuronal migration were severely affected in Tip60-deficient brains. Following neurogenesis in developing brains, gliogenesis started from the earlier stage of development in Tip60-deficient brains, indicating that Tip60 is involved in switching from neurogenesis to gliogenesis during brain development. It was also confirmed in vitro that poor neurosphere formation, proliferation defects, neural differentiation defects, and accelerated astrocytic differentiation in mutant NSCs are derived from Tip60-deficient embryonic brains. This study uncovers the critical role of Tip60 in brain development and NSC maintenance and function in vivo and in vitro.
Collapse
Affiliation(s)
- Kaoru Tominaga
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
- Correspondence: (K.T.); (N.I.)
| | - Eiji Sakashita
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Katsumi Kasashima
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Kenji Kuroiwa
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Tochigi 321-0498, Japan
| | - Naoki Iwamori
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (K.T.); (N.I.)
| | - Hitoshi Endo
- Division of Functional Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 321-0498, Japan
| |
Collapse
|
28
|
Janas JA, Zhang L, Luu JH, Demeter J, Meng L, Marro SG, Mall M, Mooney NA, Schaukowitch K, Ng YH, Yang N, Huang Y, Neumayer G, Gozani O, Elias JE, Jackson PK, Wernig M. Tip60-mediated H2A.Z acetylation promotes neuronal fate specification and bivalent gene activation. Mol Cell 2022; 82:4627-4646.e14. [PMID: 36417913 PMCID: PMC9779922 DOI: 10.1016/j.molcel.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.
Collapse
Affiliation(s)
- Justyna A Janas
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lichao Zhang
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacklyn H Luu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingjun Meng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuele G Marro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Moritz Mall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katie Schaukowitch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Han Ng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuhao Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gernot Neumayer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter K Jackson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Li D, Yang J, Malik V, Huang Y, Huang X, Zhou H, Wang J. An RNAi screen of RNA helicases identifies eIF4A3 as a regulator of embryonic stem cell identity. Nucleic Acids Res 2022; 50:12462-12479. [PMID: 36416264 PMCID: PMC9757061 DOI: 10.1093/nar/gkac1084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
RNA helicases are involved in multiple steps of RNA metabolism to direct their roles in gene expression, yet their functions in pluripotency control remain largely unexplored. Starting from an RNA interference (RNAi) screen of RNA helicases, we identified that eIF4A3, a DEAD-box (Ddx) helicase component of the exon junction complex (EJC), is essential for the maintenance of embryonic stem cells (ESCs). Mechanistically, we show that eIF4A3 post-transcriptionally controls the pluripotency-related cell cycle regulators and that its depletion causes the loss of pluripotency via cell cycle dysregulation. Specifically, eIF4A3 is required for the efficient nuclear export of Ccnb1 mRNA, which encodes Cyclin B1, a key component of the pluripotency-promoting pathway during the cell cycle progression of ESCs. Our results reveal a previously unappreciated role for eIF4A3 and its associated EJC in maintaining stem cell pluripotency through post-transcriptional control of the cell cycle.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yuting Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
30
|
Wichmann J, Pitt C, Eccles S, Garnham AL, Li-Wai-Suen CSN, May R, Allan E, Wilcox S, Herold MJ, Smyth GK, Monahan BJ, Thomas T, Voss AK. Loss of TIP60 (KAT5) abolishes H2AZ lysine 7 acetylation and causes p53, INK4A, and ARF-independent cell cycle arrest. Cell Death Dis 2022; 13:627. [PMID: 35853868 PMCID: PMC9296491 DOI: 10.1038/s41419-022-05055-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
Histone acetylation is essential for initiating and maintaining a permissive chromatin conformation and gene transcription. Dysregulation of histone acetylation can contribute to tumorigenesis and metastasis. Using inducible cre-recombinase and CRISPR/Cas9-mediated deletion, we investigated the roles of the histone lysine acetyltransferase TIP60 (KAT5/HTATIP) in human cells, mouse cells, and mouse embryos. We found that loss of TIP60 caused complete cell growth arrest. In the absence of TIP60, chromosomes failed to align in a metaphase plate during mitosis. In some TIP60 deleted cells, endoreplication occurred instead. In contrast, cell survival was not affected. Remarkably, the cell growth arrest caused by loss of TIP60 was independent of the tumor suppressors p53, INK4A and ARF. TIP60 was found to be essential for the acetylation of H2AZ, specifically at lysine 7. The mRNA levels of 6236 human and 8238 mouse genes, including many metabolism genes, were dependent on TIP60. Among the top 50 differentially expressed genes, over 90% were downregulated in cells lacking TIP60, supporting a role for TIP60 as a key co-activator of transcription. We propose a primary role of TIP60 in H2AZ lysine 7 acetylation and transcriptional activation, and that this fundamental role is essential for cell proliferation. Growth arrest independent of major tumor suppressors suggests TIP60 as a potential anti-cancer drug target.
