1
|
Wang X, Zheng K, Na T, Ye G, Han S, Wang J. Transcriptomic profiles reveal hormonal regulation of sugar-induced stolon initiation in potato. Sci Rep 2025; 15:19122. [PMID: 40450047 DOI: 10.1038/s41598-025-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/12/2025] [Indexed: 06/03/2025] Open
Abstract
Potato (Solanum tuberosum L.) is one of the world's most important non-cereal food crops, with stolon development playing a crucial role in determining tuber yield. While some studies have examined the effects of sugars on potato stolon growth, their influence-particularly that of sucrose-on early stolon development remains unclear. Furthermore, the regulatory role of plant hormones in this process has yet to be established. Using a combination of in vitro culture, transcriptomics, gene expression analysis, and biochemical approaches, we investigated the contribution of sucrose (3% or 8%) on potato seedling stem nodes and stolon initials through phenotypic observation, RNA sequencing (RNA-seq), comparison of expression patterns, and hormone quantification. Firstly, compared to other types of sugars, we found that high concentrations of sucrose were the most effective in inducing stolon initial formation in potato seedlings. Furthermore, RNA-seq data showed that high sucrose levels significantly up-regulated the expression of genes involved in sugar metabolism and plant hormone metabolism. Additionally, the development of stem nodes and stolon initials under high sucrose conditions was also closely linked to hormone metabolism. Notably, high sucrose concentrations contributed to stem node and stolon initial development by modulating the IAA, CK, and GA signaling pathways. Based on the endogenous hormone measurement, and exogenous hormone application, together with heterologous overexpression of a potato Auxin response factor 9 (StARF9), we concluded that the early development of potato stolons was regulated by plant hormones, particularly auxin. In summary, this study elucidates the hormonal regulation of stolon initiation under high sucrose concentrations, offering a theoretical foundation and potential targets for in vitro culture and genetic improvement of potato.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Kaifeng Zheng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Tiancang Na
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Guangji Ye
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Shengcheng Han
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, China
| | - Jian Wang
- Qinghai University, Xining, 810016, China.
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China.
| |
Collapse
|
2
|
Guo X, Luo W, Chong K. Exploring abiotic stress resilience module for molecular design in rice. Sci Bull (Beijing) 2025; 70:1364-1367. [PMID: 39701854 DOI: 10.1016/j.scib.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Han Y, Du Q, Dai Y, Gu S, Lei M, Liu W, Zhang W, Zhu M, Feng L, Si H, Liu J, Zan Y. EasyOmics: A graphical interface for population-scale omics data association, integration, and visualization. PLANT COMMUNICATIONS 2025; 6:101293. [PMID: 40017036 DOI: 10.1016/j.xplc.2025.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025]
Abstract
The rapid growth of population-scale whole-genome resequencing, RNA sequencing, bisulfite sequencing, and metabolomic and proteomic profiling has led quantitative genetics into the era of big omics data. Association analyses of omics data, such as genome-, transcriptome-, proteome-, and methylome-wide association studies, along with integrative analyses of multiple omics datasets, require various bioinformatics tools, which rely on advanced programming skills and command-line interfaces and thus pose challenges for wet-lab biologists. Here, we present EasyOmics, a stand-alone R Shiny application with a user-friendly interface that enables wet-lab biologists to perform population-scale omics data association, integration, and visualization. The toolkit incorporates multiple functions designed to meet the increasing demand for population-scale omics data analyses, including data quality control, heritability estimation, genome-wide association analysis, conditional association analysis, omics quantitative trait locus mapping, omics-wide association analysis, omics data integration, and visualization. A wide range of publication-quality graphs can be prepared in EasyOmics by pointing and clicking. EasyOmics is a platform-independent software that can be run under all operating systems, with a docker container for quick installation. It is freely available to non-commercial users at Docker Hub https://hub.docker.com/r/yuhan2000/easyomics.
Collapse
Affiliation(s)
- Yu Han
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China; Department of Plant Physiology, Umeå Plant Science Center and Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Qiao Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Yifei Dai
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shaobo Gu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Mengyu Lei
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Wei Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Wenjia Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Innovation and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Huan Si
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Innovation and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Yanjun Zan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; Department of Plant Physiology, Umeå Plant Science Center and Integrated Science Lab, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
Rathore RS, Jiang W, Sedeek K, Mahfouz M. Harnessing neo-domestication of wild pigmented rice for enhanced nutrition and sustainable agriculture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:108. [PMID: 40317300 PMCID: PMC12049317 DOI: 10.1007/s00122-025-04896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
Advances in precision gene editing have enabled the rapid domestication of wild crop relatives, a process known as neo-domestication. During domestication, breeding rice for maximum productivity under optimal growth conditions reduced genetic diversity, eliminating variants for stress tolerance and grain nutrients. Wild rice varieties have rich genetic diversity, including variants for disease resistance, stress tolerance, and grain nutritional quality. For example, the grain of pigmented wild rice has abundant antioxidants (anthocyanins, proanthocyanidins, and flavonoids), but low yield, poor plant architecture, and long life cycle limit its cultivation. In this review, we address the neo-domestication of wild pigmented rice, focusing on recent progress, CRISPR-Cas editing toolboxes, selection of key candidate genes for domestication, identifying species with superior potential via generating genomic and multi-omics resources, efficient crop transformation methods and highlight strategies for the promotion and application pigmented rice. We also address critical outstanding questions and potential solutions to enable efficient neo-domestication of wild pigmented rice and thus enhance food security and nutrition.
Collapse
Affiliation(s)
- Ray Singh Rathore
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wenjun Jiang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Machado RSR, Bonhomme V, Soteras R, Jeanty A, Bouby L, Evin A, Fernandes Martins MJ, Gonçalves S, Antolín F, Salavert A, Oliveira HR. The origins and spread of the opium poppy ( Papaver somniferum L.) revealed by genomics and seed morphometrics. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240198. [PMID: 40370019 PMCID: PMC12079135 DOI: 10.1098/rstb.2024.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025] Open
Abstract
The opium poppy (Papaver somniferum L.) is one of the most important plants in human history. It is the main source of opiates used as analgesic medicines or psychotropic drugs, the latter related to addiction problems, illegal trafficking and geopolitical issues. Poppyseed is also used in cooking. The prehistoric origins, domestication and cultivation spread of the opium poppy remain unresolved. Traditionally, Papaver setigerum has been considered the wild ancestor with early cultivation presumed to have occurred in the Western Mediterranean region, where setigerum is autochthonous. Other theories suggest that somniferum may have been introduced by Southwest Asian early farmers as a weed. To investigate these hypotheses, we analysed 190 accessions from 15 Papaver species using genotype-by-sequencing and geometric morphometric (GMM) techniques. Our analysis revealed that setigerum is the only taxa genetically close to somniferum and can be better described as a subspecies. The domesticated plants are, however, distinct from setigerum. Additionally, GMM analysis of seeds also revealed morphological differences between setigerum and somniferum. Some phenotypically wild setigerum accessions exhibited intermediate genetic features, suggesting introgression events. Two major populations were found in somniferum and, to some extent, these correspond to differences in seed form. These two populations may reflect recent attempts to breed varieties rich in opiates, as opposed to varieties used for poppyseed production. This study supports the idea that opium poppy cultivation began in the Western Mediterranean, with setigerum as the wild progenitor, although some wild varieties are likely to be feral forms, which can confound domestication studies.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
- Rui S. R. Machado
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Bonhomme
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Raül Soteras
- Division of Natural Sciences, German Archaeological Institute (DAI), Berlin, BE, Germany
| | - Angele Jeanty
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
- UMRAASPE/BIOARCH, Muséum National d'Histoire Naturelle (MNHN), Centre National de Recherche Scientifique (CNRS), Alliance Sorbonne Université, Paris, France
| | - Laurent Bouby
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Allowen Evin
- ISEM, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - M. Joao Fernandes Martins
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sandra Gonçalves
- MED – Mediterranean Institute for Agriculture, Environment and Development & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ferran Antolín
- Division of Natural Sciences, German Archaeological Institute (DAI), Berlin, BE, Germany
- Environmental Sciences, Integrative Prehistory and Archaeological Science (IPNA/IPAS), University of Basel, Basel, Switzerland
| | - Aurélie Salavert
- UMRAASPE/BIOARCH, Muséum National d'Histoire Naturelle (MNHN), Centre National de Recherche Scientifique (CNRS), Alliance Sorbonne Université, Paris, France
| | - Hugo Rafael Oliveira
- ICArEHB, Interdisciplinary Center for Archaeology and Evolution Human Behaviour, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
6
|
Mekonnen DZ, Gomes AI, Machado RSR, Oliveira HR. The genomics of t'ef and finger millet domestication and spread. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240196. [PMID: 40370026 PMCID: PMC12079134 DOI: 10.1098/rstb.2024.0196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 05/16/2025] Open
Abstract
The Northern Highlands of Ethiopia and Eritrea (NHE) were a centre for food production in Africa, hosting one of the earliest agriculture-based complex societies on the continent. The NHE's geographical connections with the Arabian Peninsula, and Nilotic cultures led to the cultivation of southwest Asian crops and African native domesticates in its territory. Additionally, the NHE were also the domestication centre for crops like t'ef (Eragrostis tef (Zucc.) Trotter) and finger millet (Eleusine coracana L. Gaertn L.), after well-adapted local wild plants. Considering the paucity of the archaeobotanical record in the region and food remains' preservation issues, in this study, we aim to investigate the domestication and spread of t'ef and finger millet using genomics and interpreting the results in the light of archaeological proxies. Our data confirmed Eragrostis pilosa and Eleusine coracana subsp. africana as the sole wild progenitors of t'ef and finger millet, respectively. T'ef was initially domesticated in the NHE before spreading into southern Ethiopia and eastwards into southern Arabia. Finger millet spread followed two routes: one leading eastwards through the Red Sea to India, and the other southwards, through Kenya and Uganda, reaching southern Africa.This article is part of the theme issue 'Unravelling domestication: multi-disciplinary perspectives on human and non-human relationships in the past, present and future'.
