1
|
Devi S, Garg DK, Bhat R. Green tea polyphenol EGCG acts differentially on end-stage amyloid polymorphs of α-synuclein formed in different polyol osmolytes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141073. [PMID: 40189174 DOI: 10.1016/j.bbapap.2025.141073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Synucleinopathies are heterogenous group of disorders characterized by α-synuclein amyloid aggregates in the nervous system. Different synucleinopathy clinical subtypes are encoded by structurally diverse α-synuclein amyloid polymorphs referred to as 'strains'. The underlying structural differences between polymorphs can potentially hamper the drug design against synucleinopathies. Polyphenolic compounds like EGCG have shown promise in inhibiting and remodeling of α-synuclein amyloid aggregates, but their effects on different polymorphs are not well-studied. The cellular environment is one factor contributing to the heterogeneity in the amyloid landscape. Herein, we generated diverse polymorphs of α-synuclein by fine-tuning its aggregation using different polyol osmolytes, varying in their physicochemical properties. These osmolytes act as globular protein stabilizers and conformational modulators of intrinsically disordered proteins. While the buffer control α-synuclein aggregates were evenly dispersed, the polyol-induced aggregate solutions contained a heterogeneous mixture of co-existing polymorphs, as evidenced by AFM and TEM measurements. The polyol-induced aggregated solutions consisted of a mixture of both fibrillar and nonfibrillar cross-β-rich species. Using various spectroscopic tools, we observed differences in the structures of osmolyte-induced polymorphic aggregates. We incubated these aggregates with EGCG and observed its disparate action over polymorphs wherein the treated species were either disintegrated or structurally altered. Contrary to previous reports, all EGCG-treated polymorphs were β-sheet-rich and seeding-competent. Our findings are relevant in assessing the efficacy of polyphenolic compounds on diverse aggregate strains encoding different proteinopathy variants. The formation of β-sheet-rich species in our study also engenders a more critical examination of EGCG's mode of action on diverse classes of amyloids.
Collapse
Affiliation(s)
- Santosh Devi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dushyant K Garg
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biomedicine, University of Bergen 5009, Norway
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Goncharoff D, Du Z, Venkatesan S, Cho B, Zhao J, Alasady MJ, Huey D, Ma H, Rosenthal J, Turenitsa A, Feldman C, Halfmann R, Mendillo ML, Li L. Investigating the Aggregation and Prionogenic Properties of Human Cancer-Related Proteins. Mol Cell Biol 2025; 45:154-168. [PMID: 40159882 DOI: 10.1080/10985549.2025.2481054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Cancer encompasses a range of severe diseases characterized by uncontrolled cell growth and the potential for metastasis. Understanding the mechanism underlying tumorigenesis has been a central focus of cancer research. Self-propagating protein aggregates, known as prions, are linked to various biological functions and diseases, particularly those related to mammalian neurodegeneration. However, it remains unclear whether prion-like mechanisms contribute to tumorigenesis and cancer. Using a combined approach of algorithmic predictions, alongside genetic and biochemical experimentation, we identified numerous cancer-associated proteins prone to aggregation, many of which contain prion-like domains (PrLDs). These predictions were experimentally validated for both aggregation and prion-formation. We demonstrate that several PrLDs undergo nucleation-limited amyloid formation, which can alter protein activity in a mitotically heritable fashion. These include SSXT, a subunit of the chromatin-remodeling BAF (hSWI/SNF) complexes; CLOCK, a core component of the circadian clock; and EPN4, a clathrin-interacting protein involved in protein trafficking between the trans-Golgi network and endosomes. The prions formed by these PrLDs occurred in multiple variants and depended on Hsp104, a molecular chaperone with disaggregase activity. Our results reveal an inherent tendency for prion-like aggregation in human cancer-associated proteins, suggesting a potential role for such aggregation in the epigenetic changes driving tumorigenesis.
Collapse
Affiliation(s)
- Dustin Goncharoff
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Brandon Cho
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jenny Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dalton Huey
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hannah Ma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jake Rosenthal
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexander Turenitsa
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Coral Feldman
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Vaglietti S, Boggio Bozzo S, Ghirardi M, Fiumara F. Divergent evolution of low-complexity regions in the vertebrate CPEB protein family. FRONTIERS IN BIOINFORMATICS 2025; 5:1491735. [PMID: 40182702 PMCID: PMC11965684 DOI: 10.3389/fbinf.2025.1491735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/28/2025] [Indexed: 04/05/2025] Open
Abstract
The cytoplasmic polyadenylation element-binding proteins (CPEBs) are a family of translational regulators involved in multiple biological processes, including memory-related synaptic plasticity. In vertebrates, four paralogous genes (CPEB1-4) encode proteins with phylogenetically conserved C-terminal RNA-binding domains and variable N-terminal regions (NTRs). The CPEB NTRs are characterized by low-complexity regions (LCRs), including homopolymeric amino acid repeats (AARs), and have been identified as mediators of liquid-liquid phase separation (LLPS) and prion-like aggregation. After their appearance following gene duplication, the four paralogous CPEB proteins functionally diverged in terms of activation mechanisms and modes of mRNA binding. The paralog-specific NTRs may have contributed substantially to such functional diversification but their evolutionary history remains largely unexplored. Here, we traced the evolution of vertebrate CPEBs and their LCRs/AARs focusing on primary sequence composition, complexity, repetitiveness, and their possible functional impact on LLPS propensity and prion-likeness. We initially defined these composition- and function-related quantitative parameters for the four human CPEB paralogs and then systematically analyzed their evolutionary variation across more than 500 species belonging to nine major clades of different stem age, from Chondrichthyes to Euarchontoglires, along the vertebrate lineage. We found that the four CPEB proteins display highly divergent, paralog-specific evolutionary trends in composition- and function-related parameters, primarily driven by variation in their LCRs/AARs and largely related to clade stem ages. These findings shed new light on the molecular and functional evolution of LCRs in the CPEB protein family, in both quantitative and qualitative terms, highlighting the emergence of CPEB2 as a proline-rich prion-like protein in younger vertebrate clades, including Primates.
Collapse
Affiliation(s)
| | | | | | - Ferdinando Fiumara
- “Rita Levi-Montalcini” Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
4
|
de Queiroz BR, Laghrissi H, Rajeev S, Blot L, De Graeve F, Dehecq M, Hallegger M, Dag U, Dunoyer de Segonzac M, Ramialison M, Cazevieille C, Keleman K, Ule J, Hubstenberger A, Besse F. Axonal RNA localization is essential for long-term memory. Nat Commun 2025; 16:2560. [PMID: 40089499 PMCID: PMC11910521 DOI: 10.1038/s41467-025-57651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Localization of mRNAs to neuronal terminals, coupled to local translation, has emerged as a prevalent mechanism controlling the synaptic proteome. However, the physiological regulation and function of this process in the context of mature in vivo memory circuits has remained unclear. Here, we combined synaptosome RNA profiling with whole brain high-resolution imaging to uncover mRNAs with different localization patterns in the axons of Drosophila Mushroom Body memory neurons, some exhibiting regionalized, input-dependent, recruitment along axons. By integrating transcriptome-wide binding approaches and functional assays, we show that the conserved Imp RNA binding protein controls the transport of mRNAs to Mushroom Body axons and characterize a mutant in which this transport is selectively impaired. Using this unique mutant, we demonstrate that axonal mRNA localization is required for long-term, but not short-term, behavioral memory. This work uncovers circuit-dependent mRNA targeting in vivo and demonstrates the importance of local RNA regulation in memory consolidation.
