1
|
Takiguchi Y, Tsutsumi R, Shimabukuro M, Tanabe H, Kawakami A, Hyodo M, Shiroma K, Saito H, Matsuo M, Sakaue H. Urinary titin as a biomarker of sarcopenia in diabetes: a propensity score matching analysis. J Endocrinol Invest 2025; 48:1041-1056. [PMID: 39549212 DOI: 10.1007/s40618-024-02490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024]
Abstract
PURPOSE Measuring urinary titin levels is expected to be useful in screening for muscle damage or injury in various diseases. We evaluated whether urinary titin levels were elevated in individuals with type 2 diabetes mellitus (T2DM) and how urinary titin levels were associated with the diagnosis of sarcopenia in T2DM. METHODS We performed a cross-sectional analysis of 114 controls and 515 patients with T2DM. Multivariate-adjusted models were used to determine the odds ratios (OR) of urinary titin cutoff values for diagnosing sarcopenia. RESULTS Urinary titin levels were higher in the T2DM group than in the non-diabetes group after propensity score matching (median [IQR] 3.2 [2.3, 4.6] vs. 4.4 [2.7, 6.9] pmol/mg·creatinine). T2DM was associated with high titin levels after correction for comorbidities (odds ratio 2.46, 95% confidence interval (CI) 1.29-4.70, P = 0.006) but not after correction for sarcopenia-associated factors. Urinary titin levels above the cutoff value showed an odd ratio of 6.61 (age- and body mass index-adjusted, 1.26-34.6, P = 0.021) for the diagnosis of sarcopenia in men with T2DM aged ≥ 75 years. CONCLUSION Results indicated that T2DM was associated with a high-titin state and that the urinary titin cutoff value could be useful for identifying candidates at high risk for sarcopenia, such as elderly men.
Collapse
Affiliation(s)
- Y Takiguchi
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, 960-1295, Fukushima, Japan
| | - R Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - M Shimabukuro
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, 960-1295, Fukushima, Japan.
| | - H Tanabe
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, 960-1295, Fukushima, Japan
| | - A Kawakami
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - M Hyodo
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - K Shiroma
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, 960-1295, Fukushima, Japan
| | - H Saito
- Department of Diabetes, Endocrinology, and Metabolism, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, 960-1295, Fukushima, Japan
| | - M Matsuo
- Research Center for Locomotion Biology and KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - H Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
2
|
Costa-Filho JI, Theveny L, de Sautu M, Kirchhausen T. CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data. J Struct Biol 2025; 217:108163. [PMID: 39710216 PMCID: PMC11908917 DOI: 10.1016/j.jsb.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images. CryoSamba enhances single consecutive 2D planes in tomograms by averaging motion-compensated nearby planes through deep learning interpolation, effectively mimicking increased exposure. This approach amplifies coherent signals and reduces high-frequency noise, substantially improving tomogram contrast and SNR. CryoSamba operates on 3D volumes without needing pre-recorded images, synthetic data, labels or annotations, noise models, or paired volumes. CryoSamba suppresses high-frequency information less aggressively than do existing cryo-ET denoising methods, while retaining real information, as shown both by visual inspection and by Fourier Shell Correlation (FSC) analysis of icosahedrally symmetric virus particles. Thus, CryoSamba enhances the analytical pipeline for direct 3D tomogram visual interpretation.
Collapse
Affiliation(s)
- Jose Inacio Costa-Filho
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Liam Theveny
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, MA 02115, USA
| | - Marilina de Sautu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave, Boston, MA 02115, USA; Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Watanabe D, Wada M. Cellular mechanisms underlying overreaching in skeletal muscle following excessive high-intensity interval training. Am J Physiol Cell Physiol 2025; 328:C921-C938. [PMID: 39903498 DOI: 10.1152/ajpcell.00623.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025]
Abstract
Overreaching (OR) can be defined as a decline in physical performance resulting from excessive exercise training, necessitating days to weeks recovery. Impairments in the contractile function of skeletal muscle are believed to be a primary factor contributing to OR. However, the cellular mechanism triggering OR remains unclear. The purpose of this study was to elucidate the mechanisms underlying OR. Rats' plantar flexor muscles were subjected to repeated electrical stimulations mimicking excessive high-intensity interval training (HIIT) daily for 13 consecutive days, and isometric torques were monitored. The torque was measured one day after HIIT, and subsequently, the physiological function of type II fibers was analyzed by using mechanically skinned-fiber technique. Eleven of 17 rats exhibited torque decline, whereas others did not. Thus, the rats were divided into OR and nonoverreaching (NOR) groups. Skinned fibers from the gastrocnemius (GAS) muscles of both groups showed decreased depolarization-induced force and increased myofibrillar Ca2+ sensitivity. However, the fibers from the OR group, but not the NOR group, exhibited a decrease in myofibrillar maximal force. Biochemical analyses of a superficial region of GAS muscle revealed that α-actinin 2 content was increased in the NOR group, but not in the OR group, whereas calpain-3 autolysis was increased in the OR group, but not in the NOR group. These findings shed light on the cellular mechanism underlying OR: OR following excessive HIIT was induced by a decreased myofibrillar maximal force, whereas Ca2+ sensitivity was increased.NEW & NOTEWORTHY An early sign of overtraining is a performance impairment known as overreaching (OR). This study revealed the cellular mechanism underlying OR by combining in vivo fatiguing contractions with mechanically skinned-fiber technique. Thirteen consecutive days of intense training result in myofibrillar force depression in OR. This study provides valuable insights not only for athletes and coaches but also for nonathletes who incorporate exercise into their daily activity.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Wu J, Guo Y, Tian X, Fu K, Yan J. High-Modulus Homochiral Torsional Oxide Ceramic Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414936. [PMID: 39846295 DOI: 10.1002/adma.202414936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (Al2O3) ceramics by chemical plating a thin copper layer on alumina filaments. These filaments with a high modulus of ≈180 GPa can be twisted into chiral coiled artificial muscles, exhibiting a unique electric thermal actuation mechanism. This tough and robust alumina artificial muscle can carry objects equivalent to 0.28 million times its weight and provide high actuation stress of up to 483.5 MPa. In addition, it exhibits 18 times higher contraction power and 240 times higher energy density than human muscles, as well as a high energy conversion efficiency of up to 7.59%, which far exceeds most reported actuated carbon and polymer artificial muscles. This work has achieved large-scale manufacturing of high-modulus oxide ceramic muscles for the first time.
Collapse
Affiliation(s)
- Jiawei Wu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yongshi Guo
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xuwang Tian
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Kun Fu
- Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jianhua Yan
- College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
5
|
Ma H, Jin L, Zhao L, Yan C, Mi Z. Genetic and metabolic insights into sexual dimorphism in the flexor carpi radialis of Asiatic toads (Bufo gargarizans) associated with amplexus behavior. BMC Genomics 2025; 26:192. [PMID: 39994541 PMCID: PMC11853992 DOI: 10.1186/s12864-025-11392-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/20/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Sexual dimorphism, a widespread phenomenon across the animal kingdom, encompasses differences between sexes in size, morphology, and physiological traits. In this study, we investigated sexual dimorphism in the flexor carpi radialis (FCR) muscle, which is critical for amplexus in Asiatic toads (Bufo gargarizans), using integrated transcriptomic and metabolomic approaches. RESULTS Male toads exhibited significantly larger FCR muscles, reflecting enhanced muscle function required for sustained amplexus. Transcriptomic analysis identified 818 differentially expressed genes (DEGs) between sexes, with 389 upregulated and 429 downregulated in males, predominantly associated with muscle contraction, sarcomere organization, and energy metabolism. Metabolomic profiling revealed 69 differentially expressed metabolites (DEMs), with male-biased enrichment in pathways involved in protein synthesis and degradation, energy metabolism, and material transport. Integrated analysis pinpointed key metabolic pathways-such as glycine, serine, and threonine metabolism; alanine, aspartate, and glutamate metabolism; fatty acid degradation; and the tricarboxylic acid (TCA) cycle-as central to the observed sexual dimorphism. Among these, the genes AGXT, ACADL, ACAT1, MDH2, and SUCLG2 emerged as pivotal regulators. CONCLUSIONS Collectively, these findings provide novel insights into the genetic and metabolic basis of sexual dimorphism in B. gargarizans, offering a deeper understanding of the evolutionary mechanisms driving sex-specific traits in vertebrates.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China
- China West Normal University, Nanchong, 637009, China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China
- China West Normal University, Nanchong, 637009, China
| | - Li Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China
- China West Normal University, Nanchong, 637009, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China.
