1
|
Pizzey A, Sutcliffe C, Love JC, Akabuogu E, Rattray M, Ashe MP, Ashe HL. Exploiting the SunTag system to study the developmental regulation of mRNA translation. J Cell Sci 2025; 138:jcs263457. [PMID: 39989130 DOI: 10.1242/jcs.263457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The ability to quantitatively study mRNA translation using SunTag imaging is transforming our understanding of the translation process. Here, we expand the SunTag method to study new aspects of translation regulation in Drosophila. Repression of the maternal hunchback (hb) mRNA in the posterior of the Drosophila embryo is a textbook example of translational control. Using SunTag imaging to quantify translation of maternal SunTag-hb mRNAs, we show that repression in the posterior is leaky, as ∼5% of SunTag-hb mRNAs are translated. In the anterior of the embryo, the maternal and zygotic SunTag-hb mRNAs show similar translation efficiency despite having different untranslated regions (UTRs). We demonstrate that the SunTag-hb mRNA can be used as a reporter to study ribosome pausing at single-mRNA resolution, by exploiting the conserved xbp1 mRNA and A60 pausing sequences. Finally, we adapt the detector component of the SunTag system to visualise and quantify translation of the short gastrulation (sog) mRNA, encoding an essential secreted extracellular BMP regulator, at the endoplasmic reticulum in fixed and live embryos. Together, these tools will facilitate the future dissection of translation regulatory mechanisms during development.
Collapse
Affiliation(s)
- Alastair Pizzey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer C Love
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emmanuel Akabuogu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Mark P Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2
|
Ye F, Chen X, Li Y, Ju A, Sheng Y, Duan L, Zhang J, Zhang Z, Al-Rasheid KAS, Stover NA, Gao S. Comprehensive genome annotation of the model ciliate Tetrahymena thermophila by in-depth epigenetic and transcriptomic profiling. Nucleic Acids Res 2025; 53:gkae1177. [PMID: 39657783 PMCID: PMC11754650 DOI: 10.1093/nar/gkae1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages. To ascertain transcript orientation and transcription start/end sites, we incorporated data on epigenetic marks displaying enrichment towards the 5' end of gene bodies, including H3 lysine 4 tri-methylation (H3K4me3), histone variant H2A.Z, nucleosome positioning and N6-methyldeoxyadenine (6mA). Cap-seq data was subsequently applied to validate the accuracy of identified transcription start sites. Additionally, we integrated Nanopore direct RNA sequencing (DRS), strand-specific RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. Using a newly developed bioinformatic pipeline, coupled with manual curation and experimental validation, our work yielded substantial improvements to the current gene models, including the addition of 2,481 new genes, updates to 23,936 existing genes, and the incorporation of 8,339 alternatively spliced isoforms. Furthermore, novel UTR information was annotated for 26,687 high-confidence genes. Intriguingly, 20% of protein-coding genes were identified to have natural antisense transcripts characterized by high diversity in alternative splicing, thus offering insights into understanding transcriptional regulation. Our work will enhance the utility of Tetrahymena as a robust genetic toolkit for advancing biological research, and provides a promising framework for genome annotation in other eukaryotes.
Collapse
Affiliation(s)
- Fei Ye
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Yuan Li
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Aili Ju
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yalan Sheng
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Lili Duan
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiachen Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhe Zhang
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, IL 61625, USA
| | - Shan Gao
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Chadourne M, Griffith C, Xu X, Brennan E, Vera O, Mecozzi N, Wang K, Jaeger AM, Karreth FA. CDH3-AS1 antisense RNA enhances P-cadherin translation and acts as a tumor suppressor in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630428. [PMID: 39764055 PMCID: PMC11703152 DOI: 10.1101/2024.12.26.630428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Thousands of regulatory noncoding RNAs (ncRNAs) have been annotated; however, their functions in gene regulation and contributions to cancer formation remain poorly understood. To gain a better understanding of the influence of ncRNAs on gene regulation during melanoma progression, we mapped the landscape of ncRNAs in melanocytes and melanoma cells. Nearly half of deregulated genes in melanoma are ncRNAs, with antisense RNAs (asRNAs) comprising a large portion of deregulated ncRNAs. CDH3-AS1, the most significantly downregulated asRNA, overlaps the CDH3 gene, which encodes P-cadherin, a transmembrane glycoprotein involved in cell adhesion that was also reduced in melanoma. Overexpression of CDH3-AS1 increased cell aggregation and reduced xenograft tumor growth, mimicking the tumor-suppressive effects of CDH3. CDH3-AS1 interacted with CDH3 mRNA and enhanced P-cadherin protein levels. Interestingly, secondary structures at the CDH3 5' end regulated P-cadherin translation, and ribosome profiling revealed that CDH3-AS1 promotes ribosome occupancy at the CDH3 mRNA. Notably, ribosome occupancy was generally increased in mRNAs having cognate asRNA that are complementary to the 5'UTR. Taken together, this study revealed the CDH3-AS1-mediated enhancement of P-cadherin translation, underscoring the broader potential of asRNAs as regulators of protein-coding genes and their role in diseases like melanoma.
Collapse
Affiliation(s)
- Manon Chadourne
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Crystal Griffith
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Emily Brennan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Nicol Mecozzi
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Kaizhen Wang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Alex M. Jaeger
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
4
|
Zhang Q, Kang L, Yang H, Liu F, Wu X. Supervised analysis of alternative polyadenylation from single-cell and spatial transcriptomics data with spvAPA. Brief Bioinform 2024; 26:bbae720. [PMID: 39799000 PMCID: PMC11724721 DOI: 10.1093/bib/bbae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
Alternative polyadenylation (APA) is an important driver of transcriptome diversity that generates messenger RNA isoforms with distinct 3' ends. The rapid development of single-cell and spatial transcriptomic technologies opened up new opportunities for exploring APA data to discover hidden cell subpopulations invisible in conventional gene expression analysis. However, conventional gene-level analysis tools are not fully applicable to APA data, and commonly used unsupervised dimensionality reduction methods often disregard experimentally derived annotations such as cell type identities. Here, we proposed a supervised analytical framework termed spvAPA, specifically used for APA analysis from both single-cell and spatial transcriptomics data. First, an iterative imputation method based on weighted nearest neighbor was designed to recover missing APA signatures, by integrating both gene expression and APA modalities. Second, a supervised feature selection method based on sparse partial least squares discriminant analysis was devised to identify APA features distinguishing cell types or spatial morphologies. Additionally, spvAPA improves the visualization of high-dimensional data for discovering novel cell subtypes, which considers APA features and dual modalities of gene expression and APA. Evaluations across nine single-cell and spatial transcriptomics datasets demonstrate the effectiveness and applicability of spvAPA. spvAPA is available at https://github.com/BMILAB/spvAPA.
