1
|
Sun H, Lu B, Zhang Z, Xiao Y, Zhou Z, Xi L, Li Z, Jiang Z, Zhang J, Wang M, Liu C, Ma Y, Peng J, Wang XJ, Yi C. Mild and ultrafast GLORI enables absolute quantification of m 6A methylome from low-input samples. Nat Methods 2025:10.1038/s41592-025-02680-9. [PMID: 40325216 DOI: 10.1038/s41592-025-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Methods for absolute quantification of N6-methyladenosine (m6A) have emerged as powerful tools in epitranscriptomics. We previously reported GLORI, a chemical-assisted approach to achieve unbiased and precise m6A measurement. However, its lengthy reaction time and severe RNA degradation have limited its applicability, particularly for low-input samples. Here, we present two updated GLORI approaches that are ultrafast, mild and enable absolute m6A quantification from one to two orders of magnitude less than the RNA starting material: GLORI 2.0 is compatible with RNA from ~10,000 cells and enhances sensitivity for both transcriptome-wide and locus-specific m6A detection; GLORI 3.0 further utilizes a reverse transcription-silent carrier RNA to achieve m6A quantification from as low as 500-1,000 cells. Using limited RNA from mouse dorsal hippocampus, we reveal a high modification level in synapse-related gene sets. We envision that the updated GLORI methods will greatly expand the applicability of absolute quantification of m6A in biology.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Bo Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zeyu Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ye Xiao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhe Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Lin Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhichao Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jiayi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Meng Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yichen Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiu-Jie Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
2
|
Kou Y, Naqvi NI, Tao Z. Emerging roles of RNA modifications in the rice blast fungus. Trends Microbiol 2025:S0966-842X(25)00114-3. [PMID: 40268577 DOI: 10.1016/j.tim.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
RNA modifications have been revealed by epitranscriptomics to play crucial roles in diverse biological processes. Nevertheless, data regarding RNA modifications during plant-pathogen interaction remain scarce. Recently, several studies have demonstrated the functions of RNA modifications in rice blast fungus.
Collapse
Affiliation(s)
- Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory; and Department of Biological Sciences, 1 Research Link, National University of Singapore 117604, Singapore.
| | - Zeng Tao
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Kattner AA. Sacred codes: Preservation, permutation and expression. Biomed J 2025; 48:100852. [PMID: 40188876 PMCID: PMC12018023 DOI: 10.1016/j.bj.2025.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/13/2025] Open
Abstract
This issue of the Biomedical Journal features a special section on epigenetics in infection, exploring epitranscriptomic modifications in the malaria parasite Plasmodium and the African sleeping sickness parasite Trypanosoma, with a focus on how these modifications influence parasite development and survival strategies. Additionally, this issue reviews regulatory mechanisms in asymmetric cell division, assessment needs for children with developmental coordination disorder along with recommendations, and advancements in 3D chondrocyte culturing for tissue engineering. Also examined are three key pathways exacerbating long COVID, the increasing impact of electromagnetic exposure in built environments on human health, and recent updates in liver transplantation criteria for hepatocellular carcinoma complicated by portal vein tumor thrombosis. Research in bladder cancer investigates the role of activating transcription factor 3, known for its anti-tumor properties, and its link to metformin. Another study demonstrates the efficacy of Sanger sequencing in streamlining mitochondrial disorder diagnostics, enabling timely identification based on clinical evidence. Additional studies present a novel intervention approach for autoimmune diseases, advancements in artificial bone grafts to enhance bone regeneration, and the benefits of public hospital participation in oncological clinical trials. Finally, a study confirms the suitability of transthoracic echocardiography for diagnosing suspected acute aortic syndrome.
Collapse
|
5
|
Kovaka S, Hook PW, Jenike KM, Shivakumar V, Morina LB, Razaghi R, Timp W, Schatz MC. Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment. Nat Methods 2025; 22:681-691. [PMID: 40155722 PMCID: PMC11978507 DOI: 10.1038/s41592-025-02631-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/16/2025] [Indexed: 04/01/2025]
Abstract
Nanopore signal analysis enables detection of nucleotide modifications from native DNA and RNA sequencing, providing both accurate genetic or transcriptomic and epigenetic information without additional library preparation. At present, only a limited set of modifications can be directly basecalled (for example, 5-methylcytosine), while most others require exploratory methods that often begin with alignment of nanopore signal to a nucleotide reference. We present Uncalled4, a toolkit for nanopore signal alignment, analysis and visualization. Uncalled4 features an efficient banded signal alignment algorithm, BAM signal alignment file format, statistics for comparing signal alignment methods and a reproducible de novo training method for k-mer-based pore models, revealing potential errors in Oxford Nanopore Technologies' state-of-the-art DNA model. We apply Uncalled4 to RNA 6-methyladenine (m6A) detection in seven human cell lines, identifying 26% more modifications than Nanopolish using m6Anet, including in several genes where m6A has known implications in cancer. Uncalled4 is available open source at github.com/skovaka/uncalled4 .
Collapse
Affiliation(s)
- Sam Kovaka
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| | - Paul W Hook
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Katharine M Jenike
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Vikram Shivakumar
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Luke B Morina
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Roham Razaghi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Sartorelli V, Ciuffoli V. Metabolic regulation in adult and aging skeletal muscle stem cells. Genes Dev 2025; 39:186-208. [PMID: 39662967 PMCID: PMC11789647 DOI: 10.1101/gad.352277.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Adult stem cells maintain homeostasis and enable regeneration of most tissues. Quiescence, proliferation, and differentiation of stem cells and their progenitors are tightly regulated processes governed by dynamic transcriptional, epigenetic, and metabolic programs. Previously thought to merely reflect a cell's energy state, metabolism is now recognized for its critical regulatory functions, controlling not only energy and biomass production but also the cell's transcriptome and epigenome. In this review, we explore how metabolic pathways, metabolites, and transcriptional and epigenetic regulators are functionally interlinked in adult and aging skeletal muscle stem cells.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Xiang B, Zhang M, Li K, Zhang Z, Liu Y, Gao M, Wang X, Xiao X, Sun Y, He C, Shi J, Fan H, Xing X, Xu G, Yao Y, Chen G, Zhu H, Yi C, Zhang J. The epitranscriptional factor PCIF1 orchestrates CD8 + T cell ferroptosis and activation to control antitumor immunity. Nat Immunol 2025; 26:252-264. [PMID: 39762445 DOI: 10.1038/s41590-024-02047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 11/26/2024] [Indexed: 02/02/2025]
Abstract
T cell-based immunotherapies have revolutionized cancer treatment, yet durable responses remain elusive. Here we show that PCIF1, an RNA N6 2'-O-dimethyladenosine (m6Am) methyltransferase, negatively regulates CD8+ T cell antitumor responses. Whole-body or T cell-specific Pcif1 knockout (KO) reduced tumor growth in mice. Single-cell RNA sequencing shows an increase in the number of tumor-infiltrating cytotoxic CD8+ T cells in Pcif1-deficient mice. Mechanistically, proteomic and m6Am-sequencing analyses pinpoint that Pcif1 KO elevates m6Am-modified targets, specifically ferroptosis suppressor genes (Fth1, Slc3a2), and the T cell activation gene Cd69, imparting resistance to ferroptosis and enhancing CD8+ T cell activation. Of note, Pcif1-deficient mice had enhanced responses to anti-PD-1 immunotherapy, and Pcif1 KO chimeric antigen receptor T cells improved tumor control. Clinically, cancer patients with low PCIF1 expression in T cells have enhanced responses to immunotherapies. These findings suggest that PCIF1 suppresses CD8+ T cell activation and targeting PCIF1 is a promising strategy to boost antitumor immunity.
