1
|
Tu S, Wang J, Yang P, He Y, Gong Z, Zhong W. Enhanced chlorogenic acid production from glucose via systematic metabolic engineering of Saccharomyces cerevisiae. Synth Syst Biotechnol 2025; 10:707-718. [PMID: 40248482 PMCID: PMC12002710 DOI: 10.1016/j.synbio.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 04/19/2025] Open
Abstract
Chlorogenic acid (CGA) is a valuable phenolic acid with various pharmaceutical functions. In our previous study, de novo synthesis of CGA in Saccharomyces cerevisiae was achieved. However, its yield required improvement before large scale production. In this study, systematic metabolic engineering strategy was used to reconstruct chassis cell S. cerevisiae YC0707 to enhance its CGA yield from glucose. To balance the supply of phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P), ZWF1 (encoding glucose-6-phosphate dehydrogenase) and GND1 (encoding 6-phosphogluconate dehydrogenase) were overexpressed by strong promoter P TEF1 swapping, thereby strengthening the pentose phosphate pathway. The mutant of phosphofructokinase (PFK2 S718D ) was further introduced to weaken the glycolytic pathway. Then, the p-coumaric acid synthesis capacity was enhanced by employing tyrosine ammonia lyase from Rhodotorula glutinis (RgTAL), ΔHAM1, and ΔYJL028W. Fusion expression of AtC4H (cinnamate-4-hydroxylase) and At4CL1 (4-coumarate CoA ligase 1), together with CsHQT (hydroxycinnamoyl CoA quinate transferase) and AtC3'H (p-coumaroyl shikimate 3-hydroxylase), improved biosynthetic flux to CGA. Subsequently, the microenvironment of P450 enzymes was improved by overexpressing INO2 (a transcription factor for lipid biosynthesis) and removal of heme oxygenase gene HMX1. Furthermore, screening potential transporters to facilitate CGA accumulation. Finally, we optimized the fermentation conditions. Using these strategies, CGA titers increased from 234.8 mg/L to 837.2 mg/L in shake flasks and reached 1.62 g/L in a 5-L bioreactor, representing the highest report in S. cerevisiae and providing new insights for CGA production.
Collapse
Affiliation(s)
- Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pengming Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhixing Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Shi S, Chen Y, Nielsen J. Metabolic Engineering of Yeast. Annu Rev Biophys 2025; 54:101-120. [PMID: 39836878 DOI: 10.1146/annurev-biophys-070924-103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Microbial cell factories have been developed to produce various compounds in a sustainable and economically viable manner. The yeast Saccharomyces cerevisiae has been used as a platform cell factory in industrial biotechnology with numerous advantages, including ease of operation, rapid growth, and tolerance for various industrial stressors. Advances in synthetic biology and metabolic models have accelerated the design-build-test-learn cycle in metabolic engineering, significantly facilitating the development of yeast strains with complex phenotypes, including the redirection of metabolic fluxes to desired products, the expansion of the spectrum of usable substrates, and the improvement of the physiological properties of strain. Strains with enhanced titer, rate, and yield are now competing with traditional petroleum-based industrial approaches. This review highlights recent advances and perspectives in the metabolic engineering of yeasts for the production of a variety of compounds, including fuels, chemicals, proteins, and peptides, as well as advancements in synthetic biology tools and mathematical modeling.
