1
|
Gilmer JI, Coltman SK, Cuenu G, Hutchinson JR, Huber D, Person AL, Al Borno M. A novel biomechanical model of the proximal mouse forelimb predicts muscle activity in optimal control simulations of reaching movements. J Neurophysiol 2025; 133:1266-1278. [PMID: 40098414 DOI: 10.1152/jn.00499.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Mice are key model organisms in neuroscience and motor systems physiology. Fine motor control tasks performed by mice have become widely used in assaying neural and biophysical motor system mechanisms. Although fine motor tasks provide useful insights into behaviors that require complex multi-joint motor control, there is no previously developed physiological biomechanical model of the adult mouse forelimb available for estimating kinematics, muscle activity, or kinetics during behaviors. Here, we developed a musculoskeletal model based on high-resolution imaging of the mouse forelimb that includes muscles spanning the neck, trunk, shoulder, and limbs. Physics-based optimal control simulations of the forelimb model were used to estimate in vivo muscle activity present when constrained to the tracked kinematics during reaching movements. The activity of a subset of muscles was recorded and used to assess the accuracy of the muscle patterning in simulation. We found that the synthesized muscle patterning in the forelimb model had a strong resemblance to empirical muscle patterning, suggesting that our model has utility in providing a realistic set of estimated muscle excitations over time when given a kinematic template. The strength of the similarity between empirical muscle activity and optimal control predictions increases as mice performance improves throughout learning of the reaching task. Our computational tools are available as open-source in the OpenSim physics and modeling platform. Our model can enhance research into limb control across broad research topics and can inform analyses of motor learning, muscle synergies, neural patterning, and behavioral research that would otherwise be inaccessible.NEW & NOTEWORTHY Investigations into motor planning and execution lack an accurate and complete model of the forelimb, which could bolster or expand on findings. We sought to construct such a model using high-detail scans of murine anatomy and prior research into muscle physiology. We then used the model to predict muscle excitations in a set of reaching movements and found that it provided accurate estimations and provided insight into an optimal-control framework of motor learning.
Collapse
Affiliation(s)
- Jesse I Gilmer
- Department of Computer Science and Engineering, Computational Bioscience Program, University of Colorado Denver | Anschutz Medical Campus, Denver, Colorado, United States
| | - Susan K Coltman
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Geraldine Cuenu
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Daniel Huber
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado Denver | Anschutz Medical Campus, Denver, Colorado, United States
| | - Mazen Al Borno
- Department of Computer Science and Engineering, Computational Bioscience Program, University of Colorado Denver | Anschutz Medical Campus, Denver, Colorado, United States
| |
Collapse
|
2
|
Koh N, Ma Z, Sarup A, Kristl AC, Agrios M, Young M, Miri A. Selective direct motor cortical influence during naturalistic climbing in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.18.545509. [PMID: 39229015 PMCID: PMC11370436 DOI: 10.1101/2023.06.18.545509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
It remains poorly resolved when and how motor cortical output directly influences limb muscle activity through descending projections, which impedes mechanistic understanding of motor control. Here we addressed this in mice performing an ethologically inspired climbing behavior. We quantified the direct influence of forelimb primary motor cortex (caudal forelimb area, CFA) on muscles across the muscle activity states expressed during climbing. We found that CFA instructs muscle activity pattern by selectively activating certain muscles, while less frequently activating or suppressing their antagonists. From Neuropixels recordings, we identified linear combinations (components) of motor cortical activity that covary with these effects. These components differ partially from those that covary with muscle activity and differ almost completely from those that covary with kinematics. Collectively, our results reveal an instructive direct motor cortical influence on limb muscles that is selective within a motor behavior and reliant on a distinct neural activity subspace.
Collapse
|
3
|
Kaiser J, Patel P, Fedde S, Lammers A, Kenwood MR, Iqbal A, Goldberg M, Sahni V. Developmental molecular signatures define de novo cortico-brainstem circuit for skilled forelimb movement. RESEARCH SQUARE 2025:rs.3.rs-6150344. [PMID: 40196004 PMCID: PMC11975033 DOI: 10.21203/rs.3.rs-6150344/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Skilled movement relies on descending cortical projections to the brainstem and spinal cord. While corticospinal neurons (CSN) have long been recognized for their role in fine motor control, the contribution of cortical projections to the brainstem remains poorly understood. Here, we identify a previously unrecognized direct cortico-brainstem circuit that emerges early in development and persists into adulthood. A subset of subcerebral projection neurons (SCPN) limit their projections to the brainstem from the earliest stages of axon extension without ever extending to the spinal cord. Using FACS purification and single-cell RNA sequencing, we show that these cortico-brainstem neurons (CBN) can be prospectively identified by the expression of Neuropeptide Y (Npy) in development. Functional silencing of Npy+ CBN in adulthood leads to impaired skilled forelimb reaching, demonstrating their essential role in adult motor control. Npy+ CBN project preferentially to rostral brainstem regions, including the midbrain reticular formation. These findings reveal developmental molecular signatures that define cortico-brainstem pathways for adult skilled movement. Our work provides new insights into the developmental logic that establishes descending cortical circuits and opens avenues for targeted investigation of their roles in motor function and recovery after injury.