Collapse
Affiliation(s)
- Johannes Wichmann
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Catherine Pitt
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Samantha Eccles
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Alexandra L. Garnham
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Connie S. N. Li-Wai-Suen
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Rose May
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Elizabeth Allan
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,Cancer Therapeutics CRC, Parkville, VIC Australia
| | - Stephen Wilcox
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Marco J. Herold
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Gordon K. Smyth
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSchool of Mathematics and Statistics, University of Melbourne, Parkville, VIC Australia
| | - Brendon J. Monahan
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia ,Cancer Therapeutics CRC, Parkville, VIC Australia
| | - Tim Thomas
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Anne K. Voss
- grid.1042.70000 0004 0432 4889Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
31
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
32
|
Gopinathan G, Diekwisch TGH. Epigenetics and Early Development. J Dev Biol 2022; 10:jdb10020026. [PMID: 35735917 PMCID: PMC9225096 DOI: 10.3390/jdb10020026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenome controls all aspect of eukaryotic development as the packaging of DNA greatly affects gene expression. Epigenetic changes are reversible and do not affect the DNA sequence itself but rather control levels of gene expression. As a result, the science of epigenetics focuses on the physical configuration of chromatin in the proximity of gene promoters rather than on the mechanistic effects of gene sequences on transcription and translation. In the present review we discuss three prominent epigenetic modifications, DNA methylation, histone methylation/acetylation, and the effects of chromatin remodeling complexes. Specifically, we introduce changes to the methylated state of DNA through DNA methyltransferases and DNA demethylases, discuss the effects of histone tail modifications such as histone acetylation and methylation on gene expression and present the functions of major ATPase subunit containing chromatin remodeling complexes. We also introduce examples of how changes in these epigenetic factors affect early development in humans and mice. In summary, this review provides an overview over the most important epigenetic mechanisms and provides examples of the dramatic effects of epigenetic changes in early mammalian development.
Collapse
|
33
|
Sudarshan D, Avvakumov N, Lalonde ME, Alerasool N, Joly-Beauparlant C, Jacquet K, Mameri A, Lambert JP, Rousseau J, Lachance C, Paquet E, Herrmann L, Thonta Setty S, Loehr J, Bernardini MQ, Rouzbahman M, Gingras AC, Coulombe B, Droit A, Taipale M, Doyon Y, Côté J. Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes Dev 2022; 36:664-683. [PMID: 35710139 DOI: 10.1101/gad.348982.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.
Collapse
Affiliation(s)
- Deepthi Sudarshan
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nikita Avvakumov
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marie-Eve Lalonde
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Amel Mameri
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jean-Philippe Lambert
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Justine Rousseau
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Lachance
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Eric Paquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Lara Herrmann
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Samarth Thonta Setty
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marcus Q Bernardini
- Department of Gynecologic Oncology, Princess Margaret Cancer Center, University Health Network, Sinai Health System, Toronto, Ontario M5B 2M9, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
34
|
Li D, Yang J, Huang X, Zhou H, Wang J. eIF4A2 targets developmental potency and histone H3.3 transcripts for translational control of stem cell pluripotency. SCIENCE ADVANCES 2022; 8:eabm0478. [PMID: 35353581 PMCID: PMC8967233 DOI: 10.1126/sciadv.abm0478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Translational control has emerged as a fundamental regulatory layer of proteome complexity that governs cellular identity and functions. As initiation is the rate-limiting step of translation, we carried out an RNA interference screen for key translation initiation factors required to maintain embryonic stem cell (ESC) identity. We identified eukaryotic translation initiation factor 4A2 (eIF4A2) and defined its mechanistic action through ribosomal protein S26-independent and -dependent ribosomes in translation initiation activation of messenger RNAs (mRNAs) encoding pluripotency factors and the histone variant H3.3 with demonstrated roles in maintaining stem cell pluripotency. eIF4A2 also mediates translation initiation activation of Ddx6, which acts together with eIF4A2 to restrict the totipotent two-cell transcription program in ESCs through Zscan4 mRNA degradation and translation repression. Accordingly, knockdown of eIF4A2 disrupts ESC proteome, causing the loss of ESC identity. Collectively, we establish a translational paradigm of the protein synthesis of pluripotency transcription factors and epigenetic regulators imposed on their established roles in controlling pluripotency.