Collapse
Affiliation(s)
- Qinglong Zhang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Liping Kang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Haoran Yang
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Fei Liu
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| | - Xiaohui Wu
- Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China
| |
Collapse
|
5
|
Geisberg JV, Moqtaderi Z, Struhl K. Location of polyadenylation sites within 3' untranslated regions is linked to biological function in yeast. Genetics 2024; 228:iyae163. [PMID: 39383179 PMCID: PMC11631516 DOI: 10.1093/genetics/iyae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024] Open
Abstract
Expression of a typical yeast gene results in ∼50 3' mRNA isoforms that are distinguished by the locations of poly(A) sites within the 3' untranslated regions (3' UTRs). The location of poly(A) sites with respect to the translational termination codon varies considerably among genes, but whether this has any functional significance is poorly understood. Using hierarchical clustering of 3' UTRs, we identify eight classes of S. cerevisiae genes based on their poly(A) site locations. Genes involved in related biological functions (GO categories) are uniquely over-represented in six of these classes. Similar analysis of S. pombe genes reveals three classes of 3' UTRs, all of which show over-representation of functionally related genes. Remarkably, S. cerevisiae and S. pombe homologs share related patterns of poly(A) site locations. These observations suggest that the location of poly(A) sites within 3' UTRs has biological significance.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Werner A, Kanhere A, Wahlestedt C, Mattick JS. Natural antisense transcripts as versatile regulators of gene expression. Nat Rev Genet 2024; 25:730-744. [PMID: 38632496 DOI: 10.1038/s41576-024-00723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a major class of gene products that have central roles in cell and developmental biology. Natural antisense transcripts (NATs) are an important subset of lncRNAs that are expressed from the opposite strand of protein-coding and non-coding genes and are a genome-wide phenomenon in both eukaryotes and prokaryotes. In eukaryotes, a myriad of NATs participate in regulatory pathways that affect expression of their cognate sense genes. Recent developments in the study of NATs and lncRNAs and large-scale sequencing and bioinformatics projects suggest that whether NATs regulate expression, splicing, stability or translation of the sense transcript is influenced by the pattern and degrees of overlap between the sense-antisense pair. Moreover, epigenetic gene regulatory mechanisms prevail in somatic cells whereas mechanisms dependent on the formation of double-stranded RNA intermediates are prevalent in germ cells. The modulating effects of NATs on sense transcript expression make NATs rational targets for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - John S Mattick
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
8
|
Stocks J, Gilbert N. Nuclear RNA: a transcription-dependent regulator of chromatin structure. Biochem Soc Trans 2024; 52:1605-1615. [PMID: 39082979 PMCID: PMC11668306 DOI: 10.1042/bst20230787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Although the majority of RNAs are retained in the nucleus, their significance is often overlooked. However, it is now becoming clear that nuclear RNA forms a dynamic structure through interacting with various proteins that can influence the three-dimensional structure of chromatin. We review the emerging evidence for a nuclear RNA mesh or gel, highlighting the interplay between DNA, RNA and RNA-binding proteins (RBPs), and assessing the critical role of protein and RNA in governing chromatin architecture. We also discuss a proposed role for the formation and regulation of the nuclear gel in transcriptional control. We suggest that it may concentrate the transcriptional machinery either by direct binding or inducing RBPs to form microphase condensates, nanometre sized membraneless structures with distinct properties to the surrounding medium and an enrichment of particular macromolecules.
Collapse
Affiliation(s)
- Jon Stocks
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
9
|
Stroup EK, Ji Z. Delineating yeast cleavage and polyadenylation signals using deep learning. Genome Res 2024; 34:1066-1080. [PMID: 38914436 PMCID: PMC11368178 DOI: 10.1101/gr.278606.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
3'-end cleavage and polyadenylation is an essential process for eukaryotic mRNA maturation. In yeast species, the polyadenylation signals that recruit the processing machinery are degenerate and remain poorly characterized compared with the well-defined regulatory elements in mammals. Here we address this issue by developing deep learning models to deconvolute degenerate cis-regulatory elements and quantify their positional importance in mediating yeast poly(A) site formation, cleavage heterogeneity, and strength. In S. cerevisiae, cleavage heterogeneity is promoted by the depletion of U-rich elements around poly(A) sites as well as multiple occurrences of upstream UA-rich elements. Sites with high cleavage heterogeneity show overall lower strength. The site strength and tandem site distances modulate alternative polyadenylation (APA) under the diauxic stress. Finally, we develop a deep learning model to reveal the distinct motif configuration of S. pombe poly(A) sites, which show more precise cleavage than S. cerevisiae Altogether, our deep learning models provide unprecedented insights into poly(A) site formation of yeast species, and our results highlight divergent poly(A) signals across distantly related species.
Collapse
Affiliation(s)
- Emily Kunce Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60628, USA
| |
Collapse
|
10
|
Kowalski MH, Wessels HH, Linder J, Dalgarno C, Mascio I, Choudhary S, Hartman A, Hao Y, Kundaje A, Satija R. Multiplexed single-cell characterization of alternative polyadenylation regulators. Cell 2024; 187:4408-4425.e23. [PMID: 38925112 DOI: 10.1016/j.cell.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity regulated by the cleavage and polyadenylation (CPA) machinery. To better understand how these proteins govern polyA site choice, we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a framework to detect perturbation-dependent changes in polyadenylation and characterize modules of co-regulated polyA sites. We find groups of intronic polyA sites regulated by distinct components of the nuclear RNA life cycle, including elongation, splicing, termination, and surveillance. We train and validate a deep neural network (APARENT-Perturb) for tandem polyA site usage, delineating a cis-regulatory code that predicts perturbation response and reveals interactions between regulatory complexes. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation.
Collapse
Affiliation(s)
- Madeline H Kowalski
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York University Grossman School of Medicine, New York, NY, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| | - Johannes Linder
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Isabella Mascio
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Saket Choudhary
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Yuhan Hao
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA; Center for Genomics and Systems Biology, New York University, New York, NY, USA; New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Habib AM, Cox JJ, Okorokov AL. Out of the dark: the emerging roles of lncRNAs in pain. Trends Genet 2024; 40:694-705. [PMID: 38926010 DOI: 10.1016/j.tig.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024]
Abstract
The dark genome, the nonprotein-coding part of the genome, is replete with long noncoding RNAs (lncRNAs). These functionally versatile transcripts, with specific temporal and spatial expression patterns, are critical gene regulators that play essential roles in health and disease. In recent years, FAAH-OUT was identified as the first lncRNA associated with an inherited human pain insensitivity disorder. Several other lncRNAs have also been studied for their contribution to chronic pain and genome-wide association studies are frequently identifying single nucleotide polymorphisms that map to lncRNAs. For a long time overlooked, lncRNAs are coming out of the dark and into the light as major players in human pain pathways and as potential targets for new RNA-based analgesic medicines.
Collapse
Affiliation(s)
- Abdella M Habib
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - James J Cox
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| | - Andrei L Okorokov
- Wolfson Institute for Biomedical Research, Division of Medicine, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
12
|
Geisberg JV, Moqtaderi Z, Struhl K. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate. Proc Natl Acad Sci U S A 2024; 121:e2405827121. [PMID: 38748572 PMCID: PMC11127049 DOI: 10.1073/pnas.2405827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
13
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
14
|
Struhl K. How is polyadenylation restricted to 3'-untranslated regions? Yeast 2024; 41:186-191. [PMID: 38041485 PMCID: PMC11001523 DOI: 10.1002/yea.3915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Polyadenylation occurs at numerous sites within 3'-untranslated regions (3'-UTRs) but rarely within coding regions. How does Pol II travel through long coding regions without generating poly(A) sites, yet then permits promiscuous polyadenylation once it reaches the 3'-UTR? The cleavage/polyadenylation (CpA) machinery preferentially associates with 3'-UTRs, but it is unknown how its recruitment is restricted to 3'-UTRs during Pol II elongation. Unlike coding regions, 3'-UTRs have long AT-rich stretches of DNA that may be important for restricting polyadenylation to 3'-UTRs. Recognition of the 3'-UTR could occur at the DNA (AT-rich), RNA (AU-rich), or RNA:DNA hybrid (rU:dA- and/or rA:dT-rich) level. Based on the nucleic acid critical for 3'-UTR recognition, there are three classes of models, not mutually exclusive, for how the CpA machinery is selectively recruited to 3'-UTRs, thereby restricting where polyadenylation occurs: (1) RNA-based models suggest that the CpA complex directly (or indirectly through one or more intermediary proteins) binds long AU-rich stretches that are exposed after Pol II passes through these regions. (2) DNA-based models suggest that the AT-rich sequence affects nucleosome depletion or the elongating Pol II machinery, resulting in dissociation of some elongation factors and subsequent recruitment of the CpA machinery. (3) RNA:DNA hybrid models suggest that preferential destabilization of the Pol II elongation complex at rU:dA- and/or rA:dT-rich duplexes bridging the nucleotide addition and RNA exit sites permits preferential association of the CpA machinery with 3'-UTRs. Experiments to provide evidence for one or more of these models are suggested.
