1
|
Converso C, Pierrakeas L, Chan L, Chowdhury S, de Onis E, Kuznetsov VI, Denu JM, Luk E. H2A.Z deposition by the SWR complex is stimulated by polyadenine DNA sequences in nucleosomes. PLoS Biol 2025; 23:e3003059. [PMID: 40354500 PMCID: PMC12068740 DOI: 10.1371/journal.pbio.3003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/07/2025] [Indexed: 05/14/2025] Open
Abstract
The variant histone H2A.Z is deposited into nucleosomes immediately downstream of promoters, where it plays a critical role in transcription. The site-specific deposition of H2A.Z is catalyzed by the SWR complex, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome-depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR to a library of canonical nucleosomes isolated from yeast and analyzed the preferred substrates. Our results revealed that SWR preferentially deposited H2A.Z into a subset of endogenous H2A.Z sites, which are overrepresented by polyadenine tracts on the top strands of the DNA duplex at the nucleosomal entry-exit sites. Insertion of polyadenine sequences into recombinant nucleosomes near the outgoing H2A-H2B dimer enhanced SWR's affinity for the nucleosomal substrate and increased its H2A.Z insertion activity. These findings suggest that the genome encodes sequence-based information that facilitates remodeler-mediated targeting of H2A.Z.
Collapse
Affiliation(s)
- Cynthia Converso
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Leonidas Pierrakeas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lirong Chan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Shalvi Chowdhury
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Emily de Onis
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Vyacheslav I. Kuznetsov
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - John M. Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
2
|
Bowman GD. Mechanistic insights into INO80-type chromatin remodelers. Curr Opin Struct Biol 2025; 92:103030. [PMID: 40153959 DOI: 10.1016/j.sbi.2025.103030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
Chromatin remodelers are adenosine triphosphate (ATP)-driven enzymes that physically reorganize nucleosomes, the basic packaging unit of all eukaryotic chromosomes. INO80, SWR1/SRCAP, and TIP60 are large multisubunit remodelers that share similar components yet have distinct biochemical and biological functions. This review summarizes key architectural features of these complexes and how they engage DNA, nucleosomes, and hexasomes to carry out their tasks.
Collapse
Affiliation(s)
- Gregory D Bowman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore MD, 21218, USA.
| |
Collapse
|
3
|
Katznelson A, Hernandez B, Fahning H, Tapia K, Burton A, Zhang J, Torres-Padilla ME, Plachta N, Zaret KS, McCarthy RL. ERH Enables Early Embryonic Differentiation and Overlays H3K9me3 Heterochromatin on a Cryptic Pluripotency H3K9me3 Landscape in Somatic Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.06.597604. [PMID: 38895478 PMCID: PMC11185749 DOI: 10.1101/2024.06.06.597604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Enhancer of Rudimentary Homolog (ERH) is an evolutionarily conserved protein originally characterized in fission yeast 1 and recently shown to maintain H3K9me3 in human fibroblasts 2 . Here, we find that ERH depletion in fibroblasts reverts the H3K9me3 landscape to an embryonic stem cell (ESC) state and enables activation of naïve and pluripotency genes and transposable elements during induced pluripotent stem cell (iPSC) reprogramming. We find that ERH similarly represses totipotent and alternative lineage programs during mouse preimplantation development and is required for proper segregation of the inner cell mass and trophectoderm cell lineages. During human ESC differentiation into germ layer lineages, ERH silences naïve and pluripotency genes, transposable elements, and alternative lineage somatic genes. As in fission yeast, we find that mammalian ERH interacts with RNA-binding proteins to engage and repress its chromatin targets. Our findings reveal a fundamental role for ERH in cell fate specification via the initiation and maintenance of early developmental gene repression.
Collapse
|
4
|
Shen Y, Liu K, Liu J, Shen J, Ye T, Zhao R, Zhang R, Song Y. TBP bookmarks and preserves neural stem cell fate memory by orchestrating local chromatin architecture. Mol Cell 2025; 85:413-429.e10. [PMID: 39662469 DOI: 10.1016/j.molcel.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Mitotic bookmarking has been posited as an important strategy for cells to faithfully propagate their fate memory through cell generations. However, the physiological significance and regulatory mechanisms of mitotic bookmarking in neural development remain unexplored. Here, we identified TATA-binding protein (TBP) as a crucial mitotic bookmarker for preserving the fate memory of Drosophila neural stem cells (NSCs). Phosphorylation by the super elongation complex (SEC) is important for TBP to retain as discrete foci at mitotic chromosomes of NSCs to effectively transmit their fate memory. TBP depletion leads to drastic NSC loss, whereas TBP overexpression enhances the ability of SEC to induce neural progenitor dedifferentiation and tumorigenesis. Importantly, TBP achieves its mitotic retention through recruiting the chromatin remodeler EP400, which in turn increases local chromatin accessibility via depositing H2A.Z. Thus, local chromatin remodeling ensures mitotic bookmarking, which may represent a general principle underlying the preservation of cell fate memory.
Collapse
Affiliation(s)
- Yuying Shen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kun Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingwen Shen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tongtong Ye
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Runxiang Zhao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Rulan Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Song
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Chatterjee K, Uyehara CM, Kasliwal K, Madhuranath S, Scourzic L, Polyzos A, Apostolou E, Stadtfeld M. Coordinated repression of totipotency-associated gene loci by histone methyltransferase EHMT2 through binding to LINE-1 regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629181. [PMID: 39763795 PMCID: PMC11702699 DOI: 10.1101/2024.12.18.629181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition. This allowed us to define categories of EHMT2 target genes characterized by distinct modes of EHMT2 chromatin engagement and repression. Most notably, EHMT2 directly represses large clusters of co-regulated gene loci that comprise a significant fraction of the 2CLC-specific transcriptome by initiating H3K9me2 spreading from distal LINE-1 elements. EHMT2 counteracts the recruitment of the activator DPPA2/4 to promoter-proximal endogenous retroviral elements (ERVs) at 2CLC genes. EHMT2 depletion elevates the expression of ZGA-associated transcripts in 2CLCs and synergizes with spliceosome inhibition and retinoic acid signaling in facilitating the mESC-to-2CLC transition. In contrast to ZGA-associated genes, repression of germ layer-associated transcripts by EHMT2 occurs outside of gene clusters in collaboration with ZFP462 and entails binding to non-repeat enhancers. Our observations show that EHMT2 attenuates the bidirectional differentiation potential of mouse pluripotent stem cells and define molecular modes for locus-specific transcriptional repression by this essential histone methyltransferase.
Collapse
Affiliation(s)
- K Chatterjee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - C M Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - K Kasliwal
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - S Madhuranath
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - L Scourzic
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Girvan P, Jalal ASB, McCormack EA, Skehan MT, Knight CL, Wigley DB, Rueda DS. Nucleosome flipping drives kinetic proofreading and processivity by SWR1. Nature 2024; 636:251-257. [PMID: 39506114 PMCID: PMC11618073 DOI: 10.1038/s41586-024-08152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
The yeast SWR1 complex catalyses the exchange of histone H2A-H2B dimers in nucleosomes, with Htz1-H2B dimers1-3. Here we used single-molecule analysis to demonstrate two-step double exchange of the two H2A-H2B dimers in a canonical yeast nucleosome with Htz1-H2B dimers, and showed that double exchange can be processive without release of the nucleosome from the SWR1 complex. Further analysis showed that bound nucleosomes flip between two states, with each presenting a different face, and hence histone dimer, to SWR1. The bound dwell time is longer when an H2A-H2B dimer is presented for exchange than when presented with an Htz1-H2B dimer. A hexasome intermediate in the reaction is bound to the SWR1 complex in a single orientation with the 'empty' site presented for dimer insertion. Cryo-electron microscopy analysis revealed different populations of complexes showing nucleosomes caught 'flipping' between different conformations without release, each placing a different dimer into position for exchange, with the Swc2 subunit having a key role in this process. Together, the data reveal a processive mechanism for double dimer exchange that explains how SWR1 can 'proofread' the dimer identities within nucleosomes.
