1
|
Nadar-Ponniah PT, Lopez-Escamez JA. Preclinical Models to Study the Molecular Pathophysiology of Meniere's Disease: A Pathway to Gene Therapy. J Clin Med 2025; 14:1427. [PMID: 40094841 PMCID: PMC11899769 DOI: 10.3390/jcm14051427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Meniere's disease (MD) is a set of rare disorders that affects >4 million people worldwide. Individuals with MD suffer from episodes of vertigo associated with fluctuating sensorineural hearing loss and tinnitus. Hearing loss can involve one or both ears. Over 10% of the reported cases are observed in families, suggesting its significant genetic contribution. The condition is polygenic with >20 genes, and several patterns of inheritance have been reported, including autosomal dominant, autosomal recessive, and digenic inheritance across multiple MD families. Preclinical research using animal models has been an indispensable tool for studying the neurophysiology of the auditory and vestibular systems and to get a better understanding of the functional role of genes that are involved in the hearing and vestibular dysfunction. While mouse models are the most used preclinical model, this review analyzes alternative animal and non-animal models that can be used to study MD genes. Methods: A literature search of the 21 genes reported for familial MD and the preclinical models used to investigate their functional role was performed. Results: Comparing the homology of proteins encoded by these genes to other model organisms revealed Drosophila and zebrafish as cost-effective models to screen multiple genes and study the pathophysiology of MD. Conclusions: Murine models are preferred for a quantitative neurophysiological assessment of hearing and vestibular functions to develop drug or gene therapy.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
| | - Jose A. Lopez-Escamez
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW 2065, Australia
- Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, 18071 Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
| |
Collapse
|
2
|
Juusola M, Takalo J, Kemppainen J, Haghighi KR, Scales B, McManus J, Bridges A, MaBouDi H, Chittka L. Theory of morphodynamic information processing: Linking sensing to behaviour. Vision Res 2025; 227:108537. [PMID: 39755072 DOI: 10.1016/j.visres.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously. The theory of neural morphodynamics proposes that rapid biomechanical movements and microstructural changes at the level of neurons and synapses enhance the speed and efficiency of sensory information processing, intrinsic thoughts, and actions by regulating neural information in a phasic manner. We propose that morphodynamic information processing evolved to drive predictive coding, synchronising cognitive processes across neural networks to match the behavioural demands at hand effectively.
Collapse
Affiliation(s)
- Mikko Juusola
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Jouni Takalo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Joni Kemppainen
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Ben Scales
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James McManus
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alice Bridges
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - HaDi MaBouDi
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lars Chittka
- Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
3
|
Wulf PO, Häfker NS, Hofmann K, Tessmar-Raible K. Guiding Light: Mechanisms and Adjustments of Environmental Light Interpretation with Insights from Platynereis dumerilii and Other Selected Examples. Zoolog Sci 2025; 42. [PMID: 39932759 DOI: 10.2108/zs240099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/01/2024] [Indexed: 05/08/2025]
Abstract
Animals possess many light-sensitive molecules. They exist as dedicated photoreceptors, or as byproducts of biochemical reactions. Their numbers are often high even in species that live in environments that humans would consider dark, as well as in species that are considered comparably simple (e.g., worms, cnidarians). But why are there so many photoreceptors? We provide some considerations on this question. Light conveys a significant amount of information to animals, through complex spectral and intensity changes, often specific to the spatial and temporal ecological niches a species inhabits. We discuss that the large number of opsins and cryptochromes, often also present outside the eyes and partially co-expressed, represent adaptation mechanisms to the highly complex light environment within a given niche. While theoretical, it is a plausible hypothesis given that most experimentally tested opsins and cryptochromes have been shown to be functional photoreceptors. The example of lunar and solar timing of the marine annelid Platynereis dumerilii provides insight on how animals use the biochemical and cellular properties of different photoreceptors to decode solar versus lunar light, and their different adaptations in Drosophila melanogaster. We suggest that the future understanding of biological processes will strongly benefit from comparative lab and field work on the same species, and provide a first example for such work in P. dumerilii. Finally, we point out that work on animal light detection systems and their adaptability is crucial to understand the impact of anthropogenic changes on species and ecosystems.
Collapse
Affiliation(s)
- Paul O Wulf
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| | - N Sören Häfker
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Kaelin Hofmann
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria,
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| |
Collapse
|
4
|
Fukuda A, Sato K, Fujimori C, Yamashita T, Takeuchi A, Ohuchi H, Umatani C, Kanda S. Direct photoreception by pituitary endocrine cells regulates hormone release and pigmentation. Science 2025; 387:43-48. [PMID: 39745961 DOI: 10.1126/science.adj9687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
The recent discovery of nonvisual photoreceptors in various organs has raised expectations for uncovering their roles and underlying mechanisms. In this work, we identified a previously unrecognized hormone-releasing mechanism in the pituitary of the Japanese rice fish (medaka) induced by light. Ca2+ imaging analysis revealed that melanotrophs, a type of pituitary endocrine cell that secretes melanocyte-stimulating hormone, robustly increase the concentration of intracellular Ca2+ during short-wavelength light exposure. Moreover, we identified Opn5m as the key molecule that drives this response. Knocking out opn5m attenuated melanogenesis by reducing tyrosinase expression in the skin. Our findings suggest a mechanism in which direct reception of short-wavelength light by pituitary melanotrophs triggers a pathway that might contribute to protection from ultraviolet radiation in medaka.
Collapse
Affiliation(s)
- Ayaka Fukuda
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Keita Sato
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chika Fujimori
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Atsuko Takeuchi
- Division of Analytical Laboratory, Kobe Pharmaceutical University, Kobe, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shinji Kanda
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
5
|
Peng Y, Wu S, Hu S, Wang P, Liu T, Fan Y, Wang J, Jiang H. Ionotropic Receptor 8a (Ir8a) Plays an Important Role in Acetic Acid Perception in the Oriental Fruit Fly, Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24207-24218. [PMID: 39436820 DOI: 10.1021/acs.jafc.4c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Bactrocera dorsalis is one of the major invasive pests worldwide. The acetic acid-enriched sweet bait trapping is an important method for monitoring and controlling this fly. Several studies showed that acetic acid is perceived by ionotropic receptors (IRs). Thus, we annotated 65 IR genes in the B. dorsalis genome. We also investigated the IRs involved in acetic acid perception in this fly by behavioral, electrophysiological, and molecular methods. As the results indicated, the antennae are the main olfactory organs to sense acetic acid. Among the antennal IRs showed acetic acid-induced expression profiles, IR8a was proven to perceive acetic acid by CRISPR/Cas9-mediated mutagenesis. Additionally, calcium imaging showed that IR64a and IR75a are potential acetic acid receptors respectively co-expressed with IR76b and IR8a. This study represents the first comprehensive characterization of IRs in B. dorsalis at the whole-genome level, revealing the significant role of IRs in acetic acid perception.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuangxiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Siqi Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Peilin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Tianao Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yiping Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Cicconardi F, Morris BJ, Martelossi J, Ray DA, Montgomery SH. Novel Sex-Specific Genes and Diverse Interspecific Expression in the Antennal Transcriptomes of Ithomiine Butterflies. Genome Biol Evol 2024; 16:evae218. [PMID: 39373182 PMCID: PMC11500719 DOI: 10.1093/gbe/evae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones. In this study, we investigate chemosensory evolution across six Ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses, we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesize may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behavior. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. In this study, we investigate the antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behavior, adaptation, and speciation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
7
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. Genome Biol Evol 2024; 16:evae195. [PMID: 39235033 PMCID: PMC11421661 DOI: 10.1093/gbe/evae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Biological invasions carry substantial practical and scientific importance and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our dataset. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as the prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| | - Samuel P DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
8
|
Waalkes MR, Leathery M, Peck M, Barr A, Cunill A, Hageter J, Horstick EJ. Light wavelength modulates search behavior performance in zebrafish. Sci Rep 2024; 14:16533. [PMID: 39019915 PMCID: PMC11255219 DOI: 10.1038/s41598-024-67262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.
Collapse
Affiliation(s)
- Matthew R Waalkes
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Maegan Leathery
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Madeline Peck
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Allison Barr
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Alexander Cunill
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - John Hageter
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Eric J Horstick
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience Morgantown, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
9
|
Yan C, Wu Z, Liu Y, Sun Y, Zhang J. Comparative transcriptomic analysis primarily explores the molecular mechanism of compound eye formation in Neocaridina denticulata sinensis. BMC Genomics 2024; 25:570. [PMID: 38844864 PMCID: PMC11155044 DOI: 10.1186/s12864-024-10453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.