Collapse
Affiliation(s)
- Kevin Struhl
- Dept. Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
15
|
Graber JH, Hoskinson D, Liu H, Kaczmarek Michaels K, Benson PS, Maki NJ, Wilson CL, McGrath C, Puleo F, Pearson E, Kuehner JN, Moore C. Mutations in yeast Pcf11, a conserved protein essential for mRNA 3' end processing and transcription termination, elicit the Environmental Stress Response. Genetics 2024; 226:iyad199. [PMID: 37967370 PMCID: PMC10847720 DOI: 10.1093/genetics/iyad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.
Collapse
Affiliation(s)
- Joel H Graber
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Derick Hoskinson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Huiyun Liu
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Katarzyna Kaczmarek Michaels
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Peter S Benson
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Nathaniel J Maki
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | | | - Caleb McGrath
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Franco Puleo
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Erika Pearson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jason N Kuehner
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Claire Moore
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
16
|
Meng X, Li C, Hei Y, Zhou X, Zhou G. Comparative alternative polyadenylation profiles in differentiated adipocytes of subcutaneous and intramuscular fat tissue in cattle. Gene 2024; 894:147949. [PMID: 37918547 DOI: 10.1016/j.gene.2023.147949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/16/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Alternative polyadenylation (APA) is a key molecular mechanism involved in the post-transcriptional regulation of gene expression, which has been proven to play a critical role in cell differentiation. In the present study, we performed IVT-SAPAS sequencing to profile the dynamic changes of APA sites in bovine subcutaneous preadipocytes and intramuscular preadipocytes during adipogenesis. A total of 52621 high quality APA sites were identified in preadipocytes and adipocytes. Compared with preadipocytes, the increased usage of canonical AATAAA was observed in the cell-biased APA sites of adipocytes. Furthermore, 1933 and 2140 differentially expressed APA (DE-APA) sites, as well as 341 and 337 untranslated region-APA (UTR-APA) switching genes were identified in subcutaneous preadipocytes and intramuscular preadipocytes during adipogenesis, respectively. The UTR-APA switching genes showed divergent trends in preadipocytes, among which UTR-APA switching genes in intramuscular preadipocytes tended to use shorter 3'UTR for differentiation into mature adipocytes. APA events mediated by UTR-APA switching in intramuscular adipocytes were enriched in lipid synthesis and adipocyte differentiation. TRIB3, WWTR1, and INSIG1 played important roles in the differentiation of intramuscular preadipocytes. Briefly, our results provided new insights into understanding the mechanisms of bovine adipocyte differentiation.
Collapse
Affiliation(s)
- Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengping Li
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Yu Hei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Guoli Zhou
- College of Life Science, Liaocheng University, Liaocheng, China.
| |
Collapse
|
17
|
Liu L, Yu AM, Wang X, Soles LV, Teng X, Chen Y, Yoon Y, Sarkan KSK, Valdez MC, Linder J, England W, Spitale R, Yu Z, Marazzi I, Qiao F, Li W, Seelig G, Shi Y. The anticancer compound JTE-607 reveals hidden sequence specificity of the mRNA 3' processing machinery. Nat Struct Mol Biol 2023; 30:1947-1957. [PMID: 38087090 PMCID: PMC11663416 DOI: 10.1038/s41594-023-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
JTE-607 is an anticancer and anti-inflammatory compound and its active form, compound 2, directly binds to and inhibits CPSF73, the endonuclease for the cleavage step in pre-messenger RNA (pre-mRNA) 3' processing. Surprisingly, compound 2-mediated inhibition of pre-mRNA cleavage is sequence specific and the drug sensitivity is predominantly determined by sequences flanking the cleavage site (CS). Using massively parallel in vitro assays, we identified key sequence features that determine drug sensitivity. We trained a machine learning model that can predict poly(A) site (PAS) relative sensitivity to compound 2 and provide the molecular basis for understanding the impact of JTE-607 on PAS selection and transcription termination genome wide. We propose that CPSF73 and associated factors bind to the CS region in a sequence-dependent manner and the interaction affinity determines compound 2 sensitivity. These results have not only elucidated the mechanism of action of JTE-607, but also unveiled an evolutionarily conserved sequence specificity of the mRNA 3' processing machinery.
Collapse
Affiliation(s)
- Liang Liu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Virus Research, University of California, Irvine, Irvine, CA, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA, USA
| | - Xiuye Wang
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Guangzhou Laboratory, Guangdong, China
| | - Lindsey V Soles
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Xueyi Teng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yiling Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yoseop Yoon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kristianna S K Sarkan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Marielle Cárdenas Valdez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Johannes Linder
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Whitney England
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Robert Spitale
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Zhaoxia Yu
- Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Feng Qiao
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Seattle, WA, USA.
- Paul G Allen School of Computer Science and Engineering, University of Washington, Seattle, Seattle, WA, USA.
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
18
|
Moon Y, Burri D, Zavolan M. Identification of experimentally-supported poly(A) sites in single-cell RNA-seq data with SCINPAS. NAR Genom Bioinform 2023; 5:lqad079. [PMID: 37705828 PMCID: PMC10495540 DOI: 10.1093/nargab/lqad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Alternative polyadenylation is a main driver of transcriptome diversity in mammals, generating transcript isoforms with different 3' ends via cleavage and polyadenylation at distinct polyadenylation (poly(A)) sites. The regulation of cell type-specific poly(A) site choice is not completely resolved, and requires quantitative poly(A) site usage data across cell types. 3' end-based single-cell RNA-seq can now be broadly used to obtain such data, enabling the identification and quantification of poly(A) sites with direct experimental support. We propose SCINPAS, a computational method to identify poly(A) sites from scRNA-seq datasets. SCINPAS modifies the read deduplication step to favor the selection of distal reads and extract those with non-templated poly(A) tails. This approach improves the resolution of poly(A) site recovery relative to standard software. SCINPAS identifies poly(A) sites in genic and non-genic regions, providing complementary information relative to other tools. The workflow is modular, and the key read deduplication step is general, enabling the use of SCINPAS in other typical analyses of single cell gene expression. Taken together, we show that SCINPAS is able to identify experimentally-supported, known and novel poly(A) sites from 3' end-based single-cell RNA sequencing data.
Collapse
Affiliation(s)
- Youngbin Moon
- Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dominik Burri
- Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
19
|
Goguen EC, Brow DA. Domains and residues of the Saccharomyces cerevisiae hnRNP protein Hrp1 important for transcriptional autoregulation and noncoding RNA termination. Genetics 2023; 225:iyad134. [PMID: 37467478 PMCID: PMC10471224 DOI: 10.1093/genetics/iyad134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Proteins that bind the nascent transcript exiting RNA polymerase II can regulate transcription elongation. The essential Saccharomyces cerevisiae hnRNP protein Hrp1 is one such protein and participates in both cleavage and polyadenylation-coupled and Nrd1-Nab3-Sen1-dependent RNA polymerase II termination. Prior evidence that Hrp1 is a positive RNA polymerase II elongation factor suggests that its release from the elongation complex promotes termination. Here we report the effects of deletions and substitutions in Hrp1 on its autoregulation via an Nrd1-Nab3-Sen1-dependent transcription attenuator in the 5'-UTR of its mRNA and on the function of an Hrp1-dependent Nrd1-Nab3-Sen1 terminator in the SNR82 snoRNA gene. Deletion of either of two central RNA recognition motifs or either of the flanking low-sequence complexity domains is lethal. Smaller, viable deletions in the amino-terminal low-sequence complexity domain cause readthrough of both the HRP1 attenuator and SNR82 terminator. Substitutions that cause readthrough localized mostly to the RNA recognition motifs, although not always to the RNA-binding face. We found that autoregulation of Hrp1 mRNA synthesis is surprisingly robust, overcoming the expected lethal effects of the start codon and frameshift mutations via overexpression of the mRNA up to 40-fold. Our results suggest a model in which binding of attenuator or terminator elements in the nascent transcript by RNA recognition motifs 1 and 2 disrupts interactions between RNA recognition motif 2 and the RNA polymerase II elongation complex, increasing its susceptibility to termination.