Collapse
MESH Headings
- Animals
- Ferroptosis/immunology
- Ferroptosis/genetics
- Mice
- CD8-Positive T-Lymphocytes/immunology
- Lymphocyte Activation/immunology
- Mice, Knockout
- Humans
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Methyltransferases/immunology
- Neoplasms/immunology
- Neoplasms/therapy
- Mice, Inbred C57BL
- Antigens, CD/genetics
- Cell Line, Tumor
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
Collapse
Affiliation(s)
- Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China
| | - Yutong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minling Gao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiyong Wang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hongzeng Fan
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gaoshan Xu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gang Chen
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Yu C, Chen Y, Luo H, Lin W, Lin X, Jiang Q, Liu H, Liu W, Yang J, Huang Y, Fang J, He D, Han Y, Zheng S, Ren H, Xia X, Yu J, Chen L, Zeng C. NAT10 promotes vascular remodelling via mRNA ac4C acetylation. Eur Heart J 2025; 46:288-304. [PMID: 39453784 DOI: 10.1093/eurheartj/ehae707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/27/2024] Open
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) phenotype switching is a pathological hallmark in various cardiovascular diseases. N4-acetylcytidine (ac4C) catalyzed by N-acetyltransferase 10 (NAT10) is well conserved in the enzymatic modification of ribonucleic acid (RNA). NAT10-mediated ac4C acetylation is involved in various physiological and pathological processes, including cardiac remodelling. However, the biological functions and underlying regulatory mechanisms of mRNA ac4C modifications in vascular diseases remain elusive. METHODS By combining in-vitro and in-vivo vascular injury models, NAT10 was identified as a crucial protein involved in the promotion of post-injury neointima formation, as well as VSMC phenotype switching. The potential mechanisms of NAT10 in the vascular neointima formation were clarified by RNA sequence (RNA-seq), acetylated mRNA immunoprecipitation sequence (acRIP-seq), and RNA binding protein immunoprecipitation sequence (RIP-seq). RESULTS NAT10 and ac4C modifications were upregulated in injured human and rodent arteries. Deletion of NAT10 in VSMCs effectively reduced post-injury neointima formation and VSMC phenotype switching. Further RNA-seq, RIP-seq, and acRIP-seq revealed that NAT10, by its ac4C modification, directly interacts with genes, including integrin-β1 (ITGB1) and collagen type I alpha 2 chain (Col1a2) mRNAs. Taking ITGB1 as one example, it showed that NAT10-mediated ac4C consequently increased ITGB1 mRNA stability and its downstream focal adhesion kinase (FAK) signaling, directly influencing the proliferation of VSMCs and vascular remodelling. The regulation of NAT10 on the VSMC phenotype is of translational significance because the administration of Remodelin, a NAT10 inhibitor, effectively prevents neointima formation by suppressing VSMC proliferation and downregulating ITGB1 expression and deactivating its FAK signaling. CONCLUSIONS This study reveals that NAT10 promotes vascular remodelling via mRNA ac4C acetylation, which may be a promising therapeutic target against vascular remodelling.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Weihong Lin
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Xin Lin
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Qiong Jiang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Hongjin Liu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Key Laboratory of Cardio-Thoracic Surgery, Fujian Province University, Fuzhou, P.R. China
| | - Wenkun Liu
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jing Yang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yu Huang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jun Fang
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Junyi Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou, P.R. China
- Department of Cardiology, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing Key Laboratory for Hypertension Research, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, The Third Military Medical University, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Chongqing Institute of Cardiology, 10th Changjiangzhilu Road, Yuzhong District, Chongqing 400042, P.R. China
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, P.R. China
| |
Collapse
|
9
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Lu Y, Li M, Gao Z, Ma H, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Innovative Insights into Single-Cell Technologies and Multi-Omics Integration in Livestock and Poultry. Int J Mol Sci 2024; 25:12940. [PMID: 39684651 DOI: 10.3390/ijms252312940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, single-cell RNA sequencing (scRNA-seq) has marked significant strides in livestock and poultry research, especially when integrated with multi-omics approaches. These advancements provide a nuanced view into complex regulatory networks and cellular dynamics. This review outlines the application of scRNA-seq in key species, including poultry, swine, and ruminants, with a focus on outcomes related to cellular heterogeneity, developmental biology, and reproductive mechanisms. We emphasize the synergistic power of combining scRNA-seq with epigenomic, proteomic, and spatial transcriptomic data, enhancing molecular breeding precision, optimizing health management strategies, and refining production traits in livestock and poultry. The integration of these technologies offers a multidimensional approach that not only broadens the scope of data analysis but also provides actionable insights for improving animal health and productivity.
Collapse
Affiliation(s)
- Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
11
|
Wu JW, Zheng GM, Zhang L, Zhao YJ, Yan RY, Ren RC, Wei YM, Li K, Zhang XS, Zhao XY. N6-methyladenosine transcriptome-wide profiles of maize kernel development. PLANT PHYSIOLOGY 2024; 196:2476-2489. [PMID: 39222356 DOI: 10.1093/plphys/kiae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Maize (Zea mays L.) kernel development is a complex and dynamic process involving cell division and differentiation, into a variety of cell types. Epigenetic modifications, including DNA methylation, play a pivotal role in regulating this process. N6-methyladenosine modification is a universal and dynamic posttranscriptional epigenetic modification that is involved in the regulation of plant development. However, the role of N6-methyladenosine in maize kernel development remains unknown. In this study, we have constructed transcriptome-wide profiles for maize kernels at various stages of early development. Utilizing a combination of MeRIP-seq and RNA-seq analyses, we identified a total of 11,170, 10,973, 11,094, 11,990, 12,203, and 10,893 N6-methyladenosine peaks in maize kernels at 0, 2, 4, 6, 8, and 12 days after pollination, respectively. These N6-methyladenosine modifications were primarily deposited at the 3'-UTRs and were associated with the conserved motif-UGUACA. Additionally, we found that conserved N6-methyladenosine modification is involved in the regulation of genes that are ubiquitously expressed during kernel development. Further analysis revealed that N6-methyladenosine peak intensity was negatively correlated with the mRNA abundance of these ubiquitously expressed genes. Meanwhile, we employed phylogenetic analysis to predict potential regulatory proteins involved in maize kernel development and identified several that participate in the regulation of N6-methyladenosine modifications. Collectively, our results suggest the existence of a novel posttranscriptional epigenetic modification mechanism involved in the regulation of maize kernel development, thereby providing a novel perspective for maize molecular breeding.
Collapse
Affiliation(s)
- Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ru Chang Ren
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Kunpeng Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Shanda South Road 27, Jinan, Shandong 250100, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
12
|
Tan L, Zhu C, Zhang X, Fu J, Huang T, Zhang W, Zhang W. Mitochondrial RNA methylation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189213. [PMID: 39521292 DOI: 10.1016/j.bbcan.2024.189213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/08/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria have a complete and independent genetic system with necessary biological energy for cancer occurrence and persistence. Mitochondrial RNA (mt-RNA) methylation, as a frontier in epigenetics, has linked to cancer progression with growing evidences. This review has comprehensively summarized detailed mechanisms of mt-RNA methylation in regulating cancer proliferation, metastasis, and immune infiltration from the mt-RNA methylation sites, biological significance, and its methyltransferases. The mt-RNA methylation also plays a very significant role via epigenetic crosstalk between nucleus and mitochondria. Importantly, the unique structures and functional characteristics of mt-RNA methyltransferases and the potential targeting treatment drugs for cancer are also analyzed. Revealing human mt-RNA methylation regulatory system and the relationship with cancer will contribute to identifying potential biomarkers and therapeutic targets for precise prevention, detection, intervention and treatment in the future.
Collapse
Affiliation(s)
- Luyi Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Chenyu Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Xinyu Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiaqi Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Tingting Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, PR China.