- China West Normal University, Nanchong, 637009, China.
| | - Zhiping Mi
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), Nanchong, 637009, China.
- China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
6
|
Caspy I, Wang Z, Bharat TA. Structural biology inside multicellular specimens using electron cryotomography. Q Rev Biophys 2025; 58:e6. [PMID: 39801355 PMCID: PMC7617309 DOI: 10.1017/s0033583525000010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The electron cryomicroscopy (cryo-EM) resolution revolution has shifted structural biology into a new era, enabling the routine structure determination of macromolecular complexes at an unprecedented rate. Building on this, electron cryotomography (cryo-ET) offers the potential to visualise the native three-dimensional organisation of biological specimens, from cells to tissues and even entire organisms. Despite this huge potential, the study of tissue-like multicellular specimens via cryo-ET still presents numerous challenges, wherein many steps in the workflow are being developed or in urgent need of improvement. In this review, we outline the latest techniques currently utilised for in situ imaging of multicellular specimens, while clearly enumerating their associated limitations. We consider every step in typical workflows employed by various laboratories, including sample preparation, data collection and image analysis, to highlight recent progress and showcase prominent success stories. By considering the entire structural biology workflow for multicellular specimens, we identify which future exciting developments in hardware and software could enable comprehensive in situ structural biology investigations, bringing forth a new age of discovery in molecular structural and cell biology.
Collapse
Affiliation(s)
- Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Zhexin Wang
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
7
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
8
|
Raunser S. Announcement: Journal of Structural Biology: Paper of the Year. J Struct Biol 2024; 216:108147. [PMID: 39477168 DOI: 10.1016/j.jsb.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Affiliation(s)
- Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Germany.
| |
Collapse
|
9
|
Fishbein GA, Bois MC, d'Amati G, Glass C, Masuelli L, Rodriguez ER, Seidman MA. Ultrastructural cardiac pathology: the wide (yet so very small) world of cardiac electron microscopy. Cardiovasc Pathol 2024; 73:107670. [PMID: 38880163 DOI: 10.1016/j.carpath.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024] Open
Abstract
Electron microscopy (EM) was a popular diagnostic tool in the 1970s and early 80s. With the adoption of newer, less expensive techniques, such as immunohistochemistry, the role of EM in diagnostic surgical pathology has dwindled substantially. Nowadays, even in academic centers, EM interpretation is relegated to renal pathologists and the handful of (aging) pathologists with experience using the technique. As such, EM interpretation is truly arcane-understood by few and mysterious to many. Nevertheless, there remain situations in which EM is the best or only ancillary test to ascertain a specific diagnosis. Thus, there remains a critical need for the younger generation of surgical pathologists to learn EM interpretation. Recognizing this need, cardiac EM was made the theme of the Cardiovascular Evening Specialty Conference at the 2023 United States and Canadian Academy of Pathology (USCAP) annual meeting in New Orleans, Louisiana. Each of the speakers contributed their part to this article, the purpose of which is to review EM as it pertains to myocardial tissue and provide illustrative examples of the spectrum of ultrastructural cardiac pathology seen in storage/metabolic diseases, cardiomyopathies, infiltrative disorders, and cardiotoxicities.
Collapse
Affiliation(s)
- Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giulia d'Amati
- Department of Oncological, Radiological and Pathological Sciences, Sapienza Università di Roma, Rome, Italy
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - E Rene Rodriguez
- Department of Pathology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael A Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Schiøtz OH, Kaiser CJO, Klumpe S, Morado DR, Poege M, Schneider J, Beck F, Klebl DP, Thompson C, Plitzko JM. Serial Lift-Out: sampling the molecular anatomy of whole organisms. Nat Methods 2024; 21:1684-1692. [PMID: 38110637 PMCID: PMC11399102 DOI: 10.1038/s41592-023-02113-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023]
Abstract
Cryo-focused ion beam milling of frozen-hydrated cells and subsequent cryo-electron tomography (cryo-ET) has enabled the structural elucidation of macromolecular complexes directly inside cells. Application of the technique to multicellular organisms and tissues, however, is still limited by sample preparation. While high-pressure freezing enables the vitrification of thicker samples, it prolongs subsequent preparation due to increased thinning times and the need for extraction procedures. Additionally, thinning removes large portions of the specimen, restricting the imageable volume to the thickness of the final lamella, typically <300 nm. Here we introduce Serial Lift-Out, an enhanced lift-out technique that increases throughput and obtainable contextual information by preparing multiple sections from single transfers. We apply Serial Lift-Out to Caenorhabditis elegans L1 larvae, yielding a cryo-ET dataset sampling the worm's anterior-posterior axis, and resolve its ribosome structure to 7 Å and a subregion of the 11-protofilament microtubule to 13 Å, illustrating how Serial Lift-Out enables the study of multicellular molecular anatomy.
Collapse
Affiliation(s)
- Oda Helene Schiøtz
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph J O Kaiser
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Klumpe
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Dustin R Morado
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department for Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Matthias Poege
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Beck
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David P Klebl
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christopher Thompson
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Jürgen M Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
11
|
Park YH, Song GS, Jung HS. Research reviews on myosin head interactions with F-actin. Appl Microsc 2024; 54:6. [PMID: 39196293 PMCID: PMC11358558 DOI: 10.1186/s42649-024-00099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The sliding filament theory and the cross-bridge model have been fundamental in understanding muscle contraction. While the cross-bridge model explains the interaction between a single myosin head and actin filament, the native myosin molecule consists of two heads. This review explores the possibility and mechanism of two-headed binding in myosin II to the actin. Recent studies using electron tomography and resonance energy transfer have provided evidence in support of the occurrence of two-headed binding. The flexibility of the regulatory light chain (RLC) appears to play a significant role in enabling this binding mode. However, high-resolution structures of the RLCs in the two-headed bound state have not yet been reported. Resolving these structures, possibly through sub-tomogram averaging or single-particle analysis, would provide definitive proof of the conformational flexibility of RLCs and their role in facilitating two-headed binding. Further investigations are also required to address questions such as the predominance of two-headed versus single-headed binding and the influence of the state of each of the heads on the other. An understanding of the mechanism of two-headed binding is crucial for developing a comprehensive model of the cross-bridge cycle of the native myosin molecule.