Collapse
Affiliation(s)
- Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
10
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng’oma E, Middleton KM, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a Drosophila melanogaster model system. Genetics 2024; 227:iyae040. [PMID: 38506092 PMCID: PMC11075556 DOI: 10.1093/genetics/iyae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants within the genes that control this trait is of high importance if we want to better comprehend thermal physiology. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource as a model system. First, we used quantitative genetics and Quantitative Trait Loci mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to (1) alter tissue-specific gene expression and (2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
Affiliation(s)
- Patricka A Williams-Simon
- Department of Biology, University of Pennsylvania, 433 S University Ave., 226 Leidy Laboratories, Philadelphia, PA 19104, USA
| | - Camille Oster
- Ash Creek Forest Management, 2796 SE 73rd Ave., Hillsboro, OR 97123, USA
| | | | - Ronel Ghidey
- ECHO Data Analysis Center, Johns Hopkins Bloomberg School of Public Health, 504 Cathedral St., Baltimore, MD 2120, USA
| | - Enoch Ng’oma
- Division of Biology, University of Missouri, 226 Tucker Hall, Columbia, MO 65211, USA
| | - Kevin M Middleton
- Division of Biology, University of Missouri, 222 Tucker Hall, Columbia, MO 65211, USA
| | - Elizabeth G King
- Division of Biology, University of Missouri, 401 Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Huang M, Meng JY, Tang X, Shan LL, Yang CL, Zhang CY. Identification, expression analysis, and functional verification of three opsin genes related to the phototactic behaviour of Ostrinia furnacalis. Mol Ecol 2024:e17323. [PMID: 38506493 DOI: 10.1111/mec.17323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Ostrinia furnacalis is a disreputable herbivorous pest that poses a serious threat to corn crops. Phototaxis in nocturnal moths plays a crucial role in pest prediction and control. Insect opsins are the main component of insect visual system. However, the inherent molecular relationship between phototactic behaviour and vision of insects remains a mystery. Herein, three opsin genes were identified and cloned from O. furnacalis (OfLW, OfBL, and OfUV). Bioinformatics analysis revealed that all opsin genes had visual pigment (opsin) retinal binding sites and seven transmembrane domains. Opsin genes were distributed across different developmental stages and tissues, with the highest expression in adults and compound eyes. The photoperiod-induced assay elucidated that the expression of three opsin genes in females were higher during daytime, while their expression in males tended to increase at night. Under the sustained darkness, the expression of opsin genes increased circularly, although the increasing amplitude in males was lower when compared with females. Furthermore, the expression of OfLW, OfBL, and OfUV was upregulated under green, blue, and ultraviolet light, respectively. The results of RNA interference showed that the knockout of opsin genes decreased the phototaxis efficiency of female and male moths to green, blue, and ultraviolet light. Our results reveal that opsin genes are involved in the phototactic behaviour of moths, providing a potential target gene for pest control and a basis for further investigation on the phototactic behaviour of Lepidoptera insects.
Collapse
Affiliation(s)
- Mei Huang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, China
| | - Xue Tang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Long-Long Shan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Hasan MS, McElroy KE, Audino JA, Serb JM. Opsin expression varies across larval development and taxa in pteriomorphian bivalves. Front Neurosci 2024; 18:1357873. [PMID: 38562306 PMCID: PMC10982516 DOI: 10.3389/fnins.2024.1357873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Many marine organisms have a biphasic life cycle that transitions between a swimming larva with a more sedentary adult form. At the end of the first phase, larvae must identify suitable sites to settle and undergo a dramatic morphological change. Environmental factors, including photic and chemical cues, appear to influence settlement, but the sensory receptors involved are largely unknown. We targeted the protein receptor, opsin, which belongs to large superfamily of transmembrane receptors that detects environmental stimuli, hormones, and neurotransmitters. While opsins are well-known for light-sensing, including vision, a growing number of studies have demonstrated light-independent functions. We therefore examined opsin expression in the Pteriomorphia, a large, diverse clade of marine bivalves, that includes commercially important species, such as oysters, mussels, and scallops. Methods Genomic annotations combined with phylogenetic analysis show great variation of opsin abundance among pteriomorphian bivalves, including surprisingly high genomic abundance in many species that are eyeless as adults, such as mussels. Therefore, we investigated the diversity of opsin expression from the perspective of larval development. We collected opsin gene expression in four families of Pteriomorphia, across three distinct larval stages, i.e., trochophore, veliger, and pediveliger, and compared those to adult tissues. Results We found larvae express all opsin types in these bivalves, but opsin expression patterns are largely species-specific across development. Few opsins are expressed in the adult mantle, but many are highly expressed in adult eyes. Intriguingly, opsin genes such as retinochrome, xenopsins, and Go-opsins have higher levels of expression in the later larval stages when substrates for settlement are being tested, such as the pediveliger. Conclusion Investigating opsin gene expression during larval development provides crucial insights into their intricate interactions with the surroundings, which may shed light on how opsin receptors of these organisms respond to various environmental cues that play a pivotal role in their settlement process.
Collapse
Affiliation(s)
- Md Shazid Hasan
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Kyle E. McElroy
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jorge A. Audino
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M. Serb
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Ninoyu Y, Friedman RA. The genetic landscape of age-related hearing loss. Trends Genet 2024; 40:228-237. [PMID: 38161109 DOI: 10.1016/j.tig.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Age-related hearing loss (ARHL) is a prevalent concern in the elderly population. Recent genome-wide and phenome-wide association studies (GWASs and PheWASs) have delved into the identification of causative variants and the understanding of pleiotropy, highlighting the polygenic intricacies of this complex condition. While recent large-scale GWASs have pinpointed significant SNPs and risk variants associated with ARHL, the detailed mechanisms, encompassing both genetic and epigenetic modifications, remain to be fully elucidated. This review presents the latest advances in association studies, integrating findings from both human studies and model organisms. By juxtaposing historical perspectives with contemporary genomics, we aim to catalyze innovative research and foster the development of novel therapeutic strategies for ARHL.
Collapse
Affiliation(s)
- Yuzuru Ninoyu
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rick A Friedman
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Sutton DC, Andrews JC, Dolezal DM, Park YJ, Li H, Eberl DF, Yamamoto S, Groves AK. Comparative exploration of mammalian deafness gene homologues in the Drosophila auditory organ shows genetic correlation between insect and vertebrate hearing. PLoS One 2024; 19:e0297846. [PMID: 38412189 PMCID: PMC10898740 DOI: 10.1371/journal.pone.0297846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/13/2024] [Indexed: 02/29/2024] Open
Abstract
Johnston's organ, the Drosophila auditory organ, is anatomically very different from the mammalian organ of Corti. However, recent evidence indicates significant cellular and molecular similarities exist between vertebrate and invertebrate hearing, suggesting that Drosophila may be a useful platform to determine the function of the many mammalian deafness genes whose underlying biological mechanisms are poorly characterized. Our goal was a comprehensive screen of all known orthologues of mammalian deafness genes in the fruit fly to better understand conservation of hearing mechanisms between the insect and the fly and ultimately gain insight into human hereditary deafness. We used bioinformatic comparisons to screen previously reported human and mouse deafness genes and found that 156 of them have orthologues in Drosophila melanogaster. We used fluorescent imaging of T2A-GAL4 gene trap and GFP or YFP fluorescent protein trap lines for 54 of the Drosophila genes and found 38 to be expressed in different cell types in Johnston's organ. We phenotypically characterized the function of strong loss-of-function mutants in three genes expressed in Johnston's organ (Cad99C, Msp-300, and Koi) using a courtship assay and electrophysiological recordings of sound-evoked potentials. Cad99C and Koi were found to have significant courtship defects. However, when we tested these genes for electrophysiological defects in hearing response, we did not see a significant difference suggesting the courtship defects were not caused by hearing deficiencies. Furthermore, we used a UAS/RNAi approach to test the function of seven genes and found two additional genes, CG5921 and Myo10a, that gave a statistically significant delay in courtship but not in sound-evoked potentials. Our results suggest that many mammalian deafness genes have Drosophila homologues expressed in the Johnston's organ, but that their requirement for hearing may not necessarily be the same as in mammals.
Collapse
Affiliation(s)
- Daniel C. Sutton
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jonathan C. Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Dylan M. Dolezal
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ye Jin Park
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Hongjie Li
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, One Baylor Plaza, Houston, Texas, United States of America
| | - Daniel F. Eberl
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Shinya Yamamoto
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Graduate Program in Genetics & Genomics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
15
|
Warren B, Eberl D. What can insects teach us about hearing loss? J Physiol 2024; 602:297-316. [PMID: 38128023 DOI: 10.1113/jp281281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Over the last three decades, insects have been utilized to provide a deep and fundamental understanding of many human diseases and disorders. Here, we present arguments for insects as models to understand general principles underlying hearing loss. Despite ∼600 million years since the last common ancestor of vertebrates and invertebrates, we share an overwhelming degree of genetic homology particularly with respect to auditory organ development and maintenance. Despite the anatomical differences between human and insect auditory organs, both share physiological principles of operation. We explain why these observations are expected and highlight areas in hearing loss research in which insects can provide insight. We start by briefly introducing the evolutionary journey of auditory organs, the reasons for using insect auditory organs for hearing loss research, and the tools and approaches available in insects. Then, the first half of the review focuses on auditory development and auditory disorders with a genetic cause. The second half analyses the physiological and genetic consequences of ageing and short- and long-term changes as a result of noise exposure. We finish with complex age and noise interactions in auditory systems. In this review, we present some of the evidence and arguments to support the use of insects to study mechanisms and potential treatments for hearing loss in humans. Obviously, insects cannot fully substitute for all aspects of human auditory function and loss of function, although there are many important questions that can be addressed in an animal model for which there are important ethical, practical and experimental advantages.