Collapse
Affiliation(s)
- Paul Girvan
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Single Molecule Biophysics Group, MRC Laboratory of Medical Sciences, London, UK
| | - Adam S B Jalal
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Elizabeth A McCormack
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Michael T Skehan
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Carol L Knight
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Dale B Wigley
- Section of Structural Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| | - David S Rueda
- Single Molecule Biophysics Group, MRC Laboratory of Medical Sciences, London, UK.
- Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
7
|
Louder RK, Park G, Ye Z, Cha JS, Gardner AM, Lei Q, Ranjan A, Höllmüller E, Stengel F, Pugh BF, Wu C. Molecular basis of global promoter sensing and nucleosome capture by the SWR1 chromatin remodeler. Cell 2024; 187:6849-6864.e18. [PMID: 39357520 PMCID: PMC11606799 DOI: 10.1016/j.cell.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
The SWR1 chromatin remodeling complex is recruited to +1 nucleosomes downstream of transcription start sites of eukaryotic promoters, where it exchanges histone H2A for the specialized variant H2A.Z. Here, we use cryoelectron microscopy (cryo-EM) to resolve the structural basis of the SWR1 interaction with free DNA, revealing a distinct open conformation of the Swr1 ATPase that enables sliding from accessible DNA to nucleosomes. A complete structural model of the SWR1-nucleosome complex illustrates critical roles for Swc2 and Swc3 subunits in oriented nucleosome engagement by SWR1. Moreover, an extended DNA-binding α helix within the Swc3 subunit enables sensing of nucleosome linker length and is essential for SWR1-promoter-specific recruitment and activity. The previously unresolved N-SWR1 subcomplex forms a flexible extended structure, enabling multivalent recognition of acetylated histone tails by reader domains to further direct SWR1 toward the +1 nucleosome. Altogether, our findings provide a generalizable mechanism for promoter-specific targeting of chromatin and transcription complexes.
Collapse
Affiliation(s)
- Robert K Louder
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Giho Park
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziyang Ye
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Justin S Cha
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Anne M Gardner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Qin Lei
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eva Höllmüller
- Department of Chemistry, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Kulkarni S, Morrissey A, Sebastian A, Giardine B, Smith C, Akinniyi OT, Keller CA, Arnaoutov A, Albert I, Mahony S, Reese JC. Human CCR4-NOT globally regulates gene expression and is a novel silencer of retrotransposon activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612038. [PMID: 39314347 PMCID: PMC11419117 DOI: 10.1101/2024.09.10.612038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
CCR4-NOT regulates multiple steps in gene regulation and has been well studied in budding yeast, but much less is known about the human complex. Auxin-induced degradation was used to rapidly deplete the scaffold subunit CNOT1, and CNOT4, to characterize the functions of human CCR4-NOT in gene regulation. Depleting CNOT1 increased RNA levels and caused a widespread decrease in RNA decay. In contrast, CNOT4 depletion only modestly changed steady-state RNA levels and, surprisingly, led to a global acceleration in mRNA decay. Further, depleting either subunit resulted in a global increase in RNA synthesis. In contrast to most of the genome, the transcription of KRAB-Zinc-Finger-protein (KZNFs) genes, especially those on chromosome 19, was repressed. KZNFs are transcriptional repressors of retrotransposable elements (rTEs), and consistent with the decreased KZNFs expression, rTEs, mainly Long Interspersed Nuclear Elements (LINEs), were activated. These data establish CCR4-NOT as a global regulator of gene expression and a novel silencer of rTEs.
Collapse
|
9
|
Šikrová D, González-Prieto R, Vertegaal ACO, Balog J, Clemens-Daxinger L, van der Maarel SM. Lrif1 modulates Trim28-mediated repression of the Dux locus in mouse embryonic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624083. [PMID: 39605603 PMCID: PMC11601662 DOI: 10.1101/2024.11.18.624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Germline mutations in SMCHD1, DNMT3B and LRIF1 can cause facioscapulohumeral muscular dystrophy type 2 (FSHD2). FSHD is an epigenetic skeletal muscle disorder in which partial failure in heterochromatinization of the D4Z4 macrosatellite repeat causes spurious expression of the repeat-embedded DUX4 gene in skeletal muscle, ultimately leading to muscle weakness and wasting. All three proteins play a role in chromatin organization and gene silencing; however, their functional relationship has not been fully elucidated. Here, we show that knockdown of Lrif1 , but not of the other two FSHD2 genes, in mouse embryonic stem cells leads to modest upregulation of the 2-cell cleavage stage transcriptional program driven by the transcription factor Dux, which is the mouse functional homologue of human DUX4. Furthermore, we show that Lrif1 interacts with Trim28, a known Dux repressor and that this interaction is independent of Cbx proteins and Smchd1. We uncover that modest Dux upregulation in Lrif1 knockdown mESCs coincides with decreased Trim28 occupancy at the Dux locus. Together, our results provide evidence for a conserved function of Lrif1 in repressing an early zygotic genome activator in mice and humans.
Collapse
|
10
|
Bonefas KM, Venkatachalam I, Iwase S. KDM5C is a sex-biased brake against germline gene expression programs in somatic lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622665. [PMID: 39574581 PMCID: PMC11581037 DOI: 10.1101/2024.11.08.622665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The division of labor among cellular lineages is a pivotal step in the evolution of multicellularity. In mammals, the soma-germline boundary is formed during early embryogenesis, when genes that drive germline identity are repressed in somatic lineages through DNA and histone modifications at promoter CpG islands (CGIs). Somatic misexpression of germline genes is a signature of cancer and observed in select neurodevelopmental disorders. However, it is currently unclear if all germline genes use the same repressive mechanisms and if factors like development and sex influence their dysregulation. Here, we examine how cellular context influences the formation of somatic tissue identity in mice lacking lysine demethylase 5c (KDM5C), an X chromosome eraser of histone 3 lysine 4 di and tri-methylation (H3K4me2/3). We found male Kdm5c knockout (-KO) mice aberrantly express many tissue-specific genes within the brain, the majority of which are unique to the germline. By developing a comprehensive list of mouse germline-enriched genes, we observed Kdm5c-KO cells aberrantly express key drivers of germline fate during early embryogenesis but late-stage spermatogenesis genes within the mature brain. KDM5C binds CGIs within germline gene promoters to facilitate DNA CpG methylation as embryonic stem cells differentiate into epiblast-like cells (EpiLCs). However, the majority of late-stage spermatogenesis genes expressed within the Kdm5c-KO brain did not harbor promoter CGIs. These CGI-free germline genes were not bound by KDM5C and instead expressed through ectopic activation by RFX transcription factors. Furthermore, germline gene repression is sexually dimorphic, as female EpiLCs require a higher dose of KDM5C to maintain germline silencing. Altogether, these data revealed distinct regulatory classes of germline genes and sex-biased silencing mechanisms in somatic cells.