Collapse
Affiliation(s)
- Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Gang San Song
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
12
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
13
|
Jiang L, Wang X, Zhang D, Yee Yuen KW, Tse YC. RSU-1 regulates the integrity of dense bodies in muscle cells of aging Caenorhabditis elegans. iScience 2024; 27:109854. [PMID: 38784006 PMCID: PMC11112334 DOI: 10.1016/j.isci.2024.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Muscle contraction is vital for animal survival, and the sarcomere is the fundamental unit for this process. However, the functions of many conserved sarcomere proteins remain unknown, as their mutants do not exhibit obvious defects. To address this, Caenorhabditis elegans was utilized as a model organism to investigate RSU-1 function in the body wall muscle. RSU-1 is found to colocalize with UNC-97 at the dense body and M-line, and it is particularly crucial for regulating locomotion in aging worms, rather than in young worms. This suggests that RSU-1 has a specific function in maintaining muscle function during aging. Furthermore, the interaction between RSU-1 and UNC-97/PINCH is essential for RSU-1 to modulate locomotion, preserve filament structure, and sustain the M-line and dense body throughout aging. Overall, these findings highlight the significant contribution of RSU-1, through its interaction with UNC-97, in maintaining proper muscle cell function in aging worms.
Collapse
Affiliation(s)
- Ling Jiang
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyan Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dandan Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, China
- School of Biological Sciences, University of Southampton, Life Sciences Building (Building 85), Highfield Campus, Southampton SO17 1BJ, UK
| | - Yu Chung Tse
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
15
|
Schneider J, Jasnin M. Molecular architecture of the actin cytoskeleton: From single cells to whole organisms using cryo-electron tomography. Curr Opin Cell Biol 2024; 88:102356. [PMID: 38608425 DOI: 10.1016/j.ceb.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Cryo-electron tomography (cryo-ET) has begun to provide intricate views of cellular architecture at unprecedented resolutions. Considerable efforts are being made to further optimize and automate the cryo-ET workflow, from sample preparation to data acquisition and analysis, to enable visual proteomics inside of cells. Here, we will discuss the latest advances in cryo-ET that go hand in hand with their application to the actin cytoskeleton. The development of deep learning tools for automated annotation of tomographic reconstructions and the serial lift-out sample preparation procedure will soon make it possible to perform high-resolution structural biology in a whole new range of samples, from multicellular organisms to organoids and tissues.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
16
|
Hale VL, Hooker J, Russo CJ, Löwe J. Honeycomb gold specimen supports enabling orthogonal focussed ion beam-milling of elongated cells for cryo-ET. J Struct Biol 2024; 216:108097. [PMID: 38772448 PMCID: PMC7616276 DOI: 10.1016/j.jsb.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.
Collapse
Affiliation(s)
| | - James Hooker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
17
|
Bezjak D, Orellana N, Valdivia G, Acevedo CA, Valdes JH. Global transcriptome profiles provide insights into muscle cell development and differentiation on microstructured marine biopolymer scaffolds for cultured meat production. Sci Rep 2024; 14:10931. [PMID: 38740842 PMCID: PMC11091069 DOI: 10.1038/s41598-024-61458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Biomaterial scaffolds play a pivotal role in the advancement of cultured meat technology, facilitating essential processes like cell attachment, growth, specialization, and alignment. Currently, there exists limited knowledge concerning the creation of consumable scaffolds tailored for cultured meat applications. This investigation aimed to produce edible scaffolds featuring both smooth and patterned surfaces, utilizing biomaterials such as salmon gelatin, alginate, agarose and glycerol, pertinent to cultured meat and adhering to food safety protocols. The primary objective of this research was to uncover variations in transcriptomes profiles between flat and microstructured edible scaffolds fabricated from marine-derived biopolymers, leveraging high-throughput sequencing techniques. Expression analysis revealed noteworthy disparities in transcriptome profiles when comparing the flat and microstructured scaffold configurations against a control condition. Employing gene functional enrichment analysis for the microstructured versus flat scaffold conditions yielded substantial enrichment ratios, highlighting pertinent gene modules linked to the development of skeletal muscle. Notable functional aspects included filament sliding, muscle contraction, and the organization of sarcomeres. By shedding light on these intricate processes, this study offers insights into the fundamental mechanisms underpinning the generation of muscle-specific cultured meat.
Collapse
Affiliation(s)
- Dragica Bezjak
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| | - Guillermo Valdivia
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 239, Santiago, Chile
| | - Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaiso, Chile.
- Centro Científico Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaiso, Chile.
| | - Jorge H Valdes
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 239, Santiago, Chile.
| |
Collapse
|
18
|
Douglas CM, Bird JE, Kopinke D, Esser KA. An optimized approach to study nanoscale sarcomere structure utilizing super-resolution microscopy with nanobodies. PLoS One 2024; 19:e0300348. [PMID: 38687705 PMCID: PMC11060602 DOI: 10.1371/journal.pone.0300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/23/2024] [Indexed: 05/02/2024] Open
Abstract
The sarcomere is the fundamental contractile unit in skeletal muscle, and the regularity of its structure is critical for function. Emerging data demonstrates that nanoscale changes to the regularity of sarcomere structure can affect the overall function of the protein dense ~2μm sarcomere. Further, sarcomere structure is implicated in many clinical conditions of muscle weakness. However, our understanding of how sarcomere structure changes in disease, especially at the nanoscale, has been limited in part due to the inability to robustly detect and measure at sub-sarcomere resolution. We optimized several methodological steps and developed a robust pipeline to analyze sarcomere structure using structured illumination super-resolution microscopy in conjunction with commercially-available and fluorescently-conjugated Variable Heavy-Chain only fragment secondary antibodies (nanobodies), and achieved a significant increase in resolution of z-disc width (353nm vs. 62nm) compared to confocal microscopy. The combination of these methods provides a unique approach to probe sarcomere protein localization at the nanoscale and may prove advantageous for analysis of other cellular structures.
Collapse
Affiliation(s)
- Collin M. Douglas
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
19
|
Nogales E, Mahamid J. Bridging structural and cell biology with cryo-electron microscopy. Nature 2024; 628:47-56. [PMID: 38570716 PMCID: PMC11211576 DOI: 10.1038/s41586-024-07198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself.
Collapse
Affiliation(s)
- Eva Nogales
- Molecular and Cell Biology Department, Institute for Quantitative Biomedicine, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Howard Hughes Medical Institute, Berkeley, CA, USA.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
20
|
Xu J, Liao C, Yin CC, Li G, Zhu Y, Sun F. In situ structural insights into the excitation-contraction coupling mechanism of skeletal muscle. SCIENCE ADVANCES 2024; 10:eadl1126. [PMID: 38507485 PMCID: PMC10954225 DOI: 10.1126/sciadv.adl1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Excitation-contraction coupling (ECC) is a fundamental mechanism in control of skeletal muscle contraction and occurs at triad junctions, where dihydropyridine receptors (DHPRs) on transverse tubules sense excitation signals and then cause calcium release from the sarcoplasmic reticulum via coupling to type 1 ryanodine receptors (RyR1s), inducing the subsequent contraction of muscle filaments. However, the molecular mechanism remains unclear due to the lack of structural details. Here, we explored the architecture of triad junction by cryo-electron tomography, solved the in situ structure of RyR1 in complex with FKBP12 and calmodulin with the resolution of 16.7 Angstrom, and found the intact RyR1-DHPR supercomplex. RyR1s arrange into two rows on the terminal cisternae membrane by forming right-hand corner-to-corner contacts, and tetrads of DHPRs bind to RyR1s in an alternating manner, forming another two rows on the transverse tubule membrane. This unique arrangement is important for synergistic calcium release and provides direct evidence of physical coupling in ECC.