Collapse
Affiliation(s)
- Ben Warren
- Neurogenetics Group, College of Life Sciences, University of Leicester, Leicester, UK
| | - Daniel Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Mat A, Vu HH, Wolf E, Tessmar-Raible K. All Light, Everywhere? Photoreceptors at Nonconventional Sites. Physiology (Bethesda) 2024; 39:0. [PMID: 37905983 PMCID: PMC11283901 DOI: 10.1152/physiol.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.
Collapse
Affiliation(s)
- Audrey Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- VIPS2, Vienna BioCenter, Vienna, Austria
| | - Hong Ha Vu
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
17
|
Kong F, Ran Z, Zhang M, Liao K, Chen D, Yan X, Xu J. Eyeless razor clam Sinonovacula constricta discriminates light spectra through opsins to guide Ca 2+ and cAMP signaling pathways. J Biol Chem 2024; 300:105527. [PMID: 38043801 PMCID: PMC10788561 DOI: 10.1016/j.jbc.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023] Open
Abstract
Phototransduction is based on opsins that drive distinct types of Gα cascades. Although nonvisual photosensitivity has long been known in marine bivalves, the underlying molecular basis and phototransduction mechanism are poorly understood. Here, we introduced the eyeless razor clam Sinonovacula constricta as a model to clarify this issue. First, we showed that S. constricta was highly diverse in opsin family members, with a significant expansion in xenopsins. Second, the expression of putative S. constricta opsins was highly temporal-spatio specific, indicating their potential roles in S. constricta development and its peripheral photosensitivity. Third, by cloning four S. constricta opsins with relatively higher expression (Sc_opsin1, 5, 7, and 12), we found that they exhibited different expression levels in response to different light environments. Moreover, we demonstrated that these opsins (excluding Sc_opsin7) couple with Gαq and Gαi cascades to mediate the light-dependent Ca2+ (Sc_opsin1 and 5) and cAMP (Sc_opsin12) signaling pathways. The results indicated that Sc_opsin1 and 5 belonged to Gq-opsins, Sc_opsin12 belonged to Gi-opsins, while Sc_opsin7 might act as a photo-isomerase. Furthermore, we found that the phototransduction function of S. constricta Gq-opsins was dependent on the lysine at the seventh transmembrane domain, and greatly influenced by the external light spectra in a complementary way. Thus, a synergistic photosensitive system mediated by opsins might exist in S. constricta to rapidly respond to the transient or subtle changes of the external light environment. Collectively, our findings provide valuable insights into the evolution of opsins in marine bivalves and their potential functions in nonvisual photosensitivity.
Collapse
Affiliation(s)
- Fei Kong
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Zhaoshou Ran
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| | - Mengqi Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Kai Liao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China
| | - Deshui Chen
- Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China
| | - Jilin Xu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China; Fujian Dalai Seedling Technology Co, LTD, Luoyuan, Fujian, China.
| |
Collapse
|
18
|
McElroy KE, Audino JA, Serb JM. Molluscan Genomes Reveal Extensive Differences in Photopigment Evolution Across the Phylum. Mol Biol Evol 2023; 40:msad263. [PMID: 38039155 PMCID: PMC10733189 DOI: 10.1093/molbev/msad263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.
Collapse
Affiliation(s)
- Kyle E McElroy
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jorge A Audino
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Jeanne M Serb
- Ecology, Evolutionary, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
19
|
Huang M, Meng JY, Zhou L, Yu C, Zhang CY. Expression and function of opsin genes associated with phototaxis in Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2023; 79:4490-4500. [PMID: 37418556 DOI: 10.1002/ps.7651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Zeugodacus cucuribitae is a major agricultural pest that causes significant damage to varieties of plants. Vision plays a critical role in phototactic behavior of herbivorous insects. However, the effect of opsin on the phototactic behavior in Z. cucuribitae remains unknown. The aim of this research is to explore the key opsin genes that associate with phototaxis behavior of Z. cucurbitae. RESULTS Five opsin genes were identified and their expression patterns were analyzed. The relative expression levels of ZcRh1, ZcRh4 and ZcRh6 were highest in 4-day-old larvae, ZcRh2 and ZcRh3 were highest in 3rd-instar larvae and 5-day-old pupae, respectively. Furthermore, five opsin genes had the highest expression levels in compound eyes, followed by the antennae and head, whereas the lower occurred in other tissues. The expression of the long-wavelength-sensitive (LW) opsins first decreased and then increased under green light exposure. In contrast, the expression of ultraviolet-sensitive (UV) opsins first increased and then decreased with the duration of UV exposure. Silencing of LW opsin (dsZcRh1, dsZcRh2, and dsZcRh6) and UV opsin (dsZcRh3 and dsZcRh4) reduced the phototactic efficiency of Z. cucurbitae to green light by 52.27%, 60.72%, and 67.89%, and to UV light by 68.59% and 61.73%, respectively. CONCLUSION The results indicate that RNAi inhibited the expression of opsin, thereby inhibiting the phototaxis of Z. cucurbitae. This result provides theoretical support for the physical control of Z. cucurbitae and lays the foundation for further exploration of the mechanism of insect phototaxis. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Huang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Chun Yu
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
20
|
Feng S, DeGrey SP, Guédot C, Schoville SD, Pool JE. Genomic Diversity Illuminates the Environmental Adaptation of Drosophila suzukii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547576. [PMID: 37461625 PMCID: PMC10349955 DOI: 10.1101/2023.07.03.547576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.
Collapse
Affiliation(s)
- Siyuan Feng
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel P. DeGrey
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christelle Guédot
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
21
|
Chen L, Yu XY, Xue XF, Zhang F, Guo LX, Zhang HM, Hoffmann AA, Hong XY, Sun JT. The genome sequence of a spider mite, Tetranychus truncatus, provides insights into interspecific host range variation and the genetic basis of adaptation to a low-quality host plant. INSECT SCIENCE 2023; 30:1208-1228. [PMID: 37279769 DOI: 10.1111/1744-7917.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
The phytophagous mite Tetranychus truncatus is a serious pest in East Asia but has a relatively narrower host range than the pest mite Tetranychus urticae, which can feed on over 1200 plant species. Here, we generated a high-quality chromosomal level genome of T. truncatus and compared it with that of T. urticae, with an emphasis on the genes related to detoxification and chemoreception, to explore the genomic basis underlying the evolution of host range. We also conducted population genetics analyses (in 86 females from 10 populations) and host transfer experiments (in 4 populations) to investigate transcription changes following transfer to a low-quality host (Solanum melongena, eggplant), and we established possible connections between fitness on eggplant and genes related to detoxification and chemoreception. We found that T. truncatus has fewer genes related to detoxification, transport, and chemoreception than T. urticae, with a particularly strong reduction in gustatory receptor (GR) genes. We also found widespread transcriptional variation among T. truncatus populations, which varied in fitness on eggplant. We characterized selection on detoxification-related genes through ω values and found a negative correlation between expression levels and ω values. Based on the transcription results, as well as the fitness and genetic differences among populations, we identified genes potentially involved in adaptation to eggplant in T. truncatus. Our work provides a genomic resource for this pest mite and new insights into mechanisms underlying the adaptation of herbivorous mites to host plants.
Collapse
Affiliation(s)
- Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yue Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Li-Xue Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hua-Meng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- Bio21 Institute, School of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Georgiades M, Alampounti A, Somers J, Su MP, Ellis DA, Bagi J, Terrazas-Duque D, Tytheridge S, Ntabaliba W, Moore S, Albert JT, Andrés M. Hearing of malaria mosquitoes is modulated by a beta-adrenergic-like octopamine receptor which serves as insecticide target. Nat Commun 2023; 14:4338. [PMID: 37468470 PMCID: PMC10356864 DOI: 10.1038/s41467-023-40029-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Malaria mosquitoes acoustically detect their mating partners within large swarms that form transiently at dusk. Indeed, male malaria mosquitoes preferably respond to female flight tones during swarm time. This phenomenon implies a sophisticated context- and time-dependent modulation of mosquito audition, the mechanisms of which are largely unknown. Using transcriptomics, we identify a complex network of candidate neuromodulators regulating mosquito hearing in the species Anopheles gambiae. Among them, octopamine stands out as an auditory modulator during swarm time. In-depth analysis of octopamine auditory function shows that it affects the mosquito ear on multiple levels: it modulates the tuning and stiffness of the flagellar sound receiver and controls the erection of antennal fibrillae. We show that two α- and β-adrenergic-like octopamine receptors drive octopamine's auditory roles and demonstrate that the octopaminergic auditory control system can be targeted by insecticides. Our findings highlight octopamine as key for mosquito hearing and mating partner detection and as a potential novel target for mosquito control.