Collapse
Affiliation(s)
- Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ilakkiya Venkatachalam
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Jalal ASB, Girvan P, Chua EYD, Liu L, Wang S, McCormack EA, Skehan MT, Knight CL, Rueda DS, Wigley DB. Stabilization of the hexasome intermediate during histone exchange by yeast SWR1 complex. Mol Cell 2024; 84:3871-3884.e9. [PMID: 39226902 DOI: 10.1016/j.molcel.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
The yeast SWR1 complex catalyzes the exchange of histone H2A/H2B dimers in nucleosomes with Htz1/H2B dimers. We use cryoelectron microscopy to determine the structure of an enzyme-bound hexasome intermediate in the reaction pathway of histone exchange, in which an H2A/H2B dimer has been extracted from a nucleosome prior to the insertion of a dimer comprising Htz1/H2B. The structure reveals a key role for the Swc5 subunit in stabilizing the unwrapping of DNA from the histone core of the hexasome. By engineering a crosslink between an Htz1/H2B dimer and its chaperone protein Chz1, we show that this blocks histone exchange by SWR1 but allows the incoming chaperone-dimer complex to insert into the hexasome. We use this reagent to trap an SWR1/hexasome complex with an incoming Htz1/H2B dimer that shows how the reaction progresses to the next step. Taken together the structures reveal insights into the mechanism of histone exchange by SWR1 complex.
Collapse
Affiliation(s)
- Adam S B Jalal
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Paul Girvan
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; Single Molecule Imaging Group, MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0HS, UK
| | - Eugene Y D Chua
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Lexin Liu
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Shijie Wang
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Elizabeth A McCormack
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Michael T Skehan
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Carol L Knight
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - David S Rueda
- Single Molecule Imaging Group, MRC Laboratory of Medical Sciences, Du Cane Road, London W12 0HS, UK; Section of Virology, Department Infectious Disease, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0HS, UK
| | - Dale B Wigley
- Section of Structural Biology, Department Infectious Disease, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
13
|
Park G, Patel AB, Wu C, Louder RK. Structures of H2A.Z-associated human chromatin remodelers SRCAP and TIP60 reveal divergent mechanisms of chromatin engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605802. [PMID: 39131301 PMCID: PMC11312561 DOI: 10.1101/2024.07.30.605802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
H2A.Z is a conserved histone variant that is localized to specific genomic regions where it plays important roles in transcription, DNA repair, and replication. Central to the biochemistry of human H2A.Z are the SRCAP and TIP60 chromatin remodelers, homologs of yeast SWR1 which catalyzes ATP-dependent H2A.Z exchange. Here, we use cryo-electron microscopy to resolve six structural states of the native SRCAP complex, uncovering conformational intermediates interpreted as a stepwise path to full nucleosome engagement. We also resolve the structure of the native TIP60 complex which consists of a structured core from which flexibly tethered chromatin binding domains emerge. Despite the shared subunit composition, the core of TIP60 displays divergent architectures from SRCAP that structurally disfavor nucleosome engagement, suggesting a distinct biochemical function.
Collapse
Affiliation(s)
- Giho Park
- Biochemistry, Cellular and Molecular Graduate Program, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
| | - Avinash B. Patel
- Department of Biophysics, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Carl Wu
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Robert K. Louder
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Marin H, Simental E, Allen C, Martin E, Panning B, Al-Sady B, Buchwalter A. The nuclear periphery confers repression on H3K9me2-marked genes and transposons to shape cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602542. [PMID: 39026839 PMCID: PMC11257442 DOI: 10.1101/2024.07.08.602542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Heterochromatic loci marked by histone H3 lysine 9 dimethylation (H3K9me2) are enriched at the nuclear periphery in metazoans, but the effect of spatial position on heterochromatin function has not been defined. Here, we remove three nuclear lamins and lamin B receptor (LBR) in mouse embryonic stem cells (mESCs) and show that heterochromatin detaches from the nuclear periphery. Mutant mESCs sustain naïve pluripotency and maintain H3K9me2 across the genome but cannot repress H3K9me2-marked genes or transposons. Further, mutant cells fail to differentiate into epiblast-like cells (EpiLCs), a transition that requires the expansion of H3K9me2 across the genome. Mutant EpiLCs can silence naïve pluripotency genes and activate epiblast-stage genes. However, H3K9me2 cannot repress markers of alternative fates, including primitive endoderm. We conclude that the nuclear periphery controls the spatial position, dynamic remodeling, and repressive capacity of H3K9me2-marked heterochromatin to shape cell fate decisions.
Collapse
Affiliation(s)
- Harold Marin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Simental
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Charlie Allen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Eric Martin
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry, University of California, San Francisco, CA, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Miao R, Zhang Y, Liu X, Yuan Y, Zang W, Li Z, Yan X, Pang Q, Zhang A. Histone variant H2A.Z is required for plant salt response by regulating gene transcription. PLANT, CELL & ENVIRONMENT 2024; 47:2693-2709. [PMID: 38576334 DOI: 10.1111/pce.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
As a well-conserved histone variant, H2A.Z epigenetically regulates plant growth and development as well as the interaction with environmental factors. However, the role of H2A.Z in response to salt stress remains unclear, and whether nucleosomal H2A.Z occupancy work on the gene responsiveness upon salinity is obscure. Here, we elucidate the involvement of H2A.Z in salt response by analysing H2A.Z disorder plants with impaired or overloaded H2A.Z deposition. The salt tolerance is dramatically accompanied by H2A.Z deficiency and reacquired in H2A.Z OE lines. H2A.Z disorder changes the expression profiles of large-scale of salt responsive genes, announcing that H2A.Z is required for plant salt response. Genome-wide H2A.Z mapping shows that H2A.Z level is induced by salt condition across promoter, transcriptional start site (TSS) and transcription ending sites (-1 kb to +1 kb), the peaks preferentially enrich at promoter regions near TSS. We further show that H2A.Z deposition within TSS provides a direct role on transcriptional control, which has both repressive and activating effects, while it is found generally H2A.Z enrichment negatively correlate with gene expression level response to salt stress. This study shed light on the H2A.Z function in salt tolerance, highlighting the complex regulatory mechanisms of H2A.Z on transcriptional activity for yielding appropriate responses to particularly environmental stress.
Collapse
Affiliation(s)
- Rongqing Miao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xinxin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yue Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wei Zang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhiqi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Baier AS, Gioacchini N, Eek P, Leith EM, Tan S, Peterson CL. Dual engagement of the nucleosomal acidic patches is essential for deposition of histone H2A.Z by SWR1C. eLife 2024; 13:RP94869. [PMID: 38809771 PMCID: PMC11139478 DOI: 10.7554/elife.94869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
The yeast SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a 'pincer-like' conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.
Collapse
Affiliation(s)
- Alexander S Baier
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Medical Scientist Training Program, T.H. Chan School of Medicine, University of MassachusettsBostonUnited States
| | - Nathan Gioacchini
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Priit Eek
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Chemistry and Biotechnology, Tallinn University of TechnologyTallinnEstonia
| | - Erik M Leith
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
17
|
Wang W, Gao R, Yang D, Ma M, Zang R, Wang X, Chen C, Kou X, Zhao Y, Chen J, Liu X, Lu J, Xu B, Liu J, Huang Y, Chen C, Wang H, Gao S, Zhang Y, Gao Y. ADNP modulates SINE B2-derived CTCF-binding sites during blastocyst formation in mice. Genes Dev 2024; 38:168-188. [PMID: 38479840 PMCID: PMC10982698 DOI: 10.1101/gad.351189.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.