Collapse
Affiliation(s)
- Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
35
|
BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nat Commun 2022; 13:1658. [PMID: 35351876 PMCID: PMC8964718 DOI: 10.1038/s41467-022-29333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly. Female embryonic stem cells (ESCs) are the ideal model to study X chromosome inactivation (XCI) establishment; however, these cells are challenging to keep in culture. Here the authors create fluorescent ‘Xmas’ reporter mice as a renewable source of ESCs and show nucleosome remodelers Smarcc1 and Smarca4 create a nucleosome-free promoter region prior to the establishment of silencing.
Collapse
|
36
|
Barry RM, Sacco O, Mameri A, Stojaspal M, Kartsonis W, Shah P, De Ioannes P, Hofr C, Côté J, Sfeir A. Rap1 regulates TIP60 function during fate transition between two-cell-like and pluripotent states. Genes Dev 2022; 36:313-330. [PMID: 35210222 PMCID: PMC8973845 DOI: 10.1101/gad.349039.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.
Collapse
Affiliation(s)
- Raymond Mario Barry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Martin Stojaspal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - William Kartsonis
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pooja Shah
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, 612 65 Brno, Czech Republic
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
37
|
Innocenti F, Fiorentino G, Cimadomo D, Soscia D, Garagna S, Rienzi L, Ubaldi FM, Zuccotti M. Maternal effect factors that contribute to oocytes developmental competence: an update. J Assist Reprod Genet 2022; 39:861-871. [PMID: 35165782 PMCID: PMC9051001 DOI: 10.1007/s10815-022-02434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Oocyte developmental competence is defined as the capacity of the female gamete to be fertilized and sustain development to the blastocyst stage. Epigenetic reprogramming, a correct cell division pattern, and an efficient DNA damage response are all critical events that, before embryonic genome activation, are governed by maternally inherited factors such as maternal-effect gene (MEG) products. Although these molecules are stored inside the oocyte until ovulation and exert their main role during fertilization and preimplantation development, some of them are already functioning during folliculogenesis and oocyte meiosis resumption. This mini review summarizes the crucial roles played by MEGs during oocyte maturation, fertilization, and preimplantation development with a direct/indirect effect on the acquisition or maintenance of oocyte competence. Our aim is to inspire future research on a topic with potential clinical perspectives for the prediction and treatment of female infertility.
Collapse
Affiliation(s)
- Federica Innocenti
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Danilo Cimadomo
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy.
| | - Daria Soscia
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- GeneraLife IVF, Clinica Valle Giulia, via G. de Notaris, 2b, 00197, Rome, Italy
| | | | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | |
Collapse
|
38
|
Zhang Y, Wang J, Ruan Y, Yang Y, Cheng Y, Wang F, Zhang C, Xu Y, Liu L, Yu M, Ren B, Wang J, Zhao B, Yang R, Xiong J, Wang J, Zhang J, Jian R, Liu Y, Tian Y. Genome-wide CRISPR screen identifies Puf60 as a novel stemness gene of mouse Embryonic Stem Cells. Stem Cells Dev 2022; 31:132-142. [PMID: 35019759 DOI: 10.1089/scd.2021.0309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying self-renewal of embryonic stem cells (ESCs) hold great value in the clinical translation of stem cell biology and regenerative medicine research. To study the mechanisms in ESC self-renewal, screening and identification of key genes maintaining ESC self-renewal were performed by a genome-wide CRISPR-Cas9 knockout virus library. The mouse ESC R1 were infected with CRISPR-Cas9 knockout virus library and cultured for 14 days. The variation of sgRNA ratio was analyzed by high-throughput sequencing, followed by bioinformatics analysis to profile the altered genes. Our results showed 1375 genes with increased sgRNA ratio were found to be mainly involved in signal transduction, cell differentiation and cell apoptosis; 2929 genes with decreased sgRNA ratio were mainly involved in cell cycle regulation, RNA splicing, and biological metabolic processes. We further confirmed our screen specificity by confirming Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal. Meanwhile, further analysis showed the relevance between Puf60 expression and tumor. In conclusion, our study screened key genes maintaining ESC self-renewal and successful identified Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal, which provided theoretical basis and research clues for a better understanding of ESC self-renewal regulation.