Collapse
Affiliation(s)
- Marcos Georgiades
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alexandros Alampounti
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jason Somers
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Matthew P Su
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - David A Ellis
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Judit Bagi
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Scott Tytheridge
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Watson Ntabaliba
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, CH-4002, Basel, Switzerland
- University of Basel, Petersplatz 1, CH-4001, Basel, Switzerland
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Arusha, Tanzania
| | - Joerg T Albert
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Cluster of Excellence Hearing4all, Sensory Physiology & Behaviour Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl Von Ossietzky Str. 9-11, 26111, Oldenburg, Germany.
| | - Marta Andrés
- Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
23
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng'oma E, Middleton KM, Zars T, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547110. [PMID: 37461510 PMCID: PMC10350013 DOI: 10.1101/2023.07.06.547110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
|
24
|
Spalthoff C, Salgado VL, Balu N, David MD, Hehlert P, Huang H, Jones JE, Kandasamy R, Knudsen GA, Lelito KR, Machamer JB, Nesterov A, Tomalski M, Wahl GD, Wedel BJ, Göpfert MC. The novel pyridazine pyrazolecarboxamide insecticide dimpropyridaz inhibits chordotonal organ function upstream of TRPV channels. PEST MANAGEMENT SCIENCE 2023; 79:1635-1649. [PMID: 36622360 DOI: 10.1002/ps.7352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pyridazine pyrazolecarboxamides (PPCs) are a novel insecticide class discovered and optimized at BASF. Dimpropyridaz is the first PPC to be submitted for registration and controls many aphid species as well as whiteflies and other piercing-sucking insects. RESULTS Dimpropyridaz and other tertiary amide PPCs are proinsecticides that are converted in vivo into secondary amide active forms by N-dealkylation. Active secondary amide metabolites of PPCs potently inhibit the function of insect chordotonal neurons. Unlike Group 9 and 29 insecticides, which hyperactivate chordotonal neurons and increase Ca2+ levels, active metabolites of PPCs silence chordotonal neurons and decrease intracellular Ca2+ levels. Whereas the effects of Group 9 and 29 insecticides require TRPV (Transient Receptor Potential Vanilloid) channels, PPCs act in a TRPV-independent fashion, without compromising cellular responses to Group 9 and 29 insecticides, placing the molecular PPC target upstream of TRPVs. CONCLUSIONS PPCs are a new class of chordotonal organ modulator insecticide for control of piercing-sucking pests. Dimpropyridaz is a PPC proinsecticide that is activated in target insects to secondary amide forms that inhibit the firing of chordotonal organs. The inhibition occurs at a site upstream of TRPVs and is TRPV-independent, providing a novel mode of action for resistance management. © 2023 BASF Corporation. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Christian Spalthoff
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | | | | | | | - Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Fisher WW, Hammonds AS, Weiszmann R, Booth BW, Gevirtzman L, Patton JEJ, Kubo CA, Waterston RH, Celniker SE. A modERN resource: identification of Drosophila transcription factor candidate target genes using RNAi. Genetics 2023; 223:iyad004. [PMID: 36652461 PMCID: PMC10078917 DOI: 10.1093/genetics/iyad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Transcription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change -3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.
Collapse
Affiliation(s)
- William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ann S Hammonds
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Benjamin W Booth
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jaeda E J Patton
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Connor A Kubo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Small ST, Costantini C, Sagnon N, Guelbeogo MW, Emrich SJ, Kern AD, Fontaine MC, Besansky NJ. Standing genetic variation and chromosome differences drove rapid ecotype formation in a major malaria mosquito. Proc Natl Acad Sci U S A 2023; 120:e2219835120. [PMID: 36881629 PMCID: PMC10089221 DOI: 10.1073/pnas.2219835120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Species distributed across heterogeneous environments often evolve locally adapted ecotypes, but understanding of the genetic mechanisms involved in their formation and maintenance in the face of gene flow is incomplete. In Burkina Faso, the major African malaria mosquito Anopheles funestus comprises two strictly sympatric and morphologically indistinguishable yet karyotypically differentiated forms reported to differ in ecology and behavior. However, knowledge of the genetic basis and environmental determinants of An. funestus diversification was impeded by lack of modern genomic resources. Here, we applied deep whole-genome sequencing and analysis to test the hypothesis that these two forms are ecotypes differentially adapted to breeding in natural swamps versus irrigated rice fields. We demonstrate genome-wide differentiation despite extensive microsympatry, synchronicity, and ongoing hybridization. Demographic inference supports a split only ~1,300 y ago, closely following the massive expansion of domesticated African rice cultivation ~1,850 y ago. Regions of highest divergence, concentrated in chromosomal inversions, were under selection during lineage splitting, consistent with local adaptation. The origin of nearly all variations implicated in adaptation, including chromosomal inversions, substantially predates the ecotype split, suggesting that rapid adaptation was fueled mainly by standing genetic variation. Sharp inversion frequency differences likely facilitated adaptive divergence between ecotypes by suppressing recombination between opposing chromosomal orientations of the two ecotypes, while permitting free recombination within the structurally monomorphic rice ecotype. Our results align with growing evidence from diverse taxa that rapid ecological diversification can arise from evolutionarily old structural genetic variants that modify genetic recombination.
Collapse
Affiliation(s)
- Scott T. Small
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN46556
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR97403
| | - Carlo Costantini
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou01 BP 2208, Burkina Faso
- Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), Université de Montpellier, CNRS 5290, Institute of Research for Development (IRD) 224, F-34394Montpellier, France
| | - N’Fale Sagnon
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou01 BP 2208, Burkina Faso
| | - Moussa W. Guelbeogo
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou01 BP 2208, Burkina Faso
| | - Scott J. Emrich
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN46556
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Andrew D. Kern
- Institute for Ecology and Evolution, University of Oregon, Eugene, OR97403
| | - Michael C. Fontaine
- Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control (MIVEGEC), Université de Montpellier, CNRS 5290, Institute of Research for Development (IRD) 224, F-34394Montpellier, France
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Nora J. Besansky
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
27
|
Goodman MB, Haswell ES, Vásquez V. Mechanosensitive membrane proteins: Usual and unusual suspects in mediating mechanotransduction. J Gen Physiol 2023; 155:e202213248. [PMID: 36696153 PMCID: PMC9930137 DOI: 10.1085/jgp.202213248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This Viewpoint, which accompanies a Special Issue focusing on membrane mechanosensors, discusses unifying and unique features of both established and emerging mechanosensitive (MS) membrane proteins, their distribution across protein families and phyla, and current and future challenges in the study of these important proteins and their partners. MS membrane proteins are essential for tissue development, cellular motion, osmotic homeostasis, and sensing external and self-generated mechanical cues like those responsible for touch and proprioception. Though researchers' attention and this Viewpoint focus on a few famous ion channels that are considered the usual suspects as MS mechanosensors, we also discuss some of the more unusual suspects, such as G-protein coupled receptors. As the field continues to grow, so too will the list of proteins suspected to function as mechanosensors and the diversity of known MS membrane proteins.
Collapse
Affiliation(s)
- Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Elizabeth S. Haswell
- Department of Biology, Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
28
|
Jiao J, Zhu R, Ren L, Tao J, Luo Y. Identification and expression profile analysis of chemosensory genes in pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae). Front Physiol 2023; 14:1123479. [PMID: 36875036 PMCID: PMC9978445 DOI: 10.3389/fphys.2023.1123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Insects have highly specialized and sensitive olfactory systems involving several chemosensory genes to locate their mates and hosts or escape from predators. Pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae), has invaded China since 2016 and caused serious damage. Till now, there is no environmentally friendly measure to control this gall midge. Screening molecules with high affinity to target odorant-binding protein to develop highly efficient attractants is a potential pest management method. However, the chemosensory genes in T. japonensis are still unclear. We identified 67 chemosensory-related genes in the transcriptomes of antennae, including 26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs, and 13 IRs, using high throughput sequencing. Phylogenetic analysis of these six chemosensory gene families among Dipteran was performed to classify and predict the functions. The expression profiles of OBPs, CSPs and ORs were validated by quantitative real-time PCR. 16 of the 26 OBPs were biased expressed in antennae. TjapORco and TjapOR5 were highly expressed in the antenna of unmated male and female adults. The functions of related OBPs and ORs genes were also discussed. These results provide a basis for the functional research on chemosensory genes at the molecular level.
