1
|
Sekiya H, Franke L, Hashimoto Y, Takata M, Nishida K, Futamura N, Hasegawa K, Kowa H, Ross OA, McLean PJ, Toda T, Wszolek ZK, Dickson DW. Widespread distribution of α-synuclein oligomers in LRRK2-related Parkinson's disease. Acta Neuropathol 2025; 149:42. [PMID: 40314842 DOI: 10.1007/s00401-025-02872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of patients with LRRK2-PD resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of patients with LRRK2-PD do not have Lewy-related pathology. Lewy-related pathology is a late-stage αSYN aggregation that can be visualized with hematoxylin and eosin stains or conventional immunohistochemistry (IHC). Increasing evidence has indicated that αSYN oligomers, which represent the early-stage of αSYN aggregation, may have neurotoxicity. Visualization of αSYN oligomers requires specialized staining techniques, such as αSYN-proximity ligation assay (PLA). Distribution and severity of αSYN oligomers in the brain of patients with LRRK2-PD remain unknown. In this study, we performed phosphorylated αSYN-IHC and αSYN-PLA staining on postmortem brain sections of patients with three pathogenic LRRK2 mutants: p.G2019S (n = 5), p.I2020T (n = 5), and p.R1441C (n = 4). The severity of Lewy-related pathology and αSYN oligomers was assessed semi-quantitatively in the brainstem, limbic lobe, basal ganglia, and cerebral cortex. αSYN oligomers were detected in patients with LRRK2-PD even in those without Lewy-related pathology; a negative correlation was observed between Lewy-related pathology and αSYN oligomers (r = - 0.26 [- 0.39, - 0.12]; P < 0.0001). Our findings suggest that αSYN oligomers may represent a common pathological feature of LRRK2-PD. Notably, patients harboring p.G2019S and p.I2020T had significantly higher levels of αSYN oligomers in those without Lewy-related pathology compared to those with Lewy-related pathology. These patients also had a trend toward shorter disease duration. These results imply that in LRRK2-PD, αSYN oligomers may initially accumulate in the brain but do not progress to form Lewy-related pathology. The present study suggests that targeting αSYN oligomers may be a therapeutic strategy for LRRK2-PD even if there is no Lewy-related pathology.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Lukas Franke
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yuki Hashimoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mariko Takata
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Katsuya Nishida
- Department of Neurology, National Hospital Organization Hyogo Chuo National Hospital, Sanda, Hyogo, Japan
| | - Naonobu Futamura
- Department of Neurology, National Hospital Organization Hyogo Chuo National Hospital, Sanda, Hyogo, Japan
| | - Kazuko Hasegawa
- Department of Neurology, National Hospital Organization Sagamihara Hospital, Sagamihara, Kanagawa, Japan
| | - Hisatomo Kowa
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
2
|
Raza A, Raina J, Sahu SK, Wadhwa P. Genetic mutations in kinases: a comprehensive review on marketed inhibitors and unexplored targets in Parkinson's disease. Neurol Sci 2025; 46:1509-1524. [PMID: 39760821 DOI: 10.1007/s10072-024-07970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
This comprehensive review navigates the landscape of genetic mutations in kinases, offering a thorough examination of both marketed inhibitors and unexplored targets in the context of Parkinson's Disease (PD). Although existing treatments for PD primarily center on symptom management, progress in comprehending the molecular foundations of the disease has opened avenues for targeted therapeutic approaches. This review encompasses an in-depth analysis of four key kinases-PINK1, LRRK2, GAK, and PRKRA-revealing that LRRK2 has garnered the most attention with a plethora of marketed inhibitors. However, the study underscores notable gaps in the exploration of inhibitors for PINK1, GAK, and a complete absence for PRKRA. The observed scarcity of inhibitors for these kinases emphasizes a significant area of untapped potential in PD therapeutics. By drawing attention to these unexplored targets, the review highlights the urgent need for focused research and drug development efforts to diversify the therapeutic landscape, potentially providing novel interventions for halting or slowing the progression of PD.
Collapse
Affiliation(s)
- Amir Raza
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India.
| |
Collapse
|
3
|
Ostrozovicova M, Tamas G, Atputhavadivel A, Dusek P, Grofik M, Han V, Holly P, Jech R, Kalinova K, Klivenyi P, Kovacs N, Kulcsarova K, Kurca E, Lackova A, Lee H, Lewis P, Magocova V, Marekova M, Murphy D, Nagano A, Necpal J, Pinter D, Rabajdova M, Ruzicka E, Serranova T, Smilowska K, Soos K, Straka I, Svorenova T, Valkovic P, Zarubova K, Gdovinova Z, Houlden H, Rizig M, Skorvanek M. Prevalence and Clinical Characteristics of the LRRK2 p.L1795F Variant in Central Europeans with Early-Onset and Familial Parkinson's Disease. Mov Disord Clin Pract 2025. [PMID: 40119633 DOI: 10.1002/mdc3.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Leucine-rich repeat kinase 2 (LRRK2) p.L1795F variant was proposed as a genetic risk factor for Parkinson's disease (PD). However, its prevalence, phenotype, and origin remain unknown. OBJECTIVE The aim was to evaluate the frequency and phenotype of p.L1795F in early-onset PD (EOPD) and familial PD compared to healthy controls (HC) in Central Europe. METHODS Whole-exome sequencing was used to screen 219 EOPD and familial PD patients of Central Europeans compared to HC. Sanger sequencing assessed segregation. Detailed clinical phenotype was evaluated for all positive carriers. RESULTS p.L1795F was identified in 1.37% (3/219) and 3.23% of familial cases (3/93), with no carriers among HCs (0/303). Segregation analysis confirmed association with PD. Carriers were traced to the eastern Slovak-Hungarian region. It also appears to be associated with a more aggressive phenotype. CONCLUSION Our data indicate that p.L1795F contributes to PD in Central Europe. Further exploration in larger cohorts is warranted to establish its contribution to global PD risk.
Collapse
Affiliation(s)
- Miriam Ostrozovicova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Gertrud Tamas
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Agsha Atputhavadivel
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Petr Dusek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Milan Grofik
- Department of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital Martin, Martin, Slovak Republic
| | - Vladimir Han
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Petr Holly
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katarina Kalinova
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Norbert Kovacs
- Department of Neurology and HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Medical School, Pécs, Hungary
| | - Kristina Kulcsarova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
- Department of Clinical Neurosciences, Scientific Park MEDIPARK, P.J. Safarik University, Kosice, Slovak Republic
| | - Egon Kurca
- Department of Neurology, Jessenius Faculty of Medicine, Comenius University and University Hospital Martin, Martin, Slovak Republic
| | - Alexandra Lackova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Hamin Lee
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Patrick Lewis
- Royal Veterinary College, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Veronika Magocova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Maria Marekova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice, Slovak Republic
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Ai Nagano
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jan Necpal
- Department of Neurology, Zvolen Hospital, Zvolen, Slovak Republic
| | - David Pinter
- Department of Neurology and HUN-REN-PTE Clinical Neuroscience MR Research Group, University of Pecs, Medical School, Pécs, Hungary
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice, Slovak Republic
| | - Evzen Ruzicka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Serranova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katarzyna Smilowska
- Department of Neurology Silesian Centre of Neurology Katowice, Katowice, Poland
| | - Krisztina Soos
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Igor Straka
- Second Department of Neurology, Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovak Republic
| | - Tatiana Svorenova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Peter Valkovic
- Second Department of Neurology, Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovak Republic
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katerina Zarubova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zuzana Gdovinova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Mie Rizig
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Matej Skorvanek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| |
Collapse
|
4
|
Han F, Wang L, Wu J, Shen L, Li Y, Guo H, Li J. Inhibition of LRRK2 Ameliorates Aspergillus fumigatus Keratitis by Regulating STING Signaling Pathways. Invest Ophthalmol Vis Sci 2025; 66:13. [PMID: 39908129 PMCID: PMC11804891 DOI: 10.1167/iovs.66.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose The purpose of this study was to investigate the role of LRRK2 in the inflammatory response to fungal keratitis (FK) and elucidate the underlying mechanisms. Methods The protein levels of leucine-rich repeat kinase 2 (LRRK2), p-LRRK2, and stimulator of interferon genes (STING)-related proteins were assessed by western blot analysis. ELISA and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to evaluate the inflammatory response induced by Aspergillus fumigatus. Mass spectrometry was performed to identify the interaction partners of LRRK2. The glutathione S-transferase (GST) pull-down assay and co-immunoprecipitation (co-IP) were used to verify the interaction between LRRK2 and STING. Additionally, fungal load determinations and clinical score assessments were conducted to determine corneal infection in a mouse model. Results A. fumigatus stimulation promoted the phosphorylation of LRRK2 through Toll-like receptor 2 (TLR2) in human corneal epithelial cells (HCECs) and mouse corneas. LRRK2 overexpression enhanced the A. fumigatus-induced inflammatory response, and LRRK2 knockdown alleviated A. fumigatus keratitis both in vitro and in vivo. Mass spectrometry identified STING as a novel interaction partner of LRRK2. Moreover, A. fumigatus treatment enhanced the interaction between LRRK2 and STING, resulting in the phosphorylation and activation of STING. The phosphorylated STING then triggered its downstream signaling pathways, exacerbating the severity of A. fumigatus keratitis. LRRK2 inhibitor (LRRK2-IN-1) significantly mitigated the inflammatory response and corneal damage caused by A. fumigatus stimulation. Conclusions LRRK2 inhibition ameliorates A. fumigatus-induced inflammation through modulating STING signaling pathways in both HCECs and mouse models. Our results suggest that targeted inhibition of LRRK2 could be a promising strategy for FK treatment.