Collapse
Affiliation(s)
- Wen Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dongxu Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingli Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chuan Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Xuelian Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxu Lu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juntao Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yong Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yawei Gao
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|
18
|
Giaccari C, Cecere F, Argenziano L, Pagano A, Galvao A, Acampora D, Rossi G, Hay Mele B, Acurzio B, Coonrod S, Cubellis MV, Cerrato F, Andrews S, Cecconi S, Kelsey G, Riccio A. A maternal-effect Padi6 variant causes nuclear and cytoplasmic abnormalities in oocytes, as well as failure of epigenetic reprogramming and zygotic genome activation in embryos. Genes Dev 2024; 38:131-150. [PMID: 38453481 PMCID: PMC10982689 DOI: 10.1101/gad.351238.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Lucia Argenziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Angela Pagano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Antonio Galvao
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn 10-748, Poland
| | - Dario Acampora
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso," Consiglio Nazionale delle Ricerche (CNR), Naples 80131, Italy
| | - Gianna Rossi
- Department of Life, Health, and Environmental Sciences, Università dell'Aquila, L'Aquila 67100, Italy
| | - Bruno Hay Mele
- Department of Biology, University of Naples "Federico II," Napoli 80126, Italy
| | - Basilia Acurzio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Scott Coonrod
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA
| | | | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy
| | - Simon Andrews
- Bioinformatics Unit, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell'Aquila, L'Aquila 67100, Italy
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge CB2 0QQ, United Kingdom
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli," Caserta 81100, Italy;
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso," Consiglio Nazionale delle Ricerche (CNR), Naples 80131, Italy
| |
Collapse
|
19
|
Yu J, Sui F, Gu F, Li W, Yu Z, Wang Q, He S, Wang L, Xu Y. Structural insights into histone exchange by human SRCAP complex. Cell Discov 2024; 10:15. [PMID: 38331872 PMCID: PMC10853557 DOI: 10.1038/s41421-023-00640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.
Collapse
Affiliation(s)
- Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fengrui Sui
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Feng Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuang He
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Sepulveda H, Li X, Yue X, Carlos Angel J, Arteaga-Vazquez LJ, Brown C, Brunelli M, Jansz N, Puddu F, Scotcher J, Creed P, Kennedy P, Manriquez C, Myers SA, Crawford R, Faulkner GJ, Rao A. OGT prevents DNA demethylation and suppresses the expression of transposable elements in heterochromatin by restraining TET activity genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578097. [PMID: 38352366 PMCID: PMC10862820 DOI: 10.1101/2024.01.31.578097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The O- GlcNAc transferase OGT interacts robustly with all three mammalian TET methylcytosine dioxygenases. We show here that deletion of the Ogt gene in mouse embryonic stem cells (mESC) results in a widespread increase in the TET product 5-hydroxymethylcytosine (5hmC) in both euchromatic and heterochromatic compartments, with concomitant reduction of the TET substrate 5-methylcytosine (5mC) at the same genomic regions. mESC engineered to abolish the TET1-OGT interaction likewise displayed a genome-wide decrease of 5mC. DNA hypomethylation in OGT-deficient cells was accompanied by de-repression of transposable elements (TEs) predominantly located in heterochromatin, and this increase in TE expression was sometimes accompanied by increased cis -expression of genes and exons located 3' of the expressed TE. Thus, the TET-OGT interaction prevents DNA demethylation and TE expression in heterochromatin by restraining TET activity genome-wide. We suggest that OGT protects the genome against DNA hypomethylation and impaired heterochromatin integrity, preventing the aberrant increase in TE expression observed in cancer, autoimmune-inflammatory diseases, cellular senescence and ageing.
Collapse
|
21
|
Converso C, Pierrakeas L, Chan L, Chowdhury S, Kuznetsov VI, Denu JM, Luk E. Nucleic acid sequence contributes to remodeler-mediated targeting of histone H2A.Z. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570360. [PMID: 38106078 PMCID: PMC10723385 DOI: 10.1101/2023.12.06.570360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The variant histone H2A.Z is inserted into nucleosomes immediately downstream of promoters and is important for transcription. The site-specific deposition of H2A.Z is catalyzed by SWR, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR with a library of nucleosomes isolated from yeast and characterized those preferred by SWR. We found that SWR prefers nucleosomes associated with intergenic over coding regions, especially when polyadenine tracks are present. Insertion of polyadenine sequences into recombinant nucleosomes near the H2A-H2B binding site stimulated the H2A.Z insertion activity of SWR. Therefore, the genome is encoded with information contributing to remodeler-mediated targeting of H2A.Z.
Collapse
|
22
|
Ishiuchi T, Sakamoto M. Molecular mechanisms underlying totipotency. Life Sci Alliance 2023; 6:e202302225. [PMID: 37666667 PMCID: PMC10480501 DOI: 10.26508/lsa.202302225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Numerous efforts to understand pluripotency in mammals, using pluripotent stem cells in culture, have enabled the generation of artificially induced pluripotent stem cells, which serve as a valuable source for regenerative medicine and the creation of disease models. In contrast to these tremendous successes in the pluripotency field in the past few decades, our understanding of totipotency, which is highlighted by its broader plasticity than pluripotency, is still limited. This is largely attributable to the scarcity of available materials and the lack of in vitro models. However, recent technological advances have unveiled molecular features that characterize totipotent cells. Single-cell or low-input sequencing technologies allow the dissection of pre- and post-fertilization developmental processes at the molecular level with high resolution. In this review, we describe some of the key findings in understanding totipotency and discuss how totipotency is acquired at the beginning of life.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Mizuki Sakamoto
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
23
|
Yang J, Cook L, Chen Z. Systematic Perturbation of Thousands of Retroviral LTRs in Mouse Embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558531. [PMID: 37781606 PMCID: PMC10541133 DOI: 10.1101/2023.09.19.558531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In mammals, many retrotransposons are de-repressed during zygotic genome activation (ZGA). However, their functions in early development remain elusive largely due to the challenge to simultaneously manipulate thousands of retrotransposon insertions in embryos. Here, we employed epigenome editing to perturb the long terminal repeat (LTR) MT2_Mm, a well-known ZGA and totipotency marker that exists in ~2667 insertions throughout the mouse genome. CRISPRi robustly repressed 2485 (~93%) MT2_Mm insertions and 1090 (~55%) insertions of the closely related MT2C_Mm in 2-cell embryos. Remarkably, such perturbation caused down-regulation of hundreds of ZGA genes at the 2-cell stage and embryonic arrest mostly at the morula stage. Mechanistically, MT2_Mm/MT2C_Mm primarily served as alternative ZGA promoters activated by OBOX proteins. Thus, through unprecedented large-scale epigenome editing, we addressed to what extent MT2_Mm/MT2C_Mm regulates ZGA and preimplantation development. Our approach could be adapted to systematically perturb retrotransposons in other mammalian embryos as it doesn't require transgenic animals.
Collapse
Affiliation(s)
- Jian Yang
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229, Ohio, USA
| | - Lauryn Cook
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229, Ohio, USA
| | - Zhiyuan Chen
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, 45229, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229, Ohio, USA
| |
Collapse
|
24
|
Flemr M, Schwaiger M, Hess D, Iesmantavicius V, Ahel J, Tuck AC, Mohn F, Bühler M. Mouse nuclear RNAi-defective 2 promotes splicing of weak 5' splice sites. RNA (NEW YORK, N.Y.) 2023; 29:1140-1165. [PMID: 37137667 PMCID: PMC10351895 DOI: 10.1261/rna.079465.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.