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
13
|
Guarnacci M, Zhang PH, Kanchi M, Hung YT, Lin H, Shirokikh NE, Yang L, Preiss T. Substrate diversity of NSUN enzymes and links of 5-methylcytosine to mRNA translation and turnover. Life Sci Alliance 2024; 7:e202402613. [PMID: 38986569 PMCID: PMC11235314 DOI: 10.26508/lsa.202402613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Maps of the RNA modification 5-methylcytosine (m5C) often diverge markedly not only because of differences in detection methods, data depand analysis pipelines but also biological factors. We re-analysed bisulfite RNA sequencing datasets from five human cell lines and seven tissues using a coherent m5C site calling pipeline. With the resulting union list of 6,393 m5C sites, we studied site distribution, enzymology, interaction with RNA-binding proteins and molecular function. We confirmed tRNA:m5C methyltransferases NSUN2 and NSUN6 as the main mRNA m5C "writers," but further showed that the rRNA:m5C methyltransferase NSUN5 can also modify mRNA. Each enzyme recognises mRNA features that strongly resemble their canonical substrates. By analysing proximity between mRNA m5C sites and footprints of RNA-binding proteins, we identified new candidates for functional interactions, including the RNA helicases DDX3X, involved in mRNA translation, and UPF1, an mRNA decay factor. We found that lack of NSUN2 in HeLa cells affected both steady-state levels of, and UPF1-binding to, target mRNAs. Our studies emphasise the emerging diversity of m5C writers and readers and their effect on mRNA function.
Collapse
Affiliation(s)
- Marco Guarnacci
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Pei-Hong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Madhu Kanchi
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Yu-Ting Hung
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Hanrong Lin
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nikolay E Shirokikh
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Sydney, Australia
| |
Collapse
|
14
|
Liu K, Li Y, Yin F, Wu X, Zhang X, Jiang D, Wang J, Zhang Z, Wang R, Chen C, Han Y. Elucidating thoracic aortic dissection pathogenesis: The interplay of m1A-related gene expressions and miR-16-5p/YTHDC1 Axis in NLRP3-dependent pyroptosis. Int J Biol Macromol 2024; 274:133293. [PMID: 38925173 DOI: 10.1016/j.ijbiomac.2024.133293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The underlying molecular mechanisms of thoracic aortic dissection (TAD) remain incompletely understood. Recent insights into RNA methylation and microRNA-mediated gene regulation offer new avenues for exploring how these processes contribute to the pathophysiology of TAD, particularly through the modulation of pyroptosis and smooth muscle cell viability. This research aimed to elucidate the interplay of m1A-related gene expressions and miR-16-5p/YTHDC1 Axis in NLRP3-dependent pyroptosis, a mechanism implicated in the pathogenesis of TAD. We collected tissue samples from 28 human TAD patients and 8 healthy aortic group, as well as utilized a mouse model to replicate the disease. A combination of computational, in vitro, and in vivo methods was applied, including CIBERSORTx analysis, Pearson correlation, gene transfection using antagomiR-16-5p, siRNA, and several staining as well as cell culture techniques. Our analysis indicated two differentially expressed genes, ALKBH2 and YTHDC1. We found significant upregulation of has-miR-16-5p and downregulation of YTHDC1 at mRNA level in AD samples. Immune cell infiltration in TAD samples was examined using the CIBERSORTx database. We confirmed that YTHDC1 was a target of miR-16-5p, as evidenced by an inhibitory effect on luciferase activity. Inhibition of miR-16-5p enhanced SMC proliferation and promoted cell viability whilst downregulating NLRP3-pyroptosis. YTHDC1 expression was increased, and NLRP3-pyroptosis expressions were inhibited, suggesting miR-16-5p/YTHDC1 axis may involve the NLRP3-pyroptosis of the SMC. In vivo analyses confirmed the prevention of NLRP3-pyroptosis in middle layer of the thoracic aorta, implying that the miR-16-5p/YTHDC1 axis regulated SMC proliferation via NLRP3-pyroptosis signaling. Our findings underscored the anti-pyroptotic role of miR-16-5p/YTHDC1 axis in the pathogenesis of TAD, suggesting a potential therapeutic strategy via targeting YTHDC1 and suppressing miR-16-5p to inhibit NLRP3-dependent pyroptosis. Although further investigation is needed, these results relating to SMC proliferation are a significant step forward in understanding TAD.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiac Surgery, Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Yuemeng Li
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Fanxing Yin
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Deying Jiang
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China
| | - Jian Wang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Zhaoxuan Zhang
- School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Yanshuo Han
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology, Dalian, China; School of Life and Pharmaceutical Science, Dalian University of Technology, Panjin, China.
| |
Collapse
|
15
|
Garbo S, D'Andrea D, Colantoni A, Fiorentino F, Mai A, Ramos A, Tartaglia GG, Tancredi A, Tripodi M, Battistelli C. m6A modification inhibits miRNAs' intracellular function, favoring their extracellular export for intercellular communication. Cell Rep 2024; 43:114369. [PMID: 38878288 DOI: 10.1016/j.celrep.2024.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024] Open
Abstract
Epitranscriptomics represents a further layer of gene expression regulation. Specifically, N6-methyladenosine (m6A) regulates RNA maturation, stability, degradation, and translation. Regarding microRNAs (miRNAs), while it has been reported that m6A impacts their biogenesis, the functional effects on mature miRNAs remain unclear. Here, we show that m6A modification on specific miRNAs weakens their coupling to AGO2, impairs their function on target mRNAs, determines their delivery into extracellular vesicles (EVs), and provides functional information to receiving cells. Mechanistically, the intracellular functional impairment is caused by m6A-mediated inhibition of AGO2/miRNA interaction, the EV loading is favored by m6A-mediated recognition by the RNA-binding protein (RBP) hnRNPA2B1, and the EV-miRNA function in the receiving cell requires their FTO-mediated demethylation. Consequently, cells express specific miRNAs that do not impact endogenous transcripts but provide regulatory information for cell-to-cell communication. This highlights that a further level of complexity should be considered when relating cellular dynamics to specific miRNAs.
Collapse
Affiliation(s)
- Sabrina Garbo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniel D'Andrea
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Alessio Colantoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Fiorentino
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies Sapienza University of Rome, Ple. Aldo Moro 5, 00185 Rome, Italy
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6XA, UK
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Andrea Tancredi
- Dipartimento Metodi e Modelli per l'Economia, il Territorio e la Finanza MEMOTEF, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Tripodi
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | - Cecilia Battistelli
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
16
|
Min YH, Shao WX, Hu QS, Xie NB, Zhang S, Feng YQ, Xing XW, Yuan BF. Simultaneous Detection of Adenosine-to-Inosine Editing and N6-Methyladenosine at Identical RNA Sites through Deamination-Assisted Reverse Transcription Stalling. Anal Chem 2024; 96:8730-8739. [PMID: 38743814 DOI: 10.1021/acs.analchem.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.