Collapse
Affiliation(s)
- Shuobo Shi
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jens Nielsen
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- BioInnovation Institute, Copenhagen, Denmark
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden;
| |
Collapse
|
3
|
Fan C, Fan J, Chen H, Lin S, Zhang D, Song J, Wang J, Wang Y, Han X, Yuan J. Switching the yeast metabolism via manipulation of sugar phosphorylation. Metab Eng 2025; 89:76-85. [PMID: 39988025 DOI: 10.1016/j.ymben.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Saccharomyces cerevisiae predominantly ferments sugar to ethanol, irrespective of the presence of oxygen, which is known as the Crabtree-effect. Traditional methods rely on static controls of glycolytic flux to make S. cerevisiae Crabtree-negative, which are not favorable for future biomanufacturing applications. Considering native metabolic pathways typically harness dynamic regulatory networks, we therefore aim to develop an alternative strategy using dynamic regulation of the yeast central metabolism to generate Crabtree-negative S. cerevisiae. We report that manipulating a single step at sugar phosphorylation can alter the mode of yeast metabolism with an attenuated Crabtree-effect. By implementing catabolite-regulated sugar phosphorylation, the diauxic shift in budding yeast was effectively reduced. The Crabtree-attenuated metabolism in the engineered yeast was confirmed by multidimensional characterizations such as cell morphology, the measurements of sugar utilization rate and ethanol production, and transcriptomics. In addition, we demonstrated that the Crabtree-attenuated metabolism could substantially improve the mitochondrial synthesis of short branched-chain fatty acids from amino acid catabolism, and allow the synthesis and accumulation of retinaldehyde. Taken together, we present for the first time that manipulation of sugar phosphorylation can alter the mode of yeast metabolism, and the synthetic Crabtree-attenuated yeast factory established here might serve as a non-fermentative biomanufacturing chassis.
Collapse
Affiliation(s)
- Cong Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jian Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Haofeng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Shujin Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Danli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Jingya Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Junyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Yan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, 350108, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian, 361102, China; Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Fujian, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Tang S, Gao W, Guo Q, Wei D, Wang FQ. Orchestrating multiple subcellular organelles of Saccharomyces cerevisiae for efficient production of squalene. BIORESOURCE TECHNOLOGY 2025; 424:132294. [PMID: 39999895 DOI: 10.1016/j.biortech.2025.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Squalene widely used in medicines, food, and cosmetics. Subcellular organelle engineering is an effective way to develop squalene-hyperproducing yeasts. Here, we demonstrated that synergistically modifying multiple organelles in Saccharomyces cerevisiae, including mitochondria, endoplasmic reticulum (ER), lipid droplets (LDs), and cell wall (CW), effectively increased squalene production. Based on the previously developed dual cytoplasmic-mitochondrial engineering strain SquMC13, squalene production capacity was further enhanced by improving the ER function for protein expression, expanding the LDs size for squalene storage, and increasing CW integrity to maintain high cell viability. Combinatorial modification of these organelles enhanced squalene productivity to 3.4-times that of SquMC13. NADPH generation was optimized, resulting in a further 3.9 % increase in squalene production. An efficient strain for squalene production was developed, the squalene production titer of which reached 55.8 g/L with 0.5 g/L/h productivity and specific cell production of 0.5 g/g dry cell weight, paving the way for industrial squalene production.
Collapse
Affiliation(s)
- Shuyan Tang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Wenzhuo Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Qidi Guo
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
5
|
Guo B, Yu W, Xu X, Liu Y, Liu Y, Du G, Liu L, Lv X. Adaptively Evolved and Multiplexed Engineered Saccharomyces cerevisiae for Neutralizer-Free Production of l-Lactic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9009-9018. [PMID: 40191959 DOI: 10.1021/acs.jafc.4c12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
l-Lactic acid is a three-carbon monocarboxylic acid that has extensive applications. However, the bioproduction of l-lactic acid requires the addition of neutralizers, which significantly increases the production costs and can cause environmental pollution. To address this, a Saccharomyces cerevisiae mutant, TMG2, which can tolerate a lactic acid environment (pH 2.60), was obtained through adaptive laboratory evolution. Subsequently, the "push-pull-restrain" strategy was used to improve l-lactic acid production, resulting in a production of 46.8 g/L l-lactic acid. Finally, by overexpressing the transport protein pPfFNT and improving the NADH and acetyl-CoA supply, the l-lactic acid titer of strain TMG27 was improved by 33.8% to 62.6 g/L. Without neutralizers, the l-lactic acid titer reached 76.2 g/L (the fermentation pH was 2.90) with a productivity of 2.1 g/(L h) in a 5-L bioreactor, representing the highest productivity ever reported. Collectively, these results lay the foundation for the environmentally friendly bioproduction of l-lactic acid.