Collapse
Affiliation(s)
- Bruna R de Queiroz
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Hiba Laghrissi
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Seetha Rajeev
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Lauren Blot
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Fabienne De Graeve
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Marine Dehecq
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Martina Hallegger
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ugur Dag
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | | | - Mirana Ramialison
- Murdoch Children's Research Institute, Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | | | - Krystyna Keleman
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Jernej Ule
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Arnaud Hubstenberger
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Florence Besse
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France.
| |
Collapse
|
5
|
Galliamov AA, Urakov VN, Dergalev AA, Kushnirov VV. On the Significance of the Terminal Location of Prion-Forming Regions of Yeast Proteins. Int J Mol Sci 2025; 26:1637. [PMID: 40004101 PMCID: PMC11855515 DOI: 10.3390/ijms26041637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025] Open
Abstract
The prion-forming regions (PFRs) of yeast prion proteins are usually located at either the N- or C-terminus of a protein. In the Sup35 prion, the main prion structure contains 71 N-terminal residues. Here, we investigated the importance of the terminal PFR location for prion properties. Two prionogenic sequences of 29 and 30 residues and two random sequences of 23 and 15 residues were added to the Sup35 N-terminus, making the original PFR internal. These proteins were overproduced in yeast with two variants of the Sup35 prion. Mapping of the prion-like structures of these proteins by partial proteinase K digestion showed that in most cases, the extensions acquired an amyloid fold, and, strikingly, the prion structure was no longer present or was substantially altered at its original location. The addition of two to five residues to the Sup35 N-terminus often resulted in prion instability and loss when the respective genes were used to replace chromosomal SUP35. The structures of yeast prions Mot3, Swi1, Lsb2, candidate prions Asm4, Nsp1, Cbk1, Cpp1, and prions based on scrambled Sup35 PFRs were mapped. The mapping showed that the N-terminal location of a QN-rich sequence predisposes to, but does not guarantee, the formation of a prion structure by it and that the prion structure located near a terminus does not always include the actual terminus, as in the cases of Sup35 and Rnq1.
Collapse
Affiliation(s)
| | | | | | - Vitaly V. Kushnirov
- A.N. Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (A.A.G.); (V.N.U.); (A.A.D.)
| |
Collapse
|
6
|
Nidamangala Srinivasa A, Campbell S, Venkatesan S, Nuckolls NL, Lange JJ, Halfmann R, Zanders SE. Functional constraints of wtf killer meiotic drivers. PLoS Genet 2025; 21:e1011534. [PMID: 39965018 PMCID: PMC11892871 DOI: 10.1371/journal.pgen.1011534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/10/2025] [Accepted: 12/11/2024] [Indexed: 02/20/2025] Open
Abstract
Killer meiotic drivers are selfish DNA loci that sabotage the gametes that do not inherit them from a driver+/driver- heterozygote. These drivers often employ toxic proteins that target essential cellular functions to cause the destruction of driver- gametes. Identifying the mechanisms of drivers can expand our understanding of infertility and reveal novel insights about the cellular functions targeted by drivers. In this work, we explore the molecular mechanisms underlying the wtf family of killer meiotic drivers found in fission yeasts. Each wtf killer acts using a toxic Wtfpoison protein that can be neutralized by a corresponding Wtfantidote protein. The wtf genes are rapidly evolving and extremely diverse. Here we found that self-assembly of Wtfpoison proteins is broadly conserved and associated with toxicity across the gene family, despite minimal amino acid conservation. In addition, we found the toxicity of Wtfpoison assemblies can be modulated by protein tags designed to increase or decrease the extent of the Wtfpoison assembly, implicating assembly size in toxicity. We also identified a conserved, critical role for the specific co-assembly of the Wtfpoison and Wtfantidote proteins in promoting effective neutralization of Wtfpoison toxicity. Finally, we engineered wtf alleles that encode toxic Wtfpoison proteins that are not effectively neutralized by their corresponding Wtfantidote proteins. The possibility of such self-destructive alleles reveals functional constraints on wtf evolution and suggests similar alleles could be cryptic contributors to infertility in fission yeast populations. As rapidly evolving killer meiotic drivers are widespread in eukaryotes, analogous self-killing drive alleles could contribute to sporadic infertility in many lineages.
Collapse
Affiliation(s)
- Ananya Nidamangala Srinivasa
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Samuel Campbell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Shriram Venkatesan
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Nicole L. Nuckolls
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
7
|
Srinivasa AN, Campbell S, Venkatesan S, Nuckolls NL, Lange JJ, Halfmann R, Zanders SE. Functional constraints of wtf killer meiotic drivers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.27.609905. [PMID: 39677646 PMCID: PMC11642804 DOI: 10.1101/2024.08.27.609905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Killer meiotic drivers are selfish DNA loci that sabotage the gametes that do not inherit them from a driver+/driver- heterozygote. These drivers often employ toxic proteins that target essential cellular functions to cause the destruction of driver- gametes. Identifying the mechanisms of drivers can expand our understanding of infertility and reveal novel insights about the cellular functions targeted by drivers. In this work, we explore the molecular mechanisms underlying the wtf family of killer meiotic drivers found in fission yeasts. Each wtf killer acts using a toxic Wtfpoison protein that can be neutralized by a corresponding Wtfantidote protein. The wtf genes are rapidly evolving and extremely diverse. Here we found that self-assembly of Wtfpoison proteins is broadly conserved and associated with toxicity across the gene family, despite minimal amino acid conservation. In addition, we found the toxicity of Wtfpoison assemblies can be modulated by protein tags designed to increase or decrease the extent of the Wtfpoison assembly, implicating assembly size in toxicity. We also identified a conserved, critical role for the specific co-assembly of the Wtfpoison and Wtfantidote proteins in promoting effective neutralization of Wtfpoison toxicity. Finally, we engineered wtf alleles that encode toxic Wtfpoison proteins that are not effectively neutralized by their corresponding Wtfantidote proteins. The possibility of such self-destructive alleles reveals functional constraints on wtf evolution and suggests similar alleles could be cryptic contributors to infertility in fission yeast populations. As rapidly evolving killer meiotic drivers are widespread in eukaryotes, analogous self-killing drive alleles could contribute to sporadic infertility in many lineages.
Collapse
Affiliation(s)
- Ananya Nidamangala Srinivasa
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Samuel Campbell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Shriram Venkatesan
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Nicole L. Nuckolls
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
8
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Lin Y. Active regulation of amyloidosis. Proc Natl Acad Sci U S A 2024; 121:e2409665121. [PMID: 39074293 PMCID: PMC11317571 DOI: 10.1073/pnas.2409665121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Affiliation(s)
- Yi Lin
- School of Life Sciences, Tsinghua-Peking Joint Centre for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing100084, China
| |
Collapse
|
10
|
Stewart RK, Nguyen P, Laederach A, Volkan PC, Sawyer JK, Fox DT. Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation. Nat Commun 2024; 15:5270. [PMID: 38902233 PMCID: PMC11190236 DOI: 10.1038/s41467-024-48344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent mRNA stability in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for mRNA stability and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA stability and protein expression.
Collapse
Affiliation(s)
- Rebeccah K Stewart
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Patrick Nguyen
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jessica K Sawyer
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, USA.
- Duke Regeneration Center, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Pribbenow C, Owald D. Skewing information flow through pre- and postsynaptic plasticity in the mushroom bodies of Drosophila. Learn Mem 2024; 31:a053919. [PMID: 38876487 PMCID: PMC11199954 DOI: 10.1101/lm.053919.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024]
Abstract
Animal brains need to store information to construct a representation of their environment. Knowledge of what happened in the past allows both vertebrates and invertebrates to predict future outcomes by recalling previous experience. Although invertebrate and vertebrate brains share common principles at the molecular, cellular, and circuit-architectural levels, there are also obvious differences as exemplified by the use of acetylcholine versus glutamate as the considered main excitatory neurotransmitters in the respective central nervous systems. Nonetheless, across central nervous systems, synaptic plasticity is thought to be a main substrate for memory storage. Therefore, how brain circuits and synaptic contacts change following learning is of fundamental interest for understanding brain computations tied to behavior in any animal. Recent progress has been made in understanding such plastic changes following olfactory associative learning in the mushroom bodies (MBs) of Drosophila A current framework of memory-guided behavioral selection is based on the MB skew model, in which antagonistic synaptic pathways are selectively changed in strength. Here, we review insights into plasticity at dedicated Drosophila MB output pathways and update what is known about the plasticity of both pre- and postsynaptic compartments of Drosophila MB neurons.