Collapse
Affiliation(s)
- Yi-Hao Min
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wen-Xuan Shao
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiu-Shuang Hu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xi-Wen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
17
|
Khan D, Ramachandiran I, Vasu K, China A, Khan K, Cumbo F, Halawani D, Terenzi F, Zin I, Long B, Costain G, Blaser S, Carnevale A, Gogonea V, Dutta R, Blankenberg D, Yoon G, Fox PL. Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m 6A site accessibility. Nat Commun 2024; 15:4284. [PMID: 38769304 PMCID: PMC11106242 DOI: 10.1038/s41467-024-48549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fabio Cumbo
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Dalia Halawani
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Isaac Zin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Briana Long
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Gregory Costain
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Amanda Carnevale
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Grace Yoon
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Department of Paediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
18
|
Lü C, Xu H, Gao P, Huang A, Qu M, He W, Wu H, Chen J, Xu B, Guo L, Xie J. Abundance of Modifications in Mature miRNAs Revealed by LC-MS/MS Method Coupled with a Two-Step Hybridization Purification Strategy. Anal Chem 2024; 96:6870-6874. [PMID: 38648202 DOI: 10.1021/acs.analchem.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Accurate detection of endogenous miRNA modifications, such as N6-methyladenosine (m6A), 7-methylguanosine (m7G), and 5-methylcytidine (m5C), poses significant challenges, resulting in considerable uncertainty regarding their presence in mature miRNAs. In this study, we demonstrate for the first time that liquid chromatography coupled with a tandem mass spectrometry (LC-MS/MS) nucleoside analysis method is a practical tool for quantitatively analyzing human miRNA modifications. The newly designed liquid-solid two-step hybridization (LSTH) strategy enhances specificity for miRNA purification, while LC-MS/MS offers robust capability in recognizing modifications and sufficient sensitivity with detection limits ranging from attomoles to low femtomoles. Therefore, it provides a more reliable approach compared to existing techniques for revealing modifications in endogenous miRNAs. With this approach, we characterized m6A, m7G, and m5C modifications in miR-21-5p, Let-7a/e-5p, and miR-10a-5p isolated from cultured cells and observed unexpectedly low abundance (<1% at each site) of these modifications.
Collapse
Affiliation(s)
- Chenchen Lü
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
- Beijing Institute of Microchemistry, Beijing 100091, China
| | - Hua Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Pengxia Gao
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Aixue Huang
- Institute of Beijing Basic Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Minmin Qu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Weiwei He
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Haijiang Wu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jia Chen
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bin Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
19
|
Dalhat MH, Narayan S, Serio H, Arango D. Dissecting the oncogenic properties of essential RNA-modifying enzymes: a focus on NAT10. Oncogene 2024; 43:1077-1086. [PMID: 38409550 PMCID: PMC11092965 DOI: 10.1038/s41388-024-02975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
Chemical modifications of ribonucleotides significantly alter the physicochemical properties and functions of RNA. Initially perceived as static and essential marks in ribosomal RNA (rRNA) and transfer RNA (tRNA), recent discoveries unveiled a dynamic landscape of RNA modifications in messenger RNA (mRNA) and other regulatory RNAs. These findings spurred extensive efforts to map the distribution and function of RNA modifications, aiming to elucidate their distribution and functional significance in normal cellular homeostasis and pathological states. Significant dysregulation of RNA modifications is extensively documented in cancers, accentuating the potential of RNA-modifying enzymes as therapeutic targets. However, the essential role of several RNA-modifying enzymes in normal physiological functions raises concerns about potential side effects. A notable example is N-acetyltransferase 10 (NAT10), which is responsible for acetylating cytidines in RNA. While emerging evidence positions NAT10 as an oncogenic factor and a potential target in various cancer types, its essential role in normal cellular processes complicates the development of targeted therapies. This review aims to comprehensively analyze the essential and oncogenic properties of NAT10. We discuss its crucial role in normal cell biology and aging alongside its contribution to cancer development and progression. We advocate for agnostic approaches to disentangling the intertwined essential and oncogenic functions of RNA-modifying enzymes. Such approaches are crucial for understanding the full spectrum of RNA-modifying enzymes and imperative for designing effective and safe therapeutic strategies.
Collapse
Affiliation(s)
- Mahmood H Dalhat
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Sharath Narayan
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Hannah Serio
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
20
|
Chen S, Navickas A, Goodarzi H. Translational adaptation in breast cancer metastasis and emerging therapeutic opportunities. Trends Pharmacol Sci 2024; 45:304-318. [PMID: 38453522 DOI: 10.1016/j.tips.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer's tendency to metastasize poses a critical barrier to effective treatment, making it a leading cause of mortality among women worldwide. A growing body of evidence is showing that translational adaptation is emerging as a key mechanism enabling cancer cells to thrive in the dynamic tumor microenvironment (TME). Here, we systematically summarize how breast cancer cells utilize translational adaptation to drive metastasis, highlighting the intricate regulation by specific translation machinery and mRNA attributes such as sequences and structures, along with the involvement of tRNAs and other trans-acting RNAs. We provide an overview of the latest findings and emerging concepts in this area, discussing their potential implications for therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Albertas Navickas
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Fan X, Zhang Y, Guo R, Yue K, Smagghe G, Lu Y, Wang L. Decoding epitranscriptomic regulation of viral infection: mapping of RNA N 6-methyladenosine by advanced sequencing technologies. Cell Mol Biol Lett 2024; 29:42. [PMID: 38539075 PMCID: PMC10967200 DOI: 10.1186/s11658-024-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 11/11/2024] Open
Abstract
Elucidating the intricate interactions between viral pathogens and host cellular machinery during infection is paramount for understanding pathogenic mechanisms and identifying potential therapeutic targets. The RNA modification N6-methyladenosine (m6A) has emerged as a significant factor influencing the trajectory of viral infections. Hence, the precise and quantitative mapping of m6A modifications in both host and viral RNA is pivotal to understanding its role during viral infection. With the rapid advancement of sequencing technologies, scientists are able to detect m6A modifications with various quantitative, high-resolution, transcriptome approaches. These technological strides have reignited research interest in m6A, underscoring its significance and prompting a deeper investigation into its dynamics during viral infections. This review provides a comprehensive overview of the historical evolution of m6A epitranscriptome sequencing technologies, highlights the latest developments in transcriptome-wide m6A mapping, and emphasizes the innovative technologies for detecting m6A modification. We further discuss the implications of these technologies for future research into the role of m6A in viral infections.
Collapse
Affiliation(s)
- Xiangdong Fan
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yitong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiying Guo
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kuo Yue
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guy Smagghe
- Molecular and Cellular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- Institute of Entomology, Guizhou University, Guiyang, 550025, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Yongyue Lu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Luoluo Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
22
|
Kovaka S, Hook PW, Jenike KM, Shivakumar V, Morina LB, Razaghi R, Timp W, Schatz MC. Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583511. [PMID: 38496646 PMCID: PMC10942365 DOI: 10.1101/2024.03.05.583511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanopore signal analysis enables detection of nucleotide modifications from native DNA and RNA sequencing, providing both accurate genetic/transcriptomic and epigenetic information without additional library preparation. Presently, only a limited set of modifications can be directly basecalled (e.g. 5-methylcytosine), while most others require exploratory methods that often begin with alignment of nanopore signal to a nucleotide reference. We present Uncalled4, a toolkit for nanopore signal alignment, analysis, and visualization. Uncalled4 features an efficient banded signal alignment algorithm, BAM signal alignment file format, statistics for comparing signal alignment methods, and a reproducible de novo training method for k-mer-based pore models, revealing potential errors in ONT's state-of-the-art DNA model. We apply Uncalled4 to RNA 6-methyladenine (m6A) detection in seven human cell lines, identifying 26% more modifications than Nanopolish using m6Anet, including in several genes where m6A has known implications in cancer. Uncalled4 is available open-source at github.com/skovaka/uncalled4.