Collapse
Affiliation(s)
- Degsew Z. Mekonnen
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
- EHA - Ethiopian Heritage Authority, Addis Ababa, Ethiopia
| | - Ana Isabel Gomes
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
- Centre for Marine and Environmental Research (CIMA)—Infrastructure Network in Aquatic Research (ARNET), Faculty of Science and Technology, University of Algarve, Faro, Portugal
| | - Rui S. R. Machado
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
| | - Hugo Rafael Oliveira
- ICArEHB – The Interdisciplinary Centre for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal
- Faculdade de Ciências Humanas e Sociais, University of Algarve, Faro, Portugal
| |
Collapse
|
7
|
Wang N, Li H, Huang S. Rational Redomestication for Future Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:637-662. [PMID: 39899852 DOI: 10.1146/annurev-arplant-083123-064726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Modern agricultural practices rely on high-input, intensive cultivation of a few crop varieties with limited diversity, increasing the vulnerability of our agricultural systems to biotic and abiotic stresses and the effects of climate changes. This necessitates a paradigm shift toward a more sustainable agricultural model to ensure a stable and dependable food supply for the burgeoning global population. Leveraging knowledge from crop biology, genetics, and genomics, alongside state-of-the-art biotechnologies, rational redomestication has emerged as a targeted and knowledge-driven approach to crop innovation. This strategy aims to broaden the range of species available for agriculture, restore lost genetic diversity, and further improve existing domesticated crops. We summarize how diverse plants can be exploited in rational redomestication endeavors, including wild species, underutilized plants, and domesticated crops. Equipped with rational redomestication approaches, we propose different strategies to empower the fast and slow breeding systems distinguished by plant reproduction systems.
Collapse
Affiliation(s)
- Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China; ,
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Hongbo Li
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China; ,
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China;
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China; ,
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
8
|
Pei J, Wang Z, Heng Y, Chen Z, Wang K, Xiao Q, Li J, Hu Z, He H, Cao Y, Ye X, Deng XW, Liu Z, Ma L. Selection of dysfunctional alleles of bHLH1 and MYB1 has produced white grain in the tribe Triticeae. PLANT COMMUNICATIONS 2025; 6:101265. [PMID: 39893516 PMCID: PMC12010413 DOI: 10.1016/j.xplc.2025.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Grain color is a key agronomic trait that greatly determines food quality. The molecular and evolutionary mechanisms that underlie grain-color regulation are also important questions in evolutionary biology and crop breeding. Here, we confirm that both bHLH and MYB genes have played a critical role in the evolution of grain color in Triticeae. Blue grain is the ancestral trait in Triticeae, whereas white grain caused by bHLH or MYB dysfunctions is the derived trait. HvbHLH1 and HvMYB1 have been the targets of selection in barley, and dysfunctions caused by deletion(s), insertion(s), and/or point mutation(s) in the vast majority of Triticeae species are accompanied by a change from blue grain to white grain. Wheat with white grains exhibits high seed vigor under stress. Artificial co-expression of ThbHLH1 and ThMYB1 in the wheat endosperm or aleurone layer can generate purple grains with health benefits and blue grains for use in a new hybrid breeding technology, respectively. Our study thus reveals that white grain may be a favorable derived trait retained through natural or artificial selection in Triticeae and that the ancient blue-grain trait could be regained and reused in molecular breeding of modern wheat.
Collapse
Affiliation(s)
- Jiawei Pei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Yanfang Heng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhuo Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingmeng Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhaorong Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
9
|
Liu D, Fan W, Yang Y, Guo Z, Xu Y, Hu J, Liu T, Yu S, Zhang H, Tang J, Hou S, Zhou Z. Metabolome genome-wide association analyses identify a splice mutation in AADAT affects lysine degradation in duck skeletal muscle. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2882-x. [PMID: 40208415 DOI: 10.1007/s11427-024-2882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Metabolites in skeletal muscles play an important role in their growth, development, immunity and other physiological activities. However, the genetic basis of metabolites in skeletal muscle remains poorly understood. Here, we identified 247 candidate divergent regions containing 905 protein-coding genes closely related to metabolic pathways, including lysine degradation and fatty acid biosynthesis. We then profiled 3,060 metabolites in 246 skeletal muscle samples from F2 segregating population generated by mallard×Pekin duck crosses using metabolomic approaches. We identified 2,044 significant metabolome-based GWAS signals and 21 candidate genes potentially modulating metabolite contents in skeletal muscle. Among them, the levels of 2-aminoadipic acid in skeletal muscle were significantly correlated with body weight and intramuscular fat content, determined by a 939-bp CR1 LINE insertion in AADAT. We further found that the CR1 LINE insertion most possibly led to a splice mutation in AADAT, resulting in the downregulation of the lysine degradation pathway in skeletal muscle. Moreover, intramuscular fat content and fatty acids biosynthesis pathway was significantly increased in individuals with CR1 LINE insertion. This study enhances our understanding of the genetic basis of skeletal muscle metabolic traits and promotes the efficient utilization of metabolite traits in the genetic improvement of animals.
Collapse
Affiliation(s)
- Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenlei Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaxi Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tong Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Simeng Yu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Buso P, Diblasi C, Manousi D, Kwak JS, Vera-Ponce de Leon A, Stenløkk K, Barson N, Saitou M. Parallel Selection in Domesticated Atlantic Salmon from Divergent Founders Including on Whole-Genome Duplication-derived Homeologous Regions. Genome Biol Evol 2025; 17:evaf063. [PMID: 40247730 PMCID: PMC12006720 DOI: 10.1093/gbe/evaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
Domestication and artificial selection for desirable traits have driven significant phenotypic changes and left detectable genomic footprints in farmed animals. Since the 1960s, intensive breeding has led to the rapid domestication of Atlantic salmon (Salmo salar), with multiple independent events that make it a valuable model for studying early domestication stages and the parallel evolution of populations of different origins subjected to similar selection pressures. Some aquatic species, including Atlantic salmon, have undergone whole-genome duplication (WGD), raising the possibility that genetic redundancy resulting from WGD has contributed to adaptation in captive environments, as seen in plants. Here, we examined the genomic responses to domestication in Atlantic salmon, focusing on potential signatures of parallel selection, including those associated with WGD. Candidate genomic regions under selection were identified by comparing whole-genome sequences from aquaculture and wild populations across 2 independently domesticated lineages (Western Norway and North America) using a genome-wide scan that combined 3 statistical methods: allele frequencies (FST), site frequency (Tajima's D), and haplotype differentiation (XP-EHH). These analyses revealed shared selective sweeps on identical SNPs in major histocompatibility complex (MHC) genes across aquaculture populations. This suggests that a combination of long-term balancing selection and recent human-induced selection has shaped MHC gene evolution in domesticated salmon. Additionally, we observed selective sweeps on a small number of gene pairs in homeologous regions originating from WGD, offering insights into how historical genome duplication events may intersect with recent selection pressures in aquaculture species.