Collapse
Affiliation(s)
- Emma C Goguen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
20
|
Höpfler M, Hegde RS. Control of mRNA fate by its encoded nascent polypeptide. Mol Cell 2023; 83:2840-2855. [PMID: 37595554 PMCID: PMC10501990 DOI: 10.1016/j.molcel.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Cells tightly regulate mRNA processing, localization, and stability to ensure accurate gene expression in diverse cellular states and conditions. Most of these regulatory steps have traditionally been thought to occur before translation by the action of RNA-binding proteins. Several recent discoveries highlight multiple co-translational mechanisms that modulate mRNA translation, localization, processing, and stability. These mechanisms operate by recognition of the nascent protein, which is necessarily coupled to its encoding mRNA during translation. Hence, the distinctive sequence or structure of a particular nascent chain can recruit recognition factors with privileged access to the corresponding mRNA in an otherwise crowded cellular environment. Here, we draw on both well-established and recent examples to provide a conceptual framework for how cells exploit nascent protein recognition to direct mRNA fate. These mechanisms allow cells to dynamically and specifically regulate their transcriptomes in response to changes in cellular states to maintain protein homeostasis.
Collapse
|
21
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
22
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
23
|
Zhang F, Chen L, Li W, Yang C, Xiong M, Zhou M, Kazobinka G, Zhao J, Hou T. Lengthening of 3' Untranslated Regions of mRNAs by Alternative Polyadenylation Is Associated With Tumor Progression and Poor Prognosis of Clear Cell Renal Cell Carcinoma. J Transl Med 2023; 103:100125. [PMID: 36889542 DOI: 10.1016/j.labinv.2023.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Alternative polyadenylation (APA) is emerging as a major posttranscriptional mechanism for gene regulation in cancer. A prevailing hypothesis is that shortening of the 3' untranslated region (3'UTR) increases oncoprotein expression because of the loss of miRNA-binding sites (MBSs). We showed that the longer 3'UTR is associated with a more advanced tumor stage in patients with clear cell renal cell carcinoma (ccRCC). More surprisingly, 3'UTR shortening is correlated with better overall survival in patients with ccRCC. Furthermore, we identified a mechanism by which longer transcripts lead to increased oncogenic protein and decreased tumor-suppressive protein expression compared to the shorter transcripts. In our model, shortening of 3'UTRs by APA may increase the mRNA stability of the majority of the potential tumor-suppressor genes due to the loss of MBSs and AU-rich elements (AREs). Unlike potential tumor-suppressor genes, the potential oncogenes display much lower MBS and ARE density and globally much higher m6A density in distal 3'UTRs. As a result, 3'UTRs shortening decreases the mRNA stability of potential oncogenes and enhances the mRNA stability of potential tumor-suppressor genes. Our findings highlight the cancer-specific pattern of APA regulation and extend our understanding of the mechanism of APA-mediated 3'UTR length changes in cancer biology.
Collapse
Affiliation(s)
- Futian Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Urology, Nanyang Central Hospital, Nanyang, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Yang
- Department of Gynecology and Obstetrics, Women and Children Hospital of Guangdong Province, Guangzhou, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menghao Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gallina Kazobinka
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Urology Unit, La Nouvelle Polyclinique Centrale de Bujumbura, Bujumbura, Burundi
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
24
|
An antisense RNA promotes breast cancer metastasis via upregulation of NQO1. NATURE CANCER 2023; 4:592-593. [PMID: 37188796 DOI: 10.1038/s43018-023-00555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
25
|
Geisberg JV, Moqtaderi Z, Struhl K. Condition-specific 3' mRNA isoform half-lives and stability elements in yeast. Proc Natl Acad Sci U S A 2023; 120:e2301117120. [PMID: 37094136 PMCID: PMC10161003 DOI: 10.1073/pnas.2301117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Alternative polyadenylation generates numerous 3' mRNA isoforms that can differ in their stability, structure, and function. These isoforms can be used to map mRNA stabilizing and destabilizing elements within 3' untranslated regions (3'UTRs). Here, we examine how environmental conditions affect 3' mRNA isoform turnover and structure in yeast cells on a transcriptome scale. Isoform stability broadly increases when cells grow more slowly, with relative half-lives of most isoforms being well correlated across multiple conditions. Surprisingly, dimethyl sulfate probing reveals that individual 3' isoforms have similar structures across different conditions, in contrast to the extensive structural differences that can exist between closely related isoforms in an individual condition. Unexpectedly, most mRNA stabilizing and destabilizing elements function only in a single growth condition. The genes associated with some classes of condition-specific stability elements are enriched for different functional categories, suggesting that regulated mRNA stability might contribute to adaptation to different growth environments. Condition-specific stability elements do not result in corresponding condition-specific changes in steady-state mRNA isoform levels. This observation is consistent with a compensatory mechanism between polyadenylation and stability, and it suggests that condition-specific mRNA stability elements might largely reflect condition-specific regulation of mRNA 3' end formation.
Collapse
Affiliation(s)
- Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
26
|
Han WY, Hou BH, Lee WC, Chan TC, Lin TH, Chen HM. Arabidopsis mRNA decay landscape shaped by XRN 5'-3' exoribonucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:895-913. [PMID: 36987558 DOI: 10.1111/tpj.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 05/27/2023]
Abstract
5'-3' exoribonucleases (XRNs) play crucial roles in the control of RNA processing, quality, and quantity in eukaryotes. Although genome-wide profiling of RNA decay fragments is now feasible, how XRNs shape the plant mRNA degradome remains elusive. Here, we profiled and analyzed the RNA degradomes of Arabidopsis wild-type and mutant plants with defects in XRN activity. Deficiency of nuclear XRN3 or cytoplasmic XRN4 activity but not nuclear XRN2 activity greatly altered Arabidopsis mRNA decay profiles. Short excised linear introns and cleaved pre-mRNA fragments downstream of polyadenylation sites were polyadenylated and stabilized in the xrn3 mutant, demonstrating the unique function of XRN3 in the removal of cleavage remnants from pre-mRNA processing. Further analysis of stabilized XRN3 substrates confirmed that pre-mRNA 3' end cleavage frequently occurs after adenosine. The most abundant decay intermediates in wild-type plants include not only the primary substrates of XRN4 but also the products of XRN4-mediated cytoplasmic decay. An increase in decay intermediates with 5' ends upstream of a consensus motif in the xrn4 mutant suggests that there is an endonucleolytic cleavage mechanism targeting the 3' untranslated regions of many Arabidopsis mRNAs. However, analysis of decay fragments in the xrn4 mutant indicated that, except for microRNA-directed slicing, endonucleolytic cleavage events in the coding sequence rarely result in major decay intermediates. Together, these findings reveal the major substrates and products of nuclear and cytoplasmic XRNs along Arabidopsis transcripts and provide a basis for precise interpretation of RNA degradome data.