Collapse
Affiliation(s)
- Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Leyi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Shen
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Bai X, Zhu J, Chen Y, Sun H. The design and development of LRRK2 inhibitors as novel therapeutics for Parkinson's disease. Future Med Chem 2025; 17:221-236. [PMID: 39717965 PMCID: PMC11749465 DOI: 10.1080/17568919.2024.2444875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease affecting nearly 10 million people worldwide and placing a heavy medical burden on both society and families. However, due to the complexity of its pathological mechanisms, current treatments for PD can only alleviate patients' symptoms. Therefore, novel therapeutic strategies are urgently sought in clinical practice. Leucine-rich repeat kinase 2 (LRRK2) has emerged as a highly promising target for PD therapy. Missense mutations within the structural domain of LRRK2, the most common genetic risk factor for PD, lead to abnormally elevated kinase activity and increase the risk of developing PD. In this article, we provide a comprehensive overview of the structure, biological function, and pathogenic mutations of LRRK2, and examine recent advances in the development of LRRK2 inhibitors. We hope that this article will provide a reference for the design of novel LRRK2 inhibitors based on summarizing the facts and elucidating the viewpoints.
Collapse
Affiliation(s)
- Xiaoxue Bai
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiawei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Lin B, Li Y, Yao Y, Yu B, Ke P, Wang T, Qiu W, Weng L, Shi M, Guo C, Chen Z, Zeng Z, Wang X, Lin X, Li T, Gao Y. Activating Sig-1R inhibits microvascular permeability by reducing LRRK2 expression in lipopolysaccharide-induced acute lung injury. Free Radic Biol Med 2025; 226:96-108. [PMID: 39542184 DOI: 10.1016/j.freeradbiomed.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Endothelial cells are the first and most damaged target cells during acute lung injury (ALI). Endothelial dysfunction increases pulmonary microvascular permeability, subsequently leading to pulmonary oedema and organ dysfunction; however, clinical treatments against microvascular permeability show poor efficacy. Herein, we aimed to explore the role of the Sigma-1 receptor (Sig-1R) in pulmonary microvascular permeability by constructing ALI animal and cell models, and further investigated the specific mechanisms. METHODS The effects of Sig-1R on lung injury and endothelial barrier disruption were examined in lipopolysaccharide (LPS)-induced mice and human umbilical vein endothelial cells (HUVECs), respectively. Transcriptome sequencing was carried out to identify possible targets of Sig-1R, and the specific mechanisms of Sig-1R action were investigated using RNA interference and plasmid transfection. RESULTS Analysis of a Gene expression omnibus dataset suggested that Sig-1R plays a protective role against vascular hyperpermeability in ALI. Downregulation of Sig-1R expression and endothelial barrier disruption were both observed in mice and HUVECs upon LPS stimulation. Sig-1R agonists attenuated vascular hyperpermeability in vivo and in vitro, further improving ALI. Sig-1R activation downregulated Leucine-rich repeat kinase 2 (LRRK2) expression in mice and HUVECs. LRRK2 knockdown ameliorated endothelial barrier disruption in mice and HUVECs. Overexpression of LRRK2 reversed the protective effect of Sig-1R activation on LPS-induced endothelial hyperpermeability. Furthermore, Sig1r knockdown exacerbated LPS-induced microvascular hyperpermeability, which was rescued by inhibition of LRRK2. CONCLUSIONS Sig-1R activation exerts a protective effect against LPS-induced microvascular hyperpermeability by downregulating LRRK2 expression, which could lead to the development of novel therapeutic strategies for treating ALI.
Collapse
Affiliation(s)
- Bo Lin
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yuying Li
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yi Yao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Binmei Yu
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Peng Ke
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Tingjie Wang
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Weihuang Qiu
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Lijun Weng
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Menglu Shi
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Cailing Guo
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Wang
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xianzhong Lin
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Tao Li
- Department of Critical Care Medicine, The First People's Hospital of Chenzhou, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Youguang Gao
- Department of Anesthesiology, Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
7
|
Dunn I, Pirhadi S, Wang Y, Ravindran S, Concepcion C, Koes DR. CACHE Challenge #1: Docking with GNINA Is All You Need. J Chem Inf Model 2024; 64:9388-9396. [PMID: 39654129 DOI: 10.1021/acs.jcim.4c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We describe our winning submission to the first Critical Assessment of Computational Hit-Finding Experiments (CACHE) challenge. In this challenge, 23 participants employed a diverse array of structure-based methods to identify hits to a target with no known ligands. We utilized two methods, pharmacophore search and molecular docking, to identify our initial hit list and compounds for the hit expansion phase. Unlike many other participants, we limited ourselves to using docking scores in identifying and ranking hits. Our resulting best hit series tied for first place when evaluated by a panel of expert judges. Here, we report our top-performing open-source workflow and results.
Collapse
Affiliation(s)
- Ian Dunn
- Department of Computational and Systems Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, Pennsylvania 15260, United States
| | - Somayeh Pirhadi
- Department of Computational and Systems Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, Pennsylvania 15260, United States
| | - Yao Wang
- Department of Computational and Systems Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, Pennsylvania 15260, United States
| | - Smmrithi Ravindran
- Department of Computational and Systems Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, Pennsylvania 15260, United States
| | - Carter Concepcion
- Department of Computational and Systems Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, Pennsylvania 15260, United States
| | - David Ryan Koes
- Department of Computational and Systems Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Sekiya H, Franke L, Hashimoto Y, Takata M, Nishida K, Futamura N, Hasegawa K, Kowa H, Ross OA, McLean PJ, Toda T, Wszolek ZK, Dickson DW. Widespread Distribution of α-Synuclein Oligomers in LRRK2-related Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629265. [PMID: 39764048 PMCID: PMC11702646 DOI: 10.1101/2024.12.18.629265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of LRRK2-PD patients resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of LRRK2-PD cases do not have Lewy-related pathology. Lewy-related pathology is a late-stage αSYN aggregation that can be visualized with hematoxylin and eosin stains or conventional immunohistochemistry (IHC). Increasing evidence has indicated that αSYN oligomers, which represent the early-stage of αSYN aggregation, may have neurotoxicity. Visualization of αSYN oligomers requires specialized staining techniques, such as αSYN-proximity ligation assay (PLA). The distribution and severity of αSYN oligomers in the human brain of LRRK2-PD patients remain unknown. In this study, we performed phosphorylated αSYN-IHC and αSYN-PLA staining on postmortem brain sections of patients with three pathogenic LRRK2 mutants: p.G2019S (n=5), p.I2020T (n=5), and p.R1441C (n=4). The severity of Lewy-related pathology and αSYN oligomers were assessed semi-quantitatively in the brainstem, limbic lobe, basal ganglia, and cerebral cortex. αSYN oligomers were detected in LRRK2-PD cases even in cases without Lewy-related pathology; a negative correlation was observed between Lewy-related pathology and αSYN oligomers (r=-0.26 [-0.39, -0.12]; P<0.0001). Our findings suggest that αSYN oligomers may represent a common pathological feature of LRRK2-PD. Notably, patients harboring p.G2019S and p.I2020T had significantly higher levels of αSYN oligomers in those without Lewy-related pathology compared to those with Lewy-related pathology. These cases also had a trend toward shorter disease duration. These results imply that in LRRK2-PD, αSYN oligomers may initially accumulate in the brain but do not progress to form Lewy-related pathology. The present study suggests that targeting αSYN oligomers may be a therapeutic strategy for LRRK2-PD even if there is no Lewy-related pathology.
Collapse
Affiliation(s)
- Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Lukas Franke
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuki Hashimoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mariko Takata
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Katsuya Nishida
- Department of Neurology, National Hospital Organization Hyogo Chuo National Hospital, Sanda, Hyogo, Japan
| | - Naonobu Futamura
- Department of Neurology, National Hospital Organization Hyogo Chuo National Hospital, Sanda, Hyogo, Japan
| | - Kazuko Hasegawa
- Department of Neurology, National Hospital Organization Sagamihara Hospital, Sagamihara, Kanagawa, Japan
| | - Hisatomo Kowa
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Hyogo, Japan
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
9
|
Gilsbach BK, Ho FY, Riebenbauer B, Zhang X, Guaitoli G, Kortholt A, Gloeckner CJ. Intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. eLife 2024; 12:RP91083. [PMID: 39699947 DOI: 10.7554/elife.91083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The Parkinson's disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis-Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer-dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.