Collapse
Affiliation(s)
- Julia Kaiser
- Burke Neurological Institute, White Plains, NY, 10605
| | - Payal Patel
- Burke Neurological Institute, White Plains, NY, 10605
| | - Sam Fedde
- Burke Neurological Institute, White Plains, NY, 10605
| | | | | | - Asim Iqbal
- Burke Neurological Institute, White Plains, NY, 10605
- Tibbling Technologies, Redmond, WA, 98052
| | - Mark Goldberg
- Department of Neurology, UT Health Sciences Center San Antonio, San Antonio, TX, USA
| | - Vibhu Sahni
- Burke Neurological Institute, White Plains, NY, 10605
- Department of Neurology, UT Health Sciences Center San Antonio, San Antonio, TX, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, NY, 10065
| |
Collapse
|
4
|
Tamura K, Bech P, Mizuno H, Veaute L, Crochet S, Petersen CCH. Cell-class-specific orofacial motor maps in mouse neocortex. Curr Biol 2025; 35:1382-1390.e5. [PMID: 40015267 DOI: 10.1016/j.cub.2025.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/07/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Cortical motor maps represent fundamental organizing principles for voluntary motor control,1 yet their underlying structure remains poorly understood, including regions of sensory2,3 and parietal cortex,4 as well as the classical frontal motor cortex. To understand how anatomically distinct cortical areas are organized into functional units for controlling movements, here, we refined cortical motor maps by selectively stimulating genetically defined subpopulations of excitatory neurons. Surprisingly, we found spatially segregated modules in orofacial motor maps by optogenetically stimulating different classes of cortical excitatory neurons. The overall motor map for jaw opening revealed by stimulating all classes of excitatory neurons spanned the anterior lateral cortex broadly. By contrast, the jaw-opening motor maps of specific genetically defined cell classes were focalized either in primary motor, secondary motor, or primary somatosensory areas within the overall jaw-opening motor map of all excitatory neurons, demonstrating cell-class-specific motor map modules. Simultaneous wide-field calcium imaging revealed activity propagation from optically stimulated motor map modules to the primary motor area correlating with movement vigor. The motor map modules were largely stable across lick motor learning with important exceptions indicating cell-class-specific expansion into other module zones. Our data suggest that distinct cell-class-specific modules interacting across sensorimotor cortices might contribute to controlling orofacial movement.
Collapse
Affiliation(s)
- Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Pol Bech
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hidenobu Mizuno
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Léa Veaute
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| |
Collapse
|
5
|
Cho N, Kalia LV, Kalia SK. Re-examining the pathobiological basis of gait dysfunction in Parkinson's disease. Trends Neurosci 2025; 48:189-199. [PMID: 39884904 DOI: 10.1016/j.tins.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease (PD) is a significant source of morbidity, especially with an aging population. Gait problems, particularly freezing of gait (FOG), remain a persistent issue, causing falls and reduced quality of life without consistent responses to therapies. PD and related symptoms have classically been attributed to dopamine deficiency secondary to substantia nigra degeneration from Lewy body (LB) and Lewy neurite (LN) infiltration. However, Lewy-related pathology is present in other areas of the brainstem and spinal cord that control gait function, yet these other circuits have not been routinely considered in the design of current therapeutic options. In this review, we summarize changes in brainstem and spinal cord circuits in individuals affected by PD and the implications for understanding of gait dysfunction in PD.
Collapse
Affiliation(s)
- Newton Cho
- Department of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Lorraine V Kalia
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada; Department of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Department of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada; Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| |
Collapse
|
6
|
Syed DS, Ravbar P, Simpson JH. Inhibitory circuits generate rhythms for leg movements during Drosophila grooming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.05.597468. [PMID: 38895414 PMCID: PMC11185647 DOI: 10.1101/2024.06.05.597468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Limbs execute diverse actions coordinated by the nervous system through multiple motor programs. The basic architecture of motor neurons that activate muscles which articulate joints for antagonistic flexion and extension movements is conserved from flies to vertebrates. While excitatory premotor circuits are expected to establish sets of leg motor neurons that work together, our study uncovered an instructive role for inhibitory circuits - including their ability to generate rhythmic leg movements. Using electron microscopy data in the Drosophila nerve cord, we categorized ~120 GABAergic inhibitory neurons from the 13A and 13B hemilineages into classes based on similarities in morphology and connectivity. By mapping their connections, we uncovered pathways for inhibiting specific groups of motor neurons, disinhibiting antagonistic counterparts, and inducing alternation between flexion and extension. We tested the function of specific inhibitory neurons through optogenetic activation and silencing, using high resolution quantitative analysis of leg movements during grooming. We combined findings from anatomical and behavioral analyses to construct a computational model that can reproduce major aspects of the observed behavior, confirming sufficiency of these premotor inhibitory circuits to generate rhythms.