Collapse
Affiliation(s)
- Pauline Buso
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Célian Diblasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Domniki Manousi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de Leon
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Kristina Stenløkk
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Nicola Barson
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Marie Saitou
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
11
|
Zhang C, Yi H, Ye X, Fu J, Xie D, Bai T, Gong X, Ni Z, Luo X, Chong Yu Lok Y, Luo Q, Wang P. Gapless genome assembly and population genomics highlights diversity of mango germplasms. HORTICULTURE RESEARCH 2025; 12:uhaf007. [PMID: 40171205 PMCID: PMC11928152 DOI: 10.1093/hr/uhaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/05/2025] [Indexed: 04/03/2025]
Affiliation(s)
- Cuixian Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, 452 Fengyuan Road, Kunming 650201, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, 518 Lancheng Road, Baoshan 678000, China
| | - Huaifeng Yi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, 518 Lancheng Road, Baoshan 678000, China
| | - Xiuxu Ye
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, Hainan 571101, China
| | - Jingxiao Fu
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, Hainan 571101, China
| | - Dehong Xie
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, 518 Lancheng Road, Baoshan 678000, China
| | - Tianqi Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, 452 Fengyuan Road, Kunming 650201, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, 518 Lancheng Road, Baoshan 678000, China
| | - Xinyue Gong
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, Hainan 571101, China
| | - Zhangguang Ni
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, 518 Lancheng Road, Baoshan 678000, China
| | - Xinping Luo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, 518 Lancheng Road, Baoshan 678000, China
| | - Yusuf Chong Yu Lok
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, 518 Lancheng Road, Baoshan 678000, China
- Laboratory of Plant Genetic and Cell Biology, Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin Campus, 77300 Merlimau, Melaka, Malaysia
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agricultural Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, 452 Fengyuan Road, Kunming 650201, China
| | - Peng Wang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou, Hainan 571101, China
| |
Collapse
|
12
|
Liu S, Li K, Dai X, Qin G, Lu D, Gao Z, Li X, Song B, Bian J, Ren D, Liu Y, Chen X, Xu Y, Liu W, Yang C, Liu X, Chen S, Li J, Li B, He H, Deng XW. A telomere-to-telomere genome assembly coupled with multi-omic data provides insights into the evolution of hexaploid bread wheat. Nat Genet 2025; 57:1008-1020. [PMID: 40195562 PMCID: PMC11985340 DOI: 10.1038/s41588-025-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2025] [Indexed: 04/09/2025]
Abstract
The complete assembly of vast and complex plant genomes, like the hexaploid wheat genome, remains challenging. Here we present CS-IAAS, a comprehensive telomere-to-telomere (T2T) gap-free Triticum aestivum L. genome, encompassing 14.51 billion base pairs and featuring all 21 centromeres and 42 telomeres. Annotation revealed 90.8 Mb additional centromeric satellite arrays and 5,611 rDNA units. Genome-wide rearrangements, centromeric elements, transposable element expansion and segmental duplications were deciphered during tetraploidization and hexaploidization, providing a comprehensive understanding of wheat subgenome evolution. Among them, transposable element insertions during hexaploidization greatly influenced gene expression balances, thus increasing the genome plasticity of transcriptional levels. Additionally, we generated 163,329 full-length cDNA sequences and proteomic data that helped annotate 141,035 high-confidence protein-coding genes. The complete T2T reference genome (CS-IAAS), along with its transcriptome and proteome, represents a significant step in our understanding of wheat genome complexity and provides insights for future wheat research and breeding.
Collapse
Affiliation(s)
- Shoucheng Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kui Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiuru Dai
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Guochen Qin
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dongdong Lu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zhaoxu Gao
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xiaopeng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bolong Song
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jianxin Bian
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Da Ren
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yongqi Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaofeng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yunbi Xu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Weimin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Chen Yang
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xiaoqin Liu
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shisheng Chen
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jian Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Bosheng Li
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Hang He
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| | - Xing Wang Deng
- State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
13
|
Yan M, Feng H, Gu M, Mei H, Wang L, Xu K, Chen S, Zhang A, Zhou L, Xu X, Fan P, Chen L, Feng F, Xu G, Luo L, Xia H. Variation in the promoter of OsNPF7.1 contributes to nitrate uptake, remobilization, and grain yield in upland rice. J Genet Genomics 2025:S1673-8527(25)00083-9. [PMID: 40154598 DOI: 10.1016/j.jgg.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Affiliation(s)
- Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Huimin Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lei Wang
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Kai Xu
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Shoujun Chen
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Anning Zhang
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liguo Zhou
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Xiaoyan Xu
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Peiqing Fan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liang Chen
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Fangjun Feng
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Hui Xia
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
14
|
Ge AH, Wang E. Exploring the plant microbiome: A pathway to climate-smart crops. Cell 2025; 188:1469-1485. [PMID: 40118032 DOI: 10.1016/j.cell.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 01/26/2025] [Indexed: 03/23/2025]
Abstract
The advent of semi-dwarf crop varieties and fertilizers during the Green Revolution boosted yields and food security. However, unintended consequences such as environmental pollution and greenhouse gas emissions underscore the need for strategies to mitigate these impacts. Manipulating rhizosphere microbiomes, an aspect overlooked during crop domestication, offers a pathway for sustainable agriculture. We propose that modulating plant microbiomes can help establish "climate-smart crops" that improve yield and reduce negative impacts on the environment. Our proposed framework integrates plant genotype, root exudates, and microbes to optimize nutrient cycling, improve stress resilience, and expedite carbon sequestration. Integrating unselected ecological traits into crop breeding can promote agricultural sustainability, illuminating the nexus between plant genetics and ecosystem functioning.
Collapse
Affiliation(s)
- An-Hui Ge
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Takou M, Schulz K, Stetter MG. Local Selection Shaped the Diversity of European Maize Landraces. Mol Ecol 2025:e17720. [PMID: 40095436 DOI: 10.1111/mec.17720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
The introduction of populations to novel environments can lead to a loss of genetic diversity and the accumulation of deleterious mutations due to selection and demographic changes. We investigate how the recent introduction of maize to Europe shaped the genetic diversity and differentiation of European traditional maize populations and quantify the impact of its recent range expansion and consecutive breeding on the accumulation of genetic load. We use genome-wide genetic markers of almost 2000 individuals from 38 landraces, 155 elite breeding lines, and a large set of doubled haploid lines derived from two landraces to find extensive population structure within European maize, with landraces being highly differentiated even over short geographic distances. Yet, diversity change does not follow the continuous pattern of range expansions. Landraces maintain high genetic diversity that is distinct between populations and does not decrease along the possible expansion routes. Signals of positive selection in European landraces that overlap with selection in Asian maize suggest convergent selection during maize introductions. At the same time, environmental factors partially explain genetic differences across Europe. Consistent with the maintenance of high diversity, we find no evidence of genetic load accumulating along the maize introduction route in European maize. However, modern breeding likely purged highly deleterious alleles but accumulated genetic load in elite germplasm. Our results reconstruct the history of maize in Europe and show that landraces have maintained high genetic diversity that could reduce genetic load in the European maize breeding pools.
Collapse
Affiliation(s)
- Margarita Takou
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Kerstin Schulz
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus G Stetter
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Li G, Ren Y, Yang Y, Chen S, Zheng J, Zhang X, Li J, Chen M, Sun X, Lv C, Li X, Zhang B, Sun X, Li Y, Zhao M, Dong C, Tang J, Huang Z, Peng Y, Gu D, Wang Z, Zheng H, Shi C, Kang G, Zheng T, Chen F, Wang D, Zhang K, Yin G. Genomic analysis of Zhou8425B, a key founder parent, reveals its genetic contributions to elite agronomic traits in wheat breeding. PLANT COMMUNICATIONS 2025; 6:101222. [PMID: 39690740 PMCID: PMC11956103 DOI: 10.1016/j.xplc.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
High-quality genome information is essential for efficiently deciphering and improving crop traits. Here, we report a highly contiguous and accurate hexaploid genome assembly for the key wheat breeding parent Zhou8425B, an elite 1BL/1RS translocation line with durable adult plant resistance (APR) against yellow rust (YR) disease. By integrating HiFi and Hi-C sequencing reads, we have generated a 14.75-Gb genome assembly for Zhou8425B with a contig N50 of 70.94 and a scaffold N50 of 735.11 Mb. Comparisons with previously sequenced common wheat cultivars shed light on structural changes in the 1RS chromosome arm, which has been extensively used in wheat improvement. Interestingly, Zhou8425B 1RS carries more genes encoding AP2/ERF-ERF or B3 transcription factors than its counterparts in four previously sequenced wheat and rye genotypes. The Zhou8425B genome assembly aided in the fine mapping of a new APR locus (YrZH3BS) that confers resistance to YR disease and promotes grain yield under field conditions. Notably, pyramiding YrZH3BS with two previously characterized APR loci (YrZH22 and YrZH84) can further reduce YR severity and enhance grain yield, with the triple combination (YrZH3B + YrZH22 + YrZH84) having the greatest effect. Finally, the founder genotype effects of Zhou8425B were explored using publicly available genome resequencing data, which reveals the presence of important Zhou8425B genomic blocks in its derivative cultivars. Our data demonstrate the value of the Zhou8425B genome assembly for further study of the structural and functional characteristics of 1RS, the genetic basis of durable YR resistance, and founder genotype effects in wheat breeding. Our resources will facilitate the development of elite wheat cultivars through genomics-assisted breeding.