Collapse
Affiliation(s)
- Bernd K Gilsbach
- German Center for Neurodegenerative diseases (DZNE), Tübingen, Germany
| | - Franz Y Ho
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | | | - Xiaojuan Zhang
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
- YETEM-Innovative Technologies Application and Research Centre, Suleyman Demirel University West Campus, Isparta, Turkey
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative diseases (DZNE), Tübingen, Germany
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Gong X, Li S, Huang J, Tan S, Zhang Q, Tian Y, Li Q, Wang L, Tong HHY, Yao X, Chen C, Lee SMY, Liu H. Discovery of potent LRRK2 inhibitors by ensemble virtual screening strategy and bioactivity evaluation. Eur J Med Chem 2024; 279:116812. [PMID: 39241668 DOI: 10.1016/j.ejmech.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been reported to be associated with familial and idiopathic Parkinson's disease (PD) risk and is a promising target for drug discovery against PD. To identify novel and effective LRRK2 inhibitors, an ensemble virtual screening strategy by combining fingerprint similarity, complex-based pharmacophore and structure-based molecular docking was proposed and applied. Using this strategy, we finally selected 25 compounds from ∼1.7 million compounds for in vitro and in vivo tests. Firstly, the kinase inhibitory activity tests of compounds based on ADP-Glo assay identified three most potent compounds LY2023-19, LY2023-24 and LY2023-25 with IC50 of 556.4 nM, 218.1 nM and 22.4 nM for LRRK2 G2019S mutant, respectively. The further cellular experiments also indicated that three hit compounds significantly inhibited Ser935 phosphorylation of both wide-type and G2019S LRRK2 with IC50 ranging from 27 nM to 1674 nM in HEK293T cells. The MD simulations of three compounds and G2019S LRRK2 showed the hydrogen bond formed by Glu1948 and Ala1950 is crucial for the binding of LRRK2. Afterwards, 6-OHDA-induced PD zebrafish model was constructed to evaluate the neuroprotective effects of hit compounds. The locomotion of the 6-OHDA treated zebrafish larvae was improved after treatment with LY2023-24. The obtained results can provide valuable guidance for the development of PD drugs by targeting LRRK2.
Collapse
Affiliation(s)
- Xiaoqing Gong
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Shuli Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, China
| | - Junli Huang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Shuoyan Tan
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Yanan Tian
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Qin Li
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Lingling Wang
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, China; Research Centre for Chinese Medicine Innovation & Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, China.
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China.
| |
Collapse
|
11
|
Wu J, Jonniya NA, Hirakis SP, Olivieri C, Veglia G, Kornev AP, Taylor SS. Role of the αC-β4 loop in protein kinase structure and dynamics. eLife 2024; 12:RP91980. [PMID: 39630082 PMCID: PMC11616992 DOI: 10.7554/elife.91980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, local spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Nisha A Jonniya
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Sophia P Hirakis
- Department of Chemistry and Biochemistry, University of California, San DiegoSan DiegoUnited States
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry, University of MinnesotaMinneapolisUnited States
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Susan S Taylor
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
- Department of Chemistry and Biochemistry, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
12
|
Rahman RA, Zaman B, Islam MS, Rashid MH. Molecular dynamics studies reveal the structural impacts of LRRK2 R1441C and LRRK2 D1994A mutations in Parkinson's disease. Biochem Biophys Rep 2024; 40:101866. [PMID: 39610832 PMCID: PMC11603123 DOI: 10.1016/j.bbrep.2024.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Parkinson's Disease (PD) is a continuingly deteriorating neurological ailment affecting over 8.5 million patients globally as of 2019, and the numbers are expected to keep rising. To aid in identifying therapeutic targets, molecular dynamics simulations are convenient and cost-effective methods for enriching our knowledge of the molecular pathophysiology of diseases. Many proteins and their corresponding mutations have been identified to contribute to this disease, of which Leucine-rich repeat kinase 2 (LRRK2) is accountable for a significant percentage. Several mutations involving the domains in LRRK2 have been studied, which are known to interfere with various enzymatic processes, ultimately leading to trademark features of PD like aggregation of protein inclusions called Lewy Bodies (LBs), mitochondrial dysfunctions, etc. The precise molecular mechanism of the mutations' pathophysiology is still unclear. This research article looks at the structural effects of mutations, namely the R1441C and D1994A mutations, on the surrounding residues in the protein, offering novel insights into pathophysiological changes at an atomistic level. Our results indicate a gain of electrostatic interactions with a stable αβ motif within the LRR-Roc linker, amongst other changes. This article also highlights the potential involvement and importance of the αβ motif in LRRK2 associated PD.
Collapse
Affiliation(s)
- Ramisha A. Rahman
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
| | - Bushra Zaman
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Arkansas, United States
| | - Md Shariful Islam
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
- Department of Chemistry and Biochemistry, New Mexico State University, New Mexico, United States
| | - Md Harunur Rashid
- Department of Mathematics & Physics, North South University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Vaisar D, Ahn NG. Latent allosteric control of protein interactions by ATP-competitive kinase inhibitors. Curr Opin Struct Biol 2024; 89:102935. [PMID: 39395271 PMCID: PMC11884338 DOI: 10.1016/j.sbi.2024.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
Protein kinase inhibitors designed to compete with ATP as a primary mode of action turn out to have considerable effects that go beyond their interference of nucleotide binding. New research shows how kinase activation and sometimes noncatalytic functions of protein kinases can be controlled by allosteric properties of kinase inhibitors, communicating perturbations from the active site to distal regulatory regions.
Collapse
Affiliation(s)
- David Vaisar
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303, USA
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303, USA.
| |
Collapse
|
14
|
Martinez Fiesco JA, Li N, Alvarez de la Cruz A, Metcalfe RD, Beilina A, Cookson MR, Zhang P. 14-3-3 binding maintains the Parkinson's associated kinase LRRK2 in an inactive state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624879. [PMID: 39605327 PMCID: PMC11601620 DOI: 10.1101/2024.11.22.624879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a central player in cellular signaling and a significant contributor to Parkinson's disease (PD) pathogenesis. 14-3-3 proteins are essential regulators of LRRK2, modulating its activity. Here, we present the cryo- electron microscopy structure of the LRRK2:14-3-3 2 autoinhibitory complex, showing that a 14-3-3 dimer stabilizes an autoinhibited LRRK2 monomer by binding to key phosphorylation sites and the COR-A and COR-B subdomains within the Roc-COR GTPase domain of LRRK2. This interaction locks LRRK2 in an inactive conformation, restricting LRR domain mobility and preventing dimerization and oligomer formation. Our mutagenesis studies reveal that PD-associated mutations at the COR:14-3-3 interface and within the GTPase domain reduce 14-3-3 binding, diminishing its inhibitory effect on LRRK2. These findings provide a structural basis for understanding how LRRK2 likely remains dormant within cells, illuminate aspects of critical PD biomarkers, and suggest therapeutic strategies to enhance LRRK2-14-3-3 interactions to treat PD and related disorders.
Collapse
|
15
|
Pattanayak R, Ekkatine R, Petit CM, Yacoubian TA. 14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity and toxicity. Hum Mol Genet 2024; 33:2071-2083. [PMID: 39324210 DOI: 10.1093/hmg/ddae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.
Collapse
Affiliation(s)
- Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, 720 20th Street South, Kaul 452, Birmingham, AL 35294, United States
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| |
Collapse
|
16
|
Iannotta L, Fasiczka R, Favetta G, Zhao Y, Giusto E, Dall'Ara E, Wei J, Ho FY, Ciriani C, Cogo S, Tessari I, Iaccarino C, Liberelle M, Bubacco L, Taymans JM, Manzoni C, Kortholt A, Civiero L, Hilfiker S, Lu ML, Greggio E. PAK6 rescues pathogenic LRRK2-mediated ciliogenesis and centrosomal cohesion defects in a mutation-specific manner. Cell Death Dis 2024; 15:752. [PMID: 39419978 PMCID: PMC11487180 DOI: 10.1038/s41419-024-07124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins. Here, to gain more insights into PAK6 physiological function, we performed protein-protein interaction arrays and identified a subgroup of PAK6 binders related to ciliogenesis. We confirmed that endogenous PAK6 localizes at both the centrosome and the cilium, and positively regulates ciliogenesis not only in tumor cells but also in neurons and astrocytes. Notably, PAK6 rescues ciliogenesis and centrosomal cohesion defects associated with the G2019S but not the R1441C LRRK2 PD mutation. Since PAK6 binds LRRK2 via its GTPase/Roc-COR domain and the R1441C mutation is located in the Roc domain, we used microscale thermophoresis and AlphaFold2-based computational analysis to demonstrate that PD mutations in LRRK2 affecting the Roc-COR structure substantially decrease PAK6 affinity, providing a rationale for the differential protective effect of PAK6 toward the distinct forms of mutant LRRK2. Altogether, our study discloses a novel role of PAK6 in ciliogenesis and points to PAK6 as the first LRRK2 modifier with PD mutation-specificity.
Collapse
Affiliation(s)
- Lucia Iannotta
- Department of Biology, University of Padova, Padova, PD, Italy
- National Research Council, c/o Humanitas Research Hospital, Institute of Neuroscience, Rozzano, Italy
| | - Rachel Fasiczka
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Giulia Favetta
- Department of Biology, University of Padova, Padova, PD, Italy
| | - Yibo Zhao
- University College London, School of Pharmacy, London, UK
| | | | - Elena Dall'Ara
- Department of Biology, University of Padova, Padova, PD, Italy
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Jianning Wei
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Franz Y Ho
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Claudia Ciriani
- Department of Biology, University of Padova, Padova, PD, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, PD, Italy
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maxime Liberelle
- Université de Lille, INSERM, CHU Lille, LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, PD, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Jean-Marc Taymans
- Université de Lille, INSERM, CHU Lille, LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
| | - Laura Civiero
- Department of Biology, University of Padova, Padova, PD, Italy
- IRCCS San Camillo Hospital, Venice, Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Michael L Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA.