Collapse
Affiliation(s)
- Matyas Flemr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | - Josip Ahel
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Alex Charles Tuck
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Fabio Mohn
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
25
|
Baier AS, Gioacchini N, Eek P, Tan S, Peterson CL. Dual engagement of the nucleosomal acidic patches is essential for deposition of histone H2A.Z by SWR1C. RESEARCH SQUARE 2023:rs.3.rs-3050911. [PMID: 37546845 PMCID: PMC10402270 DOI: 10.21203/rs.3.rs-3050911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Numerous studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated key roles for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the acidic patch in the H2A.Z exchange reaction. Utilizing asymmetrically assembled nucleosomes, we demonstrate that the acidic patches on each face of the nucleosome are required for SWR1C-mediated dimer exchange, suggesting SWR1C engages the nucleosome in a "pincer-like" conformation, engaging both patches simultaneously. Loss of a single acidic patch results in loss of high affinity nucleosome binding and nucleosomal stimulation of ATPase activity. We identify a conserved arginine-rich motif within the Swc5 subunit that binds the acidic patch and is key for dimer exchange activity. In addition, our cryoEM structure of a Swc5-nucleosome complex suggests that promoter proximal, histone H2B ubiquitinylation may regulate H2A.Z deposition. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.
Collapse
Affiliation(s)
- Alexander S. Baier
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605
- Medical Scientist Training Program, T.H. Chan School of Medicine, University of Massachusetts
| | - Nathan Gioacchini
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605
- Interdisciplinary Graduate Program, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605
| | - Priit Eek
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Craig L. Peterson
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605
| |
Collapse
|
26
|
Smith CM, Grow EJ, Shadle SC, Cairns BR. Multiple repeat regions within mouse DUX recruit chromatin regulators to facilitate an embryonic gene expression program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534786. [PMID: 37034731 PMCID: PMC10081216 DOI: 10.1101/2023.03.29.534786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The embryonic transcription factor DUX regulates chromatin opening and gene expression in totipotent cleavage-stage mouse embryos, and its expression in embryonic stem cells promotes their conversion to 2-cell embryo-like cells (2CLCs) with extraembryonic potential. However, little is known regarding which domains within mouse DUX interact with particular chromatin and transcription regulators. Here, we reveal that the C-terminus of mouse DUX contains five uncharacterized ~100 amino acid (aa) repeats followed by an acidic 14 amino acid tail. Unexpectedly, structure-function approaches classify two repeats as 'active' and three as 'inactive' in cleavage/2CLC transcription program enhancement, with differences narrowed to a key 6 amino acid section. Our proximity dependent biotin ligation (BioID) approach identified factors selectively associated with active DUX repeat derivatives (including the 14aa 'tail'), including transcription and chromatin factors such as SWI/SNF (BAF) complex, as well as nucleolar factors that have been previously implicated in regulating the Dux locus. Finally, our mechanistic studies reveal cooperativity between DUX active repeats and the acidic tail in cofactor recruitment, DUX target opening, and transcription. Taken together, we provide several new insights into DUX structure-function, and mechanisms of chromatin and gene regulation.
Collapse
Affiliation(s)
- Christina M. Smith
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Edward J. Grow
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C. Shadle
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Grow EJ, Liu Y, Fan Z, Perisse IV, Patrick T, Regouski M, Shadle S, Polejaeva I, White KL, Cairns BR. Chromatin Reprogramming of In Vitro Fertilized and Somatic Cell Nuclear Transfer Bovine Embryos During Embryonic Genome Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536281. [PMID: 37090641 PMCID: PMC10120652 DOI: 10.1101/2023.04.10.536281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Reprogramming of the gamete into a developmentally competent embryo identity is a fundamental aspect of preimplantation development. One of the most important processes of this reprogramming is the transcriptional awakening during embryonic genome activation (EGA), which robustly occurs in fertilized embryos but is defective in most somatic cell nuclear transfer (SCNT) embryos. However, little is known about the genome-wide underlying chromatin landscape during EGA in SCNT embryos and how it differs from a fertilized embryo. By profiling open chromatin genome-wide in both types of bovine embryos, we find that SCNT embryos fail to reprogram a subset of the EGA gene targets that are normally activated in fertilized embryos. Importantly, a small number of transcription factor (TF) motifs explain most chromatin regions that fail to open in SCNT embryos suggesting that over-expression of a limited number of TFs may provide more robust reprogramming. One such TF, the zygotically-expressed bovine gene DUXC which is a homologue of EGA factors DUX/DUX4 in mouse/human, is alone capable of activating ∼84% of all EGA transcripts that fail to activate normally in SCNT embryos. Additionally, single-cell chromatin profiling revealed low intra-embryo heterogeneity but high inter-embryo heterogeneity in SCNT embryos and an uncoupling of cell division and open chromatin reprogramming during EGA. Surprisingly, our data also indicate that transcriptional defects may arise downstream of promoter chromatin opening in SCNT embryos, suggesting additional mechanistic insights into how and why transcription at EGA is dysregulated. We anticipate that our work will lead to altered SCNT protocols to increase the developmental competency of bovine SCNT embryos.
Collapse
|
28
|
Neumann H, Jeronimo C, Lucier JF, Pasquier E, Robert F, Wellinger RJ, Gaudreau L. The Histone Variant H2A.Z C-Terminal Domain Has Locus-Specific Differential Effects on H2A.Z Occupancy and Nucleosome Localization. Microbiol Spectr 2023; 11:e0255022. [PMID: 36815792 PMCID: PMC10100702 DOI: 10.1128/spectrum.02550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023] Open
Abstract
The incorporation of histone variant H2A.Z into nucleosomes creates specialized chromatin domains that regulate DNA-templated processes, such as gene transcription. In Saccharomyces cerevisiae, the diverging H2A.Z C terminus is thought to provide the H2A.Z exclusive functions. To elucidate the roles of this H2A.Z C terminus genome-wide, we used derivatives in which the C terminus was replaced with the corresponding region of H2A (ZA protein), or the H2A region plus a transcriptional activating peptide (ZA-rII'), with the intent of regenerating the H2A.Z-dependent regulation globally. The distribution of these H2A.Z derivatives indicates that the H2A.Z C-terminal region is crucial for both maintaining the occupation level of H2A.Z and the proper positioning of targeted nucleosomes. Interestingly, the specific contribution on incorporation efficiency versus nucleosome positioning varies enormously depending on the locus analyzed. Specifically, the role of H2A.Z in global transcription regulation relies on its C-terminal region. Remarkably, however, this mostly involves genes without a H2A.Z nucleosome in the promoter. Lastly, we demonstrate that the main chaperone complex which deposits H2A.Z to gene regulatory region (SWR1-C) is necessary to localize all H2A.Z derivatives at their specific loci, indicating that the differential association of these derivatives is not due to impaired interaction with SWR1-C. IMPORTANCE We provide evidence that the Saccharomyces cerevisiae C-terminal region of histone variant H2A.Z can mediate its special function in performing gene regulation by interacting with effector proteins and chaperones. These functional interactions allow H2A.Z not only to incorporate to very specific gene regulatory regions, but also to facilitate the gene expression process. To achieve this, we used a chimeric protein which lacks the native H2A.Z C-terminal region but contains an acidic activating region, a module that is known to interact with components of chromatin-remodeling entities and/or transcription modulators. We reasoned that because this activating region can fulfill the role of the H2A.Z C-terminal region, at least in part, the role of the latter would be to interact with these activating region targets.