Collapse
Affiliation(s)
- Jipeng Jiao
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Rui Zhu
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Lili Ren
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| | - Jing Tao
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| | - Youqing Luo
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| |
Collapse
|
29
|
Su M, Yuan F, Li T, Wei C. A Non-Gradual Development Process of Cicada Eyes at the End of the Fifth-Instar Nymphal Stage to Obtain Visual Ability. INSECTS 2022; 13:1170. [PMID: 36555080 PMCID: PMC9787698 DOI: 10.3390/insects13121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Insects' visual system is directly related to ecology and critical for their survival. Some cicadas present obvious differences in color and ultrastructure of compound eyes between nymphal and adult stages, but little is known about when cicadas obtain their visual ability to deal with the novel above-ground habitat. We use transcriptome analyses and reveal that cicada Meimuna mongolica has a trichromatic color vision system and that the eyes undergo a non-gradual development process at the end of the 5th-instar nymphal stage. The white-eye 5th-instar nymphs (i.e., younger 5th-instar nymphs) have no visual ability because critical components of the visual system are deficient. The transformation of eyes toward possessing visual function takes place after a tipping point in the transition phase from the white-eye period to the subsequent red-eye period, which is related to a decrease of Juvenile Hormone. The period shortly after adult emergence is also critical for eye development. Key differentially-expressed genes related to phototransduction and chromophore synthesis play positive roles for cicadas to adapt to above-ground habitat. The accumulation of ommochromes corresponds to the color change of eyes from white to red and dark brown during the end of the 5th-instar nymphal period. Cuticle tanning leads to eye color changing from dark-brown to light-brown during the early adult stage. We hypothesize that the accumulation of ommochromes occurring at the end of 5th-instar nymphal stage and the early adult stage is not only for cicadas to obtain visual ability, but also is a secure strategy to cope with potential photodamage after emergence.
Collapse
|
30
|
Qiao X, Zhang X, Zhou Z, Guo L, Wu W, Ma S, Zhang X, Montell C, Huang J. An insecticide target in mechanoreceptor neurons. SCIENCE ADVANCES 2022; 8:eabq3132. [PMID: 36417522 PMCID: PMC9683716 DOI: 10.1126/sciadv.abq3132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/05/2022] [Indexed: 06/15/2023]
Abstract
Hundreds of neurotoxic insecticides are currently in use. However, only a few direct targets have been identified. Here, using Drosophila and the insecticide flonicamid, we identified nicotinamidase (Naam) as a previous unidentified molecular target for an insecticide. Naam is expressed in chordotonal stretch-receptor neurons, and inhibition of Naam by a metabolite of flonicamid, TFNA-AM (4-trifluoromethylnicotinamide), induces accumulation of substrate nicotinamide and greatly inhibits negative geotaxis. Engineered flies harboring a point mutation in the active site show insecticide resistance and defects in gravity sensing. Bees are resistant to flonicamid because of a gene duplication, resulting in the generation of a TFNA-AM-insensitive Naam. Our results, in combination with the absence of genes encoding Naam in vertebrate genomes, suggest that TFNA-AM and potential species-specific Naam inhibitors could be developed as novel insecticides, anthelmintics, and antimicrobials for agriculture and human health.
Collapse
Affiliation(s)
- Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhendong Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhan Ma
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Diakova AV, Makarova AA, Pang S, Xu CS, Hess H, Polilov AA. The 3D ultrastructure of the chordotonal organs in the antenna of a microwasp remains complex although simplified. Sci Rep 2022; 12:20172. [PMID: 36424494 PMCID: PMC9691716 DOI: 10.1038/s41598-022-24390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Insect antennae are astonishingly versatile and have multiple sensory modalities. Audition, detection of airflow, and graviception are combined in the antennal chordotonal organs. The miniaturization of these complex multisensory organs has never been investigated. Here we present a comprehensive study of the structure and scaling of the antennal chordotonal organs of the extremely miniaturized parasitoid wasp Megaphragma viggianii based on 3D electron microscopy. Johnston's organ of M. viggianii consists of 19 amphinematic scolopidia (95 cells); the central organ consists of five scolopidia (20 cells). Plesiomorphic composition includes one accessory cell per scolopidium, but in M. viggianii this ratio is only 0.3. Scolopale rods in Johnston's organ have a unique structure. Allometric analyses demonstrate the effects of scaling on the antennal chordotonal organs in insects. Our results not only shed light on the universal principles of miniaturization of sense organs, but also provide context for future interpretation of the M. viggianii connectome.
Collapse
Affiliation(s)
- Anna V Diakova
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Anastasia A Makarova
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Song Pang
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
- Yale School of Medicine, New Haven, CT, USA
| | - C Shan Xu
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Harald Hess
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, USA
| | - Alexey A Polilov
- Department of Entomology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
32
|
Requena T, Keder A, zur Lage P, Albert JT, Jarman AP. A Drosophila model for Meniere's disease: Dystrobrevin is required for support cell function in hearing and proprioception. Front Cell Dev Biol 2022; 10:1015651. [PMID: 36438562 PMCID: PMC9688402 DOI: 10.3389/fcell.2022.1015651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 08/04/2023] Open
Abstract
Meniere's disease (MD) is an inner ear disorder characterised by recurrent vertigo attacks associated with sensorineural hearing loss and tinnitus. Evidence from epidemiology and Whole Exome Sequencing (WES) suggests a genetic susceptibility involving multiple genes, including α-Dystrobrevin (DTNA). Here we investigate a Drosophila model. We show that mutation, or knockdown, of the DTNA orthologue in Drosophila, Dystrobrevin (Dyb), results in defective proprioception and impaired function of Johnston's Organ (JO), the fly's equivalent of the inner ear. Dyb and another component of the dystrophin-glycoprotein complex (DGC), Dystrophin (Dys), are expressed in support cells within JO. Their specific locations suggest that they form part of support cell contacts, thereby helping to maintain the integrity of the hemolymph-neuron diffusion barrier, which is equivalent to a blood-brain barrier. These results have important implications for the human condition, and notably, we note that DTNA is expressed in equivalent cells of the mammalian inner ear.
Collapse
Affiliation(s)
- T. Requena
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - A. Keder
- Ear Institute, University College London, London, United Kingdom
| | - P. zur Lage
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - J. T. Albert
- Ear Institute, University College London, London, United Kingdom
| | - A. P. Jarman
- Biomedical Sciences: Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Spalthoff C, Salgado VL, Theis M, Geurten BRH, Göpfert MC. Flonicamid metabolite 4-trifluoromethylnicotinamide is a chordotonal organ modulator insecticide †. PEST MANAGEMENT SCIENCE 2022; 78:4802-4808. [PMID: 35904889 DOI: 10.1002/ps.7101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The selective aphicide flonicamid is known to cause symptoms in aphids that are like those of chordotonal organ TRPV channel modulator insecticides such as pymetrozine, pyrifluquinazon and afidopyropen. Flonicamid is classified by the Insecticide Resistance Action Committee as a chordotonal organ modulator with an undefined target site. However, although it has been shown not to act on TRPV channels, flonicamid's action on chordotonal organs has not been documented in the literature. RESULTS Flonicamid causes locusts to extend their hindlegs, indicating an action on the femoral chordotonal organ. In fruit flies, it abolishes negative gravitaxis behavior by disrupting transduction and mechanical amplification in antennal chordotonal neurons. Although flonicamid itself only weakly affects locust chordotonal organs, its major animal metabolite 4-trifluoromethylnicotinamide (TFNA-AM) potently stimulates both locust and fly chordotonal organs. Like pymetrozine, TFNA-AM rapidly increases Ca2+ in antennal chordotonal neurons in wild-type flies, but not iav1 mutants, yet the effect is nonadditive with the TRPV channel agonist. CONCLUSIONS Flonicamid is a pro-insecticide form of TFNA-AM, a potent chordotonal organ modulator. The functional effects of TFNA-AM on chordotonal organs of locusts and flies are indistinguishable from those of the TRPV agonists pymetrozine, pyrifluquinazon and afidopyropen. Because our previous results indicate that TFNA-AM does not act directly on TRPV channels, we conclude that it acts upstream in a pathway that leads to TRPV channel activation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Christian Spalthoff
- Department of Cellular Neurobiology, Schwann-Schleiden Research Centre, Göttingen, Germany
| | - Vincent L Salgado
- BASF Corp, Research Triangle Park, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Mario Theis
- Bayer AG, R&D Pest Control, Monheim, Germany
| | - Bart R H Geurten
- Department of Cellular Neurobiology, Schwann-Schleiden Research Centre, Göttingen, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, Schwann-Schleiden Research Centre, Göttingen, Germany
| |
Collapse
|
34
|
Scalzotto M, Ng R, Cruchet S, Saina M, Armida J, Su CY, Benton R. Pheromone sensing in Drosophila requires support cell-expressed Osiris 8. BMC Biol 2022; 20:230. [PMID: 36217142 PMCID: PMC9552441 DOI: 10.1186/s12915-022-01425-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The nose of most animals comprises multiple sensory subsystems, which are defined by the expression of different olfactory receptor families. Drosophila melanogaster antennae contain two morphologically and functionally distinct subsystems that express odorant receptors (Ors) or ionotropic receptors (Irs). Although these receptors have been thoroughly characterized in this species, the subsystem-specific expression and roles of other genes are much less well-understood. Results Here we generate subsystem-specific transcriptomic datasets to identify hundreds of genes, encoding diverse protein classes, that are selectively enriched in either Or or Ir subsystems. Using single-cell antennal transcriptomic data and RNA in situ hybridization, we find that most neuronal genes—other than sensory receptor genes—are broadly expressed within the subsystems. By contrast, we identify many non-neuronal genes that exhibit highly selective expression, revealing substantial molecular heterogeneity in the non-neuronal cellular components of the olfactory subsystems. We characterize one Or subsystem-specific non-neuronal molecule, Osiris 8 (Osi8), a conserved member of a large, insect-specific family of transmembrane proteins. Osi8 is expressed in the membranes of tormogen support cells of pheromone-sensing trichoid sensilla. Loss of Osi8 does not have obvious impact on trichoid sensillar development or basal neuronal activity, but abolishes high sensitivity responses to pheromone ligands. Conclusions This work identifies a new protein required for insect pheromone detection, emphasizes the importance of support cells in neuronal sensory functions, and provides a resource for future characterization of other olfactory subsystem-specific genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01425-w.