Collapse
Affiliation(s)
- Jiashu Xu
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chang-Cheng Yin
- Department of Biophysics, The Health Science Center, Peking University, Beijing 100191, China
- Electron Microscopy Analysis Laboratory, The Health Science Center, Peking University, Beijing 100191, China
- Center for Protein Science, Peking University, Beijing 100871, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Zhu
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Sun
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, China
| |
Collapse
|
21
|
Weston TGR, Rees M, Gautel M, Fraternali F. Walking with giants: The challenges of variant impact assessment in the giant sarcomeric protein titin. WIREs Mech Dis 2024; 16:e1638. [PMID: 38155593 DOI: 10.1002/wsbm.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Titin, the so-called "third filament" of the sarcomere, represents a difficult challenge for the determination of damaging genetic variants. A single titin molecule extends across half the length of a sarcomere in striated muscle, fulfilling a variety of vital structural and signaling roles, and has been linked to an equally varied range of myopathies, resulting in a significant burden on individuals and healthcare systems alike. While the consequences of truncating variants of titin are well-documented, the ramifications of the missense variants prevalent in the general population are less so. We here present a compendium of titin missense variants-those that result in a single amino-acid substitution in coding regions-reported to be pathogenic and discuss these in light of the nature of titin and the variant position within the sarcomere and their domain, the structural, pathological, and biophysical characteristics that define them, and the methods used for characterization. Finally, we discuss the current knowledge and integration of the multiple fields that have contributed to our understanding of titin-related pathology and offer suggestions as to how these concurrent methodologies may aid the further development in our understanding of titin and hopefully extend to other, less well-studied giant proteins. This article is categorized under: Cardiovascular Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Timir G R Weston
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Martin Rees
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Mathias Gautel
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
22
|
Chen L, Liu J, Rastegarpouyani H, Janssen PML, Pinto JR, Taylor KA. Structure of mavacamten-free human cardiac thick filaments within the sarcomere by cryoelectron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311883121. [PMID: 38386705 PMCID: PMC10907299 DOI: 10.1073/pnas.2311883121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH43210
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State College of Medicine, Florida State University, Tallahassee, FL32306
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
23
|
Abstract
Force generation in striated muscle is primarily controlled by structural changes in the actin-containing thin filaments triggered by an increase in intracellular calcium concentration. However, recent studies have elucidated a new class of regulatory mechanisms, based on the myosin-containing thick filament, that control the strength and speed of contraction by modulating the availability of myosin motors for the interaction with actin. This review summarizes the mechanisms of thin and thick filament activation that regulate the contractility of skeletal and cardiac muscle. A novel dual-filament paradigm of muscle regulation is emerging, in which the dynamics of force generation depends on the coordinated activation of thin and thick filaments. We highlight the interfilament signaling pathways based on titin and myosin-binding protein-C that couple thin and thick filament regulatory mechanisms. This dual-filament regulation mediates the length-dependent activation of cardiac muscle that underlies the control of the cardiac output in each heartbeat.
Collapse
Affiliation(s)
- Elisabetta Brunello
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
| | - Luca Fusi
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom; ,
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Chen G, Chen J, Qi L, Yin Y, Lin Z, Wen H, Zhang S, Xiao C, Bello SF, Zhang X, Nie Q, Luo W. Bulk and single-cell alternative splicing analyses reveal roles of TRA2B in myogenic differentiation. Cell Prolif 2024; 57:e13545. [PMID: 37705195 PMCID: PMC10849790 DOI: 10.1111/cpr.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Alternative splicing (AS) disruption has been linked to disorders of muscle development, as well as muscular atrophy. However, the precise changes in AS patterns that occur during myogenesis are not well understood. Here, we employed isoform long-reads RNA-seq (Iso-seq) and single-cell RNA-seq (scRNA-seq) to investigate the AS landscape during myogenesis. Our Iso-seq data identified 61,146 full-length isoforms representing 11,682 expressed genes, of which over 52% were novel. We identified 38,022 AS events, with most of these events altering coding sequences and exhibiting stage-specific splicing patterns. We identified AS dynamics in different types of muscle cells through scRNA-seq analysis, revealing genes essential for the contractile muscle system and cytoskeleton that undergo differential splicing across cell types. Gene-splicing analysis demonstrated that AS acts as a regulator, independent of changes in overall gene expression. Two isoforms of splicing factor TRA2B play distinct roles in myogenic differentiation by triggering AS of TGFBR2 to regulate canonical TGF-β signalling cascades differently. Our study provides a valuable transcriptome resource for myogenesis and reveals the complexity of AS and its regulation during myogenesis.
Collapse
Affiliation(s)
- Genghua Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Qi
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yunqian Yin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Zetong Lin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Huaqiang Wen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Chuanyun Xiao
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Semiu Folaniyi Bello
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiquan Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinghua Nie
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Wen Luo
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
25
|
Sitsel O, Wang Z, Janning P, Kroczek L, Wagner T, Raunser S. Yersinia entomophaga Tc toxin is released by T10SS-dependent lysis of specialized cell subpopulations. Nat Microbiol 2024; 9:390-404. [PMID: 38238469 PMCID: PMC10847048 DOI: 10.1038/s41564-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.
Collapse
Affiliation(s)
- Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lara Kroczek
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
26
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
27
|
Küçükdogru R, Franz P, Worch R, Robaszkiewicz K, Siatkowska M, Tsiavaliaris G, Moraczewska J. Mechanochemical consequences of myopathy-linked mutations in Tpm2.2 on striated muscle contractility. FASEB J 2024; 38:e23400. [PMID: 38156416 DOI: 10.1096/fj.202301604r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Tropomyosin (Tpm) is an actin-binding protein central to muscle contraction regulation. The Tpm sequence consists of periodic repeats corresponding to seven actin-binding sites, further divided in two functionally distinct halves. To clarify the importance of the first and second halves of the actin-binding periods in regulating the interaction of myosin with actin, we introduced hypercontractile mutations D20H, E181K located in the N-terminal halves of periods 1 and 5 and hypocontractile mutations E41K, N202K located in the C-terminal halves of periods 1 and 5 of the skeletal muscle Tpm isoform Tpm2.2. Wild-type and mutant Tpms displayed similar actin-binding properties, however, as revealed by FRET experiments, the hypercontractile mutations affected the binding geometry and orientation of Tpm2.2 on actin, causing a stimulation of myosin motor performance. Contrary, the hypocontractile mutations led to an inhibition of both, actin activation of the myosin ATPase and motor activity, that was more pronounced than with wild-type Tpm2.2. Single ATP turnover kinetic experiments indicate that the introduced mutations have opposite effects on product release kinetics. While the hypercontractile Tpm2.2 mutants accelerated product release, the hypocontractile mutants decelerated product release from myosin, thus having either an activating or inhibitory influence on myosin motor performance, which agrees with the muscle disease phenotypes caused by these mutations.
Collapse
Affiliation(s)
- Recep Küçükdogru
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Peter Franz
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Remigiusz Worch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Małgorzata Siatkowska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Georgios Tsiavaliaris
- Cellular Biophysics, Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| |
Collapse
|
28
|
Li MW, Li F, Cheng ZX, Cheng J, Wu Q, Wang ZX, Wang F, Zhou P. Biallelic truncating TTN variants in M-band encoding exons cause a fetal lethal titinopathy. Prenat Diagn 2024; 44:81-87. [PMID: 38148006 DOI: 10.1002/pd.6491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
To report two novel TTN variants associated with fetal recessive titinopathy, thereby broadening the range of TTN variants that can lead to titinopathy. Clinical information on the fetus and parents was gathered, and genomic DNAs were extracted from the fetal tissue and family members' peripheral blood samples. Exome sequencing on fetal DNA was performed and following bioinformatics analysis, the suspected pathogenic variants were confirmed through Sanger sequencing. Prenatal ultrasound performed at 29 weeks of gestation revealed hydrops fetalis, decreased fetal movements, multiple joint contractures and polyhydramnios. Intrauterine fetal death was noted in the third trimester. Exome sequencing revealed compound heterozygous variants in the TTN gene: a paternally inherited allele c.101227C>T (p.Arg33743Ter) and a maternally inherited c.104254C>T (p.Gln34752Ter) allele. These variants have not been previously reported and are evaluated to be likely pathogenic according to the American College of Medical Genetics and Genomics guidelines. We report a fetus with hydrops fetalis and arthrogryposis multiplex congenita associated with a compound heterozygote in the TTN gene. Our report broadens the clinical and genetic spectrum associated with the TTN-related conditions.