Collapse
Affiliation(s)
- Yue Zhang
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, 30# Gaotanyan St., Shapingba District, Chongqing 400038, China, Chongqing, China, 400038;
| | - Jiaqi Wang
- Army Medical University, 12525, Institude of Immunulogy PLA & Department of Immunology, Army Medical University, Chongqing 400038, China, Chongqing, China;
| | - Yan Ruan
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yi Yang
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Yuda Cheng
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Fengsheng Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Chen Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yixiao Xu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Lianlian Liu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Meng Yu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Bangqi Ren
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China;
| | - Jiangjun Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Binyu Zhao
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Ran Yang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Jiaxiang Xiong
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Jiali Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Junlei Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Rui Jian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| | - Yong Liu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Yanping Tian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| |
Collapse
|
39
|
Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 2021; 12:7002. [PMID: 34853314 PMCID: PMC8636486 DOI: 10.1038/s41467-021-27125-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization. During embryogenesis, the genome becomes transcriptionally active in a process known as zygotic genome activation (ZGA); how ZGA is initiated is still an open question. Here the authors show histone variant H2A.Z deposition precedes RNA polymerase II binding on chromatin, before ZGA. H2A.Z loss causes transcriptional downregulation of ZGA genes and leads to changes in the 3D genome organization.
Collapse
|
40
|
Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci 2021; 22:ijms222212340. [PMID: 34830224 PMCID: PMC8624420 DOI: 10.3390/ijms222212340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.
Collapse
Affiliation(s)
- Katja Rust
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University, 35037 Marburg, Germany
- Correspondence: (K.R.); (A.W.)
| | - Andreas Wodarz
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cluster of Excellence—Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: (K.R.); (A.W.)
| |
Collapse
|
41
|
Tip60 activates Hoxa9 and Meis1 expression through acetylation of H2A.Z, promoting MLL-AF10 and MLL-ENL acute myeloid leukemia. Leukemia 2021; 35:2840-2853. [PMID: 33967269 DOI: 10.1038/s41375-021-01244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Chromosome translocations involving the MLL gene are common rearrangements in leukemia. Such translocations fuse the MLL 5'-region to partner genes in frame, producing MLL-fusions that cause MLL-related leukemia. MLL-fusions activate transcription of target genes such as HoxA cluster and Meis1, but the underlying mechanisms remain to be fully elucidated. In this study, we discovered that Tip60, a MYST-type histone acetyltransferase, was required for the expression of HoxA cluster and Meis1 genes and the development of MLL-fusion leukemia. Tip60 was recruited by MLL-AF10 and MLL-ENL fusions to the Hoxa9 locus, where it acetylated H2A.Z, thereby promoting Hoxa9 gene expression. Conditional deletion of Tip60 prevented the development of MLL-AF10 and MLL-ENL leukemia, indicating that Tip60 is indispensable for the leukemogenic activity of the MLL-AF10 and MLL-ENL-fusions. Our findings provide novel insight about epigenetic regulation in the development of MLL-AF10 and MLL-ENL-fusion leukemia.