Collapse
Affiliation(s)
- Marta Scalzotto
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michael Saina
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jan Armida
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
35
|
Kandasamy R, Costea PI, Stam L, Nesterov A. TRPV channel nanchung and TRPA channel water witch form insecticide-activated complexes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103835. [PMID: 36087889 DOI: 10.1016/j.ibmb.2022.103835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
We have previously shown that insect vanilloid-type transient receptor potential (TRPV) channels Nanchung (Nan) and Inactive (Iav) form complexes, which can be over-stimulated and eventually silenced by commercial insecticides, afidopyropen, pymetrozine and pyrifluquinazon. Silencing of the TRPV channels by the insecticides perturbs function of the mechano-sensory organs, chordotonal organs, disrupting sound perception, gravitaxis, and feeding. In addition to TRPV channels, chordotonal organs express an ankyrin-type transient receptor potential (TRPA) channel, Water witch (Wtrw). Genetic data implicate Wtrw in sound and humidity sensing, although the signaling pathway, which links Wtrw to these functions has not been clearly defined. Here we show that, in heterologous system, Nan and Wtrw form calcium channels, which can be activated by afidopyropen, pymetrozine and an endogenous agonist, nicotinamide. Analogous to Nan-Iav heteromers, Nan forms the main binding interface for afidopyropen, whereas co-expression of Wtrw dramatically increases its binding affinity. Pymetrozine competes with afidopyropen for binding to Nan-Wtrw complexes, suggesting that these compounds have overlapping binding sites. Analysis of Drosophila single-nucleus transcriptomic atlas revealed co-expression of nan and wtrw in audio- and mechanosensory neurons. The observation that Nan can form insecticide-sensitive heteromers with more than one type of TRP channels, raises a possibility that Nan may partner with some other TRP channel(s). In addition, we show that Wtrw can be activated by plant-derived reactive electrophiles, allyl isothiocyanate and cinnamaldehyde, defining new molecular target for these repellents.
Collapse
Affiliation(s)
- Ramani Kandasamy
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Paul Igor Costea
- BASF SE, RGD/BE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Lynn Stam
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC, 27709, USA
| | - Alexandre Nesterov
- BASF Corporation, 26 Davis Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
36
|
Gühmann M, Porter ML, Bok MJ. The Gluopsins: Opsins without the Retinal Binding Lysine. Cells 2022; 11:cells11152441. [PMID: 35954284 PMCID: PMC9368030 DOI: 10.3390/cells11152441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Opsins allow us to see. They are G-protein-coupled receptors and bind as ligand retinal, which is bound covalently to a lysine in the seventh transmembrane domain. This makes opsins light-sensitive. The lysine is so conserved that it is used to define a sequence as an opsin and thus phylogenetic opsin reconstructions discard any sequence without it. However, recently, opsins were found that function not only as photoreceptors but also as chemoreceptors. For chemoreception, the lysine is not needed. Therefore, we wondered: Do opsins exists that have lost this lysine during evolution? To find such opsins, we built an automatic pipeline for reconstructing a large-scale opsin phylogeny. The pipeline compiles and aligns sequences from public sources, reconstructs the phylogeny, prunes rogue sequences, and visualizes the resulting tree. Our final opsin phylogeny is the largest to date with 4956 opsins. Among them is a clade of 33 opsins that have the lysine replaced by glutamic acid. Thus, we call them gluopsins. The gluopsins are mainly dragonfly and butterfly opsins, closely related to the RGR-opsins and the retinochromes. Like those, they have a derived NPxxY motif. However, what their particular function is, remains to be seen.
Collapse
Affiliation(s)
- Martin Gühmann
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Correspondence:
| | - Megan L. Porter
- Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI 96822, USA
| | - Michael J. Bok
- Lund Vision Group, Department of Biology, University of Lund, 223 62 Lund, Sweden
| |
Collapse
|
37
|
Xiang W, Zur Lage P, Newton FG, Qiu G, Jarman AP. The dynamics of protein localisation to restricted zones within Drosophila mechanosensory cilia. Sci Rep 2022; 12:13338. [PMID: 35922464 PMCID: PMC9349282 DOI: 10.1038/s41598-022-17189-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
The Drosophila chordotonal neuron cilium is the site of mechanosensory transduction. The cilium has a 9 + 0 axoneme structure and is highly sub-compartmentalised, with proximal and distal zones harbouring different TRP channels and the proximal zone axoneme also being decorated with axonemal dynein motor complexes. The activity of the dynein complexes is essential for mechanotransduction. We investigate the localisation of TRP channels and dynein motor complexes during ciliogenesis. Differences in timing of TRP channel localisation correlate with order of construction of the two ciliary zones. Dynein motor complexes are initially not confined to their target proximal zone, but ectopic complexes beyond the proximal zone are later cleared, perhaps by retrograde transport. Differences in transient distal localisation of outer and inner dynein arm complexes (ODAs and IDAs) are consistent with previous suggestions from unicellular eukaryotes of differences in processivity during intraflagellar transport. Stable localisation depends on the targeting of their docking proteins in the proximal zone. For ODA, we characterise an ODA docking complex (ODA-DC) that is targeted directly to the proximal zone. Interestingly, the subunit composition of the ODA-DC in chordotonal neuron cilia appears to be different from the predicted ODA-DC in Drosophila sperm.
Collapse
Affiliation(s)
- Wangchu Xiang
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Guiyun Qiu
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
38
|
Sun YL, Dong JF, Yang HB, Li DX, Tian CH. Identification and Characterization of Chemosensory Receptors in the Pheromone Gland-Ovipositor of Spodoptera frugiperda (J. E. Smith). INSECTS 2022; 13:insects13050481. [PMID: 35621815 PMCID: PMC9146910 DOI: 10.3390/insects13050481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Chemical cues are generally thought to be primarily detected by the cephalic organ antennae, maxillary palps, and proboscises in insects. Although several recent studies have reported the chemosensory roles of ovipositors in some moth species, the expression of chemosensory receptors and their functions in the ovipositor remain largely unknown. Here, we systematically analyzed the pheromone gland-ovipositor (PG-OV) transcriptome of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). A total of 26 candidate chemosensory receptor genes were revealed, including 12 odorant receptors (ORs), 4 gustatory receptors (GRs), and 10 ionotropic receptors (IRs). Specific genes including pheromone receptors, ORco, CO2 receptors, sugar receptors, and IR co-receptors were identified. Tissue expression profiling demonstrated that the annotated receptor genes were mainly expressed in the antennae (for ORs and IRs) or proboscis (for GRs), but two ORs, two GRs, and two IRs were also highly enriched in the PG-OV, with expression levels only slightly lower or even similar to those in the antennae/proboscis. This report provides the first large-scale description of chemosensory receptors in the PG-OV of S. frugiperda. It may inspire researchers to investigate how chemosensory receptors function in the ovipositor of S. frugiperda, as well as in the ovipositors of other moths. Abstract Chemoreception by moth ovipositors has long been suggested, but underlying molecular mechanisms are mostly unknown. To reveal such chemosensory systems in the current study, we sequenced and assembled the pheromone gland-ovipositor (PG-OV) transcriptome of females of the fall armyworm, Spodoptera frugiperda, a pest of many crops. We annotated a total of 26 candidate chemosensory receptor genes, including 12 odorant receptors (ORs), 4 gustatory receptors (GRs), and 10 ionotropic receptors (IRs). The relatedness of these chemosensory receptors with those from other insect species was predicted by phylogenetic analyses, and specific genes, including pheromone receptors, ORco, CO2 receptors, sugar receptors, and IR co-receptors, were reported. Although real-time quantitative-PCR analyses of annotated genes revealed that OR and IR genes were mainly expressed in S. frugiperda antennae, two ORs and two IRs expressed in antennae were also highly expressed in the PG-OV. Similarly, GR genes were mainly expressed in the proboscis, but two were also highly expressed in the PG-OV. Our study provides the first large-scale description of chemosensory receptors in the PG-OV of S. frugiperda and provides a foundation for exploring the chemoreception mechanisms of PG-OV in S. frugiperda and in other moth species.