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, PD, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Xiong Y, Yu J. LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting. Trends Mol Med 2024; 30:982-996. [PMID: 39153957 PMCID: PMC11466701 DOI: 10.1016/j.molmed.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/19/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common causes of Parkinson's disease (PD) to date. Dysfunction in LRRK2 enzymatic activities and elevated protein levels are associated with the disease. How is LRRK2 activated, and what downstream molecular and cellular processes does LRRK2 regulate? Addressing these questions is crucial to decipher the disease mechanisms. In this review we focus on the upstream regulations and briefly discuss downstream substrates of LRRK2 as well as the cellular consequences caused by these regulations. Building on these basic findings, we discuss therapeutic strategies targeting LRRK2 and highlight the challenges in clinical trials. We further highlight the important questions that remains to be answered in the LRRK2 field.
Collapse
Affiliation(s)
- Yulan Xiong
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jianzhong Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
18
|
Li X, Zhu H, Huang BT, Li X, Kim H, Tan H, Zhang Y, Choi I, Peng J, Xu P, Sun J, Yue Z. RAB12-LRRK2 complex suppresses primary ciliogenesis and regulates centrosome homeostasis in astrocytes. Nat Commun 2024; 15:8434. [PMID: 39343966 PMCID: PMC11439917 DOI: 10.1038/s41467-024-52723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and their phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the LRRK2-regulated RAB GTPase in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brain through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12 cooperates with LRRK2 to inhibit primary ciliogenesis and regulate centrosome homeostasis in astrocytes through enhancing the phosphorylation of RAB10 and recruiting RILPL1, while the functions of RAB12 require a direct interaction with LRRK2 and LRRK2 activity. Furthermore, the ciliary and centrosome defects caused by the PD-linked LRRK2-G2019S mutation are prevented by Rab12 deletion in astrocytes. Thus, our study reveals a physiological function of the RAB12-LRRK2 complex in regulating ciliogenesis and centrosome homeostasis. The RAB12-LRRK2 structure offers a guidance in the therapeutic development of PD by targeting the RAB12-LRRK2 interaction.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bik Tzu Huang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianting Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heesoo Kim
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuanxi Zhang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Insup Choi
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Parkinson's Disease Neurobiology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Quintero-Espinosa DA, Jimenez-Del-Rio M, Velez-Pardo C. LRRK2 Kinase Inhibitor PF-06447475 Protects Drosophila melanogaster against Paraquat-Induced Locomotor Impairment, Life Span Reduction, and Oxidative Stress. Neurochem Res 2024; 49:2440-2452. [PMID: 38847910 PMCID: PMC11310290 DOI: 10.1007/s11064-024-04141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 08/09/2024]
Abstract
Parkinson's disease (PD) is a complex multifactorial progressive neurodegenerative disease characterized by locomotor alteration due to the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). Mounting evidence shows that human LRRK2 (hLRRK2) kinase activity is involved in oxidative stress (OS)-induced neurodegeneration, suggesting LRRK2 inhibition as a potential therapeutic target. We report that the hLRRK2 inhibitor PF-06447475 (PF-475) prolonged lifespan, increased locomotor activity, maintained DAergic neuronal integrity, and reduced lipid peroxidation (LPO) in female Drosophila melanogaster flies chronically exposed to paraquat (PQ), a redox cycling compound, compared to flies treated with vehicle only. Since LRRK2 is an evolutionary conserved kinase, the present findings reinforce the idea that either reduction or inhibition of the LRRK2 kinase might decrease OS and locomotor alterations associated with PD. Our observations highlight the importance of uncovering the function of the hLRRK2 orthologue dLrrk2 in D. melanogaster as an excellent model for pharmacological screenings.
Collapse
Affiliation(s)
- Diana A Quintero-Espinosa
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| |
Collapse
|
20
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. Neural Dev 2024; 19:16. [PMID: 39118162 PMCID: PMC11308222 DOI: 10.1186/s13064-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human Leucine Rich Repeat Kinase 2 (LRRK2) gene. Mutations in this gene are the most common cause of inherited Parkinson's Disease (PD), highlighting the importance of understanding its function. Despite two decades of research, however, the function of LRRK2 is not well established. METHODS To investigate the function of LRRKs in Nematostella vectensis, we applied small molecule inhibitors targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. RESULTS In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. CONCLUSIONS Our work introduces a new model organism with which to study LRRK biology. We report that LRRK kinase activity is necessary for the development and regeneration of Nematostella. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
Affiliation(s)
- Grace Holmes
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK
| | - Sophie R Ferguson
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA
| | - Patrick Alfryn Lewis
- Royal Veterinary College, University of London, Camden, London, NW1 0TU, UK.
- UCL Queen Square Institute of Neurology, University of London, London, WC1N 3BG, UK.
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| |
Collapse
|
21
|
Alessi DR, Pfeffer SR. Leucine-Rich Repeat Kinases. Annu Rev Biochem 2024; 93:261-287. [PMID: 38621236 DOI: 10.1146/annurev-biochem-030122-051144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.
Collapse
Affiliation(s)
- Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, United Kingdom;
| | - Suzanne R Pfeffer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
22
|
Li X, Zhu H, Huang BT, Li X, Kim H, Tan H, Zhang Y, Choi I, Peng J, Xu P, Sun J, Yue Z. RAB12-LRRK2 Complex Suppresses Primary Ciliogenesis and Regulates Centrosome Homeostasis in Astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603999. [PMID: 39071328 PMCID: PMC11275936 DOI: 10.1101/2024.07.17.603999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and the phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the specific RAB GTPase targeted by LRRK2 signaling in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brains through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12 cooperates with LRRK2 to inhibit primary ciliogenesis and regulate centrosome homeostasis in astrocytes through enhancing the phosphorylation of RAB10 and recruiting Rab interacting lysosomal protein like 1 (RILPL1), while the functions of RAB12 require a direct interaction with LRRK2 and LRRK2 kinase activity. Furthermore, the ciliary deficits and centrosome alteration caused by the PD-linked LRRK2-G2019S mutation are prevented by the deletion of Rab12 in astrocytes. Thus, our study reveals a physiological function of the RAB12-LRRK2 complex in regulating ciliogenesis and centrosome homeostasis. The RAB12-LRRK2 structure offers a guidance in the therapeutic development of PD by targeting the RAB12-LRRK2 interaction.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bik Tzu Huang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianting Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heesoo Kim
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yuanxi Zhang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Insup Choi
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Parkinson’s Disease Neurobiology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Naskar A, Roy RK, Srivastava D, Patra N. Decoding Inhibitor Egression from Wild-Type and G2019S Mutant LRRK2 Kinase: Insights into Unbinding Mechanisms for Precision Drug Design in Parkinson's Disease. J Phys Chem B 2024; 128:6657-6669. [PMID: 38822803 DOI: 10.1021/acs.jpcb.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) remains a viable target for drug development since the discovery of the association of its mutations with Parkinson's disease (PD). G2019S (in the kinase domain) is the most common mutation for LRRK2-based PD. Though various types of inhibitors have been developed for the kinase domain to reduce the effect of the mutation, understanding the working of these inhibitors at the molecular level is still ongoing. This study focused on the exploration of the dissociation mechanism (pathways) of inhibitors from (WT and G2019S) LRRK2 kinase (using homology model CHK1 kinase), which is one of the crucial aspects in drug discovery. Here, two ATP-competitive type I inhibitors, PF-06447475 and MLi-2 (Comp1 and Comp2 ), and one non-ATP-competitive type II inhibitor, rebastinib (Comp3), were considered for this investigation. To study the unbinding process, random accelerated molecular dynamics simulations were performed. The binding free energies of the three inhibitors for different egression paths were determined using umbrella sampling. This work found four major egression pathways that were adopted by the inhibitors Comp1 (path1, path2, and path3), Comp2 (path1, path2 and path3), and Comp3 (path3 and path4). Also, the mechanism of unbinding for each path and key residues involved in unbinding were explored. Mutation was not observed to impact the preference of the particular egression pathways for both LRRK2-Comp1 and -Comp2 systems. However, the findings suggested that the size of the inhibitor molecules might have an effect on the preference of the egression pathways. The binding energy and residence time of the inhibitors followed a similar trend to experimental observations. The findings of this work might provide insight into designing more potent inhibitors for the G2019S LRRK2 kinase.
Collapse
Affiliation(s)
- Avigyan Naskar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Rakesh K Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
24
|
Eguida M, Bret G, Sindt F, Li F, Chau I, Ackloo S, Arrowsmith C, Bolotokova A, Ghiabi P, Gibson E, Halabelian L, Houliston S, Harding RJ, Hutchinson A, Loppnau P, Perveen S, Seitova A, Zeng H, Schapira M, Rognan D. Subpocket Similarity-Based Hit Identification for Challenging Targets: Application to the WDR Domain of LRRK2. J Chem Inf Model 2024; 64:5344-5355. [PMID: 38916159 DOI: 10.1021/acs.jcim.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We herewith applied a priori a generic hit identification method (POEM) for difficult targets of known three-dimensional structure, relying on the simple knowledge of physicochemical and topological properties of a user-selected cavity. Searching for local similarity to a set of fragment-bound protein microenvironments of known structure, a point cloud registration algorithm is first applied to align known subpockets to the target cavity. The resulting alignment then permits us to directly pose the corresponding seed fragments in a target cavity space not typically amenable to classical docking approaches. Last, linking potentially connectable atoms by a deep generative linker enables full ligand enumeration. When applied to the WD40 repeat (WDR) central cavity of leucine-rich repeat kinase 2 (LRRK2), an unprecedented binding site, POEM was able to quickly propose 94 potential hits, five of which were subsequently confirmed to bind in vitro to LRRK2-WDR.