Collapse
Affiliation(s)
- Hannah Neumann
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Celia Jeronimo
- Montreal Clinical Research Institute, Montréal, Quebec, Canada
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Emeline Pasquier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Robert
- Montreal Clinical Research Institute, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Gaudreau
- Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
29
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
30
|
Du C, Jiang J, Li Y, Yu M, Jin J, Chen S, Fan H, Macfarlan TS, Cao B, Sun MA. Regulation of endogenous retrovirus-derived regulatory elements by GATA2/3 and MSX2 in human trophoblast stem cells. Genome Res 2023; 33:197-207. [PMID: 36806146 PMCID: PMC10069462 DOI: 10.1101/gr.277150.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The placenta is an organ with extraordinary phenotypic diversity in eutherian mammals. Recent evidence suggests that numerous human placental enhancers are evolved from lineage-specific insertions of endogenous retroviruses (ERVs), yet the transcription factors (TFs) underlying their regulation remain largely elusive. Here, by first focusing on MER41, a primate-specific ERV family previously linked to placenta and innate immunity, we uncover the binding motifs of multiple crucial trophoblast TFs (GATA2/3, MSX2, GRHL2) in addition to innate immunity TFs STAT1 and IRF1. Integration of ChIP-seq data confirms the binding of GATA2/3, MSX2, and their related factors on the majority of MER41-derived enhancers in human trophoblast stem cells (TSCs). MER41-derived enhancers that are constitutively active in human TSCs are distinct from those activated upon interferon stimulation, which is determined by the binding of relevant TFs and their subfamily compositions. We further demonstrate that GATA2/3 and MSX2 have prevalent binding to numerous other ERV families - indicating their broad impact on ERV-derived enhancers. Functionally, the derepression of many syncytiotrophoblast genes after MSX2 knockdown is likely to be mediated by regulatory elements derived from ERVs - suggesting ERVs are also important for mediating transcriptional repression. Overall, this study characterizes the regulation of ERV-derived regulatory elements by GATA2/3, MSX2, and their cofactors in human TSCs, and provides mechanistic insights into the importance of ERVs in human trophoblast regulatory network.
Collapse
Affiliation(s)
- Cui Du
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jing Jiang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuzhuo Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Miao Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuai Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hairui Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China;
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; .,Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
31
|
Hsieh E, Janssens DH, Paddison PJ, Browne EP, Henikoff S, OhAinle M, Emerman M. A modular CRISPR screen identifies individual and combination pathways contributing to HIV-1 latency. PLoS Pathog 2023; 19:e1011101. [PMID: 36706161 PMCID: PMC9907829 DOI: 10.1371/journal.ppat.1011101] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Transcriptional silencing of latent HIV-1 proviruses entails complex and overlapping mechanisms that pose a major barrier to in vivo elimination of HIV-1. We developed a new latency CRISPR screening strategy, called Latency HIV-CRISPR which uses the packaging of guideRNA-encoding lentiviral vector genomes into the supernatant of budding virions as a direct readout of factors involved in the maintenance of HIV-1 latency. We developed a custom guideRNA library targeting epigenetic regulatory genes and paired the screen with and without a latency reversal agent-AZD5582, an activator of the non-canonical NFκB pathway-to examine a combination of mechanisms controlling HIV-1 latency. A component of the Nucleosome Acetyltransferase of H4 histone acetylation (NuA4 HAT) complex, ING3, acts in concert with AZD5582 to activate proviruses in J-Lat cell lines and in a primary CD4+ T cell model of HIV-1 latency. We found that the knockout of ING3 reduces acetylation of the H4 histone tail and BRD4 occupancy on the HIV-1 LTR. However, the combination of ING3 knockout accompanied with the activation of the non-canonical NFκB pathway via AZD5582 resulted in a dramatic increase in initiation and elongation of RNA Polymerase II on the HIV-1 provirus in a manner that is nearly unique among all cellular promoters.
Collapse
Affiliation(s)
- Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Patrick J. Paddison
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steve Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Molly OhAinle
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
32
|
Yu Y, Wang Y, Yao Z, Wang Z, Xia Z, Lee J. Comprehensive Survey of ChIP-Seq Datasets to Identify Candidate Iron Homeostasis Genes Regulated by Chromatin Modifications. Methods Mol Biol 2023; 2665:95-111. [PMID: 37166596 DOI: 10.1007/978-1-0716-3183-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vital biochemical reactions including photosynthesis to respiration require iron, which should be tightly regulated. Although increasing evidence reveals the importance of epigenetic regulation in gene expression and signaling, the role of histone modifications and chromatin remodeling in plant iron homeostasis is not well understood. In this study, we surveyed publicly available ChIP-seq datasets of Arabidopsis wild-type and mutants defective in key enzymes of histone modification and chromatin remodeling and compared the deposition of epigenetic marks on loci of genes involved in iron regulation. Based on the analysis, we compiled a comprehensive list of iron homeostasis genes with differential enrichment of various histone modifications. This report will provide a resource for future studies to investigate epigenetic regulatory mechanisms of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Yuxin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zhujun Yao
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Zijun Xia
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, China.
| |
Collapse
|
33
|
A giant virus genome is densely packaged by stable nucleosomes within virions. Mol Cell 2022; 82:4458-4470.e5. [PMID: 36370708 DOI: 10.1016/j.molcel.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
The two doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap 121 base pairs of DNA to form remarkably similar nucleosomes. By permeabilizing Marseillevirus virions and performing genome-wide nuclease digestion, chemical cleavage, and mass spectrometry assays, we find that the higher-order organization of Marseillevirus chromatin fundamentally differs from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions as closely abutted 121-bp DNA-wrapped cores without linker DNA or phasing along genes. Likewise, we observed that nucleosomes reconstituted onto multi-copy tandem repeats of a nucleosome-positioning sequence are tightly packed. Dense promiscuous packing of fully wrapped nucleosomes rather than "beads on a string" with genic punctuation represents a distinct mode of DNA packaging by histones. We suggest that doublet histones have evolved for viral genome protection and may resemble an early stage of histone differentiation leading to the eukaryotic octameric nucleosome.
Collapse
|
34
|
Fan J, Moreno AT, Baier AS, Loparo JJ, Peterson CL. H2A.Z deposition by SWR1C involves multiple ATP-dependent steps. Nat Commun 2022; 13:7052. [PMID: 36396651 PMCID: PMC9672302 DOI: 10.1038/s41467-022-34861-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Histone variant H2A.Z is a conserved feature of nucleosomes flanking protein-coding genes. Deposition of H2A.Z requires ATP-dependent replacement of nucleosomal H2A by a chromatin remodeler related to the multi-subunit enzyme, yeast SWR1C. How these enzymes use ATP to promote this nucleosome editing reaction remains unclear. Here we use single-molecule and ensemble methodologies to identify three ATP-dependent phases in the H2A.Z deposition reaction. Real-time analysis of single nucleosome remodeling events reveals an initial priming step that occurs after ATP addition that involves a combination of both transient DNA unwrapping from the nucleosome and histone octamer deformations. Priming is followed by rapid loss of histone H2A, which is subsequently released from the H2A.Z nucleosomal product. Surprisingly, rates of both priming and the release of the H2A/H2B dimer are sensitive to ATP concentration. This complex reaction pathway provides multiple opportunities to regulate timely and accurate deposition of H2A.Z at key genomic locations.