Collapse
Affiliation(s)
- Guangwei Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yan Ren
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yuxin Yang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Shulin Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jizhou Zheng
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Xiaoqing Zhang
- National Agro-Tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Junlong Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Mengen Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiaonan Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Chunlei Lv
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiaode Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Bingbing Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xiao Sun
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yujia Li
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Mingtian Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Chunhao Dong
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jianwei Tang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Zhenpu Huang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yanyan Peng
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Dengbin Gu
- Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Zhiyong Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Cuilan Shi
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Guozhang Kang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Tiancun Zheng
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; Henan Fengdekang Seed Industry Co., Ltd, Zhengzhou 450001, China
| | - Feng Chen
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Guihong Yin
- State Key Laboratory of Wheat and Maize Crop Science, Henan Center for Crop Genomics and Rice Engineering, College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou 450046, China; National Wheat Engineering Research Center, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| |
Collapse
|
17
|
Xiao H, Wang Y, Liu W, Shi X, Huang S, Cao S, Long Q, Wang X, Liu Z, Xu X, Peng Y, Wang P, Jiang Z, Riaz S, Walker AM, Gaut BS, Huang S, Zhou Y. Impacts of reproductive systems on grapevine genome and breeding. Nat Commun 2025; 16:2031. [PMID: 40032836 PMCID: PMC11876636 DOI: 10.1038/s41467-025-56817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Diversified reproductive systems can be observed in the plant kingdom and applied in crop breeding; however, their impacts on crop genomic variation and breeding remain unclear. Grapevine (Vitis vinifera L.), a widely planted fruit tree, underwent a shift from dioecism to monoecism during domestication and involves crossing, self-pollination, and clonal propagation for its cultivation. In this study, we discover that the reproductive types, namely, crossing, selfing, and cloning, dramatically impact genomic landscapes and grapevine breeding based on comparative genomic and population genetics of wild grapevine and a complex pedigree of Pinot Noir. The impacts are widely divergent, which show interesting patterns of genomic purging and the Hill-Robertson interference. Selfing reduces genomic heterozygosity, while cloning increases it, resulting in a "double U-shaped" site frequency spectrum (SFS). Crossing and cloning conceal while selfing purges most deleterious and structural burdens. Moreover, the close leakage of large-effect deleterious and structural variations in repulsion phases maintains heterozygous genomic regions in 4.3% of the grapevine genome after successive selfing for nine generations. Our study provides new insights into the genetic basis of clonal propagation and genomic breeding of clonal crops by purging deleterious variants while integrating beneficial variants through various reproductive systems.
Collapse
Affiliation(s)
- Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yue Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenwen Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoya Shi
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Enology, Heyang Viti-Viniculture Station, Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yangling, China
| | - Siyang Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiming Long
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Institute of Life and Health, China Resources Research Institute of Science and Technology, Hong Kong, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Zhonghao Jiang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Summaira Riaz
- San Joaquin Valley Agricultural Center, United States Department of Agriculture, Parlier, CA, USA
| | - Andrew M Walker
- San Joaquin Valley Agricultural Center, United States Department of Agriculture, Parlier, CA, USA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
18
|
Zhou R, Huang C, Wen X, Sun Z, Dong W, Chen Y, Huang N, Zhang H, Su H, Li Y, Peng Z, Zhang Y, Cao L, Cheng S, Zhan X, Sun L, Chen D. Rice THIN CULM 4 (TC4) modulates culm strength by regulating morphology, structure, and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112375. [PMID: 39800115 DOI: 10.1016/j.plantsci.2024.112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
Culm strength is crucial for rice growth, nutrition transportation, and structural resilience, which are essential for lodging resistance and stable production. In this study, we identified a rice thin culm mutant tc4, characterized by thinner culms and thicker cavity walls, resulting in weakened culm mechanical strength. Using map-based cloning, the candidate gene was isolated, and complementation and CRISPR/Cas9 experiments confirmed that a single nucleotide substitution in TC4 is responsible for the thin and brittle culm phenotype. TC4, a homolog of the FLORICAULA/LEAFY gene, localizes to the nucleus and cytoplasm. Further research revealed that TC4 regulates culm development by influencing plant hormones and sugar transport. This research not only advances our understanding of rice culm regulation, but also provides valuable insights for breeding lodging-resistant rice varieties.
Collapse
Affiliation(s)
- Ran Zhou
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Chenbo Huang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Xiaoxia Wen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Zhihao Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Wei Dong
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650051, China
| | - Yuyu Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; Department of Resources and Environment, Moutai Institute, Renhuai 564507, China
| | - Nuan Huang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Han Zhang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Haihan Su
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Yanhui Li
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Zequn Peng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China.
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China; National Nanfan Research Institute of CAAS, Sanya, Hainan 572024, China.
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research, Chinese National Center for Rice Improvement and Stat Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, HangZhou, Zhejiang 311402, China.
| |
Collapse
|
19
|
Qiao X, Shi J, Xu H, Liu K, Pu Y, Xue X, Zheng W, Guo Y, Ma H, Wang CC, Bitsue HK, Xu X, Wang S, Zhao J, Guo X, Hou X, Wang X, Peng L, Qiu Z, Su B, Tang W, He Y, Guo J, Yang Z. Genetic diversity and dietary adaptations of the Central Plains Han Chinese population in East Asia. Commun Biol 2025; 8:291. [PMID: 39987348 PMCID: PMC11846999 DOI: 10.1038/s42003-025-07760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
The Central Plains Han Chinese (CPHC) is the typical agricultural population of East Asia. Investigating the genome of the CPHC is crucial to understanding the genetic structure and adaptation of the modern humans in East Asia. Here, we perform whole genome sequencing of 492 CPHC individuals and obtained 22.65 million SNPs, 4.26 million INDELs and 41,959 SVs. We found the CPHC has a higher level of genetic diversity and the glycolipid metabolic genes show strong selection signals, e.g. LONP2, FADS2, FGF21 and SLC19A2. Ancient DNA analyses suggest that the domestication of crops, which drove the emergence of the candidate mutations. Notably, East Asian-specific SVs, e.g., DEL_21699 (LINC01749) and DEL_38406 (FAM102A) may be associated with the high prevalence of esophageal squamous carcinoma and primary angle-closure glaucoma. Our results provide an important genetic resource and show that dietary adaptations play an important role in phenotypic evolution in East Asian populations.
Collapse
Affiliation(s)
- Xiaoyang Qiao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Youwei Pu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xia Xue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hao Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Habtom K Bitsue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Xu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Shanshan Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jingru Zhao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiangqian Guo
- Zhongyuan Intelligent Medical Laboratory, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinyue Hou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xinwei Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Lei Peng
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zan Qiu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Jiancheng Guo
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
He W, Li X, Qian Q, Shang L. The developments and prospects of plant super-pangenomes: Demands, approaches, and applications. PLANT COMMUNICATIONS 2025; 6:101230. [PMID: 39722458 PMCID: PMC11897476 DOI: 10.1016/j.xplc.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
By integrating genomes from different accessions, pangenomes provide a more comprehensive and reference-bias-free representation of genetic information within a population compared to a single reference genome. With the rapid accumulation of genomic sequencing data and the expanding scope of plant research, plant pangenomics has gradually evolved from single-species to multi-species studies. This shift has given rise to the concept of a super-pangenome that covers all genomic sequences within a genus-level taxonomic group. By incorporating both cultivated and wild species, the super-pangenome has greatly enhanced the resolution of research in various areas such as plant genetic diversity, evolution, domestication, and molecular breeding. In this review, we present a comprehensive overview of the plant super-pangenome, emphasizing its development requirements, construction strategies, potential applications, and notable achievements. We also highlight the distinctive advantages and promising prospects of super-pangenomes while addressing current challenges and future directions.
Collapse
Affiliation(s)
- Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - XiaoXia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Yazhouwan National Laboratory, Sanya 572024, China; Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
21
|
Kang C, Zhang L, Hao Y, Sun M, Li M, Tian Z, Dong L, Liu X, Zeng X, Sun Y, Cao S, Zhao Y, Zhou C, Zhao XY, Zhang XS, Lübberstedt T, Yang X, Liu H. Polymerization of beneficial plant height QTLs to develop superior lines which can achieving hybrid performance levels. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:26. [PMID: 39959602 PMCID: PMC11825963 DOI: 10.1007/s11032-025-01546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Heterosis, a key technology in modern commercial maize breeding, is limited by the narrow genetic base which hinders breeders from developing superior hybrid varieties. By integrating big data and functional genomics technologies, it becomes possible to create new super maize inbred lines that resemble hybrid varieties through the aggregation of multiple QTL parental advantage loci. In this study, we utilized a combination of resequencing and field selfing selection methods to develop three pyramiding QTL lines (PQLs) (PQL4, 6, and 7), each containing 15, 12, and 12 QTL loci respectively. Among the three PQLs, PQL6 (266.78 cm/119.39 cm) demonstrated hybrid-like performance comparable to the hybrid (276.96 cm/127.02 cm) (P < 0.05). Testcross between PQL6 and the parental lines revealed that PQL6 had accumulated and fixed advanced parent alleles for superior traits in plant and ear height. The significant increase in PQL6 plant height primarily resulted from the aggregation of two major effective QTL (qEH2-1 and qEH8-1 on chromosomes 2 and 8), indicating that the aggregation of major effective QTL is a key selection indicator. Furthermore, PQL6 exhibited slow vegetative growth but experienced a rapid height increase during the reproductive stage, particularly in the 1-2 weeks before flowering, when its growth rate accelerated and surpassed that of the hybrid varieties. Our study explored the time period and key parameter indicators for molecular breeding of maize, providing a theoretical concept and practices for further complex multi-trait design and aggregation. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01546-4.