Collapse
Affiliation(s)
- Merveille Eguida
- Laboratoire d'innovation thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, Strasbourg, France
| | - Guillaume Bret
- Laboratoire d'innovation thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, Strasbourg, France
| | - François Sindt
- Laboratoire d'innovation thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, Strasbourg, France
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Elisa Gibson
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Almagul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Didier Rognan
- Laboratoire d'innovation thérapeutique, UMR7200 CNRS-Université de Strasbourg, F-67400 Illkirch, Strasbourg, France
| |
Collapse
|
25
|
Guenther DT, Follett J, Amouri R, Sassi SB, Hentati F, Farrer MJ. The Evolution of Genetic Variability at the LRRK2 Locus. Genes (Basel) 2024; 15:878. [PMID: 39062657 PMCID: PMC11275506 DOI: 10.3390/genes15070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) c.6055G>A (p.G2019S) is a frequent cause of Parkinson's disease (PD), accounting for >30% of Tunisian Arab-Berber patients. LRRK2 is widely expressed in the immune system and its kinase activity confers a survival advantage against infection in animal models. Here, we assess haplotype variability in cis and in trans of the LRRK2 c.6055G>A mutation, define the age of the pathogenic allele, explore its relationship to the age of disease onset (AOO), and provide evidence for its positive selection.
Collapse
Affiliation(s)
- Dylan T. Guenther
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Rim Amouri
- Mongi Ben Hamida National Institute of Neurology, Av. de la Rabta, Tunis 1007, Tunisia
| | - Samia Ben Sassi
- Mongi Ben Hamida National Institute of Neurology, Av. de la Rabta, Tunis 1007, Tunisia
| | - Faycel Hentati
- Mongi Ben Hamida National Institute of Neurology, Av. de la Rabta, Tunis 1007, Tunisia
| | - Matthew J. Farrer
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Dederer V, Sanz Murillo M, Karasmanis EP, Hatch KS, Chatterjee D, Preuss F, Abdul Azeez KR, Nguyen LV, Galicia C, Dreier B, Plückthun A, Versees W, Mathea S, Leschziner AE, Reck-Peterson SL, Knapp S. A designed ankyrin-repeat protein that targets Parkinson's disease-associated LRRK2. J Biol Chem 2024; 300:107469. [PMID: 38876305 PMCID: PMC11284679 DOI: 10.1016/j.jbc.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.
Collapse
Affiliation(s)
- Verena Dederer
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Eva P Karasmanis
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kathryn S Hatch
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Kamal R Abdul Azeez
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Landon Vu Nguyen
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Christian Galicia
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Wim Versees
- VIB-VUB Center for Structural Biology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA
| | - Andres E Leschziner
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Samara L Reck-Peterson
- Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP), Chevy Chase, Maryland, USA.
| |
Collapse
|
27
|
Chen S, Basiashvili T, Hutchings J, Murillo MS, Suarez AV, Louro JA, Leschziner AE, Villa E. Cryo-electron tomography reveals the microtubule-bound form of inactive LRRK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599606. [PMID: 38948781 PMCID: PMC11212993 DOI: 10.1101/2024.06.18.599606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disorder. Mutations in leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein containing both a kinase and a GTPase, are a leading cause of the familial form of PD. Pathogenic LRRK2 mutations increase LRRK2 kinase activity. While the bulk of LRRK2 is found in the cytosol, the protein associates with membranes where its Rab GTPase substrates are found, and under certain conditions, with microtubules. Integrative structural studies using single-particle cryo-electron microscopy (cryo-EM) and in situ cryo-electron tomography (cryo-ET) have revealed the architecture of microtubule-associated LRRK2 filaments, and that formation of these filaments requires LRRK2's kinase to be in the active-like conformation. However, whether LRRK2 can interact with and form filaments on microtubules in its autoinhibited state, where the kinase domain is in the inactive conformation and the N-terminal LRR domain covers the kinase active site, was not known. Using cryo-ET, we show that full-length LRRK2 can oligomerize on microtubules in its autoinhibited state. Both WT-LRRK2 and PD-linked LRRK2 mutants formed filaments on microtubules. While these filaments are stabilized by the same interfaces seen in the active-LRRK2 filaments, we observed a new interface involving the N-terminal repeats that were disordered in the active-LRRK2 filaments. The helical parameters of the autoinhibited-LRRK2 filaments are different from those reported for the active-LRRK2 filaments. Finally, the autoinhibited-LRRK2 filaments are shorter and less regular, suggesting they are less stable.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Tamar Basiashvili
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joshua Hutchings
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marta Sanz Murillo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amalia Villagran Suarez
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jaime Alegrio Louro
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Andres E. Leschziner
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
28
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell-autonomous role of leucine-rich repeat kinase in the protection of dopaminergic neuron survival. eLife 2024; 12:RP92673. [PMID: 38856715 PMCID: PMC11164531 DOI: 10.7554/elife.92673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Long Ma
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Youren Tong
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Jie Shen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
29
|
Ostrozovicova M, Tamas G, Dušek P, Grofik M, Han V, Holly P, Jech R, Kalinova K, Klivenyi P, Kovacs N, Kulcsarova K, Kurca E, Lackova A, Lee H, Lewis P, Magocova V, Marekova M, Murphy D, Necpal J, Pinter D, Rabajdova M, Růžička E, Serranova T, Smilowska K, Soos K, Straka I, Svorenova T, Valkovic P, Zarubova K, Gdovinova Z, Houlden H, Rizig M, Skorvanek M. p.L1795F LRRK2 variant is a common cause of Parkinson's disease in Central Europe. RESEARCH SQUARE 2024:rs.3.rs-4378197. [PMID: 38854119 PMCID: PMC11160925 DOI: 10.21203/rs.3.rs-4378197/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pathogenic variants in LRRK2 are one of the most common genetic risk factors for Parkinson's disease (PD). Recently, the lesser-known p.L1795F variant was proposed as a strong genetic risk factor for PD, however, further families are currently lacking in literature. A multicentre young onset and familial PD cohort (n = 220) from 9 movement disorder centres across Central Europe within the CEGEMOD consortium was screened for rare LRRK2 variants using whole exome sequencing data. We identified 4 PD cases with heterozygous p.L1795F variant. All 4 cases were characterised by akinetic-rigid PD phenotype with early onset of severe motor fluctuations, 2 receiving LCIG therapy and 2 implanted with STN DBS; all 4 cases showed unsatisfactory effect of advanced therapies on motor fluctuations. Our data also suggest that p.L1795F may represent the most common currently known pathogenic LRRK2 variant in Central Europe compared to the more studied p.G2019S, being present in 1.81% of PD cases within the Central European cohort and 3.23% of familial PD cases. Together with the ongoing clinical trials for LRRK2 inhibitors, this finding emphasises the urgent need for more ethnic diversity in PD genetic research.
Collapse
Affiliation(s)
- Miriam Ostrozovicova
- Pavol Jozef Safarik University and University Hospital of L. Pasteur and UCL Queen Square Institute of Neurology
| | | | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Milan Grofik
- Jessenius Faculty of Medicine, Comenius University and University Hospital Martin
| | - Vladimir Han
- P.J. Safarik University and University Hospital of L. Pasteur
| | - Petr Holly
- First Faculty of Medicine, Charles University and General University Hospital in Prague
| | | | | | | | | | | | - Egon Kurca
- Comenius University and University Hospital Martin
| | | | - Hamin Lee
- UCL Queen Square Institute of Neurology
| | | | | | | | | | | | | | | | | | - Tereza Serranova
- First Faculty of Medicine, Charles University and General University Hospital in Prague
| | - Katarzyna Smilowska
- Radboud University Medical Centre; Donders institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC) Nijmegen
| | | | - Igor Straka
- Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava
| | | | - Peter Valkovic
- Comenius University in Bratislava Faculty of Medicine, University Hospital Bratislava and Centre of Experimental Medicine, Slovak Academy of Sciences
| | - Katerina Zarubova
- Second Faculty of Medicine, Charles University and Motol University Hospital
| | | | - Henry Houlden
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery
| | - Mie Rizig
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
30
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
31
|
Kim K, Jang A, Shin H, Ye I, Lee JE, Kim T, Park H, Hong S. Concurrent Optimizations of Efficacy and Blood-Brain Barrier Permeability in New Macrocyclic LRRK2 Inhibitors for Potential Parkinson's Disease Therapeutics. J Med Chem 2024. [PMID: 38684226 DOI: 10.1021/acs.jmedchem.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The elevated activity of leucine-rich repeat kinase 2 (LRRK2) is implicated in the pathogenesis of Parkinson's disease (PD). The quest for effective LRRK2 inhibitors has been impeded by the formidable challenge of crossing the blood-brain barrier (BBB). We leveraged structure-based de novo design and developed robust three-dimensional quantitative structure-activity relationship (3D-QSAR) models to predict BBB permeability, enhancing the likelihood of the inhibitor's brain accessibility. Our strategy involved the synthesis of macrocyclic molecules by linking the two terminal nitrogen atoms of HG-10-102-01 with an alkyl chain ranging from 2 to 4 units, laying the groundwork for innovative LRRK2 inhibitor designs. Through meticulous computational and synthetic optimization of both biochemical efficacy and BBB permeability, 9 out of 14 synthesized candidates demonstrated potent low-nanomolar inhibition and significant BBB penetration. Further assessments of in vitro and in vivo effectiveness, coupled with pharmacological profiling, highlighted 8 as the promising new lead compound for PD therapeutics.