Collapse
Affiliation(s)
- Ya-Lan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
| | - Jun-Feng Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
- Correspondence: (J.-F.D.); (C.-H.T.); Tel.: +86-379-64282345 (J.-F.D.); +86-371-65717371 (C.-H.T.)
| | - Hai-Bo Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
| | - Ding-Xu Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China; (Y.-L.S.); (H.-B.Y.); (D.-X.L.)
| | - Cai-Hong Tian
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Correspondence: (J.-F.D.); (C.-H.T.); Tel.: +86-379-64282345 (J.-F.D.); +86-371-65717371 (C.-H.T.)
| |
Collapse
|
39
|
Langille BL, Tierney SM, Bertozzi T, Beasley-Hall PG, Bradford TM, Fagan-Jeffries EP, Hyde J, Leijs R, Richardson M, Saint KM, Stringer DN, Villastrigo A, Humphreys WF, Austin AD, Cooper SJB. Parallel decay of vision genes in subterranean water beetles. Mol Phylogenet Evol 2022; 173:107522. [PMID: 35595008 DOI: 10.1016/j.ympev.2022.107522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
In the framework of neutral theory of molecular evolution, genes specific to the development and function of eyes in subterranean animals living in permanent darkness are expected to evolve by relaxed selection, ultimately becoming pseudogenes. However, definitive empirical evidence for the role of neutral processes in the loss of vision over evolutionary time remains controversial. In previous studies, we characterized an assemblage of independently-evolved water beetle (Dytiscidae) species from a subterranean archipelago in Western Australia, where parallel vision and eye loss have occurred. Using a combination of transcriptomics and exon capture, we present evidence of parallel coding sequence decay, resulting from the accumulation of frameshift mutations and premature stop codons, in eight phototransduction genes (arrestins, opsins, ninaC and transient receptor potential channel genes) in 32 subterranean species in contrast to surface species, where these genes have open reading frames. Our results provide strong evidence to support neutral evolutionary processes as a major contributing factor to the loss of phototransduction genes in subterranean animals, with the ultimate fate being the irreversible loss of a light detection system.
Collapse
Affiliation(s)
- Barbara L Langille
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia.
| | - Simon M Tierney
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Terry Bertozzi
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Perry G Beasley-Hall
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Tessa M Bradford
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Erinn P Fagan-Jeffries
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Josephine Hyde
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Western Australia Department of Biodiversity Conservation and Attractions, Kensington, WA 6151, Australia
| | - Remko Leijs
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Matthew Richardson
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Kathleen M Saint
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Danielle N Stringer
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Adrián Villastrigo
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia; Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta, 37-49, 08003, Spain
| | - William F Humphreys
- Western Australian Museum, Locked Bag 40, Welshpool DC, WA 6986, Australia; School of Animal Biology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, Department of Ecology and Evolution, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
40
|
Dhar G, Paikra SK, Mishra M. Aminoglycoside treatment alters hearing-related genes and depicts behavioral defects in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21871. [PMID: 35150449 DOI: 10.1002/arch.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The hearing organ of Drosophila is present within the second segment of antennae. The hearing organ of Drosophila (Johnston's organ [JO]) shares much structural, developmental, and functional similarity with the vertebrate hearing organ (Organ of Corti). JO is evolving as a potential model system to examine the hearing-associated defects in vertebrates. In the vertebrates, aminoglycosides like gentamicin, kanamycin, and neomycin have been known to cause defects in the hearing organ. However, a complete mechanism of toxicity is not known. Taking the evolutionary conservation into account the current study aims to test various concentrations of aminoglycoside on the model organism, Drosophila melanogaster. The current study uses the oral route to check the toxicity of various aminoglycosides at different concentrations (50, 100, 150, 200, and 250 μg ml- 1 ). In Drosophila, many foreign particles enter the body through the gut via food. The aminoglycoside treated third instar larvae show defective crawling and sound avoidance behavior. The adult flies release lower amounts of acetylcholine esterase and higher amounts of reactive oxygen species than control untreated animals, accompanied by defective climbing and aggressive behavior. All these behavioral defects are further confirmed by the altered expression level of hearing genes such as nompC, inactive, nanchung, pyrexia. All the behavioral and genetic defects are reported as a readout of aminoglycoside toxicity.
Collapse
Affiliation(s)
- Gyanaseni Dhar
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Sanjeev K Paikra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
- Centre for Nanomaterials, National Institute of technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
41
|
Abstract
Opsins, the protein moieties of animal visual photo-pigments, have emerged as moonlighting proteins with diverse, light-dependent and -independent physiological functions. This raises the need to revise some basic assumptions concerning opsin expression, structure, classification, and evolution.
Collapse
Affiliation(s)
- Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College New York, USA
| | - Martin C Göpfert
- University of Göttingen, Department of Cellular Neurobiology, Germany
| |
Collapse
|
42
|
Hou XQ, Zhang DD, Powell D, Wang HL, Andersson MN, Löfstedt C. Ionotropic receptors in the turnip moth Agrotis segetum respond to repellent medium-chain fatty acids. BMC Biol 2022; 20:34. [PMID: 35130883 PMCID: PMC8822749 DOI: 10.1186/s12915-022-01235-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In insects, airborne chemical signals are mainly detected by two receptor families, odorant receptors (ORs) and ionotropic receptors (IRs). Functions of ORs have been intensively investigated in Diptera and Lepidoptera, while the functions and evolution of the more ancient IR family remain largely unexplored beyond Diptera. RESULTS Here, we identified a repertoire of 26 IRs from transcriptomes of female and male antennae, and ovipositors in the moth Agrotis segetum. We observed that a large clade formed by IR75p and IR75q expansions is closely related to the acid-sensing IRs identified in Diptera. We functionally assayed each of the five AsegIRs from this clade using Xenopus oocytes and found that two receptors responded to the tested ligands. AsegIR75p.1 responded to several compounds but hexanoic acid was revealed to be the primary ligand, and AsegIR75q.1 responded primarily to octanoic acid, and less so to nonanoic acid. It has been reported that the C6-C10 medium-chain fatty acids repel various insects including many drosophilids and mosquitos. We show that the C6-C10 medium-chain fatty acids elicited antennal responses of both sexes of A. segetum, while only octanoic acid had repellent effect to the moths in a behavioral assay. In addition, using fluorescence in situ hybridization, we demonstrated that the five IRs and their co-receptor AsegIR8a are not located in coeloconic sensilla as found in Drosophila, but in basiconic or trichoid sensilla. CONCLUSIONS Our results significantly expand the current knowledge of the insect IR family. Based on the functional data in combination with phylogenetic analysis, we propose that subfunctionalization after gene duplication plays an important role in the evolution of ligand specificities of the acid-sensing IRs in Lepidoptera.
Collapse
Affiliation(s)
- Xiao-Qing Hou
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
- Present address: Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan-Dan Zhang
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - Daniel Powell
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
- Present address: Global Change Ecology Research Group, School of Science and Engineering, University of the Sunshine Coast, QLD, Sunshine Coast, Australia
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | | | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| |
Collapse
|
43
|
Das B, de Bekker C. Time-course RNASeq of Camponotus floridanus forager and nurse ant brains indicate links between plasticity in the biological clock and behavioral division of labor. BMC Genomics 2022; 23:57. [PMID: 35033027 PMCID: PMC8760764 DOI: 10.1186/s12864-021-08282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. Results We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. Conclusion This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08282-x.
Collapse
Affiliation(s)
- Biplabendu Das
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| | - Charissa de Bekker
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
44
|
Bauerly E, Akiyama T, Staber C, Yi K, Gibson MC. Impact of cilia-related genes on mitochondrial dynamics during Drosophila spermatogenesis. Dev Biol 2021; 482:17-27. [PMID: 34822845 DOI: 10.1016/j.ydbio.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
Spermatogenesis is a dynamic process of cellular differentiation that generates the mature spermatozoa required for reproduction. Errors that arise during this process can lead to sterility due to low sperm counts and malformed or immotile sperm. While it is estimated that 1 out of 7 human couples encounter infertility, the underlying cause of male infertility can only be identified in 50% of cases. Here, we describe and examine the genetic requirements for missing minor mitochondria (mmm), sterile affecting ciliogenesis (sac), and testes of unusual size (tous), three previously uncharacterized genes in Drosophila that are predicted to be components of the flagellar axoneme. Using Drosophila, we demonstrate that these genes are essential for male fertility and that loss of mmm, sac, or tous results in complete immotility of the sperm flagellum. Cytological examination uncovered additional roles for sac and tous during cytokinesis and transmission electron microscopy of developing spermatids in mmm, sac, and tous mutant animals revealed defects associated with mitochondria and the accessory microtubules required for the proper elongation of the mitochondria and flagella during ciliogenesis. This study highlights the complex interactions of cilia-related proteins within the cell body and advances our understanding of male infertility by uncovering novel mitochondrial defects during spermatogenesis.