Collapse
Affiliation(s)
- Durafshan Sakeena Syed
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Primoz Ravbar
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Julie H. Simpson
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Lead Contact
| |
Collapse
|
7
|
Alasoadura M, Leclerc J, Hazime M, Leprince J, Vaudry D, Chuquet J. The Excessive Tonic Inhibition of the Peri-infarct Cortex Depresses Low Gamma Rhythm Power During Poststroke Recovery. J Neurosci 2024; 44:e1482232024. [PMID: 39406519 PMCID: PMC11622182 DOI: 10.1523/jneurosci.1482-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 12/06/2024] Open
Abstract
The cortex immediately surrounding a brain ischemic lesion, the peri-infarct cortex (PIC), harbors a large part of the potential to recover lost functions. However, our understanding of the neurophysiological conditions in which synaptic plasticity operates remains limited. Here we hypothesized that the chronic imbalance between excitation and inhibition of the PIC prevents the normalization of the gamma rhythm, a waveband of neural oscillations thought to orchestrate action potential trafficking. Probing the local field potential activity of the forelimb primary sensory cortex (S1FL) located in the PIC of male adult mice, we found a constant, deep reduction of low-gamma oscillation power (L-gamma; 30-50 Hz) precisely during the critical time window for recovery (1-3 weeks after stroke). The collapse of L-gamma power negatively correlated with behavioral progress in affected forelimb use. Mapping astrocyte reactivity and GABA-like immunoreactivity in the PIC revealed a parallel high signal, which gradually increased when approaching the lesion. Increasing tonic inhibition with local infusion of GABA or by blocking its recapture reduced L-gamma oscillation power in a magnitude similar to stroke. Conversely, the negative allosteric modulation of tonic GABA conductance using L655,708 or the gliopeptide ODN rescued the L-gamma power of the PIC. Altogether the present data point out that the chronic excess of ambient GABA in the PIC limits the generation of L-gamma oscillations in the repairing cortex and suggests that rehabilitative interventions aimed at normalizing low-gamma power within the critical period of stroke recovery could optimize the restitution of lost functions.
Collapse
Affiliation(s)
- Michael Alasoadura
- Univ Rouen Normandie, Normandie Univ, GRHVN UR3830, F-76000 Rouen, France
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - Juliette Leclerc
- Univ Rouen Normandie, Normandie Univ, GRHVN UR3830, F-76000 Rouen, France
| | - Mahmoud Hazime
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - David Vaudry
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - Julien Chuquet
- Univ Rouen Normandie, Normandie Univ, GRHVN UR3830, F-76000 Rouen, France
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| |
Collapse
|
8
|
Gutjahr R, Bothe MS, Jonsson T, Chagnaud BP. Diversification of pectoral control through motor pool extension. Proc Natl Acad Sci U S A 2024; 121:e2413415121. [PMID: 39602261 PMCID: PMC11626184 DOI: 10.1073/pnas.2413415121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
Flexible control of pectoral appendages enables motor behaviors of vastly different strength, speed, and amplitude, as in a human playing the piano or throwing a ball. Such control necessitates a fine-tuned, coordinated activation of motoneurons, which is facilitated by spatially ordered motoneuron pools in mammals. While differently sized neurons are known to contribute to different strengths of pectoral movements, it remains unclear how these pectoral motor pools are organized in less complex pectoral systems as those of teleost fish. We show how pectoral motor control can be extended to increase the speed- and amplitude-range of motor behaviors by investigating anatomical and physiological features of pectoral motoneurons and the motor pools they form in freshwater hatchet fish, well-known for their pectoral aerial escape response. Through the differentiation of one motor pool, the pectoral motor network of hatchet fish acquired additional flexibility to enable specific control of vastly different amplitudes, velocities, and strengths. Similar neuronal organization patterns have been described for controlling fast, intermediate, and slow axial muscles in zebrafish and in tetrapod motor systems controlling pectoral limbs. We show that hatchet fish share organizational principles of their pectoral motor pools with those found in other motor networks in both teleosts and tetrapods. Our data thus suggest that principles of spatial and physiological differentiation of motor pools associated with different pectoral muscles and behaviors might be deeply homologous between actinopterygian and sarcopterygian vertebrates.
Collapse
Affiliation(s)
- Ruth Gutjahr
- Department of Biology, University of Graz, Graz8010, Austria
| | | | - Thorin Jonsson
- Department of Biology, University of Graz, Graz8010, Austria
| | | |
Collapse
|
9
|
De Preter CC, Leimer EM, Sonneborn A, Heinricher MM. Comparative analysis of spike-sorters in large-scale brainstem recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623089. [PMID: 39605601 PMCID: PMC11601346 DOI: 10.1101/2024.11.11.623089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent technological advancements in high-density multi-channel electrodes have made it possible to record large numbers of neurons from previously inaccessible regions. While the performance of automated spike-sorters has been assessed in recordings from cortex, dentate gyrus, and thalamus, the most effective and efficient approach for spike-sorting can depend on the target region due to differing morphological and physiological characteristics. We therefore assessed the performance of five commonly used sorting packages, Kilosort3, MountainSort5, Tridesclous, SpyKING CIRCUS, and IronClust, in recordings from the rostral ventromedial medulla, a region that has been characterized using single-electrode recordings but that is essentially unexplored at the high-density network level. As demonstrated in other brain regions, each sorter produced unique results. Manual curation preferentially eliminated units detected by only one sorter. Kilosort3 and IronClust required the least curation while maintaining the largest number of units, whereas SpyKING CIRCUS and MountainSort5 required substantial curation. Tridesclous consistently identified the smallest number of units. Nonetheless, all sorters successfully identified classically defined RVM physiological cell types. These findings suggest that while the level of manual curation needed may vary across sorters, each can extract meaningful data from this deep brainstem site.