Collapse
Affiliation(s)
- Ming-Wei Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| | - Fan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| | - Zhen-Xing Cheng
- Frontier Research Center, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Jin Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| | - Quan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| | - Zhi-Xin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| | - Fei Wang
- Frontier Research Center, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| |
Collapse
|
29
|
Xie Y, Zhou K, Tan L, Ma Y, Li C, Zhou H, Wang Z, Xu B. Coexisting with Ice Crystals: Cryogenic Preservation of Muscle Food─Mechanisms, Challenges, and Cutting-Edge Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19221-19239. [PMID: 37947813 DOI: 10.1021/acs.jafc.3c06155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cryopreservation, one of the most effective preservation methods, is essential for maintaining the safety and quality of food. However, there is no denying the fact that the quality of muscle food deteriorates as a result of the unavoidable production of ice. Advancements in cryoregulatory materials and techniques have effectively mitigated the adverse impacts of ice, thereby enhancing the standard of freezing preservation. The first part of this overview explains how ice forms, including the theoretical foundations of nucleation, growth, and recrystallization as well as the key influencing factors that affect each process. Subsequently, the impact of ice formation on the eating quality and nutritional value of muscle food is delineated. A systematic explanation of cutting-edge strategies based on nucleation intervention, growth control, and recrystallization inhibition is offered. These methods include antifreeze proteins, ice-nucleating proteins, antifreeze peptides, natural deep eutectic solvents, polysaccharides, amino acids, and their derivatives. Furthermore, advanced physical techniques such as electrostatic fields, magnetic fields, acoustic fields, liquid nitrogen, and supercooling preservation techniques are expounded upon, which effectively hinder the formation of ice crystals during cryopreservation. The paper outlines the difficulties and potential directions in ice inhibition for effective cryopreservation.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
30
|
Kelly CM, Martin JL, Coseno M, Previs MJ. Visualization of cardiac thick filament dynamics in ex vivo heart preparations. J Mol Cell Cardiol 2023; 185:88-98. [PMID: 37923195 PMCID: PMC10959293 DOI: 10.1016/j.yjmcc.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
RATIONALE Cardiac muscle cells are terminally differentiated after birth and must beat continually throughout one's lifetime. This mechanical process is driven by the sliding of actin-based thin filaments along myosin-based thick filaments, organized within sarcomeres. Despite costly energetic demand, the half-life of the proteins that comprise the cardiac thick filaments is ∼10 days, with individual molecules being replaced stochastically, by unknown mechanisms. OBJECTIVES To allow for the stochastic replacement of molecules, we hypothesized that the structure of thick filaments must be highly dynamic in vivo. METHODS AND RESULTS To test this hypothesis in adult mouse hearts, we replaced a fraction of the endogenous myosin regulatory light chain (RLC), a component of thick filaments, with GFP-labeled RLC by adeno-associated viral (AAV) transduction. The RLC-GFP was properly localized to the heads of the myosin molecules within thick filaments in ex vivo heart preparations and had no effect on heart size or actin filament siding in vitro. However, the localization of the RLC-GFP molecules was highly mobile, changing its position within the sarcomere on the minute timescale, when quantified by fluorescence recovery after photobleaching (FRAP) using multiphoton microscopy. Interestingly, RLC-GFP mobility was restricted to within the boundaries of single sarcomeres. When cardiomyocytes were lysed, the RLC-GFP remained strongly bound to myosin heavy chain, and the intact myosin molecules adopted a folded, compact configuration, when disassociated from the filaments at physiological ionic conditions. CONCLUSIONS These data demonstrate that the structure of the thick filament is highly dynamic in the intact heart, with a rate of molecular exchange into and out of thick filaments that is ∼1500 times faster than that required for the replacement of molecules through protein synthesis or degradation.
Collapse
Affiliation(s)
- Colleen M Kelly
- Molecular Physiology and Biophysics Department, University of Vermont, Larner College of Medicine, Burlington, VT 05405, United States of America
| | - Jody L Martin
- Department of Pharmacology, University of California, Davis, Davis, CA 90095, United States of America
| | - Molly Coseno
- Fluidic Analytics, The Paddocks Business Centre, Cambridge CB1 8DH, United Kingdom
| | - Michael J Previs
- Molecular Physiology and Biophysics Department, University of Vermont, Larner College of Medicine, Burlington, VT 05405, United States of America.
| |
Collapse
|
31
|
Yeganeh FA, Summerill C, Hu Z, Rahmani H, Taylor DW, Taylor KA. The cryo-EM 3D image reconstruction of isolated Lethocerus indicus Z-discs. J Muscle Res Cell Motil 2023; 44:271-286. [PMID: 37661214 PMCID: PMC10843718 DOI: 10.1007/s10974-023-09657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023]
Abstract
The Z-disk of striated muscle defines the ends of the sarcomere, which repeats many times within the muscle fiber. Here we report application of cryoelectron tomography and subtomogram averaging to Z-disks isolated from the flight muscles of the large waterbug Lethocerus indicus. We use high salt solutions to remove the myosin containing filaments and use gelsolin to remove the actin filaments of the A- and I-bands leaving only the thin filaments within the Z-disk which were then frozen for cryoelectron microscopy. The Lethocerus Z-disk structure is similar in many ways to the previously studied Z-disk of the honeybee Apis mellifera. At the corners of the unit cell are positioned trimers of paired antiparallel F-actins defining a large solvent channel, whereas at the trigonal positions are positioned F-actin trimers converging slowly towards their (+) ends defining a small solvent channel through the Z-disk. These near parallel F-actins terminate at different Z-heights within the Z-disk. The two types of solvent channel in Lethocerus are similar in size compared to those of Apis which are very different in size. Two types of α-actinin crosslinks were observed between oppositely oriented actin filaments. In one of these, the α-actinin long axis is almost parallel to the F-actins it crosslinks. In the other, the α-actinins are at a small but distinctive angle with respect to the crosslinked actin filaments. The utility of isolated Z-disks for structure determination is discussed.
Collapse
Affiliation(s)
- Fatemeh Abbasi Yeganeh
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Corinne Summerill
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, 33 Gilmer Street SE, Atlanta, GA, 30303, USA
| | - Zhongjun Hu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- Facebook, Inc, 1 Hacker Way, Menlo Park, CA, 94025, USA
| | - Hamidreza Rahmani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
- The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dianne W Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Kenneth A Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA.
| |
Collapse
|
32
|
Neininger-Castro AC, Hayes JB, Sanchez ZC, Taneja N, Fenix AM, Moparthi S, Vassilopoulos S, Burnette DT. Independent regulation of Z-lines and M-lines during sarcomere assembly in cardiac myocytes revealed by the automatic image analysis software sarcApp. eLife 2023; 12:RP87065. [PMID: 37921850 PMCID: PMC10624428 DOI: 10.7554/elife.87065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Sarcomeres are the basic contractile units within cardiac myocytes, and the collective shortening of sarcomeres aligned along myofibrils generates the force driving the heartbeat. The alignment of the individual sarcomeres is important for proper force generation, and misaligned sarcomeres are associated with diseases, including cardiomyopathies and COVID-19. The actin bundling protein, α-actinin-2, localizes to the 'Z-Bodies" of sarcomere precursors and the 'Z-Lines' of sarcomeres, and has been used previously to assess sarcomere assembly and maintenance. Previous measurements of α-actinin-2 organization have been largely accomplished manually, which is time-consuming and has hampered research progress. Here, we introduce sarcApp, an image analysis tool that quantifies several components of the cardiac sarcomere and their alignment in muscle cells and tissue. We first developed sarcApp to utilize deep learning-based segmentation and real space quantification to measure α-actinin-2 structures and determine the organization of both precursors and sarcomeres/myofibrils. We then expanded sarcApp to analyze 'M-Lines' using the localization of myomesin and a protein that connects the Z-Lines to the M-Line (titin). sarcApp produces 33 distinct measurements per cell and 24 per myofibril that allow for precise quantification of changes in sarcomeres, myofibrils, and their precursors. We validated this system with perturbations to sarcomere assembly. We found perturbations that affected Z-Lines and M-Lines differently, suggesting that they may be regulated independently during sarcomere assembly.