Collapse
Affiliation(s)
- Kewon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Ahyoung Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hochul Shin
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Inhae Ye
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Ji Eun Lee
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Taeho Kim
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
32
|
Galicia C, Guaitoli G, Fislage M, Gloeckner CJ, Versées W. Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. eLife 2024; 13:RP94503. [PMID: 38666771 PMCID: PMC11052575 DOI: 10.7554/elife.94503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.
Collapse
Affiliation(s)
- Christian Galicia
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Giambattista Guaitoli
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| |
Collapse
|
33
|
Trilling CR, Weng JH, Sharma PK, Nolte V, Wu J, Ma W, Boassa D, Taylor SS, Herberg FW. RedOx regulation of LRRK2 kinase activity by active site cysteines. NPJ Parkinsons Dis 2024; 10:75. [PMID: 38570484 PMCID: PMC10991482 DOI: 10.1038/s41531-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Mutations of the human leucine-rich repeat kinase 2 (LRRK2) have been associated with both, idiopathic and familial Parkinson's disease (PD). Most of these pathogenic mutations are located in the kinase domain (KD) or GTPase domain of LRRK2. In this study we describe a mechanism in which protein kinase activity can be modulated by reversible oxidation or reduction, involving a unique pair of adjacent cysteines, the "CC" motif. Among all human protein kinases, only LRRK2 contains this "CC" motif (C2024 and C2025) in the Activation Segment (AS) of the kinase domain. In an approach combining site-directed mutagenesis, biochemical analyses, cell-based assays, and Gaussian accelerated Molecular Dynamics (GaMD) simulations we could attribute a role for each of those cysteines. We employed reducing and oxidizing agents with potential clinical relevance to investigate effects on kinase activity and microtubule docking. We find that each cysteine gives a distinct contribution: the first cysteine, C2024, is essential for LRRK2 protein kinase activity, while the adjacent cysteine, C2025, contributes significantly to redox sensitivity. Implementing thiolates (R-S-) in GaMD simulations allowed us to analyse how each of the cysteines in the "CC" motif interacts with its surrounding residues depending on its oxidation state. From our studies we conclude that oxidizing agents can downregulate kinase activity of hyperactive LRRK2 PD mutations and may provide promising tools for therapeutic strategies.
Collapse
Affiliation(s)
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, CA, USA
| | | | - Viktoria Nolte
- Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | | |
Collapse
|
34
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561293. [PMID: 37873418 PMCID: PMC10592668 DOI: 10.1101/2023.10.06.561293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), which is the leading neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). However, whether LRRK2 mutations cause PD and degeneration of DA neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether LRRK2 and its functional homologue LRRK1 play an essential, intrinsic role in DA neuron survival through the development of DA neuron-specific LRRK conditional double knockout (cDKO) mice. We first generated and characterized floxed LRRK1 and LRRK2 mice and then confirmed that germline deletions of the floxed LRRK1 and LRRK2 alleles result in null mutations, as evidenced by the absence of LRRK1 and LRRK2 mRNA and protein in the respective homozygous deleted mutant mice. We further examined the specificity of Cre-mediated recombination driven by the dopamine transporter-Cre (DAT-Cre) knockin (KI) allele using a GFP reporter line and confirmed that DAT-Cre-mediated recombination is restricted to DA neurons in the SNpc. Crossing these validated floxed LRRK1 and LRRK2 mice with DAT-Cre KI mice, we then generated DA neuron-restricted LRRK cDKO mice and further showed that levels of LRRK1 and LRRK2 are reduced in dissected ventral midbrains of LRRK cDKO mice. While DA neuron-restricted LRRK cDKO mice of both sexes exhibit normal mortality and body weight, they develop age-dependent loss of DA neurons in the SNpc, as demonstrated by the progressive reduction of DA neurons in the SNpc of LRRK cDKO mice at the ages of 20 and 24 months but the unaffected number of DA neurons at the age of 15 months. Moreover, DA neurodegeneration is accompanied with increases of apoptosis and elevated microgliosis in the SNpc as well as decreases of DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the importance of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Long Ma
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Youren Tong
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
35
|
Sharma PK, Weng JH, Manschwetus JT, Wu J, Ma W, Herberg FW, Taylor SS. Role of the leucine-rich repeat protein kinase 2 C-terminal tail in domain cross-talk. Biochem J 2024; 481:313-327. [PMID: 38305364 PMCID: PMC10903466 DOI: 10.1042/bcj20230477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.
Collapse
Affiliation(s)
- Pallavi Kaila Sharma
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| | - Jascha T. Manschwetus
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Hessen, Germany
| | - Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, Vermont
| | - Friedrich W. Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Hessen, Germany
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0652, U.S.A
| |
Collapse
|
36
|
Baidya AT, Deshwal S, Das B, Mathew AT, Devi B, Sandhir R, Kumar R. Catalyzing a Cure: Discovery and development of LRRK2 inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 143:106972. [PMID: 37995640 DOI: 10.1016/j.bioorg.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Sonam Deshwal
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Alen T Mathew
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Bharti Devi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi 221005, UP, India.
| |
Collapse
|
37
|
Huang H, Lin L, Wu T, Wu C, Zhou L, Li G, Su F, Liang F, Guo W, Chen W, Jiang Q, Guan Y, Li X, Xu P, Zhang Y, Smith W, Pei Z. Phosphorylation of AQP4 by LRRK2 R1441G impairs glymphatic clearance of IFNγ and aggravates dopaminergic neurodegeneration. NPJ Parkinsons Dis 2024; 10:31. [PMID: 38296953 PMCID: PMC10831045 DOI: 10.1038/s41531-024-00643-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Aquaporin-4 (AQP4) is essential for normal functioning of the brain's glymphatic system. Impaired glymphatic function is associated with neuroinflammation. Recent clinical evidence suggests the involvement of glymphatic dysfunction in LRRK2-associated Parkinson's disease (PD); however, the precise mechanism remains unclear. The pro-inflammatory cytokine interferon (IFN) γ interacts with LRRK2 to induce neuroinflammation. Therefore, we examined the AQP4-dependent glymphatic system's role in IFNγ-mediated neuroinflammation in LRRK2-associated PD. We found that LRRK2 interacts with and phosphorylates AQP4 in vitro and in vivo. AQP4 phosphorylation by LRRK2 R1441G induced AQP4 depolarization and disrupted glymphatic IFNγ clearance. Exogeneous IFNγ significantly increased astrocyte expression of IFNγ receptor, amplified AQP4 depolarization, and exacerbated neuroinflammation in R1441G transgenic mice. Conversely, inhibiting LRRK2 restored AQP4 polarity, improved glymphatic function, and reduced IFNγ-mediated neuroinflammation and dopaminergic neurodegeneration. Our findings establish a link between LRRK2-mediated AQP4 phosphorylation and IFNγ-mediated neuroinflammation in LRRK2-associated PD, guiding the development of LRRK2 targeting therapy.
Collapse
Affiliation(s)
- Heng Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tengteng Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Leping Zhou
- Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Fengyin Liang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Wanli Smith
- Department of Psychiatry, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China.
| |
Collapse
|
38
|
Zhu H, Hixson P, Ma W, Sun J. Pharmacology of LRRK2 with type I and II kinase inhibitors revealed by cryo-EM. Cell Discov 2024; 10:10. [PMID: 38263358 PMCID: PMC10805800 DOI: 10.1038/s41421-023-00639-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
LRRK2 is one of the most promising drug targets for Parkinson's disease. Though type I kinase inhibitors of LRRK2 are under clinical trials, alternative strategies like type II inhibitors are being actively pursued due to the potential undesired effects of type I inhibitors. Currently, a robust method for LRRK2-inhibitor structure determination to guide structure-based drug discovery is lacking, and inhibition mechanisms of available compounds are also unclear. Here we present near-atomic-resolution structures of LRRK2 with type I (LRRK2-IN-1 and GNE-7915) and type II (rebastinib, ponatinib, and GZD-824) inhibitors, uncovering the structural basis of LRRK2 inhibition and conformational plasticity of the kinase domain with molecular dynamics (MD) simulations. Type I and II inhibitors bind to LRRK2 in active-like and inactive conformations, so LRRK2-inhibitor complexes further reveal general structural features associated with LRRK2 activation. Our study provides atomic details of LRRK2-inhibitor interactions and a framework for understanding LRRK2 activation and for rational drug design.
Collapse
Affiliation(s)
- Hanwen Zhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patricia Hixson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wen Ma
- Department of Physics, University of Vermont, Burlington, VT, USA.