Collapse
Affiliation(s)
| | - Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Cynthia Staber
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA; Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
45
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
46
|
Revilla-i-Domingo R, Rajan VBV, Waldherr M, Prohaczka G, Musset H, Orel L, Gerrard E, Smolka M, Stockinger A, Farlik M, Lucas RJ, Raible F, Tessmar-Raible K. Characterization of cephalic and non-cephalic sensory cell types provides insight into joint photo- and mechanoreceptor evolution. eLife 2021; 10:e66144. [PMID: 34350831 PMCID: PMC8367381 DOI: 10.7554/elife.66144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Rhabdomeric opsins (r-opsins) are light sensors in cephalic eye photoreceptors, but also function in additional sensory organs. This has prompted questions on the evolutionary relationship of these cell types, and if ancient r-opsins were non-photosensory. A molecular profiling approach in the marine bristleworm Platynereis dumerilii revealed shared and distinct features of cephalic and non-cephalic r-opsin1-expressing cells. Non-cephalic cells possess a full set of phototransduction components, but also a mechanosensory signature. Prompted by the latter, we investigated Platynereis putative mechanotransducer and found that nompc and pkd2.1 co-expressed with r-opsin1 in TRE cells by HCR RNA-FISH. To further assess the role of r-Opsin1 in these cells, we studied its signaling properties and unraveled that r-Opsin1 is a Gαq-coupled blue light receptor. Profiling of cells from r-opsin1 mutants versus wild-types, and a comparison under different light conditions reveals that in the non-cephalic cells light - mediated by r-Opsin1 - adjusts the expression level of a calcium transporter relevant for auditory mechanosensation in vertebrates. We establish a deep-learning-based quantitative behavioral analysis for animal trunk movements and identify a light- and r-Opsin-1-dependent fine-tuning of the worm's undulatory movements in headless trunks, which are known to require mechanosensory feedback. Our results provide new data on peripheral cell types of likely light sensory/mechanosensory nature. These results point towards a concept in which such a multisensory cell type evolved to allow for fine-tuning of mechanosensation by light. This implies that light-independent mechanosensory roles of r-opsins may have evolved secondarily.
Collapse
Affiliation(s)
- Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Vinoth Babu Veedin Rajan
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Monika Waldherr
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Günther Prohaczka
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Hugo Musset
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Lukas Orel
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| | - Elliot Gerrard
- Division of Neuroscience & Experimental Psychology, University of ManchesterManchesterUnited Kingdom
| | - Moritz Smolka
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Dermatology, Medical University of ViennaViennaAustria
| | - Robert J Lucas
- Division of Neuroscience & Experimental Psychology, University of ManchesterManchesterUnited Kingdom
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform "Single-Cell Regulation of Stem Cells", University of Vienna, Vienna BioCenterViennaAustria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenterViennaAustria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenterViennaAustria
| |
Collapse
|
47
|
Chen SP, Liu ZX, Chen YT, Wang Y, Chen JZ, Fu S, Ma WF, Xia S, Liu D, Wu T, Yang G. CRISPR/Cas9-mediated knockout of LW-opsin reduces the efficiency of phototaxis in the diamondback moth Plutella xylostella. PEST MANAGEMENT SCIENCE 2021; 77:3519-3528. [PMID: 33837633 DOI: 10.1002/ps.6405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Opsins are crucial for animal vision. The identity and function of opsins in Plutella xylostella remain unknown. The aim of the research is to confirm which opsin gene(s) contribute to phototaxis of P. xylostella. RESULTS LW-opsin, BL-opsin and UV-opsin, were identified in the P. xylostella genome. LW-opsin was more highly expressed than the other two opsin genes, and all three genes were specifically expressed in the head. Three P. xylostella strains, LW-13 with a 13-bp deletion in LW-opsin, BL + 2 with a 2-bp insertion in BL-opsin, and UV-29 with a 5-bp insertion and a 34-bp deletion in UV-opsin, were established from the strain G88 using the CRISPR/Cas9 system. Among the three opsin-knockout strains, only male and female LW-13 exhibited weaker phototaxis to lights of different wavelengths and white light than G88 at 2.5 lx due to defective locomotion, and LW-13 was defective to sense white, green and infrared lights. The locomotion of LW-13 was reduced compared with G88 at 2.5, 10, 20, 60, 80, 100, and 200 lx under the green light, but the locomotion of LW-13 female was recovered at 80, 100 and 200 lx. The defective phototaxis to the green light of male LW-13 was not affected by light intensity, while the defective phototaxis to the green light of female LW-13 was recovered at 10, 20, 60, 80, 100, and 200 lx. CONCLUSION LW-opsin is involved in light sensing and locomotion of P. xylostella, providing a potential target gene for controlling the pest. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Zhao-Xia Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yan-Ting Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yue Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jin-Zhi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Shu Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wei-Feng Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Shuang Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Dan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Tong Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
48
|
Rump MT, Kozma MT, Pawar SD, Derby CD. G protein-coupled receptors as candidates for modulation and activation of the chemical senses in decapod crustaceans. PLoS One 2021; 16:e0252066. [PMID: 34086685 PMCID: PMC8177520 DOI: 10.1371/journal.pone.0252066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Many studies have characterized class A GPCRs in crustaceans; however, their expression in crustacean chemosensory organs has yet to be detailed. Class A GPCRs comprise several subclasses mediating diverse functions. In this study, using sequence homology, we classified all putative class A GPCRs in two chemosensory organs (antennular lateral flagellum [LF] and walking leg dactyls) and brain of four species of decapod crustaceans (Caribbean spiny lobster Panulirus argus, American lobster Homarus americanus, red-swamp crayfish Procambarus clarkii, and blue crab Callinectes sapidus). We identified 333 putative class A GPCRs– 83 from P. argus, 81 from H. americanus, 102 from P. clarkii, and 67 from C. sapidus–which belong to five distinct subclasses. The numbers of sequences for each subclass in the four decapod species are (in parentheses): opsins (19), small-molecule receptors including biogenic amine receptors (83), neuropeptide receptors (90), leucine-rich repeat-containing GPCRs (LGRs) (24), orphan receptors (117). Most class A GPCRs are predominately expressed in the brain; however, we identified multiple transcripts enriched in the LF and several in the dactyl. In total, we found 55 sequences with higher expression in the chemosensory organs relative to the brain across three decapod species. We also identified novel transcripts enriched in the LF including a metabotropic histamine receptor and numerous orphan receptors. Our work establishes expression patterns for class A GPCRs in the chemosensory organs of crustaceans, providing insight into molecular mechanisms mediating neurotransmission, neuromodulation, and possibly chemoreception.
Collapse
Affiliation(s)
- Matthew T. Rump
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Mihika T. Kozma
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Shrikant D. Pawar
- Yale Center for Genomic Analysis, Yale University, New Haven, Connecticut, United States of America
| | - Charles D. Derby
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Nicolson T. Navigating Hereditary Hearing Loss: Pathology of the Inner Ear. Front Cell Neurosci 2021; 15:660812. [PMID: 34093131 PMCID: PMC8172992 DOI: 10.3389/fncel.2021.660812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Inherited forms of deafness account for a sizable portion of hearing loss among children and adult populations. Many patients with sensorineural deficits have pathological manifestations in the peripheral auditory system, the inner ear. Within the hearing organ, the cochlea, most of the genetic forms of hearing loss involve defects in sensory detection and to some extent, signaling to the brain via the auditory cranial nerve. This review focuses on peripheral forms of hereditary hearing loss and how these impairments can be studied in diverse animal models or patient-derived cells with the ultimate goal of using the knowledge gained to understand the underlying biology and treat hearing loss.
Collapse
Affiliation(s)
- Teresa Nicolson
- Department of Otolaryngology, Stanford University, Stanford, CA, United States
| |
Collapse
|
50
|
Boyd-Gibbins N, Tardieu CH, Blunskyte M, Kirkwood N, Somers J, Albert JT. Turnover and activity-dependent transcriptional control of NompC in the Drosophila ear. iScience 2021; 24:102486. [PMID: 34027326 PMCID: PMC8134069 DOI: 10.1016/j.isci.2021.102486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023] Open
Abstract
Across their lives, biological sensors maintain near-constant functional outputs despite countless exogenous and endogenous perturbations. This sensory homeostasis is the product of multiple dynamic equilibria, the breakdown of which contributes to age-related decline. The mechanisms of homeostatic maintenance, however, are still poorly understood. The ears of vertebrates and insects are characterized by exquisite sensitivities but also by marked functional vulnerabilities. Being under the permanent load of thermal and acoustic noise, auditory transducer channels exemplify the homeostatic challenge. We show that (1) NompC-dependent mechanotransducers in the ear of the fruit fly Drosophila melanogaster undergo continual replacement with estimated turnover times of 9.1 hr; (2) a de novo synthesis of NompC can restore transducer function in the adult ears of congenitally hearing-impaired flies; (3) key components of the auditory transduction chain, including NompC, are under activity-dependent transcriptional control, likely forming a transducer-operated mechanosensory gain control system that extends beyond hearing organs. De novo NompC synthesis restores auditory transduction in congenitally deafened flies. Complete turnover of NompC mechanotransducers within less than 24 hr. Activity-dependent transcriptional control of transducers controls auditory function.
Collapse
Affiliation(s)
| | - Camille H Tardieu
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Modesta Blunskyte
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Nerissa Kirkwood
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| | - Jason Somers
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joerg T Albert
- Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK.,The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, Gower Street, London WC1E 6BT, UK.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6DE, UK
| |
Collapse
|