Collapse
Affiliation(s)
- Baoyuan Guo
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Yixing Institute of Food Biotechnology Co., Ltd., Yixing 214200, China
| | - Wenwen Yu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yujie Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Henan Jindan Lactic Acid Technology Co., Ltd., Dancheng 477100, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Guo Y, Xiong Z, Zhai H, Wang Y, Qi Q, Hou J. The advances in creating Crabtree-negative Saccharomyces cerevisiae and the application for chemicals biosynthesis. FEMS Yeast Res 2025; 25:foaf014. [PMID: 40121184 PMCID: PMC11974387 DOI: 10.1093/femsyr/foaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Saccharomyces cerevisiae is a promising microbial cell factory. However, the overflow metabolism, known as the Crabtree effect, directs the majority of the carbon source toward ethanol production, in many cases, resulting in low yields of other target chemicals and byproducts accumulation. To construct Crabtree-negative S. cerevisiae, the deletion of pyruvate decarboxylases and/or ethanol dehydrogenases is required. However, these modifications compromises the growth of the strains on glucose. This review discusses the metabolic engineering approaches used to eliminate ethanol production, the efforts to alleviate growth defect of Crabtree-negative strains, and the underlying mechanisms of the growth rescue. In addition, it summarizes the applications of Crabtree-negative S. cerevisiae in the synthesis of various chemicals such as lactic acid, 2,3-butanediol, malic acid, succinic acid, isobutanol, and others.
Collapse
Affiliation(s)
- Yalin Guo
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Zhen Xiong
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Haotian Zhai
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Yuqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
7
|
Zhang M, Zhao S. Different transcriptomic and metabolomic analysis of Saccharomyces cerevisiae BY4742 and CEN.PK2-1C strains. Arch Microbiol 2024; 206:460. [PMID: 39508902 DOI: 10.1007/s00203-024-04178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
To establish efficient yeast cell factories, it is necessary to understand the transcriptional and metabolic changes among different yeasts. Saccharomyces cerevisiae BY4742 and CEN.PK2-1C strains are originated from different yeast strains and are commonly used as model organisms and chassis cells in molecular biology study and synthetic biology-based natural production. Metabolomic analysis showed that the BY4742 strain produced higher levels of phenylalanine, tyrosine than CEN.PK2-1C, while CEN.PK2-1C produced high levels of indoleacetaldehyde, indolepyruvate. Transcriptomic analysis showed that the two strains showed large differences in the glycolysis pathway and pyruvate metabolism pathway. CEN.PK2-1C had greater glycolysis flux than BY4742, whereas BY4742 has greater flux in the pathway of pyruvate metabolism to produce fumarate. These findings provide a basis knowledge of the metabolomic and transcriptomic differences between BY4742 and CEN.PK2-1C strains, and also provide preliminary information for strain selection for molecular biology study and synthetic biology-based natural product production.
Collapse
Affiliation(s)
- Meihong Zhang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Lin X, Jiao R, Cui H, Yan X, Zhang K. Physiochemically and Genetically Engineered Bacteria: Instructive Design Principles and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403156. [PMID: 38864372 PMCID: PMC11321697 DOI: 10.1002/advs.202403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/18/2024] [Indexed: 06/13/2024]
Abstract
With the comprehensive understanding of microorganisms and the rapid advances of physiochemical engineering and bioengineering technologies, scientists are advancing rationally-engineered bacteria as emerging drugs for treating various diseases in clinical disease management. Engineered bacteria specifically refer to advanced physiochemical or genetic technologies in combination with cutting edge nanotechnology or physical technologies, which have been validated to play significant roles in lysing tumors, regulating immunity, influencing the metabolic pathways, etc. However, there has no specific reviews that concurrently cover physiochemically- and genetically-engineered bacteria and their derivatives yet, let alone their distinctive design principles and various functions and applications. Herein, the applications of physiochemically and genetically-engineered bacteria, and classify and discuss significant breakthroughs with an emphasis on their specific design principles and engineering methods objective to different specific uses and diseases beyond cancer is described. The combined strategies for developing in vivo biotherapeutic agents based on these physiochemically- and genetically-engineered bacteria or bacterial derivatives, and elucidated how they repress cancer and other diseases is also underlined. Additionally, the challenges faced by clinical translation and the future development directions are discussed. This review is expected to provide an overall impression on physiochemically- and genetically-engineered bacteria and enlighten more researchers.