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
39
|
Wang HL, Wang ZY, Tian J, Ma DR, Shi CH. Association between inflammatory bowel disease and Parkinson's disease: a prospective cohort study of 468,556 UK biobank participants. Front Aging Neurosci 2024; 15:1294879. [PMID: 38288279 PMCID: PMC10822879 DOI: 10.3389/fnagi.2023.1294879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction Inflammatory Bowel Disease (IBD) and Parkinson's disease (PD) are both chronic, progressive disorders. As such, given the inconclusive results of extensive research on the association between IBD and PD, our study intends to examine this relationship further using the UK Biobank database. Methods We conducted a prospective cohort study using the Cox proportional hazards model, analyzing data from the UK Biobank to investigate the relationship between IBD and PD, following subjects until PD diagnosis, loss to follow up, death or study termination on 30 June, 2023. Results The results show that IBD had no effect on the risk of PD (HR: 1.356, 95% CI: 0.941-1.955, p = 0.103), and the effect remained consistent in specific Crohn's disease, ulcerative colitis or unclassified IBD populations. In addition, after sensitivity analysis using propensity matching scores and excluding patients diagnosed with PD 5 or 10 years after baseline, IBD had no effect on the risk of PD. However, in the subgroup analysis, we found that in females (HR: 1.989, 95% CI: 1.032-3.835, p = 0.040), the polygenic risk score was highest (HR: 2.476, 95% CI: 1.401-4.374, p = 0.002), and having ulcerative colitis without hypertension (HR: 2.042, 95% CI: 1.128-3.697, p = 0.018) was associated with an increased risk of PD. Conclusion In conclusion, over an average follow-up period of 13.93 years, we found no significant association between IBD and PD.
Collapse
Affiliation(s)
- Hai-li Wang
- Department of Surgery ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-yun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Tian
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan, China
| | - Dong-rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chang-he Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Sun X, Dou K, Xue L, Xie Y, Yang Y, Xie A. Comprehensive analysis of clinical and biological features in Parkinson's disease associated with the LRRK2 G2019S mutation: Data from the PPMI study. Clin Transl Sci 2024; 17:e13720. [PMID: 38266062 PMCID: PMC10804919 DOI: 10.1111/cts.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
The Parkinson's Progression Marker Initiative (PPMI) aims to identify biomarkers for Parkinson's disease (PD) risk, onset, and progression. This study focuses on the G2019S missense mutation in the LRRK2 gene, which is associated with hereditary and sporadic PD. Utilizing data from the PPMI database, we conducted an analysis of baseline clinical characteristics, as well as serum and cerebrospinal fluid levels in two groups: patients with PD with the G2019S mutation (PD + G2019S) and patients with PD without the mutation (PD-G2019S). Multiple linear regression and longitudinal analysis were performed, controlling for confounding factors. Compared to the PD-G2019S group, the PD + G2019S group showed more obvious initial motor dysfunction-higher baseline Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) scores (false discovery rate [FDR]-adjusted p < 0.001), but progressed more slowly. Mechanism of Coordinated Access and activities of daily living (ADL) scores were lower at baseline (FDR-adjusted p < 0.001), whereas Scales for Outcomes of Parkinson's Disease (SCOPA)-Thermoregulatory (FDR-adjusted p = 0.015) scores were higher, emphasizing the increase of non-motor symptoms associated with LRRK2-G2019S mutation. During the follow-up period, the motor and non-motor symptoms changed dynamically with time, and there were longitudinal differences in the scores of MDS-UPDRS (FDR-adjusted PI = 0.013, PII = 0.008, PIV < 0.001), Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (FDR-adjusted p = 0.027), SCOPA-Thermoregulatory (FDR-adjusted p = 0.021), and ADL (FDR-adjusted p = 0.027) scale scores. PD associated with the LRRK2 G2019S mutation demonstrated more severe symptoms at baseline but slower progression. Motor complications and thermoregulatory disorders were more pronounced.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Kaixin Dou
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Li Xue
- Recording RoomThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yijie Xie
- Clinical Laboratory, Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Yong Yang
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Anmu Xie
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
- Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
41
|
Zhu H, Tonelli F, Turk M, Prescott A, Alessi DR, Sun J. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Science 2023; 382:1404-1411. [PMID: 38127736 PMCID: PMC10786121 DOI: 10.1126/science.adi9926] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gain-of-function mutations in LRRK2, which encodes the leucine-rich repeat kinase 2 (LRRK2), are the most common genetic cause of late-onset Parkinson's disease. LRRK2 is recruited to membrane organelles and activated by Rab29, a Rab guanosine triphosphatase encoded in the PARK16 locus. We present cryo-electron microscopy structures of Rab29-LRRK2 complexes in three oligomeric states, providing key snapshots during LRRK2 recruitment and activation. Rab29 induces an unexpected tetrameric assembly of LRRK2, formed by two kinase-active central protomers and two kinase-inactive peripheral protomers. The central protomers resemble the active-like state trapped by the type I kinase inhibitor DNL201, a compound that underwent a phase 1 clinical trial. Our work reveals the structural mechanism of LRRK2 spatial regulation and provides insights into LRRK2 inhibitor design for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Martin Turk
- Cryo-EM and Tomography Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alan Prescott
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
42
|
Iannotta L, Emanuele M, Favetta G, Tombesi G, Vandewynckel L, Lara Ordóñez AJ, Saliou JM, Drouyer M, Sibran W, Civiero L, Nichols RJ, Athanasopoulos PS, Kortholt A, Chartier-Harlin MC, Greggio E, Taymans JM. PAK6-mediated phosphorylation of PPP2R2C regulates LRRK2-PP2A complex formation. Front Mol Neurosci 2023; 16:1269387. [PMID: 38169846 PMCID: PMC10759229 DOI: 10.3389/fnmol.2023.1269387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited and sporadic Parkinson's disease (PD) and previous work suggests that dephosphorylation of LRRK2 at a cluster of heterologous phosphosites is associated to disease. We have previously reported subunits of the PP1 and PP2A classes of phosphatases as well as the PAK6 kinase as regulators of LRRK2 dephosphorylation. We therefore hypothesized that PAK6 may have a functional link with LRRK2's phosphatases. To investigate this, we used PhosTag gel electrophoresis with purified proteins and found that PAK6 phosphorylates the PP2A regulatory subunit PPP2R2C at position S381. While S381 phosphorylation did not affect PP2A holoenzyme formation, a S381A phosphodead PPP2R2C showed impaired binding to LRRK2. Also, PAK6 kinase activity changed PPP2R2C subcellular localization in a S381 phosphorylation-dependent manner. Finally, PAK6-mediated dephosphorylation of LRRK2 was unaffected by phosphorylation of PPP2R2C at S381, suggesting that the previously reported mechanism whereby PAK6-mediated phosphorylation of 14-3-3 proteins promotes 14-3-3-LRRK2 complex dissociation and consequent exposure of LRRK2 phosphosites for dephosphorylation is dominant. Taken together, we conclude that PAK6-mediated phosphorylation of PPP2R2C influences the recruitment of PPP2R2C to the LRRK2 complex and PPP2R2C subcellular localization, pointing to an additional mechanism in the fine-tuning of LRRK2 phosphorylation.
Collapse
Affiliation(s)
- Lucia Iannotta
- Department of Biology, University of Padova, Padua, Italy
- National Research Council, c/o Humanitas Research Hospital, Institute of Neuroscience, Rozzano, Italy
| | - Marco Emanuele
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Giulia Favetta
- Department of Biology, University of Padova, Padua, Italy
| | - Giulia Tombesi
- Department of Biology, University of Padova, Padua, Italy
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Laurine Vandewynckel
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | | | - Jean-Michel Saliou
- University of Lille, CNRS, Inserm, CHU Lille, Institute Pasteur de Lille, US 41 – UAR 2014 – PLBS, Lille, France
| | - Matthieu Drouyer
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - William Sibran
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Laura Civiero
- Department of Biology, University of Padova, Padua, Italy
- IRCSS, San Camillo Hospital, Venice, Italy
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA, United States
| | | | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands
- YETEM-Innovative Technologies Application and Research Centre, Suleyman Demirel University West Campus, Isparta, Turkey
| | | | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padua, Italy
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| |
Collapse
|
43
|
Sanz Murillo M, Villagran Suarez A, Dederer V, Chatterjee D, Alegrio Louro J, Knapp S, Mathea S, Leschziner AE. Inhibition of Parkinson's disease-related LRRK2 by type I and type II kinase inhibitors: Activity and structures. SCIENCE ADVANCES 2023; 9:eadk6191. [PMID: 38039358 PMCID: PMC10691770 DOI: 10.1126/sciadv.adk6191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD) and a risk factor for the sporadic form. Increased kinase activity was shown in patients with both familial and sporadic PD, making LRRK2 kinase inhibitors a major focus of drug development efforts. Although much progress has been made in understanding the structural biology of LRRK2, there are no available structures of LRRK2 inhibitor complexes. To this end, we solved cryo-electron microscopy structures of LRRK2, wild-type and PD-linked mutants, bound to the LRRK2-specific type I inhibitor MLi-2 and the broad-spectrum type II inhibitor GZD-824. Our structures revealed an active-like LRRK2 kinase in the type I inhibitor complex, and an inactive DYG-out in the type II inhibitor complex. Our structural analysis also showed how inhibitor-induced conformational changes in LRRK2 are affected by its autoinhibitory N-terminal repeats. The structures provide a template for the rational development of LRRK2 kinase inhibitors covering both canonical inhibitor binding modes.