Collapse
Affiliation(s)
- Congbin Kang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Yichen Hao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Mingfei Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Mengyao Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ziang Tian
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ling Dong
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Xianjun Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Xing Zeng
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Yanjie Sun
- Suihua Branch, Heilongjiang Academy of Agricultural Sciences, Suihua, 152052 China
| | - Shiliang Cao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Yajie Zhao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Chao Zhou
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xiang Yu Zhao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xian Sheng Zhang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | | | - Xuerong Yang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Hongjun Liu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
22
|
Zhao Y, Li G, Zhu Z, Hu M, Jiang D, Chen M, Wang J, Zhang K, Zheng Y, Liao Y, Chen C. Genomic selection and genetic architecture of agronomic traits during modern flowering Chinese cabbage breeding. HORTICULTURE RESEARCH 2025; 12:uhae299. [PMID: 39949876 PMCID: PMC11822411 DOI: 10.1093/hr/uhae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/11/2024] [Indexed: 02/16/2025]
Abstract
Flowering Chinese cabbage is a type of leafy vegetable that belongs to the Brassica genus. Originally native to South China, it is now widely cultivated and consumed across the globe, particularly in Asian countries. The recent cultivation and regional expansion of flowering Chinese cabbage provides a valuable opportunity to elucidate the genomic basis underlying environmental adaptation and desired traits during a short-term artificial selection process. Here, we investigate the genetic variation, population structure, and diversity of a diverse germplasm collection of 403 flowering Chinese cabbage accessions. Our investigation seeks to elucidate the genomic basis that guides the selection of adaptability, yield, and pivotal agronomic traits. We further investigated breeding improvement associated with stem development by integrating transcriptome data. Genome-wide association analysis identified 642 loci and corresponding candidate genes associated with 11 essential agronomic traits, including plant architecture and yield. Furthermore, we uncovered a significant disparity in the allele frequency distribution of nonsynonymous mutations in these candidate genes throughout the improvement stages. Our results shed light on the genetic basis of improvement and crucial agronomic traits in flowering Chinese cabbage, offering invaluable resources for upcoming genomics-assisted breeding endeavors.
Collapse
Affiliation(s)
- Yahui Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guangguang Li
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Zhangsheng Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ding Jiang
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Muxi Chen
- Guangdong Helinong Biological Seed Industry Co., Ltd, Shantou, Guangdong 515800, China
| | - Juantao Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kexin Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yansong Zheng
- Guangzhou Institute of Agriculture Science, Guangzhou 510308, China
| | - Yi Liao
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Changming Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of South China Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Zhu X, Tu C, Zhou J, Yang S, Li Y, Wu L, Newman LA, Luo Y. Cadmium phytoextraction by Sedum alfredii and Sedum plumbizincicola: mechanisms, challenges and prospects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:852-860. [PMID: 39838584 DOI: 10.1080/15226514.2025.2451714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Phytoextraction using natural cadmium (Cd) hyperaccumulators, notably Sedum alfredii and Sedum plumbizincicola, represents an economical and efficient approach for soil Cd purification. However, achieving high phytoremediation efficiency necessitates a comprehensive understanding of the mechanisms underlying Cd tolerance and accumulation in these plants. This review summarizes key mechanisms, encompassing Cd activation in the rhizosphere, uptake and transport in the roots, translocation via the xylem, and Cd tolerance. Additionally, physical, chemical, and biological strategies for enhancing phytoremediation efficiency are overviewed and compared. Despite advancements, disparities persist between field and laboratory research, posing certain limitations to the application of natural hyperaccumulators for large-scale phytoextraction or specific soil types. To address these challenges, we propose combining novel hyperaccumulating-like biomaterials with intelligent agriculture to achieve large-scale precision phytoremediation. Furthermore, we aim to draw attention to strategies for enhancing the phytoextraction potential of non-hyperaccumulator plants with high biomass production and stimulate further research into phytoextraction-inducing substances.
Collapse
Affiliation(s)
- Xia Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jiawen Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shuai Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, China
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Lee A Newman
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Zhang X, Tang C, Jiang B, Zhang R, Li M, Wu Y, Yao Z, Huang L, Luo Z, Zou H, Yang Y, Wu M, Chen A, Wu S, Hou X, Liu X, Fei Z, Fu J, Wang Z. Refining polyploid breeding in sweet potato through allele dosage enhancement. NATURE PLANTS 2025; 11:36-48. [PMID: 39668213 DOI: 10.1038/s41477-024-01873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Allele dosage plays a key role in the phenotypic variation of polyploids. Here we present a genome-wide variation map of hexaploid sweet potato that captures allele dosage information, constructed from deep sequencing of 294 hexaploid accessions. Genome-wide association studies identified quantitative trait loci with dosage effects on 23 agronomic traits. Our analyses reveal that sweet potato breeding has progressively increased the dosage of favourable alleles to enhance trait performance. Notably, the Mesoamerican gene pool has evolved towards higher dosages of favourable alleles at multiple loci, which have been increasingly introgressed into modern Chinese cultivars. We substantiated the breeding-driven dosage accumulation through transgenic validation of IbEXPA4, an expansin gene influencing tuberous root weight. In addition, we explored causative sequence variations that alter the expression of the Orange gene, which regulates flesh colour. Our findings illuminate the breeding history of sweet potato and establish a foundation for leveraging allele dosages in polyploid breeding practices.
Collapse
Affiliation(s)
- Xiangbo Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Chaochen Tang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Bingzhi Jiang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Rong Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Ming Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yaoyao Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhufang Yao
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Lifei Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Zhongxia Luo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Hongda Zou
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Yiling Yang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China
| | - Minyi Wu
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ao Chen
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shan Wu
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, and State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences and Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, China.
| |
Collapse
|
25
|
Liu Z, Bernard A, Wang Y, Dirlewanger E, Wang X. Genomes and integrative genomic insights into the genetic architecture of main agronomic traits in the edible cherries. HORTICULTURE RESEARCH 2025; 12:uhae269. [PMID: 39802740 PMCID: PMC11718393 DOI: 10.1093/hr/uhae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 01/16/2025]
Abstract
Cherries are one of the economically important fruit crops in the Rosaceae family, Prunus genus. As the first fruits of the spring season in the northern hemisphere, their attractive appearance, intensely desirable tastes, high nutrients content, and consumer-friendly size captivate consumers worldwide. In the past 30 years, although cherry geneticists and breeders have greatly progressed in understanding the genetic and molecular basis underlying fruit quality, adaptation to climate change, and biotic and abiotic stress resistance, the utilization of cherry genomic data in genetics and molecular breeding has remained limited to date. Here, we thoroughly investigated recent discoveries in constructing genetic linkage maps, identifying quantitative trait loci (QTLs), genome-wide association studies (GWAS), and validating functional genes of edible cherries based on available de novo genomes and genome resequencing data of edible cherries. We further comprehensively demonstrated the genetic architecture of the main agronomic traits of edible cherries by methodically integrating QTLs, GWAS loci, and functional genes into the identical reference genome with improved annotations. These collective endeavors will offer new perspectives on the availability of sequence data and the construction of an interspecific pangenome of edible cherries, ultimately guiding cherry breeding strategies and genetic improvement programs, and facilitating the exploration of similar traits and breeding innovations across Prunus species.
Collapse
Affiliation(s)
- Zhenshan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Anthony Bernard
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon 33882, France
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| | | | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
26
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
27
|
Li H, Sun J, Zhang Y, Wang N, Li T, Dong H, Yang M, Xu C, Hu L, Liu C, Chen Q, Foyer CH, Qi Z. Soybean Oil and Protein: Biosynthesis, Regulation and Strategies for Genetic Improvement. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39582139 DOI: 10.1111/pce.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024]
Abstract
Soybean (Glycine max [L.] Merr.) is one of the world's most important sources of oil and vegetable protein. Much of the energy required for germination and early growth of soybean seeds is stored in fatty acids, mainly as triacylglycerols (TAGs), and the main seed storage proteins are β-conglycinin (7S) and glycinin (11S). Recent research advances have deepened our understanding of the biosynthetic pathways and transcriptional regulatory networks that control fatty acid and protein synthesis in organelles such as the plastid, ribosome and endoplasmic reticulum. Here, we review the composition and biosynthetic pathways of soybean oils and proteins, summarizing the key enzymes and transcription factors that have recently been shown to regulate oil and protein synthesis/metabolism. We then discuss the newest genomic strategies for manipulating these genes to increase the food value of soybeans, highlighting important priorities for future research and genetic improvement of this staple crop.