Collapse
Affiliation(s)
- Caitlynn C De Preter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Elizabeth M Leimer
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Mary M Heinricher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
10
|
Li Y, An X, Mulcahey PJ, Qian Y, Xu XH, Zhao S, Mohan H, Suryanarayana SM, Bachschmid-Romano L, Brunel N, Whishaw IQ, Huang ZJ. Cortico-thalamic communication for action coordination in a skilled motor sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563871. [PMID: 37961483 PMCID: PMC10634836 DOI: 10.1101/2023.10.25.563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photo-inhibition to survey across the cortex, we identified a cortical network and a high-order motor area (MOs-c), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photo-inhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CTMOs) output channels to action progression and hand-mouth coordination. Notably, CTMOs display sustained firing throughout RWD sequence and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CTMOs receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, motor cortex corticothalamic channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor sequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xu An
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yongjun Qian
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Current affiliation: College of Future technology, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Center of RNA Biology, Peking University, China
| | - X. Hermione Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Hemanth Mohan
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | | | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Ian Q. Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Research, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Z. Josh Huang
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
11
|
Gilmer JI, Coltman SK, Cuenu G, Hutchinson JR, Huber D, Person AL, Al Borno M. A novel biomechanical model of the mouse forelimb predicts muscle activity in optimal control simulations of reaching movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611289. [PMID: 39314302 PMCID: PMC11418950 DOI: 10.1101/2024.09.05.611289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mice are key model organisms in neuroscience and motor systems physiology. Fine motor control tasks performed by mice have become widely used in assaying neural and biophysical motor system mechanisms. Although fine motor tasks provide useful insights into behaviors which require complex multi-joint motor control, there is no previously developed physiological biomechanical model of the adult mouse forelimb available for estimating kinematics nor muscle activity or kinetics during behaviors. Here, we developed a musculoskeletal model based on high-resolution imaging of the mouse forelimb that includes muscles spanning the neck, trunk, shoulder, and limbs. Physics-based optimal control simulations of the forelimb model were used to estimate in vivo muscle activity present when constrained to the tracked kinematics during reaching movements. The activity of a subset of muscles was recorded and used to assess the accuracy of the muscle patterning in simulation. We found that the synthesized muscle patterning in the forelimb model had a strong resemblance to empirical muscle patterning, suggesting that our model has utility in providing a realistic set of estimated muscle excitations over time when given a kinematic template. The strength of the similarity between empirical muscle activity and optimal control predictions increases as mice performance improves throughout learning of the reaching task. Our computational tools are available as open-source in the OpenSim physics and modeling platform. Our model can enhance research into limb control across broad research topics and can inform analyses of motor learning, muscle synergies, neural patterning, and behavioral research that would otherwise be inaccessible.
Collapse
Affiliation(s)
- Jesse I Gilmer
- University of Colorado Denver ∣ Anschutz Medical Campus, Department of Computer Science and Engineering, Computational Bioscience Program
| | - Susan K Coltman
- The Pennsylvania State University, Department of Kinesiology
| | | | - John R Hutchinson
- Royal Veterinary College, Department of Comparative Biomedical Sciences
| | - Daniel Huber
- University of Geneva, Department of Basic Neuroscience
| | - Abigail L Person
- University of Colorado Denver ∣ Anschutz Medical Campus, Department of Physiology and Biophysics
| | - Mazen Al Borno
- University of Colorado Denver ∣ Anschutz Medical Campus, Department of Computer Science and Engineering, Computational Bioscience Program
| |
Collapse
|
12
|
Gomez-Galvez Y, Gupta M, Kaur M, Fusco S, Podda MV, Grassi C, Srivastava AK, Iacovitti L, Blanco-Suarez E. Recovery after human bone marrow mesenchymal stem cells (hBM-MSCs)-derived extracellular vesicles (EVs) treatment in post-MCAO rats requires repeated handling. PLoS One 2024; 19:e0312298. [PMID: 39432503 PMCID: PMC11493303 DOI: 10.1371/journal.pone.0312298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Rehabilitation is the only current intervention that improves sensorimotor function in ischemic stroke patients, similar to task-specific intensive training in animal models of stroke. Bone marrow mesenchymal stem cells (BM-MSCs)-derived extracellular vesicles (EVs) are promising in restoring brain damage and function in stroke models. Additionally, the non-invasive intranasal route allows EVs to reach the brain and target specific ischemic regions. Yet unclear is how handling might enhance recovery or influence other therapies such as EVs after stroke. We used the transient middle cerebral artery occlusion (MCAO) model of stroke in rats to assess how intensive handling alone, in the form of sensorimotor behavioral tests, or in combination with an intranasal treatment of EVs restored neurological function and ischemic damage. Handled rats were exposed to a battery of sensorimotor tests, including the modified Neurological Severity Score (mNSS), beam balance, corner, grid walking, forelimb placement, and cylinder tests, together with Magnetic Resonance Imaging (MRI) at 2, 7, 14, 21, and 28 days post-stroke (dps). Handled MCAO rats were also exposed to an intranasal multidose or single dose of EVs. Non-handled rats were evaluated only by mNSS and MRI at 2, 28, and 56 dps and were treated with a single intranasal dose of EVs. Our results showed that handling animals after MCAO is necessary for EVs to work at the tested dose and frequency, and that a single cumulative dose of EVs further improves the neurological function recovered during handling. These results show the importance of rehabilitation in combination with other treatments such as EVs, and highlight how extensive behavioral testing might influence functional recovery after stroke.