Collapse
Affiliation(s)
- Wan-Yin Han
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tze-Ching Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Hsiang Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University, Taichung 40227, Taiwan, and Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
27
|
Culbertson B, Garcia K, Markett D, Asgharian H, Chen L, Fish L, Navickas A, Yu J, Woo B, Nanda AS, Choi B, Zhou S, Rabinowitz J, Goodarzi H. A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression. NATURE CANCER 2023; 4:682-698. [PMID: 37169843 PMCID: PMC10212767 DOI: 10.1038/s43018-023-00554-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Antisense RNAs are ubiquitous in human cells, yet their role is largely unexplored. Here we profiled antisense RNAs in the MDA-MB-231 breast cancer cell line and its highly lung metastatic derivative. We identified one antisense RNA that drives cancer progression by upregulating the redox enzyme NADPH quinone dehydrogenase 1 (NQO1), and named it NQO1-AS. Knockdown of either NQO1 or NQO1-AS reduced lung colonization in a mouse model, and investigation into the role of NQO1 indicated that it is broadly protective against oxidative damage and ferroptosis. Breast cancer cells in the lung are dependent on this pathway, and this dependence can be exploited therapeutically by inducing ferroptosis while inhibiting NQO1. Together, our findings establish a role for NQO1-AS in the progression of breast cancer by regulating its sense mRNA post-transcriptionally. Because breast cancer predominantly affects females, the disease models used in this study are of female origin and the results are primarily applicable to females.
Collapse
Affiliation(s)
- Bruce Culbertson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hosseinali Asgharian
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Woo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun Scott Nanda
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua Rabinowitz
- Department of Chemistry, Lewis Sigler Institute for Integrative Genomics, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
28
|
Liu L, Yu AM, Wang X, Soles LV, Chen Y, Yoon Y, Sarkan KSK, Valdez MC, Linder J, Marazzi I, Yu Z, Qiao F, Li W, Seelig G, Shi Y. The anti-cancer compound JTE-607 reveals hidden sequence specificity of the mRNA 3' processing machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536453. [PMID: 37090613 PMCID: PMC10120630 DOI: 10.1101/2023.04.11.536453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
JTE-607 is a small molecule compound with anti-inflammation and anti-cancer activities. Upon entering the cell, it is hydrolyzed to Compound 2, which directly binds to and inhibits CPSF73, the endonuclease for the cleavage step in pre-mRNA 3' processing. Although CPSF73 is universally required for mRNA 3' end formation, we have unexpectedly found that Compound 2- mediated inhibition of pre-mRNA 3' processing is sequence-specific and that the sequences flanking the cleavage site (CS) are a major determinant for drug sensitivity. By using massively parallel in vitro assays, we have measured the Compound 2 sensitivities of over 260,000 sequence variants and identified key sequence features that determine drug sensitivity. A machine learning model trained on these data can predict the impact of JTE-607 on poly(A) site (PAS) selection and transcription termination genome-wide. We propose a biochemical model in which CPSF73 and other mRNA 3' processing factors bind to RNA of the CS region in a sequence-specific manner and the affinity of such interaction determines the Compound 2 sensitivity of a PAS. As the Compound 2-resistant CS sequences, characterized by U/A-rich motifs, are prevalent in PASs from yeast to human, the CS region sequence may have more fundamental functions beyond determining drug resistance. Together, our study not only characterized the mechanism of action of a compound with clinical implications, but also revealed a previously unknown and evolutionarily conserved sequence-specificity of the mRNA 3' processing machinery.
Collapse
|
29
|
Alternative Polyadenylation Is a Novel Strategy for the Regulation of Gene Expression in Response to Stresses in Plants. Int J Mol Sci 2023; 24:ijms24054727. [PMID: 36902157 PMCID: PMC10003127 DOI: 10.3390/ijms24054727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Precursor message RNA requires processing to generate mature RNA. Cleavage and polyadenylation at the 3'-end in the maturation of mRNA is one of key processing steps in eukaryotes. The polyadenylation (poly(A)) tail of mRNA is an essential feature that is required to mediate its nuclear export, stability, translation efficiency, and subcellular localization. Most genes have at least two mRNA isoforms via alternative splicing (AS) or alternative polyadenylation (APA), which increases the diversity of transcriptome and proteome. However, most previous studies have focused on the role of alternative splicing on the regulation of gene expression. In this review, we summarize the recent advances concerning APA in the regulation of gene expression and in response to stresses in plants. We also discuss the mechanisms for the regulation of APA for plants in the adaptation to stress responses, and suggest that APA is a novel strategy for the adaptation to environmental changes and response to stresses in plants.
Collapse
|
30
|
Kowalski MH, Wessels HH, Linder J, Choudhary S, Hartman A, Hao Y, Mascio I, Dalgarno C, Kundaje A, Satija R. CPA-Perturb-seq: Multiplexed single-cell characterization of alternative polyadenylation regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527751. [PMID: 36798324 PMCID: PMC9934614 DOI: 10.1101/2023.02.09.527751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Most mammalian genes have multiple polyA sites, representing a substantial source of transcript diversity that is governed by the cleavage and polyadenylation (CPA) regulatory machinery. To better understand how these proteins govern polyA site choice we introduce CPA-Perturb-seq, a multiplexed perturbation screen dataset of 42 known CPA regulators with a 3' scRNA-seq readout that enables transcriptome-wide inference of polyA site usage. We develop a statistical framework to specifically identify perturbation-dependent changes in intronic and tandem polyadenylation, and discover modules of co-regulated polyA sites exhibiting distinct functional properties. By training a multi-task deep neural network (APARENT-Perturb) on our dataset, we delineate a cis-regulatory code that predicts responsiveness to perturbation and reveals interactions between distinct regulatory complexes. Finally, we leverage our framework to re-analyze published scRNA-seq datasets, identifying new regulators that affect the relative abundance of alternatively polyadenylated transcripts, and characterizing extensive cellular heterogeneity in 3' UTR length amongst antibody-producing cells. Our work highlights the potential for multiplexed single-cell perturbation screens to further our understanding of post-transcriptional regulation in vitro and in vivo.
Collapse
Affiliation(s)
- Madeline H. Kowalski
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Johannes Linder
- Department of Genetics, Stanford University, Stanford USA
- Department of Computer Science, Stanford University, Stanford USA
| | - Saket Choudhary
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Yuhan Hao
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford USA
- Department of Computer Science, Stanford University, Stanford USA
| | - Rahul Satija
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
31
|
Matsuo Y, Inada T. Co-Translational Quality Control Induced by Translational Arrest. Biomolecules 2023; 13:biom13020317. [PMID: 36830686 PMCID: PMC9953336 DOI: 10.3390/biom13020317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Genetic mutations, mRNA processing errors, and lack of availability of charged tRNAs sometimes slow down or completely stall translating ribosomes. Since an incomplete nascent chain derived from stalled ribosomes may function anomalously, such as by forming toxic aggregates, surveillance systems monitor every step of translation and dispose of such products to prevent their accumulation. Over the past decade, yeast models with powerful genetics and biochemical techniques have contributed to uncovering the mechanism of the co-translational quality control system, which eliminates the harmful products generated from aberrant translation. We here summarize the current knowledge of the molecular mechanism of the co-translational quality control systems in yeast, which eliminate the incomplete nascent chain, improper mRNAs, and faulty ribosomes to maintain cellular protein homeostasis.
Collapse
|
32
|
Xiao S, Gu H, Deng L, Yang X, Qiao D, Zhang X, Zhang T, Yu T. Relationship between NUDT21 mediated alternative polyadenylation process and tumor. Front Oncol 2023; 13:1052012. [PMID: 36816917 PMCID: PMC9933127 DOI: 10.3389/fonc.2023.1052012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3' end of RNA polymerase II transcripts from over 60% of human genes. APA and microRNA regulation are both mechanisms of post-transcriptional regulation of gene expression. As a key molecular mechanism, Alternative polyadenylation often results in mRNA isoforms with the same coding sequence but different lengths of 3' UTRs, while microRNAs regulate gene expression by binding to specific mRNA 3' UTRs. Nudix Hydrolase 21 (NUDT21) is a crucial mediator involved in alternative polyadenylation (APA). Different studies have reported a dual role of NUDT21 in cancer (both oncogenic and tumor suppressor). The present review focuses on the functions of APA, miRNA and their interaction and roles in development of different types of tumors.NUDT21 mediated 3' UTR-APA changes can be used to generate specific signatures that can be used as potential biomarkers in development and disease. Due to the emerging role of NUDT21 as a regulator of the aforementioned RNA processing events, modulation of NUDT21 levels may be a novel viable therapeutic approach.