Collapse
Affiliation(s)
- Hui Li
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Sun
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Zhang
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ning Wang
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianshu Li
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huiying Dong
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Xu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Limin Hu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technology and System, National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
Chen J, Miao Z, Kong D, Zhang A, Wang F, Liu G, Yu X, Luo L, Liu Y. Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement. Genes (Basel) 2024; 15:1492. [PMID: 39596692 PMCID: PMC11593773 DOI: 10.3390/genes15111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Improving the efficiency of germplasm innovation has always been the aim of rice breeders. Traditional hybrid breeding methods for variety selection rarely meet the practical needs of rice production. The emergence of genome-editing technologies, such as CRISPR/Cas9, provides a new approach to the genetic improvement of crops such as rice. The number of published scientific papers related to "gene editing" and "CRISPR/Cas9" retrievable on websites both from China and other countries exhibited an increasing trend, year by year, from 2014 to 2023. Research related to gene editing in rice accounts for 33.4% and 12.3% of all the literature on gene editing published in China and other countries, respectively, much higher than that on maize and wheat. This article reviews recent research on CRISPR/Cas9 gene-editing technology in rice, especially germplasm innovation and genetic improvement of commercially promoted varieties with improved traits such as disease, insect, and herbicide resistance, salt tolerance, quality, nutrition, and safety. The aim is to provide a reference for the precise and efficient development of new rice cultivars that meet market demand.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (J.C.); (Z.M.)
| |
Collapse
|
29
|
Wang Z, Wang W, He Y, Xie X, Yang Z, Zhang X, Niu J, Peng H, Yao Y, Xie C, Xin M, Hu Z, Sun Q, Ni Z, Guo W. On the evolution and genetic diversity of the bread wheat D genome. MOLECULAR PLANT 2024; 17:1672-1686. [PMID: 39318095 DOI: 10.1016/j.molp.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/05/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bread wheat (Triticum aestivum) became a globally dominant crop after incorporating the D genome from the donor species Aegilops tauschii, but the evolutionary history that shaped the D genome during this process remains to be clarified. Here, we propose a renewed evolutionary model linking Ae. tauschii and the hexaploid wheat D genome by constructing an ancestral haplotype map covering 762 Ae. tauschii and hexaploid wheat accessions. We dissected the evolutionary trajectories of Ae. tauschii lineages and reported a few independent intermediate accessions, demonstrating that low-frequency inter-sublineage gene flow had enriched the diversity of Ae. tauschii. We discovered that the D genome of hexaploid wheat was inherited from a unified ancestral template, but with a mosaic composition that was highly mixed and derived mainly from three Ae. tauschii L2 sublineages located in the Caspian coastal region. This result suggests that early agricultural activities facilitated innovations in D-genome composition and finalized the success of hexaploidization. We found that the majority (51.4%) of genetic diversity was attributed to novel mutations absent in Ae. tauschii, and we identified large Ae. tauschii introgressions from various lineages, which expanded the diversity of the wheat D genome and introduced beneficial alleles. This work sheds light on the process of wheat hexaploidization and highlights the evolutionary significance of the multi-layered genetic diversity of the bread wheat D genome.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yachao He
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianxia Niu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Li J, Liu Z, You C, Qi Z, You J, Grover CE, Long Y, Huang X, Lu S, Wang Y, Zhang S, Wang Y, Bai R, Zhang M, Jin S, Nie X, Wendel JF, Zhang X, Wang M. Convergence and divergence of diploid and tetraploid cotton genomes. Nat Genet 2024; 56:2562-2573. [PMID: 39472693 DOI: 10.1038/s41588-024-01964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 11/10/2024]
Abstract
Polyploidy is an important driving force in speciation and evolution; however, the genomic basis for parallel selection of a particular trait between polyploids and ancestral diploids remains unexplored. Here we construct graph-based pan-genomes for diploid (A2) and allotetraploid (AD1) cotton species, enabled by an assembly of 50 genomes of genetically diverse accessions. We delineate a mosaic genome map of tetraploid cultivars that illustrates genomic contributions from semi-wild forms into modern cultivars. Pan-genome comparisons identify syntenic and hyper-divergent regions of continued variation between diploid and tetraploid cottons, and suggest an ongoing process of sequence evolution potentially linked to the contrasting genome size change in two subgenomes. We highlight 43% of genetic regulatory relationships for gene expression in diploid encompassing sequence divergence after polyploidy, and specifically characterize six underexplored convergent genetic loci contributing to parallel selection of fiber quality. This study offers a framework for pan-genomic dissection of genetic regulatory components underlying parallel selection of desirable traits in organisms.
Collapse
Affiliation(s)
- Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuejin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sainan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yawen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhe Bai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengke Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
31
|
Bertolini E, Manjunath M, Ge W, Murphy MD, Inaoka M, Fliege C, Eveland AL, Lipka AE. Genomic prediction of cereal crop architectural traits using models informed by gene regulatory circuitries from maize. Genetics 2024:iyae162. [PMID: 39441092 DOI: 10.1093/genetics/iyae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that contextually described developmental progression during tassel and leaf organogenesis in maize (Zea mays) to inform genomic prediction models for architectural traits. Since these developmental processes underlie tassel branching and leaf angle, 2 important agronomic architectural traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breeding values of tassel branching and leaf angle traits for 2 diversity panels in maize and diversity panels from sorghum (Sorghum bicolor) and rice (Oryza sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species.
Collapse
Affiliation(s)
| | - Mohith Manjunath
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weihao Ge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew D Murphy
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mirai Inaoka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christina Fliege
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Liu C, Du S, Wei A, Cheng Z, Meng H, Han Y. Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:2790. [PMID: 39409660 PMCID: PMC11479247 DOI: 10.3390/plants13192790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
In the context of rapidly increasing population and diversified market demands, the steady improvement of yield and quality in horticultural crops has become an urgent challenge that modern breeding efforts must tackle. Heterosis, a pivotal theoretical foundation for plant breeding, facilitates the creation of superior hybrids through crossbreeding and selection among a variety of parents. However, the vast number of potential hybrids presents a significant challenge for breeders in efficiently predicting and selecting the most promising candidates. The development and refinement of effective hybrid prediction methods have long been central to research in this field. This article systematically reviews the advancements in hybrid prediction for horticultural crops, including the roles of marker-assisted breeding and genomic prediction in phenotypic forecasting. It also underscores the limitations of some predictors, like genetic distance, which do not consistently offer reliable hybrid predictions. Looking ahead, it explores the integration of phenomics with genomic prediction technologies as a means to elevate prediction accuracy within actual breeding programs.
Collapse
Affiliation(s)
- Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Shengli Du
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| |
Collapse
|
33
|
Farooq MA, Gao S, Hassan MA, Huang Z, Rasheed A, Hearne S, Prasanna B, Li X, Li H. Artificial intelligence in plant breeding. Trends Genet 2024; 40:891-908. [PMID: 39117482 DOI: 10.1016/j.tig.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scientific domains including plant breeding. We explore the wider potential of AI tools in various facets of breeding, including data collection, unlocking genetic diversity within genebanks, and bridging the genotype-phenotype gap to facilitate crop breeding. This will enable the development of crop cultivars tailored to the projected future environments. Moreover, AI tools also hold promise for refining crop traits by improving the precision of gene-editing systems and predicting the potential effects of gene variants on plant phenotypes. Leveraging AI-enabled precision breeding can augment the efficiency of breeding programs and holds promise for optimizing cropping systems at the grassroots level. This entails identifying optimal inter-cropping and crop-rotation models to enhance agricultural sustainability and productivity in the field.
Collapse
Affiliation(s)
- Muhammad Amjad Farooq
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Muhammad Adeel Hassan
- Adaptive Cropping Systems Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sarah Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico
| | - Boddupalli Prasanna
- CIMMYT, International Centre for Research in Agroforestry (ICRAF) House, Nairobi 00100, Kenya
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China.
| |
Collapse
|
34
|
Ma M, Wu L, Li M, Li L, Guo L, Ka D, Zhang T, Zhou M, Wu B, Peng H, Hu Z, Liu X, Jing R, Zhao H. Pleiotropic phenotypic effects of the TaCYP78A family on multiple yield-related traits in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2694-2708. [PMID: 38783571 PMCID: PMC11536447 DOI: 10.1111/pbi.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Increasing crop yield depends on selecting and utilizing pleiotropic genes/alleles to improve multiple yield-related traits (YRTs) during crop breeding. However, synergistic improvement of YRTs is challenging due to the trade-offs between YRTs in breeding practices. Here, the favourable haplotypes of the TaCYP78A family are identified by analysing allelic variations in 1571 wheat accessions worldwide, demonstrating the selection and utilization of pleiotropic genes to improve yield and related traits during wheat breeding. The TaCYP78A family members, including TaCYP78A3, TaCYP78A5, TaCYP78A16, and TaCYP78A17, are organ size regulators expressed in multiple organs, and their allelic variations associated with various YRTs. However, due to the trade-offs between YRTs, knockdown or overexpression of TaCYP78A family members does not directly increase yield. Favourable haplotypes of the TaCYP78A family, namely A3/5/16/17Ap-Hap II, optimize the expression levels of TaCYP78A3/5/16/17-A across different wheat organs to overcome trade-offs and improve multiple YRTs. Different favourable haplotypes have both complementary and specific functions in improving YRTs, and their aggregation in cultivars under strong artificial selection greatly increase yield, even under various planting environments and densities. These findings provide new support and valuable genetic resources for molecular breeding of wheat and other crops in the era of Breeding 4.0.