Collapse
Affiliation(s)
- Yolanda Gomez-Galvez
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- The Joseph and Marie Field Laboratory for Cerebrovascular Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Malvika Gupta
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Mandeep Kaur
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Amit K. Srivastava
- Division of Hematology, Department of Medicine, Cardeza Foundation for Hematologic Research, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lorraine Iacovitti
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- The Joseph and Marie Field Laboratory for Cerebrovascular Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Elena Blanco-Suarez
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- The Joseph and Marie Field Laboratory for Cerebrovascular Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
13
|
Barrett JM, Martin ME, Gao M, Druzinsky RE, Miri A, Shepherd GMG. Hand-Jaw Coordination as Mice Handle Food Is Organized around Intrinsic Structure-Function Relationships. J Neurosci 2024; 44:e0856242024. [PMID: 39251351 PMCID: PMC11484547 DOI: 10.1523/jneurosci.0856-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
Rodent jaws evolved structurally to support dual functionality, for either biting or chewing food. Rodent hands also function dually during food handling, for actively manipulating or statically holding food. How are these oral and manual functions coordinated? We combined electrophysiological recording of muscle activity and kilohertz kinematic tracking to analyze masseter and hand actions as mice of both sexes handled food. Masseter activity was organized into two modes synchronized to hand movement modes. In holding/chewing mode, mastication occurred as rhythmic (∼5 Hz) masseter activity while the hands held food below the mouth. In oromanual/ingestion mode, bites occurred as lower-amplitude aperiodic masseter events that were precisely timed to follow regrips (by ∼200 ms). Thus, jaw and hand movements are flexibly coordinated during food handling: uncoupled in holding/chewing mode and tightly coordinated in oromanual/ingestion mode as regrip-bite sequences. Key features of this coordination were captured in a simple model of hierarchically orchestrated mode-switching and intramode action sequencing. We serendipitously detected an additional masseter-related action, tooth sharpening, identified as bouts of higher-frequency (∼13 Hz) rhythmic masseter activity, which was accompanied by eye displacement, including rhythmic proptosis, attributable to masseter contractions. Collectively, the findings demonstrate how a natural, complex, and goal-oriented activity is organized as an assemblage of distinct modes and complex actions, adapted for the divisions of function arising from anatomical structure. These results reveal intricate, high-speed coordination of disparate effectors and show how natural forms of dexterity can serve as a model for understanding the behavioral neurobiology of multi-body-part coordination.
Collapse
Affiliation(s)
- John M Barrett
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Megan E Martin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Mang Gao
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Robert E Druzinsky
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Andrew Miri
- Department of Neurobiology, Northwestern University, Evanston, Illinois, 60208
| | - Gordon M G Shepherd
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| |
Collapse
|
14
|
Bollu T, Whitehead SC, Prasad N, Walker J, Shyamkumar N, Subramaniam R, Kardon B, Cohen I, Goldberg JH. Motor cortical inactivation impairs corrective submovements in mice performing a hold-still center-out reach task. J Neurophysiol 2024; 132:829-848. [PMID: 39081209 PMCID: PMC11427071 DOI: 10.1152/jn.00241.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Holding still and aiming reaches to spatial targets may depend on distinct neural circuits. Using automated homecage training and a sensitive joystick, we trained freely moving mice to contact a joystick, hold their forelimb still, and then reach to rewarded target locations. Mice learned the task by initiating forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets. Hundreds of thousands of trajectories were decomposed into millions of kinematic submovements, while photoinhibition was used to test roles of motor cortical areas. Inactivation of both caudal and rostral forelimb areas preserved the ability to produce aimed reaches, but reduced reach speed. Inactivation specifically of contralateral caudal forelimb area (CFA) additionally impaired the ability to aim corrective submovements to remembered locations following target undershoots. Our findings show that motor cortical inactivations reduce the gain of forelimb movements but that inactivation specifically of contralateral CFA impairs corrective movements important for reaching a target location.NEW & NOTEWORTHY To test the role of different cortical areas in holding still and reaching to targets, this study combined home-cage training with optogenetic silencing as mice engaged in a learned center-out-reach task. Inactivation specifically of contralateral caudal forelimb area (CFA) impaired corrective movements necessary to reach spatial targets to earn reward.