Collapse
Affiliation(s)
- Shan Xiao
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China
| | - Huan Gu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Deng
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China
| | - Xiongtao Yang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Qiao
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Zhang
- Department of Anesthesia, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Zhang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Tao Yu, ; Tian Zhang,
| | - Tao Yu
- Department of Oncology, Affiliated Hospital of Southwest Medical University of China, Luzhou, China,Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Tao Yu, ; Tian Zhang,
| |
Collapse
|
33
|
Deubiquitinase OTUD1 Resolves Stalled Translation on polyA and Rare Codon Rich mRNAs. Mol Cell Biol 2022; 42:e0026522. [PMID: 36445135 PMCID: PMC9753717 DOI: 10.1128/mcb.00265-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OTUD1 is a deubiquitinating enzyme involved in many cellular processes including cancer and innate, immune signaling pathways. Here, we perform a proximity labeling-based interactome study that identifies OTUD1 largely present in the translation and RNA metabolism protein complexes. Biochemical analysis validates OTUD1 association with ribosome subunits, elongation factors and the E3 ubiquitin ligase ZNF598 but not with the translation initiation machinery. OTUD1 catalytic activity suppresses polyA triggered ribosome stalling through inhibition of ZNF598-mediated RPS10 ubiquitination and stimulates formation of polysomes. Finally, analysis of gene expression suggests that OTUD1 regulates the stability of rare codon rich mRNAs by antagonizing ZNF598.
Collapse
|
34
|
Muntyanu A, Le M, Ridha Z, O’Brien E, Litvinov IV, Lefrançois P, Netchiporouk E. Novel role of long non-coding RNAs in autoimmune cutaneous disease. J Cell Commun Signal 2022; 16:487-504. [PMID: 34346026 PMCID: PMC9733767 DOI: 10.1007/s12079-021-00639-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic autoimmune rheumatic diseases (SARDs) are a heterogeneous group of chronic multisystem inflammatory disorders that are thought to have a complex pathophysiology, which is not yet fully understood. Recently, the role of non-coding RNAs, including long non-coding RNA (lncRNA), has been of particular interest in the pathogenesis of SARDs. We aimed to summarize the potential roles of lncRNA in SARDs affecting the skin including, systemic sclerosis (SSc), dermatomyositis (DM) and cutaneous lupus erythematosus (CLE). We conducted a narrative review summarizing original articles published until July 19, 2021, regarding lncRNA associated with SSc, DM, and CLE. Several lncRNAs were hypothesized to play an important role in disease pathogenesis of SSc, DM and CLE. In SSc, Negative Regulator of IFN Response (NRIR) was thought to modulate Interferon (IFN) response in monocytes, anti-sense gene to X-inactivation specific transcript (TSIX) to regulate increased collagen stability, HOX transcript antisense RNA (HOTAIR) to increase numbers of myofibroblasts, OTUD6B-Anti-Sense RNA 1 to decrease fibroblast apoptosis, ncRNA00201 to regulate pathways in SSc pathogenesis and carcinogenesis, H19X potentiating TGF-β-driven extracellular matrix production, and finally PSMB8-AS1 potentiates IFN response. In DM, linc-DGCR6-1 expression was hypothesized to target the USP18 protein, a type 1 IFN-inducible protein that is considered a key regulator of IFN signaling. Additionally, AL136018.1 is suggested to regulate the expression Cathepsin G, which increases the permeability of vascular endothelial cells and the chemotaxis of inflammatory cells in peripheral blood and muscle tissue in DM. Lastly, lnc-MIPOL1-6 and lnc-DDX47-3 in discoid CLE were thought to be associated with the expression of chemokines, which are significant in Th1 mediated disease. In this review, we summarize the key lncRNAs that may drive pathogenesis of these connective tissue diseases and could potentially serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Anastasiya Muntyanu
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Michelle Le
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Zainab Ridha
- Faculty of Medicine, Université de Laval, Québec, QC Canada
| | - Elizabeth O’Brien
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Ivan V. Litvinov
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Philippe Lefrançois
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| | - Elena Netchiporouk
- Division Dermatology, McGill University Health Centre, 1650 Cedar Ave, Montreal, QC H3G 1A4 Canada
| |
Collapse
|
35
|
Geisberg JV, Moqtaderi Z, Fong N, Erickson B, Bentley DL, Struhl K. Nucleotide-level linkage of transcriptional elongation and polyadenylation. eLife 2022; 11:e83153. [PMID: 36421680 PMCID: PMC9721619 DOI: 10.7554/elife.83153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative polyadenylation yields many mRNA isoforms whose 3' termini occur disproportionately in clusters within 3' untranslated regions. Previously, we showed that profiles of poly(A) site usage are regulated by the rate of transcriptional elongation by RNA polymerase (Pol) II (Geisberg et al., 2020). Pol II derivatives with slow elongation rates confer an upstream-shifted poly(A) profile, whereas fast Pol II strains confer a downstream-shifted poly(A) profile. Within yeast isoform clusters, these shifts occur steadily from one isoform to the next across nucleotide distances. In contrast, the shift between clusters - from the last isoform of one cluster to the first isoform of the next - is much less pronounced, even over large distances. GC content in a region 13-30 nt downstream from isoform clusters correlates with their sensitivity to Pol II elongation rate. In human cells, the upstream shift caused by a slow Pol II mutant also occurs continuously at single nucleotide resolution within clusters but not between them. Pol II occupancy increases just downstream of poly(A) sites, suggesting a linkage between reduced elongation rate and cluster formation. These observations suggest that (1) Pol II elongation speed affects the nucleotide-level dwell time allowing polyadenylation to occur, (2) poly(A) site clusters are linked to the local elongation rate, and hence do not arise simply by intrinsically imprecise cleavage and polyadenylation of the RNA substrate, (3) DNA sequence elements can affect Pol II elongation and poly(A) profiles, and (4) the cleavage/polyadenylation and Pol II elongation complexes are spatially, and perhaps physically, coupled so that polyadenylation occurs rapidly upon emergence of the nascent RNA from the Pol II elongation complex.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| | - Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Benjamin Erickson
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - David L Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
36
|
Navigating the Multiverse of Antisense RNAs: The Transcription- and RNA-Dependent Dimension. Noncoding RNA 2022; 8:ncrna8060074. [PMID: 36412909 PMCID: PMC9680235 DOI: 10.3390/ncrna8060074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence accumulated over the past decades shows that the number of identified antisense transcripts is continuously increasing, promoting them from transcriptional noise to real genes with specific functions. Indeed, recent studies have begun to unravel the complexity of the antisense RNA (asRNA) world, starting from the multidimensional mechanisms that they can exert in physiological and pathological conditions. In this review, we discuss the multiverse of the molecular functions of asRNAs, describing their action through transcription-dependent and RNA-dependent mechanisms. Then, we report the workflow and methodologies to study and functionally characterize single asRNA candidates.