Collapse
Affiliation(s)
- Carlotta Pribbenow
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - David Owald
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
12
|
Desai M, Hemant, Deo A, Naik J, Dhamale P, Kshirsagar A, Bose T, Majumdar A. Mrj is a chaperone of the Hsp40 family that regulates Orb2 oligomerization and long-term memory in Drosophila. PLoS Biol 2024; 22:e3002585. [PMID: 38648719 PMCID: PMC11034981 DOI: 10.1371/journal.pbio.3002585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.
Collapse
Affiliation(s)
- Meghal Desai
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hemant
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Ankita Deo
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Jagyanseni Naik
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Prathamesh Dhamale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Avinash Kshirsagar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Tania Bose
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
13
|
Marijan D, Momchilova EA, Burns D, Chandhok S, Zapf R, Wille H, Potoyan DA, Audas TE. Protein thermal sensing regulates physiological amyloid aggregation. Nat Commun 2024; 15:1222. [PMID: 38336721 PMCID: PMC10858206 DOI: 10.1038/s41467-024-45536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
To survive, cells must respond to changing environmental conditions. One way that eukaryotic cells react to harsh stimuli is by forming physiological, RNA-seeded subnuclear condensates, termed amyloid bodies (A-bodies). The molecular constituents of A-bodies induced by different stressors vary significantly, suggesting this pathway can tailor the cellular response by selectively aggregating a subset of proteins under a given condition. Here, we identify critical structural elements that regulate heat shock-specific amyloid aggregation. Our data demonstrates that manipulating structural pockets in constituent proteins can either induce or restrict their A-body targeting at elevated temperatures. We propose a model where selective aggregation within A-bodies is mediated by the thermal stability of a protein, with temperature-sensitive structural regions acting as an intrinsic form of post-translational regulation. This system would provide cells with a rapid and stress-specific response mechanism, to tightly control physiological amyloid aggregation or other cellular stress response pathways.
Collapse
Affiliation(s)
- Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, T6G 2M8, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Davit A Potoyan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
14
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy T, Wood MA, Luptak A. Inhibition of Cpeb3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs and enhances object location memory. eLife 2024; 13:e90116. [PMID: 38319152 PMCID: PMC10919898 DOI: 10.7554/elife.90116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C Chen
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Carlene A Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | | | - Marie Myszka
- Department of Chemistry, University of California, IrvineIrvineUnited States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California, IrvineIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
| | - Timothy Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of California, IrvineIrvineUnited States
- Department of Chemistry, University of California, IrvineIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
15
|
Ramírez de Mingo D, López-García P, Vaquero ME, Hervás R, Laurents DV, Carrión-Vázquez M. Phase separation modulates the functional amyloid assembly of human CPEB3. Prog Neurobiol 2023; 231:102540. [PMID: 37898314 DOI: 10.1016/j.pneurobio.2023.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/15/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
How functional amyloids are regulated to restrict their activity is poorly understood. The cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is an RNA-binding protein that adopts an amyloid state key for memory persistence. Its monomer represses the translation of synaptic target mRNAs while phase separated, whereas its aggregated state acts as a translational activator. Here, we have explored the sequence-driven molecular determinants behind the functional aggregation of human CPEB3 (hCPEB3). We found that the intrinsically disordered region (IDR) of hCPEB3 encodes both an amyloidogenic and a phase separation domain, separated by a poly-A-rich region. The hCPEB3 amyloid core is composed by a hydrophobic region instead of the Q-rich stretch found in the Drosophila orthologue. The hCPEB3 phase separation domain relies on hydrophobic interactions with ionic strength dependence, and its droplet ageing process leads to a liquid-to-solid transition with the formation of a non-fibril-based hydrogel surrounded by starburst droplets. Furthermore, we demonstrate the differential behavior of the protein depending on its environment. Under physiological-like conditions, hCPEB3 can establish additional electrostatic interactions with ions, increasing the stability of its liquid droplets and driving a condensation-based amyloid pathway.
Collapse
Affiliation(s)
| | - Paula López-García
- Instituto Cajal, CSIC, Avenida Doctor Arce 37, Madrid 28002, Spain; PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal Institute, Madrid 28029, Spain
| | | | - Rubén Hervás
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Douglas V Laurents
- Instituto de Química Física "Blas Cabrera", CSIC, C/ Serrano 119, Madrid 28006, Spain
| | | |
Collapse
|
16
|
Jager K, Orozco-Hidalgo MT, Springstein BL, Joly-Smith E, Papazotos F, McDonough E, Fleming E, McCallum G, Yuan AH, Hilfinger A, Hochschild A, Potvin-Trottier L. Measuring prion propagation in single bacteria elucidates a mechanism of loss. Proc Natl Acad Sci U S A 2023; 120:e2221539120. [PMID: 37738299 PMCID: PMC10523482 DOI: 10.1073/pnas.2221539120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/26/2023] [Indexed: 09/24/2023] Open
Abstract
Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute nontoxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes. In a fraction of the population, cells had multiple small visible aggregates and lost the prion through random partitioning of aggregates to one of the two daughter cells at division. In the other subpopulation, cells had a stable large aggregate localized to the pole; upon division the mother cell retained this polar aggregate and a daughter cell was generated that contained small aggregates. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation.
Collapse
Affiliation(s)
- Krista Jager
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | | | | | - Euan Joly-Smith
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | | | - Eleanor Fleming
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Giselle McCallum
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| | - Andy H. Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Andreas Hilfinger
- Department of Physics, University of Toronto, Toronto, ONM5S 1A7, Canada
- Department of Mathematics, University of Toronto, Toronto, ONM5S 2E4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ONM5S 3G5, Canada
| | - Ann Hochschild
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, QCH4B 1R6, Canada
- Department of Physics, Concordia University, Montréal, QCH4B 1R6, Canada
- Center for Applied Synthetic Biology, Concordia University, Montréal, QCH4B 1R6, Canada
| |
Collapse
|
17
|
Davis RL. Learning and memory using Drosophila melanogaster: a focus on advances made in the fifth decade of research. Genetics 2023; 224:iyad085. [PMID: 37212449 PMCID: PMC10411608 DOI: 10.1093/genetics/iyad085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
In the last decade, researchers using Drosophila melanogaster have made extraordinary progress in uncovering the mysteries underlying learning and memory. This progress has been propelled by the amazing toolkit available that affords combined behavioral, molecular, electrophysiological, and systems neuroscience approaches. The arduous reconstruction of electron microscopic images resulted in a first-generation connectome of the adult and larval brain, revealing complex structural interconnections between memory-related neurons. This serves as substrate for future investigations on these connections and for building complete circuits from sensory cue detection to changes in motor behavior. Mushroom body output neurons (MBOn) were discovered, which individually forward information from discrete and non-overlapping compartments of the axons of mushroom body neurons (MBn). These neurons mirror the previously discovered tiling of mushroom body axons by inputs from dopamine neurons and have led to a model that ascribes the valence of the learning event, either appetitive or aversive, to the activity of different populations of dopamine neurons and the balance of MBOn activity in promoting avoidance or approach behavior. Studies of the calyx, which houses the MBn dendrites, have revealed a beautiful microglomeruluar organization and structural changes of synapses that occur with long-term memory (LTM) formation. Larval learning has advanced, positioning it to possibly lead in producing new conceptual insights due to its markedly simpler structure over the adult brain. Advances were made in how cAMP response element-binding protein interacts with protein kinases and other transcription factors to promote the formation of LTM. New insights were made on Orb2, a prion-like protein that forms oligomers to enhance synaptic protein synthesis required for LTM formation. Finally, Drosophila research has pioneered our understanding of the mechanisms that mediate permanent and transient active forgetting, an important function of the brain along with acquisition, consolidation, and retrieval. This was catalyzed partly by the identification of memory suppressor genes-genes whose normal function is to limit memory formation.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
18
|
Stewart RK, Nguyen P, Laederach A, Volkan PC, Sawyer JK, Fox DT. Orb2 enables rare-codon-enriched mRNA expression during Drosophila neuron differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550700. [PMID: 37546801 PMCID: PMC10402044 DOI: 10.1101/2023.07.26.550700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Regulation of codon optimality is an increasingly appreciated layer of cell- and tissue-specific protein expression control. Here, we use codon-modified reporters to show that differentiation of Drosophila neural stem cells into neurons enables protein expression from rare-codon-enriched genes. From a candidate screen, we identify the cytoplasmic polyadenylation element binding (CPEB) protein Orb2 as a positive regulator of rare-codon-dependent expression in neurons. Using RNA sequencing, we reveal that Orb2-upregulated mRNAs in the brain with abundant Orb2 binding sites have a rare-codon bias. From these Orb2-regulated mRNAs, we demonstrate that rare-codon enrichment is important for expression control and social behavior function of the metabotropic glutamate receptor (mGluR). Our findings reveal a molecular mechanism by which neural stem cell differentiation shifts genetic code regulation to enable critical mRNA and protein expression.