Collapse
Affiliation(s)
- Abigail C Neininger-Castro
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - James B Hayes
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Zachary C Sanchez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| | - Satish Moparthi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Dylan Tyler Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic SciencesNashvilleUnited States
| |
Collapse
|
33
|
Ochner H, Bharat TAM. Charting the molecular landscape of the cell. Structure 2023; 31:1297-1305. [PMID: 37699393 PMCID: PMC7615466 DOI: 10.1016/j.str.2023.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Biological function of macromolecules is closely tied to their cellular location, as well as to interactions with other molecules within the native environment of the cell. Therefore, to obtain detailed mechanistic insights into macromolecular functionality, one of the outstanding targets for structural biology is to produce an atomic-level understanding of the cell. One structural biology technique that has already been used to directly derive atomic models of macromolecules from cells, without any additional external information, is electron cryotomography (cryoET). In this perspective article, we discuss possible routes to chart the molecular landscape of the cell by advancing cryoET imaging as well as by embedding cryoET into correlative imaging workflows.
Collapse
Affiliation(s)
- Hannah Ochner
- Structural Studies Division, MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| |
Collapse
|
34
|
Tamborrini D, Wang Z, Wagner T, Tacke S, Stabrin M, Grange M, Kho AL, Rees M, Bennett P, Gautel M, Raunser S. Structure of the native myosin filament in the relaxed cardiac sarcomere. Nature 2023; 623:863-871. [PMID: 37914933 PMCID: PMC10665186 DOI: 10.1038/s41586-023-06690-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
The thick filament is a key component of sarcomeres, the basic units of striated muscle1. Alterations in thick filament proteins are associated with familial hypertrophic cardiomyopathy and other heart and muscle diseases2. Despite the central importance of the thick filament, its molecular organization remains unclear. Here we present the molecular architecture of native cardiac sarcomeres in the relaxed state, determined by cryo-electron tomography. Our reconstruction of the thick filament reveals the three-dimensional organization of myosin, titin and myosin-binding protein C (MyBP-C). The arrangement of myosin molecules is dependent on their position along the filament, suggesting specialized capacities in terms of strain susceptibility and force generation. Three pairs of titin-α and titin-β chains run axially along the filament, intertwining with myosin tails and probably orchestrating the length-dependent activation of the sarcomere. Notably, whereas the three titin-α chains run along the entire length of the thick filament, titin-β chains do not. The structure also demonstrates that MyBP-C bridges thin and thick filaments, with its carboxy-terminal region binding to the myosin tails and directly stabilizing the OFF state of the myosin heads in an unforeseen manner. These results provide a foundation for future research investigating muscle disorders involving sarcomeric components.
Collapse
Affiliation(s)
- Davide Tamborrini
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sebastian Tacke
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grange
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Martin Rees
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Kings College London BHF Centre of Research Excellence, London, UK
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
35
|
Neininger-Castro AC, Hayes JB, Sanchez ZC, Taneja N, Fenix AM, Moparthi S, Vassilopoulos S, Burnette DT. Independent regulation of Z-lines and M-lines during sarcomere assembly in cardiac myocytes revealed by the automatic image analysis software sarcApp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523681. [PMID: 36711995 PMCID: PMC9882215 DOI: 10.1101/2023.01.11.523681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sarcomeres are the basic contractile units within cardiac myocytes, and the collective shortening of sarcomeres aligned along myofibrils generates the force driving the heartbeat. The alignment of the individual sarcomeres is important for proper force generation, and misaligned sarcomeres are associated with diseases including cardiomyopathies and COVID-19. The actin bundling protein, α-actinin-2, localizes to the "Z-Bodies" of sarcomere precursors and the "Z-Lines" of sarcomeres, and has been used previously to assess sarcomere assembly and maintenance. Previous measurements of α-actinin-2 organization have been largely accomplished manually, which is time-consuming and has hampered research progress. Here, we introduce sarcApp, an image analysis tool that quantifies several components of the cardiac sarcomere and their alignment in muscle cells and tissue. We first developed sarcApp to utilize deep learning-based segmentation and real space quantification to measure α-actinin-2 structures and determine the organization of both precursors and sarcomeres/myofibrils. We then expanded sarcApp to analyze "M-Lines" using the localization of myomesin and a protein that connects the Z-Lines to the M-Line (titin). sarcApp produces 33 distinct measurements per cell and 24 per myofibril that allow for precise quantification of changes in sarcomeres, myofibrils, and their precursors. We validated this system with perturbations to sarcomere assembly. We found perturbations that affected Z-Lines and M-Lines differently, suggesting that they may be regulated independently during sarcomere assembly.
Collapse
Affiliation(s)
- Abigail C. Neininger-Castro
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN
| | - James B. Hayes
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN
| | - Zachary C. Sanchez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN
| | - Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN
| | - Aidan M. Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN
| | - Satish Moparthi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Dylan T. Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN
| |
Collapse
|
36
|
Sanchez Carrillo IB, Hoffmann PC, Barff T, Beck M, Germain H. Preparing Arabidopsis thaliana root protoplasts for cryo electron tomography. FRONTIERS IN PLANT SCIENCE 2023; 14:1261180. [PMID: 37810374 PMCID: PMC10556516 DOI: 10.3389/fpls.2023.1261180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The use of protoplasts in plant biology has become a convenient tool for the application of transient gene expression. This model system has allowed the study of plant responses to biotic and abiotic stresses, protein location and trafficking, cell wall dynamics, and single-cell transcriptomics, among others. Although well-established protocols for isolating protoplasts from different plant tissues are available, they have never been used for studying plant cells using cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET). Here we describe a workflow to prepare root protoplasts from Arabidopsis thaliana plants for cryo-ET. The process includes protoplast isolation and vitrification on EM grids, and cryo-focused ion beam milling (cryo-FIB), with the aim of tilt series acquisition. The whole workflow, from growing the plants to the acquisition of the tilt series, may take a few months. Our protocol provides a novel application to use plant protoplasts as a tool for cryo-ET.
Collapse
Affiliation(s)
| | - Patrick C. Hoffmann
- Department of Molecular Sociology, Max-Planck-Institute for Biophysics, Frankfurt, Germany
| | - Teura Barff
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Martin Beck
- Department of Molecular Sociology, Max-Planck-Institute for Biophysics, Frankfurt, Germany
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Hugo Germain
- Department of Chemistry, Biochemistry, and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
37
|
Parry DAD. 50 Years of the steric-blocking mechanism in vertebrate skeletal muscle: a retrospective. J Muscle Res Cell Motil 2023; 44:133-141. [PMID: 35789471 PMCID: PMC10542282 DOI: 10.1007/s10974-022-09619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Fifty years have now passed since Parry and Squire proposed a detailed structural model that explained how tropomyosin, mediated by troponin, played a steric-blocking role in the regulation of vertebrate skeletal muscle. In this Special Issue dedicated to the memory of John Squire it is an opportune time to look back on this research and to appreciate John's key contributions. A review is also presented of a selection of the developments and insights into muscle regulation that have occurred in the years since this proposal was formulated.