Collapse
|
37
|
Ono Y, Bono H. Exploratory meta-analysis of hypoxic transcriptomes using a precise transcript reference sequence set. Life Sci Alliance 2022; 6:6/1/e202201518. [PMID: 36216516 PMCID: PMC9553900 DOI: 10.26508/lsa.202201518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Gene expression studies are intrinsically biased, with many studies influenced by concomitant information such as gene-disease associations. This limitation can be overcome using a data-driven analysis approach without relying on ancillary information. The FANTOM CAGE-Associated Transcriptome project provides a comprehensive meta-assembly of the human transcriptome using coding and noncoding genes. Hypoxia strongly influences gene expression; in addition, noncoding RNA (ncRNA) metabolism is down-regulated in response to hypoxic stimuli. We evaluated the differential response of various transcripts to hypoxia by determining their hypoxia responsiveness scores. Enrichment analysis revealed that several genes associated with ncRNA metabolism, particularly those involved in ribosomal RNA processing, were down-regulated in response to hypoxia. Previously published information from the FANTOM CAGE-Associated Transcriptome project was suitable for meta-analysis of the transcriptome sequencing data from both coding and ncRNAs and to evaluate the hypoxia responsiveness of target transcripts and relationship between sense-antisense transcripts from the same locus. Our results may facilitate functional annotation of various transcripts including ncRNAs, allowing for both sense and antisense and coding and noncoding evaluations.
Collapse
Affiliation(s)
- Yoko Ono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan .,Laboratory of Bio-DX, Genome Editing Innovation Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
38
|
Santos F, Capela AM, Mateus F, Nóbrega-Pereira S, Bernardes de Jesus B. Non-coding antisense transcripts: fine regulation of gene expression in cancer. Comput Struct Biotechnol J 2022; 20:5652-5660. [PMID: 36284703 PMCID: PMC9579725 DOI: 10.1016/j.csbj.2022.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/14/2022] Open
Abstract
Natural antisense transcripts (NATs) are coding or non-coding RNA sequences transcribed on the opposite direction from the same genomic locus. NATs are widely distributed throughout the human genome and seem to play crucial roles in physiological and pathological processes, through newly described and targeted mechanisms. NATs represent the intricate complexity of the genome organization and constitute another layer of potential targets in disease. Here, we focus on the interesting and unique role of non-coding NATs in cancer, paying particular attention to those acting as miRNA sponges.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Bernardes de Jesus
- Corresponding author at: Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
39
|
Ye W, Lian Q, Ye C, Wu X. A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00121-8. [PMID: 36167284 PMCID: PMC10372920 DOI: 10.1016/j.gpb.2022.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
Alternative polyadenylation (APA) plays important roles in modulating mRNA stability, translation, and subcellular localization, and contributes extensively to shaping eukaryotic transcriptome complexity and proteome diversity. Identification of poly(A) sites (pAs) on a genome-wide scale is a critical step toward understanding the underlying mechanism of APA-mediated gene regulation. A number of established computational tools have been proposed to predict pAs from diverse genomic data. Here we provided an exhaustive overview of computational approaches for predicting pAs from DNA sequences, bulk RNA sequencing (RNA-seq) data, and single-cell RNA sequencing (scRNA-seq) data. Particularly, we examined several representative tools using bulk RNA-seq and scRNA-seq data from peripheral blood mononuclear cells and put forward operable suggestions on how to assess the reliability of pAs predicted by different tools. We also proposed practical guidelines on choosing appropriate methods applicable to diverse scenarios. Moreover, we discussed in depth the challenges in improving the performance of pA prediction and benchmarking different methods. Additionally, we highlighted outstanding challenges and opportunities using new machine learning and integrative multi-omics techniques, and provided our perspective on how computational methodologies might evolve in the future for non-3' untranslated region, tissue-specific, cross-species, and single-cell pA prediction.
Collapse
Affiliation(s)
- Wenbin Ye
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China
| | - Qiwei Lian
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China; Department of Automation, Xiamen University, Xiamen 361005, China
| | - Congting Ye
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaohui Wu
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215000, China.
| |
Collapse
|
40
|
Yu X, Kang W, Zhang J, Chen C, Liu Y. Shortening of the KHDRBS1 3'UTR by alternative cleavage and polyadenylation alters miRNA-mediated regulation and promotes gastric cancer progression. Am J Transl Res 2022; 14:6574-6585. [PMID: 36247240 PMCID: PMC9556470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The shortening of the 3' untranslated regions (3'UTRs) due to alternative polyadenylation (APA) has become an important characteristic of cancer. However, the function of APA-induced 3'UTR shortening in gastric cancer (GC) remains unclear. KHDRBS1 (sam68), as an RNA-binding protein (RBP), is significantly upregulated in GC. In this study, we found that the 3'UTR of KHDRBS1 is generally shortened in GC tissues compared to paracancer tissues. Moreover, KHDRBS1 mRNA with a shortened 3'UTR can escape the inhibitory effect of miRNAs, resulting in its increased expression in GC. Overexpression of KHDRBS1, especially KHDRBS1 with a shortened 3'UTR, promotes the growth and metastasis of GC in vivo and in vitro. In conclusion, the experimental results show that shortening of the KHDRBS1 mRNA 3'UTR can mediate the overexpression of KHDRBS1 in GC cells and promote the progression of GC.
Collapse
Affiliation(s)
- Xin Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Weibiao Kang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Jiajia Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Changyu Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Yi Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| |
Collapse
|
41
|
Lui KH, Geisberg JV, Moqtaderi Z, Struhl K. 3' Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles. Mol Cell Biol 2022; 42:e0024422. [PMID: 35972270 PMCID: PMC9476944 DOI: 10.1128/mcb.00244-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 01/15/2023] Open
Abstract
The 3' ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3' untranslated regions (3' UTRs) but rarely within coding regions. An individual gene can yield many 3'-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3' UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3' UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3'-UTR chimeric genes indicate that the poly(A) profile is determined by the 3' UTR. Thus, 3' UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3'-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3' UTRs.
Collapse
Affiliation(s)
- Kai Hin Lui
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph V. Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Hedouin S, Logsdon GA, Underwood JG, Biggins S. A transcriptional roadblock protects yeast centromeres. Nucleic Acids Res 2022; 50:7801-7815. [PMID: 35253883 PMCID: PMC9371891 DOI: 10.1093/nar/gkac117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
Centromeres are the chromosomal loci essential for faithful chromosome segregation during cell division. Although centromeres are transcribed and produce non-coding RNAs (cenRNAs) that affect centromere function, we still lack a mechanistic understanding of how centromere transcription is regulated. Here, using a targeted RNA isoform sequencing approach, we identified the transcriptional landscape at and surrounding all centromeres in budding yeast. Overall, cenRNAs are derived from transcription readthrough of pericentromeric regions but rarely span the entire centromere and are a complex mixture of molecules that are heterogeneous in abundance, orientation, and sequence. While most pericentromeres are transcribed throughout the cell cycle, centromere accessibility to the transcription machinery is restricted to S-phase. This temporal restriction is dependent on Cbf1, a centromere-binding transcription factor, that we demonstrate acts locally as a transcriptional roadblock. Cbf1 deletion leads to an accumulation of cenRNAs at all phases of the cell cycle which correlates with increased chromosome mis-segregation that is partially rescued when the roadblock activity is restored. We propose that a Cbf1-mediated transcriptional roadblock protects yeast centromeres from untimely transcription to ensure genomic stability.
Collapse
Affiliation(s)
- Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jason G Underwood
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, CA 94025, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
43
|
Filbeck S, Cerullo F, Pfeffer S, Joazeiro CAP. Ribosome-associated quality-control mechanisms from bacteria to humans. Mol Cell 2022; 82:1451-1466. [PMID: 35452614 PMCID: PMC9034055 DOI: 10.1016/j.molcel.2022.03.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Ribosome-associated quality-control (RQC) surveys incomplete nascent polypeptides produced by interrupted translation. Central players in RQC are the human ribosome- and tRNA-binding protein, NEMF, and its orthologs, yeast Rqc2 and bacterial RqcH, which sense large ribosomal subunits obstructed with nascent chains and then promote nascent-chain proteolysis. In canonical eukaryotic RQC, NEMF stabilizes the LTN1/Listerin E3 ligase binding to obstructed ribosomal subunits for nascent-chain ubiquitylation. Furthermore, NEMF orthologs across evolution modify nascent chains by mediating C-terminal, untemplated polypeptide elongation. In eukaryotes, this process exposes ribosome-buried nascent-chain lysines, the ubiquitin acceptor sites, to LTN1. Remarkably, in both bacteria and eukaryotes, C-terminal tails also have an extra-ribosomal function as degrons. Here, we discuss recent findings on RQC mechanisms and briefly review how ribosomal stalling is sensed upstream of RQC, including via ribosome collisions, from an evolutionary perspective. Because RQC defects impair cellular fitness and cause neurodegeneration, this knowledge provides a framework for pathway-related biology and disease studies.