Collapse
|
19
|
Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 2023; 28:2728-2736. [PMID: 37131078 PMCID: PMC10620108 DOI: 10.1038/s41380-023-02088-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | | | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
Chen CC, Han J, Chinn CA, Rounds JS, Li X, Nikan M, Myszka M, Tong L, Passalacqua LFM, Bredy TW, Wood MA, Lupták A. Inhibition of CPEB3 ribozyme elevates CPEB3 protein expression and polyadenylation of its target mRNAs, and enhances object location memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.543953. [PMID: 37333407 PMCID: PMC10274809 DOI: 10.1101/2023.06.07.543953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.
Collapse
Affiliation(s)
- Claire C. Chen
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Carlene A. Chinn
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Jacob S. Rounds
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Xiang Li
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Mehran Nikan
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Marie Myszka
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
| | - Liqi Tong
- Institute for Memory Impairments and Neurological Disorders, University of California–Irvine, Irvine, California 92697, United States
| | - Luiz F. M. Passalacqua
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
| | - Timothy W. Bredy
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California–Irvine, Irvine, California 92697, United States
| |
Collapse
|
21
|
Rouhana L, Edgar A, Hugosson F, Dountcheva V, Martindale MQ, Ryan JF. Cytoplasmic Polyadenylation Is an Ancestral Hallmark of Early Development in Animals. Mol Biol Evol 2023; 40:msad137. [PMID: 37288606 PMCID: PMC10284499 DOI: 10.1093/molbev/msad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Fredrik Hugosson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Valeria Dountcheva
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Buchanan JA, Varghese NR, Johnston CL, Sunde M. Functional Amyloids: Where Supramolecular Amyloid Assembly Controls Biological Activity or Generates New Functionality. J Mol Biol 2023; 435:167919. [PMID: 37330295 DOI: 10.1016/j.jmb.2022.167919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.
Collapse
Affiliation(s)
- Jessica A Buchanan
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Nikhil R Varghese
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| | - Margaret Sunde
- School of Medical Sciences and Sydney Nano, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Jager K, Orozco-Hidalgo MT, Springstein BL, Joly-Smith E, Papazotos F, McDonough E, Fleming E, McCallum G, Hilfinger A, Hochschild A, Potvin-Trottier L. Measuring prion propagation in single bacteria elucidates mechanism of loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523042. [PMID: 36712035 PMCID: PMC9882039 DOI: 10.1101/2023.01.11.523042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute non-toxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes with distinct stability and inheritance characteristics. We find that the prion is lost through random partitioning of aggregates to one of the two daughter cells at division. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation across domains of life.
Collapse
Affiliation(s)
- Krista Jager
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | | | | | - Euan Joly-Smith
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Fotini Papazotos
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - EmilyKate McDonough
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleanor Fleming
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Giselle McCallum
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - Andreas Hilfinger
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ann Hochschild
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurent Potvin-Trottier
- Department of Biology, Concordia University, Montréal, Québec, Canada
- Department of Physics, Concordia University, Montréal, Québec, Canada
- Center for Applied Synthetic Biology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhhadou M, Crossland NA, Barrall E, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena N, Aslam S, Saqi A, Marin A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, Miorin L. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.18.512708. [PMID: 36299428 DOI: 10.1101/2022.12.07.519389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
UNLABELLED We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.
Collapse
|
25
|
Functional amyloid in a lipid-like environment: a merry dance of many steps. Essays Biochem 2022; 66:1035-1046. [PMID: 36205438 DOI: 10.1042/ebc20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022]
Abstract
Functional amyloid, which unlike its pathological counterpart serves a biological purpose, is produced in a carefully orchestrated sequence of events. In bacteria, the major amyloid component is transported over the periplasm and through the outer membrane to assemble on the bacterial cell surface. During its life time, the amyloid protein may be exposed to both membrane lipids and extracellular surfactant, making it relevant to study its interactions with these components in vitro. Particularly for charged surfactants, the interaction is quite complex and highly dependent on the surfactant:protein molar ratio. Low ratios typically promote aggregation, likely by binding the proteins to micelles and thus increasing the local concentration of proteins, while higher concentrations see an inhibition of the same process as the protein is diluted out and immobilized on individual micelles. This is particularly pronounced for strongly anionic surfactants like SDS; the naturally occurring biosurfactant rhamnolipid interacts more weakly with the protein, which still not only allows aggregation but also leads to less detrimental effects at higher ratios. Similarly, anionic vesicle-forming lipids largely stimulate aggregation likely because of weaker interactions. Anionic lysolipids, thanks to their micelle-forming properties, resemble SDS in their impact on fibrillation. There are also examples of systems where membrane binding sequesters an otherwise amyloidogenic sequence and prevents fibrillation or-quite the opposite- liberates another part of the protein to engage in self-assembly. Thus, membranes and surfactants have very varied roles to play in the biogenesis and function of bacterial amyloid.
Collapse
|
26
|
Bowler JT, Sawaya MR, Boyer DR, Cascio D, Bali M, Eisenberg DS. Micro-electron diffraction structure of the aggregation-driving N-terminus of Drosophila neuronal protein Orb2A reveals amyloid-like β-sheets. J Biol Chem 2022; 298:102396. [PMID: 35988647 PMCID: PMC9556795 DOI: 10.1016/j.jbc.2022.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022] Open
Abstract
Amyloid protein aggregation is commonly associated with progressive neurodegenerative diseases, however not all amyloid fibrils are pathogenic. The neuronal cytoplasmic polyadenylation element binding (CPEB) protein is a regulator of synaptic mRNA translation, and has been shown to form functional amyloid aggregates that stabilize long-term memory. In adult Drosophila neurons, the CPEB homolog Orb2 is expressed as two isoforms, of which the Orb2B isoform is far more abundant, but the rarer Orb2A isoform is required to initiate Orb2 aggregation. The N-terminus is a distinctive feature of the Orb2A isoform and is critical for its aggregation. Intriguingly, replacement of phenylalanine in the 5th position of Orb2A with tyrosine (F5Y) in Drosophila impairs stabilization of long-term memory. The structure of endogenous Orb2B fibers was recently determined by cryo-EM, but the structure adopted by fibrillar Orb2A is less certain. Here we use micro-electron diffraction to determine the structure of the first nine N-terminal residues of Orb2A, at a resolution of 1.05 Å. We find that this segment (which we term M9I) forms an amyloid-like array of parallel in-register β-sheets, which interact through side chain interdigitation of aromatic and hydrophobic residues. Our structure provides an explanation for the decreased aggregation observed for the F5Y mutant, and offers a hypothesis for how the addition of a single atom (the tyrosyl oxygen) affects long-term memory. We also propose a structural model of Orb2A that integrates our structure of the M9I segment with the published Orb2B cryo-EM structure.