Collapse
|
23
|
Ramakrishnan M, Rajan KS, Mullasseri S, Ahmad Z, Zhou M, Sharma A, Ramasamy S, Wei Q. Exploring N6-methyladenosine (m 6A) modification in tree species: opportunities and challenges. HORTICULTURE RESEARCH 2024; 11:uhad284. [PMID: 38371641 PMCID: PMC10871907 DOI: 10.1093/hr/uhad284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/17/2023] [Indexed: 02/20/2024]
Abstract
N 6-methyladenosine (m6A) in eukaryotes is the most common and widespread internal modification in mRNA. The modification regulates mRNA stability, translation efficiency, and splicing, thereby fine-tuning gene regulation. In plants, m6A is dynamic and critical for various growth stages, embryonic development, morphogenesis, flowering, stress response, crop yield, and biomass. Although recent high-throughput sequencing approaches have enabled the rapid identification of m6A modification sites, the site-specific mechanism of this modification remains unclear in trees. In this review, we discuss the functional significance of m6A in trees under different stress conditions and discuss recent advancements in the quantification of m6A. Quantitative and functional insights into the dynamic aspect of m6A modification could assist researchers in engineering tree crops for better productivity and resistance to various stress conditions.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - K Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi 682018, Kerala, India
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Subbiah Ramasamy
- Cardiac Metabolic Disease Laboratory, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
24
|
Maestri S, Furlan M, Mulroney L, Coscujuela Tarrero L, Ugolini C, Dalla Pozza F, Leonardi T, Birney E, Nicassio F, Pelizzola M. Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing. Brief Bioinform 2024; 25:bbae001. [PMID: 38279646 PMCID: PMC10818168 DOI: 10.1093/bib/bbae001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal eukaryotic mRNA modification, and is involved in the regulation of various biological processes. Direct Nanopore sequencing of native RNA (dRNA-seq) emerged as a leading approach for its identification. Several software were published for m6A detection and there is a strong need for independent studies benchmarking their performance on data from different species, and against various reference datasets. Moreover, a computational workflow is needed to streamline the execution of tools whose installation and execution remains complicated. We developed NanOlympicsMod, a Nextflow pipeline exploiting containerized technology for comparing 14 tools for m6A detection on dRNA-seq data. NanOlympicsMod was tested on dRNA-seq data generated from in vitro (un)modified synthetic oligos. The m6A hits returned by each tool were compared to the m6A position known by design of the oligos. In addition, NanOlympicsMod was used on dRNA-seq datasets from wild-type and m6A-depleted yeast, mouse and human, and each tool's hits were compared to reference m6A sets generated by leading orthogonal methods. The performance of the tools markedly differed across datasets, and methods adopting different approaches showed different preferences in terms of precision and recall. Changing the stringency cut-offs allowed for tuning the precision-recall trade-off towards user preferences. Finally, we determined that precision and recall of tools are markedly influenced by sequencing depth, and that additional sequencing would likely reveal additional m6A sites. Thanks to the possibility of including novel tools, NanOlympicsMod will streamline the benchmarking of m6A detection tools on dRNA-seq data, improving future RNA modification characterization.
Collapse
Affiliation(s)
- Simone Maestri
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Logan Mulroney
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, U.K
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Lucia Coscujuela Tarrero
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Camilla Ugolini
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Fabio Dalla Pozza
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, U.K
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Gao Y, Guo Q, Yu L. m6A modification of RNA in cervical cancer: role and clinical perspectives. RNA Biol 2024; 21:49-61. [PMID: 39344658 PMCID: PMC11445900 DOI: 10.1080/15476286.2024.2408707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
N6-methyladenosine (m6A) is widely recognized as the predominant form of RNA modification in higher organisms, with the capability to finely regulate RNA metabolism, thereby influencing a series of crucial physiological and pathological processes. These processes include regulation of gene expression, cell proliferation, invasion and metastasis, cell cycle control, programmed cell death, interactions within the tumour microenvironment, energy metabolism, and immune regulation. With advancing research into the mechanisms of RNA methylation, the pivotal role of m6A modification in the pathophysiology of reproductive system tumours, particularly cervical cancer, has been progressively unveiled. This discovery has opened new research avenues and presented significant potential for the diagnosis, prognostic evaluation, and treatment of diseases. This review delves deeply into the biological functions of m6A modification and its mechanisms of action in the onset and progression of cervical cancer. Furthermore, it explores the prospects of m6A modification in the precision diagnosis and treatment of cervical cancer, aiming to provide new perspectives and a theoretical basis for innovative and advanced treatment strategies for cervical cancer.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang, China
| | - Qi Guo
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang, China
| | - Liming Yu
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. A High-Throughput PIXUL-Matrix-Based Toolbox to Profile Frozen and Formalin-Fixed Paraffin-Embedded Tissues Multiomes. J Transl Med 2024; 104:100282. [PMID: 37924947 PMCID: PMC10872585 DOI: 10.1016/j.labinv.2023.100282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Ilona M Babenko
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Tomas Vaisar
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| |
Collapse
|
27
|
Bou-Nader C, Pecqueur L, de Crécy-Lagard V, Hamdane D. Integrative Approach to Probe Alternative Redox Mechanisms in RNA Modifications. Acc Chem Res 2023; 56:3142-3152. [PMID: 37916403 PMCID: PMC10999249 DOI: 10.1021/acs.accounts.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
RNA modifications found in most RNAs, particularly in tRNAs and rRNAs, reveal an abundance of chemical alterations of nucleotides. Over 150 distinct RNA modifications are known, emphasizing a remarkable diversity of chemical moieties in RNA molecules. These modifications play pivotal roles in RNA maturation, structural integrity, and the fidelity and efficiency of translation processes. The catalysts responsible for these modifications are RNA-modifying enzymes that use a striking array of chemistries to directly influence the chemical landscape of RNA. This diversity is further underscored by instances where the same modification is introduced by distinct enzymes that use unique catalytic mechanisms and cofactors across different domains of life. This phenomenon of convergent evolution highlights the biological importance of RNA modification and the vast potential within the chemical repertoire for nucleotide alteration. While shared RNA modifications can hint at conserved enzymatic pathways, a major bottleneck is to identify alternative routes within species that possess a modified RNA but are devoid of known RNA-modifying enzymes. To address this challenge, a combination of bioinformatic and experimental strategies proves invaluable in pinpointing new genes responsible for RNA modifications. This integrative approach not only unveils new chemical insights but also serves as a wellspring of inspiration for biocatalytic applications and drug design. In this Account, we present how comparative genomics and genome mining, combined with biomimetic synthetic chemistry, biochemistry, and anaerobic crystallography, can be judiciously implemented to address unprecedented and alternative chemical mechanisms in the world of RNA modification. We illustrate these integrative methodologies through the study of tRNA and rRNA modifications, dihydrouridine, 5-methyluridine, queuosine, 8-methyladenosine, 5-carboxymethylamino-methyluridine, or 5-taurinomethyluridine, each dependent on a diverse array of redox chemistries, often involving organic compounds, organometallic complexes, and metal coenzymes. We explore how vast genome and tRNA databases empower comparative genomic analyses and enable the identification of novel genes that govern RNA modification. Subsequently, we describe how the isolation of a stable reaction intermediate can guide the synthesis of a biomimetic to unveil new enzymatic pathways. We then discuss the usefulness of a biochemical "shunt" strategy to study catalytic mechanisms and to directly visualize reactive intermediates bound within active sites. While we primarily focus on various RNA-modifying enzymes studied in our laboratory, with a particular emphasis on the discovery of a SAM-independent methylation mechanism, the strategies and rationale presented herein are broadly applicable for the identification of new enzymes and the elucidation of their intricate chemistries. This Account offers a comprehensive glimpse into the evolving landscape of RNA modification research and highlights the pivotal role of integrated approaches to identify novel enzymatic pathways.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, 32611, USA
- University of Florida, Genetics Institute, Gainesville, Florida, 32610, USA
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, CNRS-UMR 8229, Collège De France, Université Pierre et Marie Curie, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
28
|
Sun H, Li K, Liu C, Yi C. Regulation and functions of non-m 6A mRNA modifications. Nat Rev Mol Cell Biol 2023; 24:714-731. [PMID: 37369853 DOI: 10.1038/s41580-023-00622-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Nucleobase modifications are prevalent in eukaryotic mRNA and their discovery has resulted in the emergence of epitranscriptomics as a research field. The most abundant internal (non-cap) mRNA modification is N6-methyladenosine (m6A), the study of which has revolutionized our understanding of post-transcriptional gene regulation. In addition, numerous other mRNA modifications are gaining great attention because of their major roles in RNA metabolism, immunity, development and disease. In this Review, we focus on the regulation and function of non-m6A modifications in eukaryotic mRNA, including pseudouridine (Ψ), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), inosine, 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), 2'-O-methylated nucleotide (Nm) and internal N7-methylguanosine (m7G). We highlight their regulation, distribution, stoichiometry and known roles in mRNA metabolism, such as mRNA stability, translation, splicing and export. We also discuss their biological consequences in physiological and pathological processes. In addition, we cover research techniques to further study the non-m6A mRNA modifications and discuss their potential future applications.