Collapse
Affiliation(s)
- Sebastian Filbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Federico Cerullo
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Claudio A P Joazeiro
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
44
|
Brooks AN, Hughes AL, Clauder-Münster S, Mitchell LA, Boeke JD, Steinmetz LM. Transcriptional neighborhoods regulate transcript isoform lengths and expression levels. Science 2022; 375:1000-1005. [PMID: 35239377 DOI: 10.1126/science.abg0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.
Collapse
Affiliation(s)
- Aaron N Brooks
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Amanda L Hughes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sandra Clauder-Münster
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Leslie A Mitchell
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Zhan S, Xue Y, Yang L, Li D, Dai H, Zhong T, Wang L, Dai D, Li L, Zhang H. Transcriptome analysis reveals long non-coding natural antisense transcripts involved in muscle development in fetal goat (Capra hircus). Genomics 2022; 114:110284. [DOI: 10.1016/j.ygeno.2022.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/16/2022]
|
46
|
Schärfen L, Zigackova D, Reimer KA, Stark MR, Slat VA, Francoeur NJ, Wells ML, Zhou L, Blackshear PJ, Neugebauer KM, Rader SD. Identification of Alternative Polyadenylation in Cyanidioschyzon merolae Through Long-Read Sequencing of mRNA. Front Genet 2022; 12:818697. [PMID: 35154260 PMCID: PMC8831791 DOI: 10.3389/fgene.2021.818697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Alternative polyadenylation (APA) is widespread among metazoans and has been shown to have important impacts on mRNA stability and protein expression. Beyond a handful of well-studied organisms, however, its existence and consequences have not been well investigated. We therefore turned to the deep-branching red alga, Cyanidioschyzon merolae, to study the biology of polyadenylation in an organism highly diverged from humans and yeast. C. merolae is an acidothermophilic alga that lives in volcanic hot springs. It has a highly reduced genome (16.5 Mbp) and has lost all but 27 of its introns and much of its splicing machinery, suggesting that it has been under substantial pressure to simplify its RNA processing pathways. We used long-read sequencing to assess the key features of C. merolae mRNAs, including splicing status and polyadenylation cleavage site (PAS) usage. Splicing appears to be less efficient in C. merolae compared with yeast, flies, and mammalian cells. A high proportion of transcripts (63%) have at least two distinct PAS's, and 34% appear to utilize three or more sites. The apparent polyadenylation signal UAAA is used in more than 90% of cases, in cells grown in both rich media or limiting nitrogen. Our documentation of APA for the first time in this non-model organism highlights its conservation and likely biological importance of this regulatory step in gene expression.
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kirsten A. Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Martha R. Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Viktor A. Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Melissa L. Wells
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Perry J. Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
47
|
Moqtaderi Z, Geisberg JV, Struhl K. A compensatory link between cleavage/polyadenylation and mRNA turnover regulates steady-state mRNA levels in yeast. Proc Natl Acad Sci U S A 2022; 119:e2121488119. [PMID: 35058367 PMCID: PMC8794773 DOI: 10.1073/pnas.2121488119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/18/2021] [Indexed: 12/20/2022] Open
Abstract
Cells have compensatory mechanisms to coordinate the rates of major biological processes, thereby permitting growth in a wide variety of conditions. Here, we uncover a compensatory link between cleavage/polyadenylation in the nucleus and messenger RNA (mRNA) turnover in the cytoplasm. On a global basis, same-gene 3' mRNA isoforms with twofold or greater differences in half-lives have steady-state mRNA levels that differ by significantly less than a factor of 2. In addition, increased efficiency of cleavage/polyadenylation at a specific site is associated with reduced stability of the corresponding 3' mRNA isoform. This inverse relationship between cleavage/polyadenylation and mRNA isoform half-life reduces the variability in the steady-state levels of mRNA isoforms, and it occurs in all four growth conditions tested. These observations suggest that during cleavage/polyadenylation in the nucleus, mRNA isoforms are marked in a manner that persists upon translocation to the cytoplasm and affects the activity of mRNA degradation machinery, thus influencing mRNA stability.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
48
|
Matsushita M, Awazawa M, Kobayashi N, Ikushima YM, Soeda K, Tamura-Nakano M, Muratani M, Kobayashi K, Blüher M, Brüning JC, Ueki K. An antisense transcript transcribed from Irs2 locus contributes to the pathogenesis of hepatic steatosis in insulin resistance. Cell Chem Biol 2021; 29:680-689.e6. [PMID: 34986326 DOI: 10.1016/j.chembiol.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022]
Abstract
During insulin resistance, lipid uptake by the liver is promoted by peroxisome proliferator-activated protein (PPAR) γ upregulation, leading to hepatic steatosis. Insulin, however, does not directly regulate adipogenic gene expression in liver, and the mechanisms for its upregulation in obesity remain unclear. Here, we show that the Irs2 locus, a critical regulator of insulin actions, encodes an antisense transcript, ASIrs2, whose expression increases in obesity or after refeeding in liver, reciprocal to that of Irs2. ASIrs2 regulates hepatic Pparg expression, and its suppression ameliorates steatosis in obese mice. The human ortholog AL162497.1, whose expression is correlated with that of hepatic PPARG and the severity of non-alcoholic steatohepatitis (NASH), shows genomic organization similar to that of ASIrs2. We also identified HARS2 as a potential binding protein for ASIrs2, functioning as a regulator of Pparg. Collectively, our data reveal a functional duality of the Irs2 gene locus, where reciprocal changes of Irs2 and ASIrs2 in obesity cause insulin resistance and steatosis.
Collapse
Affiliation(s)
- Maya Matsushita
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Motoharu Awazawa
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan.
| | - Naoki Kobayashi
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Yoshiko Matsumoto Ikushima
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Kotaro Soeda
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Miwa Tamura-Nakano
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Hojozaka 27, Myodaiji, Okazaki, Aichi 305-8575, Japan
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann Strasse 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan; Department of Molecular Diabetology, Graduate School of Medicine, The University of Tokyo, 3-7-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan.
| |
Collapse
|
49
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
50
|
Exploring regulatory network of metabolism through liver research. Diabetol Int 2021; 12:343-348. [PMID: 34567916 DOI: 10.1007/s13340-021-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
In recent years, the techniques in molecular biology have been dramatically advanced, and consequently the landscape of metabolism research has undergone a remarkable change. One of the emerging pictures as the fruits of these advancements is one depicting the regulation of systemic metabolism through inter-organ networks involving multiple tissues, either via humoral factors, which are secreted from one tissue and conveyed to their remote target tissues, or through neuronal networks which are integrated by the central nervous system. In addition, the progress in high-throughput research tools enabled detailed characterization and deeper understanding of the nature of human genome, which has attracted much attention to the importance of various non-coding RNAs species. These non-coding RNAs are often co-expressed and co-regulated with adjacent protein coding genes, adding higher levels of complexities by them functioning together as a system and often influencing biologically important pathways in a cooperative manner. Here in this review several examples of these regulatory network systems are presented, illustrating the significance of them in systemic metabolism, with a possible future research direction also being proposed.
Collapse
|