Collapse
Affiliation(s)
- Jeannette T Bowler
- Molecular Biology Institute, University of California, Los Angeles; Howard Hughes Medical Institute.
| | - Michael R Sawaya
- Molecular Biology Institute, University of California, Los Angeles; Howard Hughes Medical Institute
| | - David R Boyer
- Molecular Biology Institute, University of California, Los Angeles; Howard Hughes Medical Institute
| | - Duilio Cascio
- Molecular Biology Institute, University of California, Los Angeles; Howard Hughes Medical Institute
| | - Manya Bali
- Molecular Biology Institute, University of California, Los Angeles; Howard Hughes Medical Institute
| | - David S Eisenberg
- Molecular Biology Institute, University of California, Los Angeles; Howard Hughes Medical Institute.
| |
Collapse
|
27
|
Siemer AB. What makes functional amyloids work? Crit Rev Biochem Mol Biol 2022; 57:399-411. [PMID: 35997712 PMCID: PMC9588633 DOI: 10.1080/10409238.2022.2113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Although first described in the context of disease, cross-β (amyloid) fibrils have also been found as functional entities in all kingdoms of life. However, what are the specific properties of the cross-β fibril motif that convey biological function, make them especially suited for their particular purpose, and distinguish them from other fibrils found in biology? This review approaches these questions by arguing that cross-β fibrils are highly periodic, stable, and self-templating structures whose formation is accompanied by substantial conformational change that leads to a multimerization of their core and framing sequences. A discussion of each of these properties is followed by selected examples of functional cross-β fibrils that show how function is usually achieved by leveraging many of these properties.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Ramírez de Mingo D, Pantoja-Uceda D, Hervás R, Carrión-Vázquez M, Laurents DV. Conformational dynamics in the disordered region of human CPEB3 linked to memory consolidation. BMC Biol 2022; 20:129. [PMID: 35658951 PMCID: PMC9166367 DOI: 10.1186/s12915-022-01310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Current understanding of the molecular basis of memory consolidation points to an important function of amyloid formation by neuronal-specific isoforms of the cytoplasmic polyadenylation element binding (CPEB) protein family. In particular, CPEB is thought to promote memory persistence through formation of self-sustaining prion-like amyloid assemblies at synapses, mediated by its intrinsically disordered region (IDR) and leading to permanent physical alterations at the basis of memory persistence. Although the molecular mechanisms by which amyloid formation takes place in CPEB have been described in invertebrates, the way amyloid formation occurs in the human homolog CPEB3 (hCPEB3) remains unclear. Here, we characterize by NMR spectroscopy the atomic level conformation and ps-ms dynamics of the 426-residue IDR of hCPEB3, which has been associated with episodic memory in humans. Results We show that the 426-residue N-terminal region of hCPEB3 is a dynamic, intrinsically disordered region (IDR) which lacks stable folded structures. The first 29 residues, M1QDDLLMDKSKTQPQPQQQQRQQQQPQP29, adopt a helical + disordered motif, and residues 86–93: P83QQPPPP93, and 166–175: P166PPPAPAPQP175 form polyproline II (PPII) helices. The (VG)5 repeat motif is completely disordered, and residues 200–250 adopt three partially populated α-helices. Residues 345–355, which comprise the nuclear localization signal (NLS), form a modestly populated α-helix which may mediate STAT5B binding. These findings allow us to suggest a model for nascent hCPEB3 structural transitions at single residue resolution, advancing that amyloid breaker residues, like proline, are a key difference between functional versus pathological amyloids. Conclusion Our NMR spectroscopic analysis of hCPEB3 provides insights into the first structural transitions involved in protein–protein and protein-mRNA interactions. The atomic level understanding of these structural transitions involved in hCPEB3 aggregation is a key first step toward understanding memory persistence in humans, as well as sequence features that differentiate beneficial amyloids from pathological ones. Areas Biophysics, Structural Biology, Biochemistry & Neurosciences. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01310-6.
Collapse
|
29
|
Prebble DW, Er S, Hlushchuk I, Domanskyi A, Airavaara M, Ekins MG, Mellick GD, Carroll AR. α-Synuclein binding activity of the plant growth promoter asterubine. Bioorg Med Chem Lett 2022; 64:128677. [PMID: 35301136 DOI: 10.1016/j.bmcl.2022.128677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/02/2022]
Abstract
Preventing the aggregation of certain amyloid proteins has the potential to slow down the progression of diseases like Alzheimer's, Parkinson's, and type 2 diabetes mellitus. During a high-throughput screen of 300 Australian marine invertebrate extracts, the extract of the marine sponge Thorectandra sp. 4408 displayed binding activity to the Parkinson's disease-associated protein, α-synuclein. Isolation of the active component led to its identification as the known plant growth promoter asterubine (1). This molecule shares distinct structural similarities with potent amyloid beta aggregation inhibitors tramiprosate (homotaurine) and ALZ-801. Herein we report the isolation, NMR data acquired in DMSO and α-synuclein binding activity of asterubine (1).
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Safak Er
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Irena Hlushchuk
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Mikko Airavaara
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Merrick G Ekins
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia; Queensland Museum, South Brisbane BC, QLD 4101, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
30
|
Suzuki Y, Kurata Y, Sakai T. Dorsal‐lateral clock neurons modulate consolidation and maintenance of long‐term memory in
Drosophila. Genes Cells 2022; 27:266-279. [DOI: 10.1111/gtc.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Yuki Suzuki
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Yuto Kurata
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| | - Takaomi Sakai
- Department of Biological Sciences Tokyo Metropolitan University Tokyo 192‐0397 Japan
| |
Collapse
|
31
|
Lau Y, Oamen HP, Grogg M, Parfenova I, Saarikangas J, Hannay R, Nichols RA, Hilvert D, Barral Y, Caudron F. Whi3 mnemon association with endoplasmic reticulum membranes confines the memory of deceptive courtship to the yeast mother cell. Curr Biol 2022; 32:963-974.e7. [PMID: 35085498 PMCID: PMC8938615 DOI: 10.1016/j.cub.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Prion-like proteins are involved in many aspects of cellular physiology, including cellular memory. In response to deceptive courtship, budding yeast escapes pheromone-induced cell-cycle arrest through the coalescence of the G1/S inhibitor Whi3 into a dominant, inactive super-assembly. Whi3 is a mnemon (Whi3mnem), a protein that conformational change maintains as a trait in the mother cell but is not inherited by the daughter cells. How the maintenance and asymmetric inheritance of Whi3mnem are achieved is unknown. Here, we report that Whi3mnem is closely associated with endoplasmic reticulum (ER) membranes and is retained in the mother cell by the lateral diffusion barriers present at the bud neck. Strikingly, barrier defects made Whi3mnem propagate in a mitotically stable, prion-like manner. The amyloid-forming glutamine-rich domain of Whi3 was required for both mnemon and prion-like behaviors. Thus, we propose that Whi3mnem is in a self-templating state, lending temporal maintenance of memory, whereas its association with the compartmentalized membranes of the ER prevents infectious propagation to the daughter cells. These results suggest that confined self-templating super-assembly is a powerful mechanism for the long-term encoding of information in a spatially defined manner. Yeast courtship may provide insights on how individual synapses become potentiated in neuronal memory.