Collapse
Affiliation(s)
- Hanxiao Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Kai Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Cong Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
29
|
Shi Q, Chen X, Zhang Z. Decoding Human Biology and Disease Using Single-cell Omics Technologies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:926-949. [PMID: 37739168 PMCID: PMC10928380 DOI: 10.1016/j.gpb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 09/24/2023]
Abstract
Over the past decade, advances in single-cell omics (SCO) technologies have enabled the investigation of cellular heterogeneity at an unprecedented resolution and scale, opening a new avenue for understanding human biology and disease. In this review, we summarize the developments of sequencing-based SCO technologies and computational methods, and focus on considerable insights acquired from SCO sequencing studies to understand normal and diseased properties, with a particular emphasis on cancer research. We also discuss the technological improvements of SCO and its possible contribution to fundamental research of the human, as well as its great potential in clinical diagnoses and personalized therapies of human disease.
Collapse
Affiliation(s)
- Qiang Shi
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
30
|
Dong G, Liang Y, Chen B, Zhang T, Wang H, Chen Y, Zhang Y, Jiang F, Wang Y. N 6 -methyladenosine-modified circFUT8 competitively interacts with YTHDF2 and miR-186-5p to stabilize FUT8 mRNA to promote malignant progression in lung adenocarcinoma. Thorac Cancer 2023; 14:2962-2975. [PMID: 37669906 PMCID: PMC10569907 DOI: 10.1111/1759-7714.15086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer related to mortality worldwide, and the main pathological type is lung adenocarcinoma (LUAD). Circular RNAs (circRNAs) have been reported to be modified by N6 -methyladenosine (m6A), which is involved in the progression of diverse tumors. However, the crosstalk between circRNAs and m6A modification has not been well elucidated in LUAD. METHODS MeRIP-seq and YTHDF2-RIP-seq datasets were explored to identify candidate circRNAs modified by YTHDF2. Dual-luciferase reporter assay, RIP, and rescue assays were performed to explore the relationship between circFUT8 and its parent mRNA of FUT8. In vitro and in vivo experiments were utilized to uncover the function of circFUT8. RESULTS In this study, we identified a novel m6A-modified circFUT8, derived from exon 3 of FUT8, which was elevated in tumor tissues compared with adjacent noncancerous tissues. The m6A reader YTHDF2 recognized and destabilized circFUT8 in an m6A-dependent manner. YTHDF2 also combined with the line form of FUT8 (mFUT8), and circFUT8 competitively interacted with YTHDF2, blunting its binding to mFUT8, to stabilize the mRNA level of FUT8. Additionally, circFUT8 sponged miR-186-5p to elevate the expression of mFUT8. Finally, we revealed that circFUT8 promoted the malignant progression of LUAD dependent on the oncogenic function of FUT8. CONCLUSIONS These findings identified a novel m6A-modified circFUT8 recognized and destabilized by YTHDF2, which competitively interacted with YTHDF2 and miR-186-5p to stabilize FUT8 mRNA to promote malignant progression in LUAD.
Collapse
Affiliation(s)
- Gaochao Dong
- Department of Medical Genetics, Medical SchoolNanjing UniversityNanjingChina
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
| | - Yingkuan Liang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bing Chen
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
| | - Te Zhang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Hui Wang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Yuzhong Chen
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Yijian Zhang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Feng Jiang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer ResearchNanjingChina
- Jiangsu Key Laboratory of Molecular and Translational Cancer ResearchCancer Institute of Jiangsu ProvinceNanjingChina
- The Fourth Clinical College of Nanjing Medical UniversityNanjingChina
| | - Yaping Wang
- Department of Medical Genetics, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
31
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
32
|
Kogaki T, Hase H, Tanimoto M, Tashiro A, Kitae K, Ueda Y, Jingushi K, Tsujikawa K. ALKBH4 is a novel enzyme that promotes translation through modified uridine regulation. J Biol Chem 2023; 299:105093. [PMID: 37507018 PMCID: PMC10465949 DOI: 10.1016/j.jbc.2023.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Epitranscriptomics studies the mechanisms of acquired RNA modifications. The epitranscriptome is dynamically regulated by specific enzymatic reactions, and the proper execution of these enzymatic RNA modifications regulates a variety of physiological RNA functions. However, the lack of experimental tools, such as antibodies for RNA modification, limits the development of epitranscriptomic research. Furthermore, the regulatory enzymes of many RNA modifications have not yet been identified. Herein, we aimed to identify new molecular mechanisms involved in RNA modification by focusing on the AlkB homolog (ALKBH) family molecules, a family of RNA demethylases. We demonstrated that ALKBH4 interacts with small RNA, regulating the formation and metabolism of the (R)-5-carboxyhydroxymethyl uridine methyl ester. We also found that the reaction of ALKBH4 with small RNA enhances protein translation efficiency in an in vitro assay system. These findings indicate that ALKBH4 is involved in the regulation of uridine modification and expand on the role of tRNA-mediated translation control through ALKBH4.
Collapse
Affiliation(s)
- Takahiro Kogaki
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.
| | - Masaya Tanimoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atyuya Tashiro
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
33
|
Patrasso EA, Raikundalia S, Arango D. Regulation of the epigenome through RNA modifications. Chromosoma 2023; 132:231-246. [PMID: 37138119 PMCID: PMC10524150 DOI: 10.1007/s00412-023-00794-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.
Collapse
Affiliation(s)
- Emmely A Patrasso
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Medical and Pharmaceutical Biotechnology Program, IMC University of Applied Sciences, Krems, Austria
| | - Sweta Raikundalia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Arango
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
34
|
Kong Y, Yu J, Ge S, Fan X. Novel insight into RNA modifications in tumor immunity: Promising targets to prevent tumor immune escape. Innovation (N Y) 2023; 4:100452. [PMID: 37485079 PMCID: PMC10362524 DOI: 10.1016/j.xinn.2023.100452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 07/25/2023] Open
Abstract
An immunosuppressive state is a typical feature of the tumor microenvironment. Despite the dramatic success of immune checkpoint inhibitor (ICI) therapy in preventing tumor cell escape from immune surveillance, primary and acquired resistance have limited its clinical use. Notably, recent clinical trials have shown that epigenetic drugs can significantly improve the outcome of ICI therapy in various cancers, indicating the importance of epigenetic modifications in immune regulation of tumors. Recently, RNA modifications (N6-methyladenosine [m6A], N1-methyladenosine [m1A], 5-methylcytosine [m5C], etc.), novel hotspot areas of epigenetic research, have been shown to play crucial roles in protumor and antitumor immunity. In this review, we provide a comprehensive understanding of how m6A, m1A, and m5C function in tumor immunity by directly regulating different immune cells as well as indirectly regulating tumor cells through different mechanisms, including modulating the expression of immune checkpoints, inducing metabolic reprogramming, and affecting the secretion of immune-related factors. Finally, we discuss the current status of strategies targeting RNA modifications to prevent tumor immune escape, highlighting their potential.