Collapse
Affiliation(s)
- Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Samuel C Whitehead
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Nikil Prasad
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Jackson Walker
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Nitin Shyamkumar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Raghav Subramaniam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| |
Collapse
|
15
|
Skrobot M, Sa RD, Walter J, Vogt A, Paulat R, Lips J, Mosch L, Mueller S, Dominiak S, Sachdev R, Boehm-Sturm P, Dirnagl U, Endres M, Harms C, Wenger N. Refined movement analysis in the staircase test reveals differential motor deficits in mouse models of stroke. J Cereb Blood Flow Metab 2024; 44:1551-1564. [PMID: 39234984 PMCID: PMC11418716 DOI: 10.1177/0271678x241254718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 09/06/2024]
Abstract
Accurate assessment of post-stroke deficits is crucial in translational research. Recent advances in machine learning offer precise quantification of rodent motor behavior post-stroke, yet detecting lesion-specific upper extremity deficits remains unclear. Employing proximal middle cerebral artery occlusion (MCAO) and cortical photothrombosis (PT) in mice, we assessed post-stroke impairments via the Staircase test. Lesion locations were identified using 7 T-MRI. Machine learning was applied to reconstruct forepaw kinematic trajectories and feature analysis was achieved with MouseReach, a new data-processing toolbox. Lesion reconstructions pinpointed ischemic centers in the striatum (MCAO) and sensorimotor cortex (PT). Pellet retrieval alterations were observed, but were unrelated to overall stroke volume. Instead, forepaw slips and relative reaching success correlated with increasing cortical lesion size in both models. Striatal lesion size after MCAO was associated with prolonged reach durations that occurred with delayed symptom onset. Further analysis on the impact of selective serotonin reuptake inhibitors in the PT model revealed no clear treatment effects but replicated strong effect sizes of slips for post-stroke deficit detection. In summary, refined movement analysis unveiled specific deficits in two widely-used mouse stroke models, emphasizing the value of deep behavioral profiling in preclinical stroke research to enhance model validity for clinical translation.
Collapse
Affiliation(s)
- Matej Skrobot
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael De Sa
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Josefine Walter
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arend Vogt
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Raik Paulat
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Janet Lips
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Mosch
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Dominiak
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Robert Sachdev
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Boehm-Sturm
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- QUEST Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- DZNE (German Center for Neurodegenerative Diseases), Berlin, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
- DZNE (German Center for Neurodegenerative Diseases), Berlin, Germany
- DZPG (German Center of Mental Health), Berlin, Germany
| | - Christoph Harms
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Nikolaus Wenger
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Dautan D, Paslawski W, Montejo SG, Doyon DC, Marangiu R, Kaplitt MG, Chen R, Dawson VL, Zhang X, Dawson TM, Svenningsson P. Gut-Initiated Alpha Synuclein Fibrils Drive Parkinson's Disease Phenotypes: Temporal Mapping of non-Motor Symptoms and REM Sleep Behavior Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590542. [PMID: 38712208 PMCID: PMC11071367 DOI: 10.1101/2024.04.22.590542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Parkinson's disease (PD) is characterized by progressive motor as well as less recognized non-motor symptoms that arise often years before motor manifestation, including sleep and gastrointestinal disturbances. Despite the heavy burden on the patient's quality of life, these non-motor manifestations are poorly understood. To elucidate the temporal dynamics of the disease, we employed a mouse model involving injection of alpha-synuclein (αSyn) pre-formed fibrils (PFF) in the duodenum and antrum as a gut-brain model of Parkinsonism. Using anatomical mapping of αSyn-PFF propagation and behavioral and physiological characterizations, we unveil a correlation between post-injection time the temporal dynamics of αSyn propagation and non-motor/motor manifestations of the disease. We highlight the concurrent presence of αSyn aggregates in key brain regions, expressing acetylcholine or dopamine, involved in sleep duration, wakefulness, and particularly REM-associated atonia corresponding to REM behavioral disorder-like symptoms. This study presents a novel and in-depth exploration into the multifaceted nature of PD, unraveling the complex connections between α-synucleinopathies, gut-brain connectivity, and the emergence of non-motor phenotypes.