Collapse
Affiliation(s)
- Meng Ma
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A & F UniversityYanglingShaanxiChina
| | - Linnan Wu
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Mengyao Li
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Long Li
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lijian Guo
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
- State Key Laboratory of Aridland Crop ScienceGansu Agricultural UniversityLanzhouChina
| | - Deyan Ka
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Tianxing Zhang
- College of AgronomyNorthwest A & F UniversityYanglingShaanxiChina
| | - Mengdie Zhou
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Baowei Wu
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Haixia Peng
- College of Landscape Architecture and ArtNorthwest A & F UniversityYanglingShaanxiChina
| | - Zhaoxin Hu
- Department of Electrical and Computer EngineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Xiangli Liu
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Huixian Zhao
- College of Life SciencesNorthwest A & F UniversityYanglingShaanxiChina
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionNorthwest A & F UniversityYanglingShaanxiChina
| |
Collapse
|
35
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Li S, Wang W, Sun L, Zhu H, Hou R, Zhang H, Tang X, Clark CB, Swarm SA, Nelson RL, Ma J. Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean. Nat Commun 2024; 15:7588. [PMID: 39217192 PMCID: PMC11365945 DOI: 10.1038/s41467-024-52044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to pod shattering is a key domestication-related trait selected for seed production in many crops. Here, we show that the transition from shattering in wild soybeans to shattering resistance in cultivated soybeans resulted from selection of mutations within the coding sequences of two nearby genes - Sh1 and Pdh1. Sh1 encodes a C2H2-like zinc finger transcription factor that promotes shattering by repressing SHAT1-5 expression, thereby reducing the secondary wall thickness of fiber cap cells in the abscission layers of pod sutures, while Pdh1 encodes a dirigent protein that orchestrates asymmetric lignin distribution in inner sclerenchyma, creating torsion in pod walls that facilitates shattering. Integration analyses of quantitative trait locus mapping, genome-wide association studies, and allele distribution in representative soybean germplasm suggest that these two genes are primary modulators underlying this domestication trait. Our study thus provides comprehensive understanding regarding the genetic, molecular, and cellular bases of shattering resistance in soybeans.
Collapse
Affiliation(s)
- Shuai Li
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xuemin Tang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Beck's Hybrids, Atlanta, IN, USA
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
37
|
Zeng X, Yi Z, Zhang X, Du Y, Li Y, Zhou Z, Chen S, Zhao H, Yang S, Wang Y, Chen G. Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes. NATURE PLANTS 2024; 10:1184-1200. [PMID: 39103456 DOI: 10.1038/s41477-024-01755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024]
Abstract
Scaffolding is crucial for constructing most chromosome-level genomes. The high-throughput chromatin conformation capture (Hi-C) technology has become the primary scaffolding strategy due to its convenience and cost-effectiveness. As sequencing technologies and assembly algorithms advance, constructing haplotype-resolved genomes is increasingly preferred because haplotypes can provide additional genetic information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware scaffolding tool designed for this purpose. However, its dependence on chromosome-level reference genomes and a higher chromosome misassignment rate still impede the unravelling of haplotype-resolved genomes. Here we present HapHiC, a reference-independent allele-aware scaffolding tool with superior performance on chromosome assignment as well as contig ordering and orientation. In addition, we provide new insights into the challenges in allele-aware scaffolding by conducting comprehensive analyses on various adverse factors. Finally, with the help of HapHiC, we constructed the haplotype-resolved allotriploid genome for Miscanthus × giganteus, an important lignocellulosic bioenergy crop.
Collapse
Affiliation(s)
- Xiaofei Zeng
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Zili Yi
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Ecological Application of Miscanthus Resources, Changsha, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Li
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqing Zhou
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Sijie Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Huijie Zhao
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Sai Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Laboratory for Ecological Application of Miscanthus Resources, Changsha, China
| | - Yibin Wang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
38
|
Wei X, Chen M, Zhang Q, Gong J, Liu J, Yong K, Wang Q, Fan J, Chen S, Hua H, Luo Z, Zhao X, Wang X, Li W, Cong J, Yu X, Wang Z, Huang R, Chen J, Zhou X, Qiu J, Xu P, Murray J, Wang H, Xu Y, Xu C, Xu G, Yang J, Han B, Huang X. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 2024; 385:eadm8762. [PMID: 38963845 DOI: 10.1126/science.adm8762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 07/06/2024]
Abstract
Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including OsMADS22 and OsFTL1 verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.
Collapse
Affiliation(s)
- Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mengjiao Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Junyi Gong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kaicheng Yong
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiongjiong Fan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Suhui Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hua Hua
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhaowei Luo
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyan Zhao
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wei Li
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia Cong
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiting Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhihan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ruipeng Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jeremy Murray
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Hai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yang Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Chenwu Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bin Han
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
39
|
Abbas Q, Wilhelm M, Kuster B, Poppenberger B, Frishman D. Exploring crop genomes: assembly features, gene prediction accuracy, and implications for proteomics studies. BMC Genomics 2024; 25:619. [PMID: 38898442 PMCID: PMC11186247 DOI: 10.1186/s12864-024-10521-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Plant genomics plays a pivotal role in enhancing global food security and sustainability by offering innovative solutions for improving crop yield, disease resistance, and stress tolerance. As the number of sequenced genomes grows and the accuracy and contiguity of genome assemblies improve, structural annotation of plant genomes continues to be a significant challenge due to their large size, polyploidy, and rich repeat content. In this paper, we present an overview of the current landscape in crop genomics research, highlighting the diversity of genomic characteristics across various crop species. We also assessed the accuracy of popular gene prediction tools in identifying genes within crop genomes and examined the factors that impact their performance. Our findings highlight the strengths and limitations of BRAKER2 and Helixer as leading structural genome annotation tools and underscore the impact of genome complexity, fragmentation, and repeat content on their performance. Furthermore, we evaluated the suitability of the predicted proteins as a reliable search space in proteomics studies using mass spectrometry data. Our results provide valuable insights for future efforts to refine and advance the field of structural genome annotation.
Collapse
Affiliation(s)
- Qussai Abbas
- Chair of Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| | - Bernhard Kuster
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Dmitrij Frishman
- Chair of Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
40
|
Yang X, Su Y, Huang S, Hou Q, Wei P, Hao Y, Huang J, Xiao H, Ma Z, Xu X, Wang X, Cao S, Cao X, Zhang M, Wen X, Ma Y, Peng Y, Zhou Y, Cao K, Qiao G. Comparative population genomics reveals convergent and divergent selection in the apricot-peach-plum-mei complex. HORTICULTURE RESEARCH 2024; 11:uhae109. [PMID: 38883333 PMCID: PMC11179850 DOI: 10.1093/hr/uhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
The economically significant genus Prunus includes fruit and nut crops that have been domesticated for shared and specific agronomic traits; however, the genomic signals of convergent and divergent selection have not been elucidated. In this study, we aimed to detect genomic signatures of convergent and divergent selection by conducting comparative population genomic analyses of the apricot-peach-plum-mei (APPM) complex, utilizing a haplotype-resolved telomere-to-telomere (T2T) genome assembly and population resequencing data. The haplotype-resolved T2T reference genome for the plum cultivar was assembled through HiFi and Hi-C reads, resulting in two haplotypes 251.25 and 251.29 Mb in size, respectively. Comparative genomics reveals a chromosomal translocation of ~1.17 Mb in the apricot genomes compared with peach, plum, and mei. Notably, the translocation involves the D locus, significantly impacting titratable acidity (TA), pH, and sugar content. Population genetic analysis detected substantial gene flow between plum and apricot, with introgression regions enriched in post-embryonic development and pollen germination processes. Comparative population genetic analyses revealed convergent selection for stress tolerance, flower development, and fruit ripening, along with divergent selection shaping specific crop, such as somatic embryogenesis in plum, pollen germination in mei, and hormone regulation in peach. Notably, selective sweeps on chromosome 7 coincide with a chromosomal collinearity from the comparative genomics, impacting key fruit-softening genes such as PG, regulated by ERF and RMA1H1. Overall, this study provides insights into the genetic diversity, evolutionary history, and domestication of the APPM complex, offering valuable implications for genetic studies and breeding programs of Prunus crops.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi 830046, China
| | - Siyang Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Pengcheng Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Yani Hao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jiaqi Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejing Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yuhua Ma
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
41
|
Long Q, Cao S, Huang G, Wang X, Liu Z, Liu W, Wang Y, Xiao H, Peng Y, Zhou Y. Population comparative genomics discovers gene gain and loss during grapevine domestication. PLANT PHYSIOLOGY 2024; 195:1401-1413. [PMID: 38285049 PMCID: PMC11142336 DOI: 10.1093/plphys/kiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024]
Abstract
Plant domestication are evolutionary experiments conducted by early farmers since thousands years ago, during which the crop wild progenitors are artificially selected for desired agronomic traits along with dramatic genomic variation in the course of moderate to severe bottlenecks. However, previous investigations are mainly focused on small-effect variants, while changes in gene contents are rarely investigated due to the lack of population-level assemblies for both the crop and its wild relatives. Here, we applied comparative genomic analyses to discover gene gain and loss during grapevine domestication using long-read assemblies of representative population samples for both domesticated grapevines (V. vinifera ssp. vinifera) and their wild progenitors (V. vinifera ssp. sylvestris). Only ∼7% of gene families were shared by 16 Vitis genomes while ∼8% of gene families were specific to each accession, suggesting dramatic variations of gene contents in grapevine genomes. Compared to wild progenitors, the domesticated accessions exhibited an increased presence of genes associated with asexual reproduction, while the wild progenitors showcased a higher abundance of genes related to pollination, revealing the transition from sexual reproduction to clonal propagation during domestication processes. Moreover, the domesticated accessions harbored fewer disease-resistance genes than wild progenitors. The SVs occurred frequently in aroma and disease-resistance related genes between domesticated grapevines and wild progenitors, indicating the rapid diversification of these genes during domestication. Our study provides insights and resources for biological studies and breeding programs in grapevine.