Collapse
|
42
|
Wang Y, Zhai B, Tan T, Yang X, Zhang J, Song M, Tan Y, Yang X, Chu T, Zhang S, Wang S, Zhang L. ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4. Nucleic Acids Res 2021; 49:9353-9373. [PMID: 34417612 PMCID: PMC8450111 DOI: 10.1093/nar/gkab722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Meiotic recombination is integrated into and regulated by meiotic chromosomes, which is organized as loop/axis architecture. However, the regulation of chromosome organization is poorly understood. Here, we show Esa1, the NuA4 complex catalytic subunit, is constitutively expressed and localizes on chromatin loops during meiosis. Esa1 plays multiple roles including homolog synapsis, sporulation efficiency, spore viability, and chromosome segregation in meiosis. Detailed analyses show the meiosis-specific depletion of Esa1 results in decreased chromosome axis length independent of another axis length regulator Pds5, which further leads to a decreased number of Mer2 foci, and consequently a decreased number of DNA double-strand breaks, recombination intermediates, and crossover frequency. However, Esa1 depletion does not impair the occurrence of the obligatory crossover required for faithful chromosome segregation, or the strength of crossover interference. Further investigations demonstrate Esa1 regulates chromosome axis length via acetylating the N-terminal tail of histone H4 but not altering transcription program. Therefore, we firstly show a non-chromosome axis component, Esa1, acetylates histone H4 on chromatin loops to regulate chromosome axis length and consequently recombination frequency but does not affect the basic meiotic recombination process. Additionally, Esa1 depletion downregulates middle induced meiotic genes, which probably causing defects in sporulation and chromosome segregation.
Collapse
Affiliation(s)
- Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Meihui Song
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Tingting Chu
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong250012, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan250014, Shandong, China
| |
Collapse
|
43
|
Galloy M, Lachance C, Cheng X, Distéfano-Gagné F, Côté J, Fradet-Turcotte A. Approaches to Study Native Chromatin-Modifying Complex Activities and Functions. Front Cell Dev Biol 2021; 9:729338. [PMID: 34604228 PMCID: PMC8481805 DOI: 10.3389/fcell.2021.729338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The modification of histones-the structural components of chromatin-is a central topic in research efforts to understand the mechanisms regulating genome expression and stability. These modifications frequently occur through associations with multisubunit complexes, which contain active enzymes and additional components that orient their specificity and read the histone modifications that comprise epigenetic signatures. To understand the functions of these modifications it is critical to study the enzymes and substrates involved in their native contexts. Here, we describe experimental approaches to purify native chromatin modifiers complexes from mammalian cells and to produce recombinant nucleosomes that are used as substrates to determine the activity of the complex. In addition, we present a novel approach, similar to the yeast anchor-away system, to study the functions of essential chromatin modifiers by quickly inducing their depletion from the nucleus. The step-by-step protocols included will help standardize these approaches in the research community, enabling convincing conclusions about the specificities and functions of these crucial regulators of the eukaryotic genome.
Collapse
Affiliation(s)
- Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Félix Distéfano-Gagné
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Amelie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
44
|
Wu T, Nance J, Chu F, Fazzio TG. Characterization of R-Loop-Interacting Proteins in Embryonic Stem Cells Reveals Roles in rRNA Processing and Gene Expression. Mol Cell Proteomics 2021; 20:100142. [PMID: 34478875 PMCID: PMC8461376 DOI: 10.1016/j.mcpro.2021.100142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Chromatin-associated RNAs have diverse roles in the nucleus. However, their mechanisms of action are poorly understood, in part because of the inability to identify proteins that specifically associate with chromatin-bound RNAs. Here, we address this problem for a subset of chromatin-associated RNAs that form R-loops-RNA-DNA hybrid structures that include a displaced strand of ssDNA. R-loops generally form cotranscriptionally and have important roles in regulation of gene expression, immunoglobulin class switching, and other processes. However, unresolved R-loops can lead to DNA damage and chromosome instability. To identify factors that may bind and regulate R-loop accumulation or mediate R-loop-dependent functions, we used a comparative immunoprecipitation/MS approach, with and without RNA-protein crosslinking, to identify a stringent set of R-loop-binding proteins in mouse embryonic stem cells. We identified 364 R-loop-interacting proteins, which were highly enriched for proteins with predicted RNA-binding functions. We characterized several R-loop-interacting proteins of the DEAD-box family of RNA helicases and found that these proteins localize to the nucleolus and, to a lesser degree, the nucleus. Consistent with their localization patterns, we found that these helicases are required for rRNA processing and regulation of gene expression. Surprisingly, depletion of these helicases resulted in misregulation of highly overlapping sets of protein-coding genes, including many genes that function in differentiation and development. We conclude that R-loop-interacting DEAD-box helicases have nonredundant roles that are critical for maintaining the normal embryonic stem cell transcriptome.