Collapse
Affiliation(s)
- Xia Lin
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Rong Jiao
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Haowen Cui
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| | - Xuebing Yan
- Department of OncologyAffiliated Hospital of Yangzhou University. No.368Hanjiang Road, Hanjiang DistrictYangzhouJiangsu Province225012China
| | - Kun Zhang
- Central Laboratory and Department of UltrasoundSichuan Academy of Medical SciencesSichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072China
| |
Collapse
|
9
|
Fang L, Chen Y, He Q, Wang L, Duan Q, Huang C, Song H, Cao Y. Mining novel gene targets for improving tolerance to furfural and acetic acid in Yarrowia lipolytica using whole-genome CRISPRi library. BIORESOURCE TECHNOLOGY 2024; 403:130764. [PMID: 38718903 DOI: 10.1016/j.biortech.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/28/2024] [Indexed: 05/20/2024]
Abstract
Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.
Collapse
Affiliation(s)
- Lixia Fang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yaru Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qianxi He
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Luxin Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qiyang Duan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Congcong Huang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Wang L, Mei Z, Jin G, Liu H, Lv S, Fu R, Li M, Yao C. In situ sustained release hydrogel system delivering GLUT1 inhibitor and chemo-drug for cancer post-surgical treatment. Bioact Mater 2024; 36:541-550. [PMID: 39072288 PMCID: PMC11276927 DOI: 10.1016/j.bioactmat.2024.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Systematic administration of small molecular drugs often suffered from the low efficacy and systemic toxicity in cancer therapy. In addition, application of single mode drug usually leads to unsatisfactory therapeutic outcomes. Currently, developing multimodal-drug combination strategy that acts on different pathways without increasing side effects remains great challenge. Here, we developed a hydrogel system that co-delivered glycolysis inhibitor apigenin and chemo-drug gemcitabine to realize combination strategy for combating cancer with minimal systemic toxicity. We demonstrated that this system can not only eliminate tumor cells in situ, but also induce abscopal effect on various tumor models. These results showed that our study provided a safe and effective strategy for clinical cancer treatment.