Collapse
Affiliation(s)
- David A D Parry
- School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
38
|
Xie Y, Zhou K, Chen B, Ma Y, Tang C, Li P, Wang Z, Xu F, Li C, Zhou H, Xu B. Mechanism of low-voltage electrostatic fields on the water-holding capacity in frozen beef steak: Insights from myofilament lattice arrays. Food Chem 2023; 428:136786. [PMID: 37429235 DOI: 10.1016/j.foodchem.2023.136786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
This study investigated the impact of low-voltage electrostatic field-assisted freezing on the water-holding capacity of beef steaks. The enhances mechanism of water-holding capacity by electrostatic field was elucidated through the detection of dynamic changes in the myofilament lattice and the construction of an in vitro myosin filaments model. The findings demonstrated that the disorder of the myofilament array, resulted from the aggregation of myosin filaments during freezing, is a crucial factor responsible for the water loss. The intervention of the electrostatic field can effectively reduce the myofibril density by 18.7%, while maintaining a regular lattice array by modulating electrostatic and hydrophobic interactions between myofibrils. Moreover, the electrostatic field significantly inhibited the migration of immobilized water to free water, thus resulting in an increase in the water-holding capacity of myofibrils by 36%. This work provides insights into the underlying mechanisms of water loss in frozen steaks and its regulation.
Collapse
Affiliation(s)
- Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bo Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Cheng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
39
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
40
|
Rice G, Wagner T, Stabrin M, Sitsel O, Prumbaum D, Raunser S. TomoTwin: generalized 3D localization of macromolecules in cryo-electron tomograms with structural data mining. Nat Methods 2023; 20:871-880. [PMID: 37188953 PMCID: PMC10250198 DOI: 10.1038/s41592-023-01878-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Cryogenic-electron tomography enables the visualization of cellular environments in extreme detail, however, tools to analyze the full amount of information contained within these densely packed volumes are still needed. Detailed analysis of macromolecules through subtomogram averaging requires particles to first be localized within the tomogram volume, a task complicated by several factors including a low signal to noise ratio and crowding of the cellular space. Available methods for this task suffer either from being error prone or requiring manual annotation of training data. To assist in this crucial particle picking step, we present TomoTwin: an open source general picking model for cryogenic-electron tomograms based on deep metric learning. By embedding tomograms in an information-rich, high-dimensional space that separates macromolecules according to their three-dimensional structure, TomoTwin allows users to identify proteins in tomograms de novo without manually creating training data or retraining the network to locate new proteins.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Markus Stabrin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
41
|
Melby JA, Brown KA, Gregorich ZR, Roberts DS, Chapman EA, Ehlers LE, Gao Z, Larson EJ, Jin Y, Lopez JR, Hartung J, Zhu Y, McIlwain SJ, Wang D, Guo W, Diffee GM, Ge Y. High sensitivity top-down proteomics captures single muscle cell heterogeneity in large proteoforms. Proc Natl Acad Sci U S A 2023; 120:e2222081120. [PMID: 37126723 PMCID: PMC10175728 DOI: 10.1073/pnas.2222081120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single-cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high reproducibility to enable the classification of individual fiber types. This study reveals single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems.
Collapse
Affiliation(s)
- Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Emily A. Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Lauren E. Ehlers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zhan Gao
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| | - Eli J. Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Justin R. Lopez
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI53706
| | - Jared Hartung
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI53706
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI53705
| | | | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
42
|
Prodanovic M, Wang Y, Mijailovich SM, Irving T. Using Multiscale Simulations as a Tool to Interpret Equatorial X-ray Fiber Diffraction Patterns from Skeletal Muscle. Int J Mol Sci 2023; 24:8474. [PMID: 37239821 PMCID: PMC10218096 DOI: 10.3390/ijms24108474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Synchrotron small-angle X-ray diffraction is the method of choice for nm-scale structural studies of striated muscle under physiological conditions and on millisecond time scales. The lack of generally applicable computational tools for modeling X-ray diffraction patterns from intact muscles has been a significant barrier to exploiting the full potential of this technique. Here, we report a novel "forward problem" approach using the spatially explicit computational simulation platform MUSICO to predict equatorial small-angle X-ray diffraction patterns and the force output simultaneously from resting and isometrically contracting rat skeletal muscle that can be compared to experimental data. The simulation generates families of thick-thin filament repeating units, each with their individually predicted occupancies of different populations of active and inactive myosin heads that can be used to generate 2D-projected electron density models based on known Protein Data Bank structures. We show how, by adjusting only a few selected parameters, we can achieve a good correspondence between experimental and predicted X-ray intensities. The developments presented here demonstrate the feasibility of combining X-ray diffraction and spatially explicit modeling to form a powerful hypothesis-generating tool that can be used to motivate experiments that can reveal emergent properties of muscle.
Collapse
Affiliation(s)
- Momcilo Prodanovic
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia;
- FilamenTech, Inc., Newton, MA 02458, USA;
| | - Yiwei Wang
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
- Department of Mathematics, University of California, Riverside, CA 92521, USA
| | | | - Thomas Irving
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
43
|
Zhang X, Sridharan S, Zagoriy I, Eugster Oegema C, Ching C, Pflaesterer T, Fung HKH, Becher I, Poser I, Müller CW, Hyman AA, Savitski MM, Mahamid J. Molecular mechanisms of stress-induced reactivation in mumps virus condensates. Cell 2023; 186:1877-1894.e27. [PMID: 37116470 PMCID: PMC10156176 DOI: 10.1016/j.cell.2023.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/21/2022] [Accepted: 03/14/2023] [Indexed: 04/30/2023]
Abstract
Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christina Eugster Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Cyan Ching
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tim Pflaesterer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
44
|
Berger C, Premaraj N, Ravelli RBG, Knoops K, López-Iglesias C, Peters PJ. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat Methods 2023; 20:499-511. [PMID: 36914814 DOI: 10.1038/s41592-023-01783-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Cryogenic electron microscopy and data processing enable the determination of structures of isolated macromolecules to near-atomic resolution. However, these data do not provide structural information in the cellular environment where macromolecules perform their native functions, and vital molecular interactions can be lost during the isolation process. Cryogenic focused ion beam (FIB) fabrication generates thin lamellae of cellular samples and tissues, enabling structural studies on the near-native cellular interior and its surroundings by cryogenic electron tomography (cryo-ET). Cellular cryo-ET benefits from the technological developments in electron microscopes, detectors and data processing, and more in situ structures are being obtained and at increasingly higher resolution. In this Review, we discuss recent studies employing cryo-ET on FIB-generated lamellae and the technological developments in ultrarapid sample freezing, FIB fabrication of lamellae, tomography, data processing and correlative light and electron microscopy that have enabled these studies. Finally, we explore the future of cryo-ET in terms of both methods development and biological application.
Collapse
Affiliation(s)
- Casper Berger
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Navya Premaraj
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Kèvin Knoops
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
45
|
Molecular Dynamics Assessment of Mechanical Properties of the Thin Filaments in Cardiac Muscle. Int J Mol Sci 2023; 24:ijms24054792. [PMID: 36902223 PMCID: PMC10003134 DOI: 10.3390/ijms24054792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Contraction of cardiac muscle is regulated by Ca2+ ions via regulatory proteins, troponin (Tn), and tropomyosin (Tpm) associated with the thin (actin) filaments in myocardial sarcomeres. The binding of Ca2+ to a Tn subunit causes mechanical and structural changes in the multiprotein regulatory complex. Recent cryo-electron microscopy (cryo-EM) models of the complex allow one to study the dynamic and mechanical properties of the complex using molecular dynamics (MD). Here we describe two refined models of the thin filament in the calcium-free state that include protein fragments unresolved by cryo-EM and reconstructed using structure prediction software. The parameters of the actin helix and the bending, longitudinal, and torsional stiffness of the filaments estimated from the MD simulations performed with these models were close to those found experimentally. However, problems revealed from the MD simulation suggest that the models require further refinement by improving the protein-protein interaction in some regions of the complex. The use of relatively long refined models of the regulatory complex of the thin filament allows one to perform MD simulation of the molecular mechanism of Ca2+ regulation of contraction without additional constraints and study the effects of cardiomyopathy-associated mutation of the thin filament proteins of cardiac muscle.