Collapse
Affiliation(s)
- Marta Sanz Murillo
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Amalia Villagran Suarez
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Verena Dederer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Deep Chatterjee
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Jaime Alegrio Louro
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
| | - Stefan Knapp
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Sebastian Mathea
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt 60438, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt 60438, Germany
| | - Andres E. Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Researcg Network, Chevy Chase, MD 20815, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Cao R, Chen C, Wen J, Zhao W, Zhang C, Sun L, Yuan L, Wu C, Shan L, Xi M, Sun H. Recent advances in targeting leucine-rich repeat kinase 2 as a potential strategy for the treatment of Parkinson's disease. Bioorg Chem 2023; 141:106906. [PMID: 37837728 DOI: 10.1016/j.bioorg.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Several single gene mutations involved in PD have been identified such as leucine-rich repeat kinase 2 (LRRK2), the most common cause of sporadic and familial PD. Its mutations have attracted much attention to therapeutically targeting this kinase. To date, many compounds including small chemical molecules with diverse scaffolds and RNA agents have been developed with significant amelioration in preclinical PD models. Currently, five candidates, DNL201, DNL151, WXWH0226, NEU-723 and BIIB094, have advanced to clinical trials for PD treatment. In this review, we describe the structure, pathogenic mutations and the mechanism of LRRK2, and summarize the development of LRRK2 inhibitors in preclinical and clinical studies, trying to provide an insight into targeting LRRK2 for PD intervention in future.
Collapse
Affiliation(s)
- Ruiwei Cao
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Caiping Chen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Jing Wen
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Weihe Zhao
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | | | - Longhui Sun
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Liyan Yuan
- Zhejiang Medicine Co. Ltd., Shaoxing 312500, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lei Shan
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China
| | - Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
45
|
Chen K, Tang F, Du B, Yue Z, Jiao L, Ding X, Tuo Q, Meng J, He S, Dai L, Lei P, Wei X. Leucine-rich repeat kinase 2 (LRRK2) inhibition upregulates microtubule-associated protein 1B to ameliorate lysosomal dysfunction and parkinsonism. MedComm (Beijing) 2023; 4:e429. [PMID: 38020716 PMCID: PMC10661827 DOI: 10.1002/mco2.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Mutations in LRRK2 (encoding leucine-rich repeat kinase 2 protein, LRRK2) are the most common genetic risk factors for Parkinson's disease (PD), and increased LRRK2 kinase activity was observed in sporadic PD. Therefore, inhibition of LRRK2 has been tested as a disease-modifying therapeutic strategy using the LRRK2 mutant mice and sporadic PD. Here, we report a newly designed molecule, FL090, as a LRRK2 kinase inhibitor, verified in cell culture and animal models of PD. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice and SNCA A53T transgenic mice, FL090 ameliorated motor dysfunctions, reduced LRRK2 kinase activity, and rescued loss in the dopaminergic neurons in the substantia nigra. Notably, by RNA-Seq analysis, we identified microtubule-associated protein 1 (MAP1B) as a crucial mediator of FL090's neuroprotective effects and found that MAP1B and LRRK2 co-localize. Overexpression of MAP1B rescued 1-methyl-4-phenylpyridinium induced cytotoxicity through rescuing the lysosomal function, and the protective effect of FL090 was lost in MAP1B knockout cells. Further studies may be focused on the in vivo mechanisms of MAP1B and microtubule function in PD. Collectively, these findings highlight the potential of FL090 as a therapeutic agent for sporadic PD and familial PD without LRRK2 mutations.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Fei Tang
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Bin Du
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Zhe‐Zhou Yue
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| | - Ling‐Ling Jiao
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xu‐Long Ding
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Qing‐Zhang Tuo
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Si‐Yu He
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Lunzhi Dai
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
| | - Xia‐Wei Wei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China Hospital, Sichuan University, and Collaborative Center for BiotherapyChengduP. R. China
- Guizhou Yiluoqini Techno. Co., Ltd, Guizhou Shuanglong Airport Economic ZoneGuiyangP. R. China
| |
Collapse
|
46
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
47
|
Holmes G, Ferguson SR, Lewis PA, Echeverri K. LRRK2 kinase activity is necessary for development and regeneration in Nematostella vectensis. RESEARCH SQUARE 2023:rs.3.rs-3525606. [PMID: 37986927 PMCID: PMC10659525 DOI: 10.21203/rs.3.rs-3525606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background The starlet sea anemone, Nematostella vectensis, is an emerging model organism with a high regenerative capacity, which was recently found to possess an orthologue to the human LRRK2 gene (nvLRRK2). The leucine rich repeat kinase 2 (LRRK2) gene, when mutated, is the most common cause of inherited Parkinson's Disease (PD). Its protein product (LRRK2) has implications in a variety of cellular processes, however, the full function of LRRK2 is not well established. Current research is focusing on understanding the function of LRRK2, including both its physiological role as well as its pathobiological underpinnings. Methods We used bioinformatics to determine the cross-species conservation of LRRK2, then applied drugs targeting the kinase activity of LRRK2 to examine its function in development, homeostasis and regeneration in Nematostella vectensis. Results An in-silico characterization and phylogenetic analysis of nvLRRK2 comparing it to human LRRK2 highlighted key conserved motifs and residues. In vivo analyses inhibiting the kinase function of this enzyme demonstrated a role of nvLRRK2 in development and regeneration of N. vectensis. These findings implicate a developmental role of LRRK2 in Nematostella, adding to the expanding knowledge of its physiological function. Conclusions Our work introduces a new model organism with which to study LRRK biology. We show a necessity for LRRK2 in development and regeneration. Given the short generation time, genetic trackability and in vivo imaging capabilities, this work introduces Nematostella vectensis as a new model in which to study genes linked to neurodegenerative diseases such as Parkinson's.
Collapse
|
48
|
Reimer JM, Dickey AM, Lin YX, Abrisch RG, Mathea S, Chatterjee D, Fay EJ, Knapp S, Daugherty MD, Reck-Peterson SL, Leschziner AE. Structure of LRRK1 and mechanisms of autoinhibition and activation. Nat Struct Mol Biol 2023; 30:1735-1745. [PMID: 37857821 PMCID: PMC10643122 DOI: 10.1038/s41594-023-01109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Leucine Rich Repeat Kinase 1 and 2 (LRRK1 and LRRK2) are homologs in the ROCO family of proteins in humans. Despite their shared domain architecture and involvement in intracellular trafficking, their disease associations are strikingly different: LRRK2 is involved in familial Parkinson's disease while LRRK1 is linked to bone diseases. Furthermore, Parkinson's disease-linked mutations in LRRK2 are typically autosomal dominant gain-of-function while those in LRRK1 are autosomal recessive loss-of-function. Here, to understand these differences, we solved cryo-EM structures of LRRK1 in its monomeric and dimeric forms. Both differ from the corresponding LRRK2 structures. Unlike LRRK2, which is sterically autoinhibited as a monomer, LRRK1 is sterically autoinhibited in a dimer-dependent manner. LRRK1 has an additional level of autoinhibition that prevents activation of the kinase and is absent in LRRK2. Finally, we place the structural signatures of LRRK1 and LRRK2 in the context of the evolution of the LRRK family of proteins.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Andrea M Dickey
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yu Xuan Lin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Robert G Abrisch
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sebastian Mathea
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Deep Chatterjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Elizabeth J Fay
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Stefan Knapp
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-Universität, Frankfurt, Germany
| | - Matthew D Daugherty
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
49
|
Wang X, Espadas J, Wu Y, Cai S, Ge J, Shao L, Roux A, De Camilli P. Membrane remodeling properties of the Parkinson's disease protein LRRK2. Proc Natl Acad Sci U S A 2023; 120:e2309698120. [PMID: 37844218 PMCID: PMC10614619 DOI: 10.1073/pnas.2309698120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are responsible for late-onset autosomal dominant Parkinson's disease. LRRK2 has been implicated in a wide range of physiological processes including membrane repair in the endolysosomal system. Here, using cell-free systems, we report that purified LRRK2 directly binds acidic lipid bilayers with a preference for highly curved bilayers. While this binding is nucleotide independent, LRRK2 can also deform low-curvature liposomes into narrow tubules in a guanylnucleotide-dependent but Adenosine 5'-triphosphate-independent way. Moreover, assembly of LRRK2 into scaffolds at the surface of lipid tubules can constrict them. We suggest that an interplay between the membrane remodeling and signaling properties of LRRK2 may be key to its physiological function. LRRK2, via its kinase activity, may achieve its signaling role at sites where membrane remodeling occurs.
Collapse
Affiliation(s)
- Xinbo Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Yumei Wu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Shujun Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, GenevaCH-1211, Switzerland
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- HHMI, Yale University School of Medicine, New Haven, CT06510
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT06510
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
50
|
Dhekne HS, Tonelli F, Yeshaw WM, Chiang CY, Limouse C, Jaimon E, Purlyte E, Alessi DR, Pfeffer SR. Genome-wide screen reveals Rab12 GTPase as a critical activator of Parkinson's disease-linked LRRK2 kinase. eLife 2023; 12:e87098. [PMID: 37874635 PMCID: PMC10708890 DOI: 10.7554/elife.87098] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/22/2023] [Indexed: 10/25/2023] Open
Abstract
Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2-dependent and PPM1H phosphatase-reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. AlphaFold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain, and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Francesca Tonelli
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Wondwossen M Yeshaw
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Claire Y Chiang
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Charles Limouse
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| | - Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Dario R Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of MedicineStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkStanfordUnited States
| |
Collapse
|