Collapse
Affiliation(s)
- Jiayi Fan
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Interdisciplinary Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Andrew T. Moreno
- grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Alexander S. Baier
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Medical Scientist Training Program, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Joseph J. Loparo
- grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Craig L. Peterson
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
35
|
Malik V, Zang R, Fuentes-Iglesias A, Huang X, Li D, Fidalgo M, Zhou H, Wang J. Comparative functional genomics identifies unique molecular features of EPSCs. Life Sci Alliance 2022; 5:5/11/e202201608. [PMID: 35961778 PMCID: PMC9378845 DOI: 10.26508/lsa.202201608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
The authors provide a comprehensive resource on proteomics, transcriptomic, and epigenetic level details of EPSCs to shed light on possible molecular pathways regulating their expanded pluripotency potential. Extended pluripotent or expanded potential stem cells (EPSCs) possess superior developmental potential to embryonic stem cells (ESCs). However, the molecular underpinning of EPSC maintenance in vitro is not well defined. We comparatively studied transcriptome, chromatin accessibility, active histone modification marks, and relative proteomes of ESCs and the two well-established EPSC lines to probe the molecular foundation underlying EPSC developmental potential. Despite some overlapping transcriptomic and chromatin accessibility features, we defined sets of molecular signatures that distinguish EPSCs from ESCs in transcriptional and translational regulation as well as metabolic control. Interestingly, EPSCs show similar reliance on pluripotency factors Oct4, Sox2, and Nanog for self-renewal as ESCs. Our study provides a rich resource for dissecting the regulatory network that governs the developmental potency of EPSCs and exploring alternative strategies to capture totipotent stem cells in culture.
Collapse
Affiliation(s)
- Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruge Zang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro Fuentes-Iglesias
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Dan Li
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel Fidalgo
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
36
|
Carcamo CC, Poyton MF, Ranjan A, Park G, Louder RK, Feng XA, Kim JM, Dzu T, Wu C, Ha T. ATP binding facilitates target search of SWR1 chromatin remodeler by promoting one-dimensional diffusion on DNA. eLife 2022; 11:e77352. [PMID: 35876491 PMCID: PMC9365391 DOI: 10.7554/elife.77352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.
Collapse
Affiliation(s)
- Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Matthew F Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Anand Ranjan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Robert K Louder
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xinyu A Feng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Thuc Dzu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
- Howard Hughes Medical InstituteBaltimoreUnited States
- Johns Hopkins University, Department of Biomedical EngineeringBaltimoreUnited States
- Johns Hopkins University, Department of BiophysicsBaltimoreUnited States
| |
Collapse
|
37
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
38
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
39
|
Chang NC, Rovira Q, Wells J, Feschotte C, Vaquerizas JM. Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression. Genome Res 2022; 32:1408-1423. [PMID: 34987056 PMCID: PMC9341512 DOI: 10.1101/gr.275655.121] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/30/2021] [Indexed: 12/02/2022]
Abstract
There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos and by the relative scarcity of active TEs in these organisms. The zebrafish is an outstanding model for the study of vertebrate development, and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whereas short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. Although two-thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage- and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched among transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.
Collapse
Affiliation(s)
- Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Quirze Rovira
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | - Jonathan Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
40
|
Ishida H, Kono H. Free Energy Landscape of H2A-H2B Displacement From Nucleosome. J Mol Biol 2022; 434:167707. [PMID: 35777463 DOI: 10.1016/j.jmb.2022.167707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Nucleosome reconstitution plays an important role in many cellular functions. As an initial step, H2A-H2B dimer displacement, which is accompanied by disruption of many of the interactions within the nucleosome, should occur. To understand how H2A-H2B dimer displacement occurs, an adaptively biased molecular dynamics (ABMD) simulation was carried out to generate a variety of displacements of the H2A-H2B dimer from the fully wrapped to partially unwrapped nucleosome structures. With regards to these structures, the free energy landscape of the dimer displacement was investigated using umbrella sampling simulations. We found that the main contributors to the free energy were the docking domain of H2A and the C-terminal of H4. There were various paths for the dimer displacement which were dependent on the extent of nucleosomal DNA wrapping, suggesting that modulation of the intra-nucleosomal interaction by external factors such as histone chaperons could control the path for the H2A-H2B dimer displacement. Key residues which contributed to the free energy have also been reported to be involved in the mutations and posttranslational modifications (PTMs) which are important for assembling and/or reassembling the nucleosome at the molecular level and are found in cancer cells at the phenotypic level. Our results give insight into how the H2A-H2B dimer displacement proceeds along various paths according to different interactions within the nucleosome.
Collapse
Affiliation(s)
- Hisashi Ishida
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 619-0215 Kizugawa, Kyoto, Japan
| |
Collapse
|
41
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
42
|
Abstract
One of the most fundamental questions in developmental biology is how one fertilized cell can give rise to a fully mature organism and how gene regulation governs this process. Precise spatiotemporal gene expression is required for development and is believed to be achieved through a complex interplay of sequence-specific information, epigenetic modifications, trans-acting factors, and chromatin folding. Here we review the role of chromatin folding during development, the mechanisms governing 3D genome organization, and how it is established in the embryo. Furthermore, we discuss recent advances and debated questions regarding the contribution of the 3D genome to gene regulation during organogenesis. Finally, we describe the mechanisms that can reshape the 3D genome, including disease-causing structural variations and the emerging view that transposable elements contribute to chromatin organization.
Collapse
Affiliation(s)
- Juliane Glaser
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| |
Collapse
|
43
|
Turkunova ME, Barbitoff YA, Serebryakova EA, Polev DE, Berseneva OS, Bashnina EB, Baranov VS, Glotov OS, Glotov AS. Molecular Genetics and Pathogenesis of the Floating Harbor Syndrome: Case Report of Long-Term Growth Hormone Treatment and a Literature Review. Front Genet 2022; 13:846101. [PMID: 35664296 PMCID: PMC9157637 DOI: 10.3389/fgene.2022.846101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Floating Harbor syndrome (FHS) is an extremely rare disorder, with slightly more than a hundred cases reported worldwide. FHS is caused by heterozygous mutations in the SRCAP gene; however, little is known about the pathogenesis of FHS or the effectiveness of its treatment. Methods: Whole-exome sequencing (WES) was performed for the definitive molecular diagnosis of the disease. Identified variants were validated using Sanger sequencing. In addition, systematic literature and public data on genetic variation in SRCAP and the effects of growth hormone (GH) treatment was conducted. Results: We herein report the first case of FHS in the Russian Federation. The male proband presented with most of the typical phenotypic features of FHS, including short stature, skeletal and facial features, delayed growth and bone age, high pitched voice, and intellectual impairment. The proband also had partial growth hormone deficiency. We report the history of treatment of the proband with GH, which resulted in modest improvement in growth prior to puberty. WES revealed a pathogenic c.7466C>G (p.Ser2489*) mutation in the last exon of the FHS-linked SRCAP gene. A systematic literature review and analysis of available genetic variation datasets highlighted an unusual distribution of pathogenic variants in SRCAP and confirmed the lack of pathogenicity for variants outside of exons 33 and 34. Finally, we suggested a new model of FHS pathogenesis which provides possible basis for the dominant negative nature of FHS-causing mutations and explains limited effects of GH treatment in FHS. Conclusion: Our findings expand the number of reported FHS cases and provide new insights into disease genetics and the efficiency of GH therapy for FHS patients.