Collapse
Affiliation(s)
- Daniel Dautan
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sergio G. Montejo
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Daniel C. Doyon
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Roberta Marangiu
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Division of Neurosurgery, Department of Neurosurgery, New-York Hospital-Cornell Medical College, New York, NY, USA
| | - Michael G. Kaplitt
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Division of Neurosurgery, Department of Neurosurgery, New-York Hospital-Cornell Medical College, New York, NY, USA
| | - Rong Chen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valina L. Dawson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xiaoaun Zhang
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ted M. Dawson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
17
|
Gmaz JM, Keller JA, Dudman JT, Gallego JA. Integrating across behaviors and timescales to understand the neural control of movement. Curr Opin Neurobiol 2024; 85:102843. [PMID: 38354477 DOI: 10.1016/j.conb.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/03/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
The nervous system evolved to enable navigation throughout the environment in the pursuit of resources. Evolutionarily newer structures allowed increasingly complex adaptations but necessarily added redundancy. A dominant view of movement neuroscientists is that there is a one-to-one mapping between brain region and function. However, recent experimental data is hard to reconcile with the most conservative interpretation of this framework, suggesting a degree of functional redundancy during the performance of well-learned, constrained behaviors. This apparent redundancy likely stems from the bidirectional interactions between the various cortical and subcortical structures involved in motor control. We posit that these bidirectional connections enable flexible interactions across structures that change depending upon behavioral demands, such as during acquisition, execution or adaptation of a skill. Observing the system across both multiple actions and behavioral timescales can help isolate the functional contributions of individual structures, leading to an integrated understanding of the neural control of movement.
Collapse
Affiliation(s)
- Jimmie M Gmaz
- Department of Bioengineering, Imperial College London, London, UK. https://twitter.com/j_gmaz
| | - Jason A Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA. https://twitter.com/jakNeurd
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA.
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
18
|
Jordan GA, Vishwanath A, Holguin G, Bartlett MJ, Tapia AK, Winter GM, Sexauer MR, Stopera CJ, Falk T, Cowen SL. Automated system for training and assessing reaching and grasping behaviors in rodents. J Neurosci Methods 2024; 401:109990. [PMID: 37866457 PMCID: PMC10731814 DOI: 10.1016/j.jneumeth.2023.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Reaching, grasping, and pulling behaviors are studied across species to investigate motor control and problem solving. String pulling is a distinct reaching and grasping behavior that is rapidly learned, requires bimanual coordination, is ethologically grounded, and has been applied across species and disease conditions. NEW METHOD Here we describe the PANDA system (Pulling And Neural Data Analysis), a hardware and software system that integrates a continuous string loop connected to a rotary encoder, feeder, microcontroller, high-speed camera, and analysis software for the assessment and training of reaching, grasping, and pulling behaviors and synchronization with neural data. RESULTS We demonstrate this system in rats implanted with electrodes in motor cortex and hippocampus and show how it can be used to assess relationships between reaching, pulling, and grasping movements and single-unit and local-field activity. Furthermore, we found that automating the shaping procedure significantly improved performance over manual training, with rats pulling > 100 m during a 15-minute session. COMPARISON WITH EXISTING METHODS String-pulling is typically shaped by tying food reward to the string and visually scoring behavior. The system described here automates training, streamlines video assessment with deep learning, and automatically segments reaching movements into distinct reach/pull phases. No system, to our knowledge, exists for the automated shaping and assessment of this behavior. CONCLUSIONS This system will be of general use to researchers investigating motor control, motivation, sensorimotor integration, and motor disorders such as Parkinson's disease and stroke.
Collapse
Affiliation(s)
- Gianna A Jordan
- Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Andrew K Tapia
- Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | | | | | | | - Torsten Falk
- Neurology, University of Arizona, Tucson, AZ, USA; Pharmacology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
19
|
Xu F, Liu Q. Virus-Based Neural Circuit Tracing. ADVANCES IN NEUROBIOLOGY 2024; 41:113-131. [PMID: 39589712 DOI: 10.1007/978-3-031-69188-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neural circuits provide an anatomical basis for functional networks. Therefore, dissecting the structure of neural circuits is an indispensable prerequisite to understanding how the brain functions. Knowing how the neural circuits organize and function under physiological conditions and their progressive alterations under pathophysiological conditions are key to understanding the underlying circuit mechanism of diseases, thus finding cures for the diseases. Recombinant neurotropic viruses are important tools for neural circuit tracing with many advantages over non-viral tracers: they allow for anterograde, retrograde, and trans-synaptic delivery of tracers in a cell-type-specific, circuit-selective manner. We herein summarize the recent developments in the viral tools for neural circuit tracing, discuss the key principles of using viral tools in neuroscience research, and highlight innovations for developing and optimizing viral tools for neural circuit tracing across diverse animal species, including nonhuman primates.
Collapse
Affiliation(s)
- Fuqiang Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China.
| | - Qing Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Gómez-Ocádiz R, Silberberg G. Corticostriatal pathways for bilateral sensorimotor functions. Curr Opin Neurobiol 2023; 83:102781. [PMID: 37696188 DOI: 10.1016/j.conb.2023.102781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023]
Abstract
Corticostriatal pathways are essential for a multitude of motor, sensory, cognitive, and affective functions. They are mediated by cortical pyramidal neurons, roughly divided into two projection classes: the pyramidal tract (PT) and the intratelencephalic tract (IT). These pathways have been the focus of numerous studies in recent years, revealing their distinct structural and functional properties. Notably, their synaptic connectivity within ipsi- and contralateral cortical and striatal microcircuits is characterized by a high degree of target selectivity, providing a means to regulate the local neuromodulatory landscape in the striatum. Here, we discuss recent findings regarding the functional organization of the PT and IT corticostriatal pathways and its implications for bilateral sensorimotor functions.