Collapse
|
46
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Qi Y, Ji X, Ding H, Wang Y, Liu X, Zhang Y, Yin A. A spectrum of clinical severity of recessive titinopathies in prenatal. Front Genet 2023; 13:1064474. [PMID: 36761691 PMCID: PMC9907677 DOI: 10.3389/fgene.2022.1064474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Variants in TTN are associated with a broad range of clinical phenotypes, from dominant adult-onset dilated cardiomyopathy to recessive infantile-onset myopathy. However, few foetal cases have been reported for multiple reasons. Next-generation sequencing has facilitated the prenatal identification of a growing number of suspected titinopathy variants. We investigated six affected foetuses from three families, completed the intrauterine course of the serial phenotypic spectrum of TTN, and discussed the genotype-phenotype correlations from a broader perspective. The recognizable prenatal feature onset at the second trimester was started with reduced movement, then contracture 3-6 weeks later, followed with/without hydrops, finally at late pregnancy was accompanied with polyhydramnio (major) or oligohydramnios. Two cases with typical arthrogryposis-hydrops sequences identified a meta-only transcript variant c.36203-1G>T. Deleterious transcriptional consequences of the substitution were verified by minigene splicing analysis. Case 3 identified a homozygous splicing variant in the constitutively expressed Z-disc. It presented a milder phenotype than expected, which was presumably saved by the isoform of corons. A summary of the foetal-onset titinopathy cases implied that variants in TTN present with a series of signs and a spectrum of clinical severity, which followed the dosage/positional effect; the meta-only transcript allele involvement may be a prerequisite for the development of fatal hydrops.
Collapse
Affiliation(s)
- Yiming Qi
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xueqi Ji
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China,Guangzhou Medical University, Guangzhou, China
| | - Hongke Ding
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yunan Wang
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | | | - Yan Zhang
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Aihua Yin
- Prenatal Diagnosis Centre, Guangdong Women and Children Hospital, Guangzhou, China,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, China,*Correspondence: Aihua Yin,
| |
Collapse
|
48
|
Loreau V, Rees R, Chan EH, Taxer W, Gregor K, Mußil B, Pitaval C, Luis NM, Mangeol P, Schnorrer F, Görlich D. A nanobody toolbox to investigate localisation and dynamics of Drosophila titins and other key sarcomeric proteins. eLife 2023; 12:79343. [PMID: 36645120 PMCID: PMC9886281 DOI: 10.7554/elife.79343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Measuring the positions and dynamics of proteins in intact tissues or whole animals is key to understanding protein function. However, to date, this is challenging, as the accessibility of large antibodies to dense tissues is often limited, and fluorescent proteins inserted close to a domain of interest may affect protein function. These complications apply in particular to muscle sarcomeres, arguably one of the most protein-dense assemblies in nature, which complicates studying sarcomere morphogenesis at molecular resolution. Here, we introduce a toolbox of nanobodies recognising various domains of the two Drosophila titin homologs, Sallimus and Projectin, as well as the key sarcomeric proteins Obscurin, α-Actinin, and Zasp52. We verified the superior labelling qualities of our nanobodies in muscle tissue as compared to antibodies. By applying our toolbox to larval muscles, we found a gigantic Sallimus isoform stretching more than 2 µm to bridge the sarcomeric I-band, while Projectin covers almost the entire myosin filaments in a polar orientation. Transgenic expression of tagged nanobodies confirmed their high affinity-binding without affecting target protein function. Finally, adding a degradation signal to anti-Sallimus nanobodies suggested that it is difficult to fully degrade Sallimus in mature sarcomeres; however, expression of these nanobodies caused developmental lethality. These results may inspire the generation of similar toolboxes for other large protein complexes in Drosophila or mammals.
Collapse
Affiliation(s)
- Vincent Loreau
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Renate Rees
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Eunice HoYee Chan
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Waltraud Taxer
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Kathrin Gregor
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Bianka Mußil
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Christophe Pitaval
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Nuno Miguel Luis
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Pierre Mangeol
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Frank Schnorrer
- Turing Centre for Living Systems, Aix-Marseille University, CNRS, IDBMMarseilleFrance
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| |
Collapse
|
49
|
Schueder F, Mangeol P, Chan EH, Rees R, Schünemann J, Jungmann R, Görlich D, Schnorrer F. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles. eLife 2023; 12:e79344. [PMID: 36645127 PMCID: PMC9886278 DOI: 10.7554/elife.79344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023] Open
Abstract
Sarcomeres are the force-producing units of all striated muscles. Their nanoarchitecture critically depends on the large titin protein, which in vertebrates spans from the sarcomeric Z-disc to the M-band and hence links actin and myosin filaments stably together. This ensures sarcomeric integrity and determines the length of vertebrate sarcomeres. However, the instructive role of titins for sarcomeric architecture outside of vertebrates is not as well understood. Here, we used a series of nanobodies, the Drosophila titin nanobody toolbox, recognising specific domains of the two Drosophila titin homologs Sallimus and Projectin to determine their precise location in intact flight muscles. By combining nanobodies with DNA-PAINT super-resolution microscopy, we found that, similar to vertebrate titin, Sallimus bridges across the flight muscle I-band, whereas Projectin is located at the beginning of the A-band. Interestingly, the ends of both proteins overlap at the I-band/A-band border, revealing a staggered organisation of the two Drosophila titin homologs. This architecture may help to stably anchor Sallimus at the myosin filament and hence ensure efficient force transduction during flight.
Collapse
Affiliation(s)
- Florian Schueder
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Eunice HoYee Chan
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| | - Renate Rees
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | | | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian UniversityMunichGermany
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living SystemsMarseilleFrance
| |
Collapse
|
50
|
Matusovsky OS, Månsson A, Rassier DE. Cooperativity of myosin II motors in the non-regulated and regulated thin filaments investigated with high-speed AFM. J Gen Physiol 2023; 155:213801. [PMID: 36633585 PMCID: PMC9859764 DOI: 10.1085/jgp.202213190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/09/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skeletal myosins II are non-processive molecular motors that work in ensembles to produce muscle contraction while binding to the actin filament. Although the molecular properties of myosin II are well known, there is still debate about the collective work of the motors: is there cooperativity between myosin motors while binding to the actin filaments? In this study, we use high-speed AFM to evaluate this issue. We observed that the initial binding of small arrays of myosin heads to the non-regulated actin filaments did not affect the cooperative probability of subsequent bindings and did not lead to an increase in the fractional occupancy of the actin binding sites. These results suggest that myosin motors are independent force generators when connected in small arrays, and that the binding of one myosin does not alter the kinetics of other myosins. In contrast, the probability of binding of myosin heads to regulated thin filaments under activating conditions (at high Ca2+ concentration in the presence of 2 μM ATP) was increased with the initial binding of one myosin, leading to a larger occupancy of available binding sites at the next half-helical pitch of the filament. The result suggests that myosin cooperativity is observed over five pseudo-repeats and defined by the activation status of the thin filaments.
Collapse
Affiliation(s)
- Oleg S. Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada,Correspondence to Dilson E. Rassier:
| |
Collapse
|