Collapse
Affiliation(s)
- Mariia E. Turkunova
- Federal State Budget Institution of Higher Education “North-Western State Medical University Named After I.I Mechnikov” Under the Ministry of Public Health of the Russian Federation, Saint-Petersburg, Russia
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- Bioinformatics Institute, St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Elena A. Serebryakova
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- City Center for Medical Genetics, St. Petersburg, Russia
| | - Dmitrii E. Polev
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
| | - Olga S. Berseneva
- Federal State Budget Institution of Higher Education “North-Western State Medical University Named After I.I Mechnikov” Under the Ministry of Public Health of the Russian Federation, Saint-Petersburg, Russia
| | - Elena B. Bashnina
- Federal State Budget Institution of Higher Education “North-Western State Medical University Named After I.I Mechnikov” Under the Ministry of Public Health of the Russian Federation, Saint-Petersburg, Russia
| | - Vladislav S. Baranov
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
| | - Oleg S. Glotov
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- Children’s Scientific and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency, St. Petersburg, Russia
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O.Ott Research Institute of Obstetrics, Gynaecology and Reproductology, St. Petersburg, Russia
- Laboratory of Biobanking and Genomic Medicine of Institute of Translation Biomedicine, St. Petersburg State University, Saint-Petersburg, Russia
- *Correspondence: Andrey S. Glotov,
| |
Collapse
|
44
|
Acidic patch histone mutations and their effects on nucleosome remodeling. Biochem Soc Trans 2022; 50:907-919. [PMID: 35356970 DOI: 10.1042/bst20210773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Structural and biochemical studies have identified a histone surface on each side of the nucleosome disk termed 'the nucleosome acidic patch' that acts as a regulatory hub for the function of numerous nuclear proteins, including ATP-dependent chromatin complexes (remodelers). Four major remodeler subfamilies, SWI/SNF, ISWI, CHD, and INO80, have distinct modes of interaction with one or both nucleosome acidic patches, contributing to their specific remodeling outcomes. Genome-wide sequencing analyses of various human cancers have uncovered high-frequency mutations in histone coding genes, including some that map to the acidic patch. How cancer-related acidic patch histone mutations affect nucleosome remodeling is mainly unknown. Recent advances in in vitro chromatin reconstitution have enabled access to physiologically relevant nucleosomes, including asymmetric nucleosomes that possess both wild-type and acidic patch mutant histone copies. Biochemical investigation of these substrates revealed unexpected remodeling outcomes with far-reaching implications for alteration of chromatin structure. This review summarizes recent findings of how different remodeler families interpret wild-type and mutant acidic patches for their remodeling functions and discusses models for remodeler-mediated changes in chromatin landscapes as a consequence of acidic patch mutations.
Collapse
|
45
|
Poyton MF, Feng XA, Ranjan A, Lei Q, Wang F, Zarb JS, Louder RK, Park G, Jo MH, Ye J, Liu S, Ha T, Wu C. Coordinated DNA and histone dynamics drive accurate histone H2A.Z exchange. SCIENCE ADVANCES 2022; 8:eabj5509. [PMID: 35263135 PMCID: PMC8906749 DOI: 10.1126/sciadv.abj5509] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Nucleosomal histone H2A is exchanged for its variant H2A.Z by the SWR1 chromatin remodeler, but the mechanism and timing of histone exchange remain unclear. Here, we quantify DNA and histone dynamics during histone exchange in real time using a three-color single-molecule FRET assay. We show that SWR1 operates with timed precision to unwrap DNA with large displacement from one face of the nucleosome, remove H2A-H2B from the same face, and rewrap DNA, all within 2.3 s. This productive DNA unwrapping requires full SWR1 activation and differs from unproductive, smaller-scale DNA unwrapping caused by SWR1 binding alone. On an asymmetrically positioned nucleosome, SWR1 intrinsically senses long-linker DNA to preferentially exchange H2A.Z on the distal face as observed in vivo. The displaced H2A-H2B dimer remains briefly associated with the SWR1-nucleosome complex and is dissociated by histone chaperones. These findings reveal how SWR1 coordinates DNA unwrapping with histone dynamics to rapidly and accurately place H2A.Z at physiological sites on chromatin.
Collapse
Affiliation(s)
- Matthew F. Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xinyu A. Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Anand Ranjan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Qin Lei
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Feng Wang
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jasmin S. Zarb
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert K. Louder
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Giho Park
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Myung Hyun Jo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joseph Ye
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Sheng Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Barry RM, Sacco O, Mameri A, Stojaspal M, Kartsonis W, Shah P, De Ioannes P, Hofr C, Côté J, Sfeir A. Rap1 regulates TIP60 function during fate transition between two-cell-like and pluripotent states. Genes Dev 2022; 36:313-330. [PMID: 35210222 PMCID: PMC8973845 DOI: 10.1101/gad.349039.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.
Collapse
Affiliation(s)
- Raymond Mario Barry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Martin Stojaspal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - William Kartsonis
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pooja Shah
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, 612 65 Brno, Czech Republic
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
47
|
Xie SQ, Leeke BJ, Whilding C, Wagner RT, Garcia-Llagostera F, Low Y, Chammas P, Cheung NTF, Dormann D, McManus MT, Percharde M. Nucleolar-based Dux repression is essential for embryonic two-cell stage exit. Genes Dev 2022; 36:331-347. [PMID: 35273077 PMCID: PMC8973846 DOI: 10.1101/gad.349172.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Upon fertilization, the mammalian embryo must switch from dependence on maternal transcripts to transcribing its own genome, and in mice this involves the transient up-regulation of MERVL transposons and MERVL-driven genes at the two-cell stage. The mechanisms and requirement for MERVL and two-cell (2C) gene up-regulation are poorly understood. Moreover, this MERVL-driven transcriptional program must be rapidly shut off to allow two-cell exit and developmental progression. Here, we report that robust ribosomal RNA (rRNA) synthesis and nucleolar maturation are essential for exit from the 2C state. 2C-like cells and two-cell embryos show similar immature nucleoli with altered structure and reduced rRNA output. We reveal that nucleolar disruption via blocking RNA polymerase I activity or preventing nucleolar phase separation enhances conversion to a 2C-like state in embryonic stem cells (ESCs) by detachment of the MERVL activator Dux from the nucleolar surface. In embryos, nucleolar disruption prevents proper nucleolar maturation and Dux silencing and leads to two- to four-cell arrest. Our findings reveal an intriguing link between rRNA synthesis, nucleolar maturation, and gene repression during early development.
Collapse
Affiliation(s)
- Sheila Q Xie
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Bryony J Leeke
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Chad Whilding
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Ryan T Wagner
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Ferran Garcia-Llagostera
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - YiXuan Low
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Paul Chammas
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Nathan T-F Cheung
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Dirk Dormann
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| | - Michael T McManus
- University of California at San Francisco, San Francisco, California 91413, USA
| | - Michelle Percharde
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
48
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
49
|
Connell Z, Parnell TJ, McCullough LL, Hill CP, Formosa T. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II. Nucleic Acids Res 2021; 50:784-802. [PMID: 34967414 PMCID: PMC8789061 DOI: 10.1093/nar/gkab1262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.
Collapse
Affiliation(s)
- Zaily Connell
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Laura L McCullough
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Christopher P Hill
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| | - Tim Formosa
- Dept of Biochemistry, University of Utah School of Medicine 15 N Medical Drive, Rm 4100, Salt Lake City, UT 84112, USA
| |
Collapse
|
50
|
Kitagawa S, Kusakabe M, Takahashi D, Narimiya T, Nakabayashi Y, Seki M, Horigome C, Harata M. Analysis of the molecular evolution of histone variant H2A.Z using a linker-mediated complex strategy and yeast genetic complementation. Biosci Biotechnol Biochem 2021; 86:104-108. [PMID: 34718407 DOI: 10.1093/bbb/zbab190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 11/12/2022]
Abstract
The histone variant H2A.Z is deposited into chromatin by specific machinery and is required for genome functions. Using a linker-mediated complex strategy combined with yeast genetic complementation, we demonstrate evolutionary conservation of H2A.Z together with its chromatin incorporation and functions. This approach is applicable to the evolutionary analyses of proteins that form complexes with interactors.
Collapse
Affiliation(s)
- Saho Kitagawa
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Kusakabe
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Takahashi
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Takumi Narimiya
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Yu Nakabayashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Seki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Chihiro Horigome
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masahiko Harata
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|