Collapse
Affiliation(s)
- Yuxin Kong
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
35
|
Zhang H, Gu Y, Gang Q, Huang J, Xiao Q, Ha X. N6-methyladenosine RNA modification: an emerging molecule in type 2 diabetes metabolism. Front Endocrinol (Lausanne) 2023; 14:1166756. [PMID: 37484964 PMCID: PMC10360191 DOI: 10.3389/fendo.2023.1166756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Type 2 diabetes (T2D) is a metabolic disease with an increasing rate of incidence worldwide. Despite the considerable progress in the prevention and intervention, T2D and its complications cannot be reversed easily after diagnosis, thereby necessitating an in-depth investigation of the pathophysiology. In recent years, the role of epigenetics has been increasingly demonstrated in the disease, of which N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications. Interestingly, patients with T2D show a low m6A abundance. Thus, a comprehensive analysis and understanding of this phenomenon would improve our understanding of the pathophysiology, as well as the search for new biomarkers and therapeutic approaches for T2D. In this review, we systematically introduced the metabolic roles of m6A modification in organs, the metabolic signaling pathways involved, and the effects of clinical drugs on T2D.
Collapse
Affiliation(s)
- Haocheng Zhang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| | - Yan Gu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qiaojian Gang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Huang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Qian Xiao
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoqin Ha
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Department of Clinical Laboratory, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, Gansu, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Huang A, Riepler L, Rieder D, Kimpel J, Lusser A. No evidence for epitranscriptomic m 5C modification of SARS-CoV-2, HIV and MLV viral RNA. RNA (NEW YORK, N.Y.) 2023; 29:756-763. [PMID: 36889928 PMCID: PMC10187675 DOI: 10.1261/rna.079549.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 05/18/2023]
Abstract
The addition of chemical groups to cellular RNA to modulate RNA fate and/or function is summarized under the term epitranscriptomic modification. More than 170 different modifications have been identified on cellular RNA, such as tRNA, rRNA and, to a lesser extent, on other RNA types. Recently, epitranscriptomic modification of viral RNA has received considerable attention as a possible additional mechanism regulating virus infection and replication. N6-methyladenosine (m6A) and C5-methylcytosine (m5C) have been most broadly studied in different RNA viruses. Various studies, however, reported varying results with regard to number and extent of the modification. Here we investigated the m5C methylome of SARS-CoV-2, and we reexamined reported m5C sites in HIV and MLV. Using a rigorous bisulfite-sequencing protocol and stringent data analysis, we found no evidence for the presence of m5C in these viruses. The data emphasize the necessity for optimizing experimental conditions and bioinformatic data analysis.
Collapse
Affiliation(s)
- Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Lydia Riepler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
37
|
Zhu X, Zhou C, Zhao S, Zheng Z. Role of m6A methylation in retinal diseases. Exp Eye Res 2023; 231:109489. [PMID: 37084873 DOI: 10.1016/j.exer.2023.109489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Retinal diseases remain among the leading causes of visual impairment in developed countries, despite great efforts in prevention and early intervention. Due to the limited efficacy of current retinal therapies, novel therapeutic methods are urgently required. Over the past two decades, advances in next-generation sequencing technology have facilitated research on RNA modifications, which can elucidate the relevance of epigenetic mechanisms to disease. N6-methyladenosine (m6A), formed by methylation of adenosine at the N6-position, is the most widely studied RNA modification and plays an important role in RNA metabolism. It is dynamically regulated by writers (methyltransferases) and erasers (demethylases), and recognized by readers (m6A binding proteins). Although the discovery of m6A methylation can be traced back to the 1970s, its regulatory roles in retinal diseases are rarely appreciated. Here, we provide an overview of m6A methylation, and discuss its effects and possible mechanisms on retinal diseases, including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa, and proliferative vitreoretinopathy. Furthermore, we highlight potential agents targeting m6A methylation for retinal disease treatment and discuss the limitations and challenges of research in the field of m6A methylation.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
38
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. MultiomicsTracks96: A high throughput PIXUL-Matrix-based toolbox to profile frozen and FFPE tissues multiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533031. [PMID: 36993219 PMCID: PMC10055122 DOI: 10.1101/2023.03.16.533031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The multiome is an integrated assembly of distinct classes of molecules and molecular properties, or "omes," measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies. Methods Tissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression. Results MultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually. Conclusions The MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies - for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Collapse
|
39
|
Cao X, Geng Q, Fan D, Wang Q, Wang X, Zhang M, Zhao L, Jiao Y, Deng T, Liu H, Zhou J, Jia L, Xiao C. m 6A methylation: a process reshaping the tumour immune microenvironment and regulating immune evasion. Mol Cancer 2023; 22:42. [PMID: 36859310 PMCID: PMC9976403 DOI: 10.1186/s12943-022-01704-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is the most universal internal modification in eukaryotic mRNA. With elaborate functions executed by m6A writers, erasers, and readers, m6A modulation is involved in myriad physiological and pathological processes. Extensive studies have demonstrated m6A modulation in diverse tumours, with effects on tumorigenesis, metastasis, and resistance. Recent evidence has revealed an emerging role of m6A modulation in tumour immunoregulation, and divergent m6A methylation patterns have been revealed in the tumour microenvironment. To depict the regulatory role of m6A methylation in the tumour immune microenvironment (TIME) and its effect on immune evasion, this review focuses on the TIME, which is characterized by hypoxia, metabolic reprogramming, acidity, and immunosuppression, and outlines the m6A-regulated TIME and immune evasion under divergent stimuli. Furthermore, m6A modulation patterns in anti-tumour immune cells are summarized.
Collapse
Affiliation(s)
- Xiaoxue Cao
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Danping Fan
- grid.410318.f0000 0004 0632 3409Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Wang
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- grid.24696.3f0000 0004 0369 153XChina-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Jiao
- grid.24695.3c0000 0001 1431 9176China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Deng
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- grid.415954.80000 0004 1771 3349Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Zhou
- grid.256607.00000 0004 1798 2653Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China. .,Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
40
|
|
41
|
Bao Z, Li T, Liu J. Determining RNA Natural Modifications and Nucleoside Analog-Labeled Sites by a Chemical/Enzyme-Induced Base Mutation Principle. Molecules 2023; 28:1517. [PMID: 36838506 PMCID: PMC9958784 DOI: 10.3390/molecules28041517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The natural chemical modifications of messenger RNA (mRNA) in living organisms have shown essential roles in both physiology and pathology. The mapping of mRNA modifications is critical for interpreting their biological functions. In another dimension, the synthesized nucleoside analogs can enable chemical labeling of cellular mRNA through a metabolic pathway, which facilitates the study of RNA dynamics in a pulse-chase manner. In this regard, the sequencing tools for mapping both natural modifications and nucleoside tags on mRNA at single base resolution are highly necessary. In this work, we review the progress of chemical sequencing technology for determining both a variety of naturally occurring base modifications mainly on mRNA and a few on transfer RNA and metabolically incorporated artificial base analogs on mRNA, and further discuss the problems and prospects in the field.
Collapse
Affiliation(s)
- Ziming Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
43
|
scm 6A-seq reveals single-cell landscapes of the dynamic m 6A during oocyte maturation and early embryonic development. Nat Commun 2023; 14:315. [PMID: 36658155 PMCID: PMC9852475 DOI: 10.1038/s41467-023-35958-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
N6-methyladenosine (m6A) has been demonstrated to regulate RNA metabolism and various biological processes, including gametogenesis and embryogenesis. However, the landscape and function of m6A at single cell resolution have not been extensively studied in mammalian oocytes or during pre-implantation. In this study, we developed a single-cell m6A sequencing (scm6A-seq) method to simultaneously profile the m6A methylome and transcriptome in single oocytes/blastomeres of cleavage-stage embryos. We found that m6A deficiency leads to aberrant RNA clearance and consequent low quality of Mettl3Gdf9 conditional knockout (cKO) oocytes. We further revealed that m6A regulates the translation and stability of modified RNAs in metaphase II (MII) oocytes and during oocyte-to-embryo transition, respectively. Moreover, we observed m6A-dependent asymmetries in the epi-transcriptome between the blastomeres of two-cell embryo. scm6A-seq thus allows in-depth investigation into m6A characteristics and functions, and the findings provide invaluable single-cell resolution resources for delineating the underlying mechanism for gametogenesis and early embryonic development.