Collapse
Affiliation(s)
- Yasmin Lau
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henry Patrick Oamen
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Marcel Grogg
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093 Zürich, Switzerland
| | - Iuliia Parfenova
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg, 8093 Zürich, Switzerland
| | - Juha Saarikangas
- Helsinki Institute of Life Science HiLIFE, Viikinkaari 5, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, Viikinkaari 5, 00790 Helsinki, Finland; Neuroscience Center, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland
| | - Robin Hannay
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard Alan Nichols
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg, 8093 Zürich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg, 8093 Zürich, Switzerland
| | - Fabrice Caudron
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; IGMM, Univ Montpellier, CNRS, Route de Mende, 34293 Montpellier, France.
| |
Collapse
|
32
|
Soria MA, Cervantes SA, Siemer AB. Calmodulin binds the N-terminus of the functional amyloid Orb2A inhibiting fibril formation. PLoS One 2022; 17:e0259872. [PMID: 35025866 PMCID: PMC8758002 DOI: 10.1371/journal.pone.0259872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic polyadenylation element-binding protein Orb2 is a key regulator of long-term memory (LTM) in Drosophila. The N-terminus of the Orb2 isoform A is required for LTM and forms cross-β fibrils on its own. However, this N-terminus is not part of the core found in ex vivo fibrils. We previously showed that besides forming cross-β fibrils, the N-terminus of Orb2A binds anionic lipid membranes as an amphipathic helix. Here, we show that the Orb2A N-terminus can similarly interact with calcium activated calmodulin (CaM) and that this interaction prevents fibril formation. Because CaM is a known regulator of LTM, this interaction could potentially explain the regulatory role of Orb2A in LTM.
Collapse
Affiliation(s)
- Maria A. Soria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Silvia A. Cervantes
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ansgar B. Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
33
|
Vectorial channeling as a mechanism for translational control by functional prions and condensates. Proc Natl Acad Sci U S A 2021; 118:2115904118. [PMID: 34795061 DOI: 10.1073/pnas.2115904118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Translation of messenger RNA (mRNA) is regulated through a diverse set of RNA-binding proteins. A significant fraction of RNA-binding proteins contains prion-like domains which form functional prions. This raises the question of how prions can play a role in translational control. Local control of translation in dendritic spines by prions has been invoked in the mechanism of synaptic plasticity and memory. We show how channeling through diffusion and processive translation cooperate in highly ordered mRNA/prion aggregates as well as in less ordered mRNA/protein condensates depending on their substructure. We show that the direction of translational control, whether it is repressive or activating, depends on the polarity of the mRNA distribution in mRNA/prion assemblies which determines whether vectorial channeling can enhance recycling of ribosomes. Our model also addresses the effect of changes of substrate concentration in assemblies that have been suggested previously to explain translational control by assemblies through the introduction of a potential of mean force biasing diffusion of ribosomes inside the assemblies. The results from the model are compared with the experimental data on translational control by two functional RNA-binding prions, CPEB involved in memory and Rim4 involved in gametogenesis.
Collapse
|
34
|
Sankaranarayanan M, Emenecker RJ, Wilby EL, Jahnel M, Trussina IREA, Wayland M, Alberti S, Holehouse AS, Weil TT. Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development. Dev Cell 2021; 56:2886-2901.e6. [PMID: 34655524 PMCID: PMC8555633 DOI: 10.1016/j.devcel.2021.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct proteins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release of bcd for translation in the early embryo. Together, this work provides an example of how physical states of condensates regulate cellular function in development.
Collapse
Affiliation(s)
- M Sankaranarayanan
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marcus Jahnel
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Irmela R E A Trussina
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Matt Wayland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
35
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Coca JR, Eraña H, Castilla J. Biosemiotics comprehension of PrP code and prion disease. Biosystems 2021; 210:104542. [PMID: 34517077 DOI: 10.1016/j.biosystems.2021.104542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023]
Abstract
Prions or PrPSc (prion protein, Scrapie isoform) are proteins with an aberrant three-dimensional conformation that present the ability to alter the three-dimensional structure of natively folded PrPC (prion protein, cellular isoform) inducing its abnormal folding, giving raise to neurological diseases known as Transmissible spongiforms encephalopathies (TSEs) or prion diseases. In this work, through a biosemiotic study, we will analyze the molecular code of meanings that are known in the molecular pathway of PrPC and how it is altered in prion diseases. This biosemiotic code presents a socio-semiotic correlate in organisms that could be unraveled with the ultimate goal of understanding the code of signs that mediates the process. Finally, we will study recent works that indicate possible relationships in the code between prion proteins and other proteins such as the tau protein and alpha-synuclein to evaluate if it is possible that there is a semiotic expansion of the PrP code and prion diseases in the meaning recently expounded by Prusiner, winner of the Nobel Prize for describing these unusual pathological processes.
Collapse
Affiliation(s)
- Juan R Coca
- Social Research Unit in Health and Rare Diseases, University of Valladolid, Spain.
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; Atlas Molecular Pharma S. L., Derio, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
37
|
Garai S, Citu, Singla-Pareek SL, Sopory SK, Kaur C, Yadav G. Complex Networks of Prion-Like Proteins Reveal Cross Talk Between Stress and Memory Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:707286. [PMID: 34381483 PMCID: PMC8350573 DOI: 10.3389/fpls.2021.707286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 08/01/2023]
Abstract
Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.
Collapse
Affiliation(s)
- Sampurna Garai
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Citu
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sudhir K. Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Charanpreet Kaur
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Jin I, Kassabov S, Kandel ER, Hawkins RD. Possible novel features of synaptic regulation during long-term facilitation in Aplysia. ACTA ACUST UNITED AC 2021; 28:218-227. [PMID: 34131053 PMCID: PMC8212780 DOI: 10.1101/lm.053124.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/23/2021] [Indexed: 11/24/2022]
Abstract
Most studies of molecular mechanisms of synaptic plasticity have focused on the sequence of changes either at individual synapses or in the cell nucleus. However, studies of long-term facilitation at Aplysia sensory neuron–motor neuron synapses in isolated cell culture suggest two additional features of facilitation. First, that there is also regulation of the number of synaptic contacts between two neurons, which may occur at the level of cell pair-specific branch points in the neuronal arbor. Branch points contain many molecules that are involved in protein synthesis-dependent long-term facilitation including neurotrophins and the RNA binding protein CPEB. Second, the regulation involves homeostatic feedback and tends to keep the total number of contacts between two neurons at a fairly constant level both at rest and following facilitation. That raises the question of how facilitation and homeostasis can coexist. A possible answer is suggested by the findings that they both involve spontaneous transmission and postsynaptic Ca2+, which can have bidirectional effects similar to LTP and LTD in hippocampus. In addition, long-term facilitation can involve a change in the set point of homeostasis, which could be encoded by plasticity molecules such as CPEB and/or PKM. A computational model based on these ideas can qualitatively simulate the basic features of both facilitation and homeostasis of the number of contacts.
Collapse
Affiliation(s)
- Iksung Jin
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Stefan Kassabov
- Department of Neuroscience, Columbia University, New York, New York 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA.,Howard Hughes Medical Institute, New York, New York 10032, USA
| | - Robert D Hawkins
- Department of Neuroscience, Columbia University, New York, New York 10032, USA.,New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
39
|
Reselammal DS, Pinhero F, Sharma R, Oliyantakath Hassan MS, Srinivasula SM, Vijayan V. Mapping the Fibril Core of the Prion Subdomain of the Mammalian CPEB3 that is Involved in Long Term Memory Retention. J Mol Biol 2021; 433:167084. [PMID: 34081983 DOI: 10.1016/j.jmb.2021.167084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
Long-term memory storage is modulated by the prion nature of CPEB3 forming the molecular basis for the maintenance of synaptic facilitation. Here we report that the first prion sub-domain PRD1 of mouse CPEB3 can autonomously form amyloid fibrils in vitro and punctate-like structures in vivo. A ninety-four amino acid sequence within the PRD1 domain, PRD1-core, displays high propensity towards aggregation and associated amyloid characteristics. PRD1-core is characterized using electron microscopy, X-ray diffraction, and solution-state NMR deuterium exchange experiments. Secondary structure elements deduced from solid-state NMR reveal a β-rich core comprising of forty amino acids at the N-terminus of PRD1-core. The synthesized twenty-three amino acid long peptide containing the longest rigid segment (E124-H145) of the PRD1-core rapidly self-aggregates and forms fibrils, indicating a limited aggregation-prone region that could potentially activate the aggregation of the full-length protein. This study provides the first step in identifying the structural trigger for the CPEB3 aggregation process.