Collapse
Affiliation(s)
- Tong Wu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer Nance
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
45
|
Olivieri D, Paramanathan S, Bardet AF, Hess D, Smallwood SA, Elling U, Betschinger J. The BTB-domain transcription factor ZBTB2 recruits chromatin remodelers and a histone chaperone during the exit from pluripotency. J Biol Chem 2021; 297:100947. [PMID: 34270961 PMCID: PMC8350017 DOI: 10.1016/j.jbc.2021.100947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) harboring broad-complex, tramtrack, and bric-a-brac (BTB) domains play important roles in development and disease. These BTB domains are thought to recruit transcriptional modulators to target DNA regions. However, a systematic molecular understanding of the mechanism of action of this TF family is lacking. Here, we identify the zinc finger BTB-TF Zbtb2 from a genetic screen for regulators of exit from pluripotency and demonstrate that its absence perturbs embryonic stem cell differentiation and the gene expression dynamics underlying peri-implantation development. We show that ZBTB2 binds the chromatin remodeler Ep400 to mediate downstream transcription. Independently, the BTB domain directly interacts with nucleosome remodeling and deacetylase and histone chaperone histone regulator A. Nucleosome remodeling and deacetylase recruitment is a common feature of BTB TFs, and based on phylogenetic analysis, we propose that this is a conserved evolutionary property. Binding to UBN2, in contrast, is specific to ZBTB2 and requires a C-terminal extension of the BTB domain. Taken together, this study identifies a BTB-domain TF that recruits chromatin modifiers and a histone chaperone during a developmental cell state transition and defines unique and shared molecular functions of the BTB-domain TF family.
Collapse
Affiliation(s)
- Daniel Olivieri
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | - Anaïs F Bardet
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, Illkirch, France
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Joerg Betschinger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
46
|
Disruption of RING and PHD Domains of TRIM28 Evokes Differentiation in Human iPSCs. Cells 2021; 10:cells10081933. [PMID: 34440702 PMCID: PMC8394524 DOI: 10.3390/cells10081933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
TRIM28, a multi-domain protein, is crucial in the development of mouse embryos and the maintenance of embryonic stem cells’ (ESC) self-renewal potential. As the epigenetic factor modulating chromatin structure, TRIM28 regulates the expression of numerous genes and is associated with progression and poor prognosis in many types of cancer. Because of many similarities between highly dedifferentiated cancer cells and normal pluripotent stem cells, we applied human induced pluripotent stem cells (hiPSC) as a model for stemness studies. For the first time in hiPSC, we analyzed the function of individual TRIM28 domains. Here we demonstrate the essential role of a really interesting new gene (RING) domain and plant homeodomain (PHD) in regulating pluripotency maintenance and self-renewal capacity of hiPSC. Our data indicate that mutation within the RING or PHD domain leads to the loss of stem cell phenotypes and downregulation of the FGF signaling. Moreover, impairment of RING or PHD domain results in decreased proliferation and impedes embryoid body formation. In opposition to previous data indicating the impact of phosphorylation on TRIM28 function, our data suggest that TRIM28 phosphorylation does not significantly affect the pluripotency and self-renewal maintenance of hiPSC. Of note, iPSC with disrupted RING and PHD functions display downregulation of genes associated with tumor metastasis, which are considered important targets in cancer treatment. Our data suggest the potential use of RING and PHD domains of TRIM28 as targets in cancer therapy.
Collapse
|
47
|
Yu H, Wang J, Lackford B, Bennett B, Li JL, Hu G. INO80 promotes H2A.Z occupancy to regulate cell fate transition in pluripotent stem cells. Nucleic Acids Res 2021; 49:6739-6755. [PMID: 34139016 DOI: 10.1093/nar/gkab476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
The INO80 chromatin remodeler is involved in many chromatin-dependent cellular functions. However, its role in pluripotency and cell fate transition is not fully defined. We examined the impact of Ino80 deletion in the naïve and primed pluripotent stem cells. We found that Ino80 deletion had minimal effect on self-renewal and gene expression in the naïve state, but led to cellular differentiation and de-repression of developmental genes in the transition toward and maintenance of the primed state. In the naïve state, INO80 pre-marked gene promoters that would adopt bivalent histone modifications by H3K4me3 and H3K27me3 upon transition into the primed state. In the primed state, in contrast to its known role in H2A.Z exchange, INO80 promoted H2A.Z occupancy at these bivalent promoters and facilitated H3K27me3 installation and maintenance as well as downstream gene repression. Together, our results identified an unexpected function of INO80 in H2A.Z deposition and gene regulation. We showed that INO80-dependent H2A.Z occupancy is a critical licensing step for the bivalent domains, and thereby uncovered an epigenetic mechanism by which chromatin remodeling, histone variant deposition and histone modification coordinately control cell fate.