Collapse
Affiliation(s)
- Ruy Gómez-Ocádiz
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden. https://twitter.com/@RuyGomezOcadiz
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
21
|
Garau C, Hayes J, Chiacchierini G, McCutcheon JE, Apergis-Schoute J. Involvement of A13 dopaminergic neurons in prehensile movements but not reward in the rat. Curr Biol 2023; 33:4786-4797.e4. [PMID: 37816347 DOI: 10.1016/j.cub.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Tyrosine hydroxylase (TH)-containing neurons of the dopamine (DA) cell group A13 are well positioned to impact known DA-related functions as their descending projections innervate target regions that regulate vigilance, sensory integration, and motor execution. Despite this connectivity, little is known regarding the functionality of A13-DA circuits. Using TH-specific loss-of-function methodology and techniques to monitor population activity in transgenic rats in vivo, we investigated the contribution of A13-DA neurons in reward and movement-related actions. Our work demonstrates a role for A13-DA neurons in grasping and handling of objects but not reward. A13-DA neurons responded strongly when animals grab and manipulate food items, whereas their inactivation or degeneration prevented animals from successfully doing so-a deficit partially attributed to a reduction in grip strength. By contrast, there was no relation between A13-DA activity and food-seeking behavior when animals were tested on a reward-based task that did not include a reaching/grasping response. Motivation for food was unaffected, as goal-directed behavior for food items was in general intact following A13 neuronal inactivation/degeneration. An anatomical investigation confirmed that A13-DA neurons project to the superior colliculus (SC) and also demonstrated a novel A13-DA projection to the reticular formation (RF). These results establish a functional role for A13-DA neurons in prehensile actions that are uncoupled from the motivational factors that contribute to the initiation of forelimb movements and help position A13-DA circuits into the functional framework regarding centrally located DA populations and their ability to coordinate movement.
Collapse
Affiliation(s)
- Celia Garau
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | - Jessica Hayes
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Giulia Chiacchierini
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Physiology and Pharmacology, La Sapienza University of Rome, 00185 Rome, Italy; Laboratory of Neuropsychopharmacology, Santa Lucia Foundation, 00143 Rome, Italy
| | - James E McCutcheon
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037 Tromsø, Norway
| | - John Apergis-Schoute
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
22
|
Jordan GA, Vishwanath A, Holguin G, Bartlett MJ, Tapia AK, Winter GM, Sexauer MR, Stopera CJ, Falk T, Cowen SL. Automated system for training and assessing string-pulling behaviors in rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.02.547431. [PMID: 37461637 PMCID: PMC10349952 DOI: 10.1101/2023.07.02.547431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
String-pulling tasks have been used for centuries to study coordinated bimanual motor behavior and problem solving. String pulling is rapidly learned, ethologically grounded, and has been applied to many species and disease conditions. Typically, training of string-pulling behaviors is achieved through manual shaping and baiting. Furthermore, behavioral assessment of reaching, grasping, and pulling is often performed through labor intensive manual video scoring. No system, to our knowledge, currently exists for the automated shaping and assessment of string-pulling behaviors. Here we describe the PANDA system (Pulling And Neural Data Analysis), an inexpensive hardware and software system that utilizes a continuous string loop connected to a rotary encoder, feeder, microcontroller, high-speed camera, and analysis software for assessment and training of string-pulling behaviors and synchronization with neural recording data. We demonstrate this system in unimplanted rats and rats implanted with electrodes in motor cortex and hippocampus and show how the PANDA system can be used to assess relationships between paw movements and single-unit and local-field activity. We also found that automating the shaping procedure significantly improved overall performance, with rats regularly pulling >100 meters during a 15-minute session. In conclusion, the PANDA system will be of general use to researchers investigating motor control, motivation, and motor disorders such as Parkinson's disease, Huntington's disease, and stroke. It will also support the investigation of neural mechanisms involved in sensorimotor integration.
Collapse
Affiliation(s)
| | | | | | | | - Andrew K. Tapia
- Biomedical Engineering, University of Arizona, Tucson Arizona
| | | | | | | | - Torsten Falk
- Neurology, University of Arizona, Tucson Arizona
- Pharmacology, University of Arizona, Tucson Arizona
| | | |
Collapse
|
23
|
Sainsbury TTJ, Mathis MW. Reaching an understanding of cortico-medullary control of forelimb behaviors. Cell 2023; 186:14-16. [PMID: 36608650 DOI: 10.1016/j.cell.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023]
Abstract
How the neocortex modulates hindbrain and spinal circuits is of fundamental interest for understanding motor control and adaptive behaviors. New work from Yang, Kanodia, and Arber demonstrates that there is an exquisite anatomical organization and functional modulation from the anterior (motor) cortex on downstream medulla populations during forelimb behaviors in mice.
Collapse
|