Collapse
Affiliation(s)
- Dhanya S Reselammal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Faina Pinhero
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Rahul Sharma
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | | | - Srinivasa M Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India.
| |
Collapse
|
40
|
Ashami K, Falk AS, Hurd C, Garg S, Cervantes SA, Rawat A, Siemer AB. Droplet and fibril formation of the functional amyloid Orb2. J Biol Chem 2021; 297:100804. [PMID: 34044018 PMCID: PMC8294575 DOI: 10.1016/j.jbc.2021.100804] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023] Open
Abstract
The functional amyloid Orb2 belongs to the cytoplasmic polyadenylation element binding (CPEB) protein family and plays an important role in long-term memory formation in Drosophila. The Orb2 domain structure combines RNA recognition motifs with low-complexity sequences similar to many RNA-binding proteins shown to form protein droplets via liquid–liquid phase separation (LLPS) in vivo and in vitro. This similarity suggests that Orb2 might also undergo LLPS. However, cellular Orb2 puncta have very little internal protein mobility, and Orb2 forms fibrils in Drosophila brains that are functionally active indicating that LLPS might not play a role for Orb2. In the present work, we reconcile these two views on Orb2 droplet formation. Using fluorescence microscopy, we show that soluble Orb2 can indeed phase separate into protein droplets. However, fluorescence recovery after photobleaching (FRAP) data shows that these droplets have either no or only an extremely short-lived liquid phase and appear maturated right after formation. Orb2 fragments that lack the C-terminal RNA-binding domain (RBD) form fibrils out of these droplets. Solid-state NMR shows that these fibrils have well-ordered static domains in addition to the Gln/His-rich fibril core. Further, we find that full-length Orb2B, which is by far the major component of Orb2 fibrils in vivo, does not transition into fibrils but remains in the droplet phase. Together, our data suggest that phase separation might play a role in initiating the formation of functional Orb2 fibrils.
Collapse
Affiliation(s)
- Kidist Ashami
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexander S Falk
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Connor Hurd
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Samridhi Garg
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Silvia A Cervantes
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anoop Rawat
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
41
|
Formicola N, Heim M, Dufourt J, Lancelot AS, Nakamura A, Lagha M, Besse F. Tyramine induces dynamic RNP granule remodeling and translation activation in the Drosophila brain. eLife 2021; 10:65742. [PMID: 33890854 PMCID: PMC8064753 DOI: 10.7554/elife.65742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/04/2021] [Indexed: 02/06/2023] Open
Abstract
Ribonucleoprotein (RNP) granules are dynamic condensates enriched in regulatory RNA binding proteins (RBPs) and RNAs under tight spatiotemporal control. Extensive recent work has investigated the molecular principles underlying RNP granule assembly, unraveling that they form through the self-association of RNP components into dynamic networks of interactions. How endogenous RNP granules respond to external stimuli to regulate RNA fate is still largely unknown. Here, we demonstrate through high-resolution imaging of intact Drosophila brains that Tyramine induces a reversible remodeling of somatic RNP granules characterized by the decondensation of granule-enriched RBPs (e.g. Imp/ZBP1/IGF2BP) and helicases (e.g. Me31B/DDX-6/Rck). Furthermore, our functional analysis reveals that Tyramine signals both through its receptor TyrR and through the calcium-activated kinase CamkII to trigger RNP component decondensation. Finally, we uncover that RNP granule remodeling is accompanied by the rapid and specific translational activation of associated mRNAs. Thus, this work sheds new light on the mechanisms controlling cue-induced rearrangement of physiological RNP condensates.
Collapse
Affiliation(s)
- Nadia Formicola
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Marjorie Heim
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Jérémy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Anne-Sophie Lancelot
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, and Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
42
|
Kozlov E, Shidlovskii YV, Gilmutdinov R, Schedl P, Zhukova M. The role of CPEB family proteins in the nervous system function in the norm and pathology. Cell Biosci 2021; 11:64. [PMID: 33789753 PMCID: PMC8011179 DOI: 10.1186/s13578-021-00577-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Posttranscriptional gene regulation includes mRNA transport, localization, translation, and regulation of mRNA stability. CPEB (cytoplasmic polyadenylation element binding) family proteins bind to specific sites within the 3′-untranslated region and mediate poly- and deadenylation of transcripts, activating or repressing protein synthesis. As part of ribonucleoprotein complexes, the CPEB proteins participate in mRNA transport and localization to different sub-cellular compartments. The CPEB proteins are evolutionarily conserved and have similar functions in vertebrates and invertebrates. In the nervous system, the CPEB proteins are involved in cell division, neural development, learning, and memory. Here we consider the functional features of these proteins in the nervous system of phylogenetically distant organisms: Drosophila, a well-studied model, and mammals. Disruption of the CPEB proteins functioning is associated with various pathologies, such as autism spectrum disorder and brain cancer. At the same time, CPEB gene regulation can provide for a recovery of the brain function in patients with fragile X syndrome and Huntington's disease, making the CPEB genes promising targets for gene therapy.
Collapse
Affiliation(s)
- Eugene Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.,Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119992
| | - Rudolf Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544-1014, USA
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
43
|
Roselli C, Ramaswami M, Boto T, Cervantes-Sandoval I. The Making of Long-Lasting Memories: A Fruit Fly Perspective. Front Behav Neurosci 2021; 15:662129. [PMID: 33859556 PMCID: PMC8042140 DOI: 10.3389/fnbeh.2021.662129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information. In other words, these changes affect the weight of specific nodes within a neural network. We know that these plastic reorganizations require de novo protein synthesis in the context of Long-term memory (LTM). This process depends on neural activity triggered by the learned experience. The use of model organisms like Drosophila melanogaster has been proven essential for advancing our knowledge in the field of neuroscience. Flies offer an optimal combination of a more straightforward nervous system, composed of a limited number of cells, and while still displaying complex behaviors. Studies in Drosophila neuroscience, which expanded over several decades, have been critical for understanding the cellular and molecular mechanisms leading to the synaptic and behavioral plasticity occurring in the context of learning and memory. This is possible thanks to sophisticated technical approaches that enable precise control of gene expression in the fruit fly as well as neural manipulation, like chemogenetics, thermogenetics, or optogenetics. The search for the identity of genes expressed as a result of memory acquisition has been an active interest since the origins of behavioral genetics. From screenings of more or less specific candidates to broader studies based on transcriptome analysis, our understanding of the genetic control behind LTM has expanded exponentially in the past years. Here we review recent literature regarding how the formation of memories induces a rapid, extensive and, in many cases, transient wave of transcriptional activity. After a consolidation period, transcriptome changes seem more stable and likely represent the synthesis of new proteins. The complexity of the circuitry involved in memory formation and consolidation is such that there are localized changes in neural activity, both regarding temporal dynamics and the nature of neurons and subcellular locations affected, hence inducing specific temporal and localized changes in protein expression. Different types of neurons are recruited at different times into memory traces. In LTM, the synthesis of new proteins is required in specific subsets of cells. This de novo translation can take place in the somatic cytoplasm and/or locally in distinct zones of compartmentalized synaptic activity, depending on the nature of the proteins and the plasticity-inducing processes that occur. We will also review recent advances in understanding how localized changes are confined to the relevant synapse. These recent studies have led to exciting discoveries regarding proteins that were not previously involved in learning and memory processes. This invaluable information will lead to future functional studies on the roles that hundreds of new molecular actors play in modulating neural activity.