Collapse
|
44
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|
45
|
Athanasopoulou K, Daneva GN, Boti MA, Dimitroulis G, Adamopoulos PG, Scorilas A. The Transition from Cancer "omics" to "epi-omics" through Next- and Third-Generation Sequencing. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122010. [PMID: 36556377 PMCID: PMC9785810 DOI: 10.3390/life12122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics.
Collapse
|
46
|
Begik O, Mattick JS, Novoa EM. Exploring the epitranscriptome by native RNA sequencing. RNA (NEW YORK, N.Y.) 2022; 28:1430-1439. [PMID: 36104106 PMCID: PMC9745831 DOI: 10.1261/rna.079404.122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Chemical RNA modifications, collectively referred to as the "epitranscriptome," are essential players in fine-tuning gene expression. Our ability to analyze RNA modifications has improved rapidly in recent years, largely due to the advent of high-throughput sequencing methodologies, which typically consist of coupling modification-specific reagents, such as antibodies or enzymes, to next-generation sequencing. Recently, it also became possible to map RNA modifications directly by sequencing native RNAs using nanopore technologies, which has been applied for the detection of a number of RNA modifications, such as N6-methyladenosine (m6A), pseudouridine (Ψ), and inosine (I). However, the signal modulations caused by most RNA modifications are yet to be determined. A global effort is needed to determine the signatures of the full range of RNA modifications to avoid the technical biases that have so far limited our understanding of the epitranscriptome.
Collapse
Affiliation(s)
- Oguzhan Begik
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Barcelona 08002, Spain
| |
Collapse
|
47
|
Cancer epitranscriptomics in a nutshell. Curr Opin Genet Dev 2022; 75:101924. [PMID: 35679814 DOI: 10.1016/j.gde.2022.101924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
Remarkable technological progress has led to breakthrough discoveries in epitranscriptomics, reshaping our understanding of modifications decorating RNA. The past decade has seen a tremendous endeavor to describe the nature, functions, and biological roles of messenger RNA (mRNA) modifications, positioning epitranscriptomics as a crucial pillar in tumor biology. Like DNA and histone modifications, mRNA marks have been increasingly linked to cancer pathogenesis. Here, we summarize the latest research in cancer epitranscriptomics with emphasis on N6-methyladenosine, untangling its contribution to five prime oncogenic features: tumor growth, activating invasion and metastasis, stemness, metabolic reprogramming, and tumor microenvironment. We discuss mRNA-modifying enzymes, their impact on biological processes, and contribution to cancer hallmarks. We spotlight epitranscriptomics as a promising bonanza for forthcoming targeting approaches in cancer therapy.
Collapse
|
48
|
Jin H, Huo C, Zhou T, Xie S. m 1A RNA Modification in Gene Expression Regulation. Genes (Basel) 2022; 13:910. [PMID: 35627295 PMCID: PMC9141559 DOI: 10.3390/genes13050910] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/31/2023] Open
Abstract
N1-methyladenosine (m1A) is a prevalent and reversible post-transcriptional RNA modification that decorates tRNA, rRNA and mRNA. Recent studies based on technical advances in analytical chemistry and high-throughput sequencing methods have revealed the crucial roles of m1A RNA modification in gene regulation and biological processes. In this review, we focus on progress in the study of m1A methyltransferases, m1A demethylases and m1A-dependent RNA-binding proteins and highlight the biological mechanisms and functions of m1A RNA modification, as well as its association with human disease. We also summarize the current understanding of detection approaches for m1A RNA modification.
Collapse
Affiliation(s)
- Hao Jin
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Chunxiao Huo
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Xie
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China;
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| |
Collapse
|
49
|
Auld FM, Sergi CM, Leng R, Shen F. The Role of N 6-Methyladenosine in the Promotion of Hepatoblastoma: A Critical Review. Cells 2022; 11:1516. [PMID: 35563821 PMCID: PMC9101889 DOI: 10.3390/cells11091516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatoblastoma (HB) is a rare primary malignancy of the developing fetal liver. Its course is profoundly influenced by genetics, in the context of sporadic mutation or genetic syndromes. Conventionally, subtypes of HB are histologically determined based on the tissue type that is recapitulated by the tumor and the direction of its differentiation. This classification is being reevaluated based on advances on molecular pathology. The therapeutic approach comprises surgical intervention, chemotherapy (in a neoadjuvant or post-operative capacity), and in some cases, liver transplantation. Although diagnostic modalities and treatment options are evolving, some patients experience complications, including relapse, metastatic spread, and suboptimal response to chemotherapy. As yet, there is no consistent framework with which such outcomes can be predicted. N6-methyladenosine (m6A) is an RNA modification with rampant involvement in the normal processing of cell metabolism and neoplasia. It has been observed to impact the development of a variety of cancers via its governance of gene expression. M6A-associated genes appear prominently in HB. Literature data seem to underscore the role of m6A in promotion and clinical course of HB. Illuminating the pathogenetic mechanisms that drive HB are promising additions to the understanding of the clinically aggressive tumor behavior, given its potential to predict disease course and response to therapy. Implicated genes may also act as targets to facilitate the evolving personalized cancer therapy. Here, we explore the role of m6A and its genetic associates in the promotion of HB, and the impact this may have on the management of this neoplastic disease.
Collapse
Affiliation(s)
- Finn Morgan Auld
- Department of Laboratory Medicine and Pathology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Consolato M. Sergi
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Roger Leng
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Fan Shen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
50
|
Ramakrishnan M, Papolu PK, Satish L, Vinod KK, Wei Q, Sharma A, Emamverdian A, Zou LH, Zhou M. Redox status of the plant cell determines epigenetic modifications under abiotic stress conditions and during developmental processes. J Adv Res 2022; 42:99-116. [PMID: 35690579 PMCID: PMC9788946 DOI: 10.1016/j.jare.2022.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The oxidation-reduction (redox) status of the cell influences or regulates transcription factors and enzymes involved in epigenetic changes, such as DNA methylation, histone protein modifications, and chromatin structure and remodeling. These changes are crucial regulators of chromatin architecture, leading to differential gene expression in eukaryotes. But the cell's redox homeostasis is difficult to sustain since the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is not equal in plants at different developmental stages and under abiotic stress conditions. Exceeding optimum ROS and RNS levels leads to oxidative stress and thus alters the redox status of the cell. Consequently, this alteration modulates intracellular epigenetic modifications that either mitigate or mediate the plant growth and stress response. AIM OF REVIEW Recent studies suggest that the altered redox status of the cell reform the cellular functions and epigenetic changes. Recent high-throughput techniques have also greatly advanced redox-mediated gene expression discovery, but the integrated view of the redox status, and its associations with epigenetic changes and subsequent gene expression in plants are still scarce. In this review, we accordingly focus on how the redox status of the cell affects epigenetic modifications in plants under abiotic stress conditions and during developmental processes. This is a first comprehensive review on the redox status of the cell covering the redox components and signaling, redox status alters the post-translational modification of proteins, intracellular epigenetic modifications, redox interplay during DNA methylation, redox regulation of histone acetylation and methylation, redox regulation of miRNA biogenesis, redox regulation of chromatin structure and remodeling and conclusion, future perspectives and biotechnological opportunities for the future development of the plants. KEY SCIENTIFIC CONCEPTS OF REVIEW The interaction of redox mediators such as ROS, RNS and antioxidants regulates redox homeostasis and redox-mediated epigenetic changes. We discuss how redox mediators modulate epigenetic changes and show the opportunities for smart use of the redox status of the cell in plant development and abiotic stress adaptation. However, how a redox mediator triggers epigenetic modification without activating other redox mediators remains yet unknown.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Pradeep K Papolu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva - 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | | | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, USA
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China; Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High-efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|