Collapse
Affiliation(s)
- Hongyao Yu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jiajia Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brad Lackford
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Brian Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
48
|
MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nat Commun 2021; 12:3034. [PMID: 34031396 PMCID: PMC8144423 DOI: 10.1038/s41467-021-23308-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Deciphering the mechanisms that control the pluripotent ground state is key for understanding embryonic development. Nonetheless, the epigenetic regulation of ground-state mouse embryonic stem cells (mESCs) is not fully understood. Here, we identify the epigenetic protein MPP8 as being essential for ground-state pluripotency. Its depletion leads to cell cycle arrest and spontaneous differentiation. MPP8 has been suggested to repress LINE1 elements by recruiting the human silencing hub (HUSH) complex to H3K9me3-rich regions. Unexpectedly, we find that LINE1 elements are efficiently repressed by MPP8 lacking the chromodomain, while the unannotated C-terminus is essential for its function. Moreover, we show that SETDB1 recruits MPP8 to its genomic target loci, whereas transcriptional repression of LINE1 elements is maintained without retaining H3K9me3 levels. Taken together, our findings demonstrate that MPP8 protects the DNA-hypomethylated pluripotent ground state through its association with the HUSH core complex, however, independently of detectable chromatin binding and maintenance of H3K9me3.
Collapse
|
49
|
Sreenivasan K, Ianni A, Künne C, Strilic B, Günther S, Perdiguero E, Krüger M, Spuler S, Offermanns S, Gómez-Del Arco P, Redondo JM, Munoz-Canoves P, Kim J, Braun T. Attenuated Epigenetic Suppression of Muscle Stem Cell Necroptosis Is Required for Efficient Regeneration of Dystrophic Muscles. Cell Rep 2021; 31:107652. [PMID: 32433961 PMCID: PMC7242912 DOI: 10.1016/j.celrep.2020.107652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration. Necroptotic cell death of MuSCs is essential for efficient muscle regeneration Inhibition of necroptosis exacerbates adverse crosstalk among mdx muscle stem cells The CHD4/NuRD complex directly represses Ripk3-dependent necroptosis Attenuated recruitment of CHD4 to Ripk3 locus lowers necroptosis threshold in dystrophy
Collapse
Affiliation(s)
- Krishnamoorthy Sreenivasan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Eusebio Perdiguero
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain
| | - Marcus Krüger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; CECAD Research Center, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Simone Spuler
- Experimental and Clinical Research Center (ECRC), University Clinic Charité Berlin, Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK)
| | - Pablo Gómez-Del Arco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain; Institute of Rare Diseases Research, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling & Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Pura Munoz-Canoves
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF), CIBERNED, ICREA, 08003 Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28019 Madrid, Spain
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK).
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; German Center for Cardiovascular Research (DZHK); German Center for Lung Research (DZL).
| |
Collapse
|
50
|
Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 2021; 28:1868-1883.e11. [PMID: 34038708 DOI: 10.1016/j.stem.2021.04.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 08/06/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
Topological-associated domains (TADs) are thought to be relatively stable across cell types, although some TAD reorganization has been observed during cellular differentiation. However, little is known about the mechanisms through which TAD reorganization affects cell fate or how master transcription factors affect TAD structures during cell fate transitions. Here, we show extensive TAD reorganization during somatic cell reprogramming, which is correlated with gene transcription and changes in cellular identity. Manipulating TAD reorganization promotes reprogramming, and the dynamics of concentrated chromatin loops in OCT4 phase separated condensates contribute to TAD reorganization. Disrupting OCT4 phase separation attenuates TAD reorganization and reprogramming, which can be rescued by fusing an intrinsically disordered region (IDR) to OCT4. We developed an approach termed TAD reorganization-based multiomics analysis (TADMAN), which identified reprogramming regulators. Together, these findings elucidate a role and mechanism of TAD reorganization, regulated by OCT4 phase separation, in cellular reprogramming.
Collapse
|