Collapse
Affiliation(s)
- Camilla Roselli
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.,National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Tamara Boto
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
44
|
Hervás R, Del Carmen Fernández-Ramírez M, Galera-Prat A, Suzuki M, Nagai Y, Bruix M, Menéndez M, Laurents DV, Carrión-Vázquez M. Divergent CPEB prion-like domains reveal different assembly mechanisms for a generic amyloid-like fold. BMC Biol 2021; 19:43. [PMID: 33706787 PMCID: PMC7953810 DOI: 10.1186/s12915-021-00967-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Amyloids are ordered, insoluble protein aggregates, characterized by a cross-β sheet quaternary structure in which molecules in a β-strand conformation are stacked along the filament axis via intermolecular interactions. While amyloids are typically associated with pathological conditions, functional amyloids have also been identified and are present in a wide variety of organisms ranging from bacteria to humans. The cytoplasmic polyadenylation element-binding (CPEB) prion-like protein is an mRNA-binding translation regulator, whose neuronal isoforms undergo activity-dependent aggregation, a process that has emerged as a plausible biochemical substrate for memory maintenance. CPEB aggregation is driven by prion-like domains (PLD) that are divergent in sequence across species, and it remains unknown whether such divergent PLDs follow a similar aggregating assembly pathway. Here, we describe the amyloid-like features of the neuronal Aplysia CPEB (ApCPEB) PLD and compare them to those of the Drosophila ortholog, Orb2 PLD. RESULTS Using in vitro single-molecule and bulk biophysical methods, we find transient oligomers and mature amyloid-like filaments that suggest similarities in the late stages of the assembly pathway for both ApCPEB and Orb2 PLDs. However, while prior to aggregation the Orb2 PLD monomer remains mainly as a random coil in solution, ApCPEB PLD adopts a diversity of conformations comprising α-helical structures that evolve to coiled-coil species, indicating structural differences at the beginning of their amyloid assembly pathways. CONCLUSION Our results indicate that divergent PLDs of CPEB proteins from different species retain the ability to form a generic amyloid-like fold through different assembly mechanisms.
Collapse
Affiliation(s)
- Rubén Hervás
- Instituto Cajal, IC-CSIC, Avda. Doctor Arce 37, E-28002, Madrid, Spain. .,Present address: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Present address: Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Present address: Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Marta Bruix
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias (CIBERES), C/ Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Douglas V Laurents
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Serrano 119, E-28006, Madrid, Spain
| | | |
Collapse
|
45
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Amyloid and Amyloid-Like Aggregates: Diversity and the Term Crisis. BIOCHEMISTRY (MOSCOW) 2021; 85:1011-1034. [PMID: 33050849 DOI: 10.1134/s0006297920090035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Active accumulation of the data on new amyloids continuing nowadays dissolves boundaries of the term "amyloid". Currently, it is most often used to designate aggregates with cross-β structure. At the same time, amyloids also exhibit a number of other unusual properties, such as: detergent and protease resistance, interaction with specific dyes, and ability to induce transition of some proteins from a soluble form to an aggregated one. The same features have been also demonstrated for the aggregates lacking cross-β structure, which are commonly called "amyloid-like" and combined into one group, although they are very diverse. We have collected and systematized information on the properties of more than two hundred known amyloids and amyloid-like proteins with emphasis on conflicting examples. In particular, a number of proteins in membraneless organelles form aggregates with cross-β structure that are morphologically indistinguishable from the other amyloids, but they can be dissolved in the presence of detergents, which is not typical for amyloids. Such paradoxes signify the need to clarify the existing definition of the term amyloid. On the other hand, the demonstrated structural diversity of the amyloid-like aggregates shows the necessity of their classification.
Collapse
Affiliation(s)
- A B Matiiv
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - N P Trubitsina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - A G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Y A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Bioinformatics Institute, St. Petersburg, 197342, Russia
| | - G A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - S A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. .,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
46
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
47
|
Reichert P, Caudron F. Mnemons and the memorization of past signaling events. Curr Opin Cell Biol 2021; 69:127-135. [PMID: 33618243 DOI: 10.1016/j.ceb.2021.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Current advances are raising our awareness of the diverse roles that protein condensation plays in the biology of cells. Particularly, findings in organisms as diverse as yeast and Drosophila suggest that cells may utilize protein condensation to establish long-lasting changes in cellular activities and thereby encode a memory of past signaling events. Proteins that oligomerize to confer such cellular memory have been termed 'mnemons'. In the forming of super-assemblies, mnemons change their function and modulate the influence that the affected protein originally had on cellular processes. Because mnemon assemblies are self-templating, they allow cells to retain the memory of past decisions over larger timescales. Here, we review the mechanisms behind the formation of cellular memory with an emphasis on mnemon-mediated memorization of past signaling events.
Collapse
Affiliation(s)
- Polina Reichert
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Fabrice Caudron
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
48
|
Moving beyond disease to function: Physiological roles for polyglutamine-rich sequences in cell decisions. Curr Opin Cell Biol 2021; 69:120-126. [PMID: 33610098 DOI: 10.1016/j.ceb.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Glutamine-rich tracts, also known as polyQ domains, have received a great deal of attention for their role in multiple neurodegenerative diseases, including Huntington's disease (HD), spinocerebellar ataxia (SCA), and others [22], [27]. Expansions in the normal polyQ tracts are thus commonly linked to disease, but polyQ domains themselves play multiple important functional roles in cells that are being increasingly appreciated. The biochemical nature of these domains allows them to adopt a number of different structures and form large assemblies that enable environmental responsiveness, localized signaling, and cellular memory. In many cases, these involve the formation of condensates that have varied material states. In this review, we highlight known and emerging functional roles for polyQ tracts in normal cell physiology.
Collapse
|
49
|
Chirinskaite AV, Siniukova VA, Velizhanina ME, Sopova JV, Belashova TA, Zadorsky SP. STXBP1 forms amyloid-like aggregates in rat brain and demonstrates amyloid properties in bacterial expression system. Prion 2021; 15:29-36. [PMID: 33590815 PMCID: PMC7894455 DOI: 10.1080/19336896.2021.1883980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Amyloids are the fibrillar protein aggregates with cross-β structure. Traditionally amyloids were associated with pathology, however, nowadays more data is emerging about functional amyloids playing essential roles in cellular processes. We conducted screening for functional amyloids in rat brain. One of the identified proteins was STXBP1 taking part in vesicular transport and neurotransmitter secretion. Using SDD-AGE and protein fractionation we found out that STXBP1 forms small detergent-insoluble aggregates in rat brain. With immunoprecipitation analysis and C-DAG system, we showed that STXBP1 forms amyloid-like fibrils. Thus, STXBP1 demonstrates amyloid properties in rat brain and in bacterial expression system.
Collapse
Affiliation(s)
- A V Chirinskaite
- Department of Genetics and Biotechnology, St. Petersburg State University , St. Petersburg, Russian Federation.,Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russian Federation
| | - V A Siniukova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences , St. Petersburg, Russian Federation
| | - M E Velizhanina
- Department of Genetics and Biotechnology, St. Petersburg State University , St. Petersburg, Russian Federation.,Laboratory of Signal Regulation, All-Russia Research Institute for Agricultural Microbiology , Pushkin, St. Petersburg, Russian Federation
| | - J V Sopova
- Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences , St. Petersburg, Russian Federation.,Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg, Russian Federation
| | - T A Belashova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences , St. Petersburg, Russian Federation.,Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg, Russian Federation
| | - S P Zadorsky
- Department of Genetics and Biotechnology, St. Petersburg State University , St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences , St. Petersburg, Russian Federation
| |
Collapse
|
50
|
Abstract
Drosophila melanogaster males reduce courtship behaviour after mating failure. In the lab, such conditioned courtship suppression, aka 'courtship conditioning', serves as a complex learning and memory assay. Interestingly, variations in the courtship conditioning assay can establish different types of memory. Here, we review research investigating the underlying cellular and molecular mechanisms that allow male flies to form memories of previous mating failures.
Collapse
Affiliation(s)
- Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spencer Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|