Collapse
Affiliation(s)
- Qiming Long
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guizhou Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 C1P1, Ireland
| | - Zhongjie Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Wenwen Liu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yiwen Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
42
|
Li J, Zhao Y, Wu Z, Wang X. Editorial: Crop improvement by omics and bioinformatics. FRONTIERS IN PLANT SCIENCE 2024; 15:1391334. [PMID: 38633453 PMCID: PMC11022161 DOI: 10.3389/fpls.2024.1391334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Jun Li
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhichao Wu
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueqiang Wang
- Hainan Institute of Zhejiang University, Sanya, Hainan, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| |
Collapse
|
43
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
44
|
Jia H, Omar AA, Xu J, Dalmendray J, Wang Y, Feng Y, Wang W, Hu Z, Grosser JW, Wang N. Generation of transgene-free canker-resistant Citrus sinensis cv. Hamlin in the T0 generation through Cas12a/CBE co-editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1385768. [PMID: 38595767 PMCID: PMC11002166 DOI: 10.3389/fpls.2024.1385768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.
Collapse
Affiliation(s)
- Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Ahmad A. Omar
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Javier Dalmendray
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yuanchun Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Yu Feng
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Zhuyuan Hu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
45
|
He Y, Zhang K, Shi Y, Lin H, Huang X, Lu X, Wang Z, Li W, Feng X, Shi T, Chen Q, Wang J, Tang Y, Chapman MA, Germ M, Luthar Z, Kreft I, Janovská D, Meglič V, Woo SH, Quinet M, Fernie AR, Liu X, Zhou M. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol 2024; 25:61. [PMID: 38414075 PMCID: PMC10898187 DOI: 10.1186/s13059-024-03203-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.
Collapse
Affiliation(s)
- Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhirong Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xibo Feng
- Tibet Key Experiments of Crop Cultivation and Farming/College of Plant Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Junzhen Wang
- Xichang Institute of Agricultural Science, Liangshan Yi People Autonomous Prefecture, Liangshan, Sichuan, 615000, China
| | - Yu Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000, Ljubljana, Slovenia
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348, Louvain-la-Neuve, Belgium
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
46
|
Rogo U, Simoni S, Fambrini M, Giordani T, Pugliesi C, Mascagni F. Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops. Int J Mol Sci 2024; 25:2374. [PMID: 38397047 PMCID: PMC10888583 DOI: 10.3390/ijms25042374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The worldwide agricultural system confronts a significant challenge represented by the increasing demand for food in the face of a growing global population. This challenge is exacerbated by a reduction in cultivable land and the adverse effects of climate change on crop yield quantity and quality. Breeders actively embrace cutting-edge omics technologies to pursue resilient genotypes in response to these pressing issues. In this global context, new breeding techniques (NBTs) are emerging as the future of agriculture, offering a solution to introduce resilient crops that can ensure food security, particularly against challenging climate events. Indeed, the search for domestication genes as well as the genetic modification of these loci in wild species using genome editing tools are crucial steps in carrying out de novo domestication of wild plants without compromising their genetic background. Current knowledge allows us to take different paths from those taken by early Neolithic farmers, where crop domestication has opposed natural selection. In this process traits and alleles negatively correlated with high resource environment performance are probably eradicated through artificial selection, while others may have been lost randomly due to domestication and genetic bottlenecks. Thus, domestication led to highly productive plants with little genetic diversity, owing to the loss of valuable alleles that had evolved to tolerate biotic and abiotic stresses. Recent technological advances have increased the feasibility of de novo domestication of wild plants as a promising approach for crafting optimal crops while ensuring food security and using a more sustainable, low-input agriculture. Here, we explore what crucial domestication genes are, coupled with the advancement of technologies enabling the precise manipulation of target sequences, pointing out de novo domestication as a promising application for future crop development.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; (U.R.); (S.S.); (M.F.); (T.G.); (F.M.)
| | | |
Collapse
|
47
|
Kopeć P. Climate Change-The Rise of Climate-Resilient Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:490. [PMID: 38498432 PMCID: PMC10891513 DOI: 10.3390/plants13040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/20/2024]
Abstract
Climate change disrupts food production in many regions of the world. The accompanying extreme weather events, such as droughts, floods, heat waves, and cold snaps, pose threats to crops. The concentration of carbon dioxide also increases in the atmosphere. The United Nations is implementing the climate-smart agriculture initiative to ensure food security. An element of this project involves the breeding of climate-resilient crops or plant cultivars with enhanced resistance to unfavorable environmental conditions. Modern agriculture, which is currently homogeneous, needs to diversify the species and cultivars of cultivated plants. Plant breeding programs should extensively incorporate new molecular technologies, supported by the development of field phenotyping techniques. Breeders should closely cooperate with scientists from various fields of science.
Collapse
Affiliation(s)
- Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
48
|
Li H, Zhu L, Fan R, Li Z, Liu Y, Shaheen A, Nie F, Li C, Liu X, Li Y, Liu W, Yang Y, Guo T, Zhu Y, Bu M, Li C, Liang H, Bai S, Ma F, Guo G, Zhang Z, Huang J, Zhou Y, Song CP. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc 2024; 19:281-312. [PMID: 38017137 DOI: 10.1038/s41596-023-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Can Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuqin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenjuan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingying Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tutu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengchen Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenglin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
49
|
Tian J, Zhang J, Francis F. The role and pathway of VQ family in plant growth, immunity, and stress response. PLANTA 2023; 259:16. [PMID: 38078967 DOI: 10.1007/s00425-023-04292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION This review provides a detailed description of the function and mechanism of VQ family gene, which is helpful for further research and application of VQ gene resources to improve crops. Valine-glutamine (VQ) motif-containing proteins are a large class of transcriptional regulatory cofactors. VQ proteins have their own unique molecular characteristics. Amino acids are highly conserved only in the VQ domain, while other positions vary greatly. Most VQ genes do not contain introns and the length of their proteins is less than 300 amino acids. A majority of VQ proteins are predicted to be localized in the nucleus. The promoter of many VQ genes contains stress or growth related elements. Segment duplication and tandem duplication are the main amplification mechanisms of the VQ gene family in angiosperms and gymnosperms, respectively. Purification selection plays a crucial role in the evolution of many VQ genes. By interacting with WRKY, MAPK, and other proteins, VQ proteins participate in the multiple signaling pathways to regulate plant growth and development, as well as defense responses to biotic and abiotic stresses. Although there have been some reports on the VQ gene family in plants, most of them only identify family members, with little functional verification, and there is also a lack of complete, detailed, and up-to-date review of research progress. Here, we comprehensively summarized the research progress of VQ genes that have been published so far, mainly including their molecular characteristics, biological functions, importance of VQ motif, and working mechanisms. Finally, the regulatory network and model of VQ genes were drawn, a precise molecular breeding strategy based on VQ genes was proposed, and the current problems and future prospects were pointed out, providing a powerful reference for further research and utilization of VQ genes in plant improvement.
Collapse
Affiliation(s)
- Jinfu Tian
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jiahui Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| |
Collapse
|
50
|
Huang Y, Qi Z, Li J, You J, Zhang X, Wang M. Genetic interrogation of phenotypic plasticity informs genome-enabled breeding in cotton. J Genet Genomics 2023; 50:971-982. [PMID: 37211312 DOI: 10.1016/j.jgg.2023.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
Phenotypic plasticity, or the ability to adapt to and thrive in changing climates and variable environments, is essential for developmental programs in plants. Despite its importance, the genetic underpinnings of phenotypic plasticity for key agronomic traits remain poorly understood in many crops. In this study, we aim to fill this gap by using genome-wide association studies to identify genetic variations associated with phenotypic plasticity in upland cotton (Gossypium hirsutum L.). We identified 73 additive quantitative trait loci (QTLs), 32 dominant QTLs, and 6799 epistatic QTLs associated with 20 traits. We also identified 117 additive QTLs, 28 dominant QTLs, and 4691 epistatic QTLs associated with phenotypic plasticity in 19 traits. Our findings reveal new genetic factors, including additive, dominant, and epistatic QTLs, that are linked to phenotypic plasticity and agronomic traits. Meanwhile, we find that the genetic factors controlling the mean phenotype and phenotypic plasticity are largely independent in upland cotton, indicating the potential for simultaneous improvement. Additionally, we envision a genomic design strategy by utilizing the identified QTLs to facilitate cotton breeding. Taken together, our study provides new insights into the genetic basis of phenotypic plasticity in cotton, which should be valuable for future breeding.
Collapse
Affiliation(s)
- Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|