Collapse
Affiliation(s)
- Lanqing Wang
- Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zi Mei
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Guanyu Jin
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Hao Liu
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Shixian Lv
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Runjia Fu
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Muxing Li
- School of Stomatology, School of Materials Science and Engineering, Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Cuiping Yao
- Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Qin D, Chen Z, Deng X, Liu X, Peng L, Li G, Liu Y, Zhu X, Ding Q, Zhang X, Bao S. CD24+ decidual stromal cells: a novel heterogeneous population with impaired regulatory T cell induction and potential association with recurrent miscarriage. Fertil Steril 2024; 121:519-530. [PMID: 38036240 DOI: 10.1016/j.fertnstert.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE To explore the heterogeneity of CD24+ decidual stromal cells (DSCs) in patients with recurrent miscarriages (RMs). DESIGN We have discerned that the expression of CD24 serves to differentiate two stable and functionally distinct lineages of DSCs. The heterogeneity of CD24+ DSCs has been scrutinized, encompassing variances in stromal markers, transcriptional profiles, metabolic activity, and immune regulation. SETTING Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University; Shanghai Institute of Immunity and Infection, Chinese Academy of Science. PATIENTS A total of 129 early decidual samples were obtained, comprising 36 from healthy donors and 93 from patients with RMs. Blood samples were collected before the surgical procedure. Paraffin-embedded segments from 20 decidual samples of patients with RMs were obtained. INTERVENTIONS None. MAIN OUTCOME MEASURES The flow cytometry was used to quantify the expression of CD24+ DSCs in both healthy donors and patients with RMs, although it also evaluated the cellular heterogeneity. To ascertain the transcriptomic profiles of CD24+ DSCs by reanalyzing our single-cell transcriptomic data. Additionally, to measure the metabolomic activity of CD24+ DSCs from patients with RMs, ultraperformance liquid chromatography-mass spectrometry was employed. Through the implementation of a coculture system, we unraveled the role of CD24+ DSCs in immune regulation. RESULTS Patients with RMs exhibit a notable enrichment of CD24+ DSCs, revealing a pronounced heterogeneity characterized by variations in stromal markers and transcriptional profiles. The heightened enrichment of CD24+ DSCs may play a pivotal role in triggering decidual inflammation and dysfunction in decidualization. Furthermore, CD24+ DSCs showed diverse metabolic activities and impeded the induction of naïve CD4+ T cells into regulatory T cells through the abundant secretion of 3-hydroxyisovaleric acid. Finally, our investigations have revealed that intraperitoneal administration of 3-hydroxyisovaleric acid in mouse models can elevate the risk of RM. CONCLUSION We have successfully identified a disease-associated subset of CD24+ decidual stromal cells that could potentially contribute to the development of RM through the impairment of decidual immune tolerance. Targeting these specific CD24+ DSCs might hold promising prospects for therapeutic interventions in the clinical management of RM.
Collapse
Affiliation(s)
- Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Zechuan Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoshan Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China; Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Liying Peng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuan Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiuxian Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qiuhong Ding
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoming Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People's Republic of China
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Qin N, Li L, Wan X, Ji X, Chen Y, Li C, Liu P, Zhang Y, Yang W, Jiang J, Xia J, Shi S, Tan T, Nielsen J, Chen Y, Liu Z. Increased CO 2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast. Nat Commun 2024; 15:1591. [PMID: 38383540 PMCID: PMC10881976 DOI: 10.1038/s41467-024-45557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.
Collapse
Affiliation(s)
- Ning Qin
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lingyun Li
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Xiaozhen Wan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xu Ji
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chaokun Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Ping Liu
- The State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Zhang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weijie Yang
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junfeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianye Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark.
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
13
|
Amaro-Reyes A, Marcial-Ramírez D, Vázquez-Landaverde PA, Utrilla J, Escamilla-García M, Regalado C, Macias-Bobadilla G, Campos-Guillén J, Ramos-López MA, Favela-Camacho SE. Electrostatic Fermentation: Molecular Response Insights for Tailored Beer Production. Foods 2024; 13:600. [PMID: 38397576 PMCID: PMC10887865 DOI: 10.3390/foods13040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Electrostatic fermentation avoids the cellular redox imbalance of traditional fermentation, but knowledge gaps exist. This study explores the impact of electrostatic fermentation on the growth, volatile profile, and genetic response of Saccharomyces pastorianus Saflager S-23. The applied voltage (15 and 30 V) in the electrostatic fermentation system increased the growth and substrate utilization of S. pastorianus while decreasing ethanol production. The aromas typically associated with traditional fermentation, such as alcoholic, grape, apple, and sweet notes, were diminished, while aromas like roses, fruits, flowers, and bananas were augmented in electrostatic fermentation. RNA-seq analysis revealed upregulation of genes involved in cell wall structure, oxidoreductase activity, and iron ion binding, while genes associated with protein synthesis, growth control, homeostasis, and membrane function were downregulated under the influence of applied voltage. The electrostatic fermentation system modulates genetic responses and metabolic pathways in yeast, rendering it a promising method for tailored beer production. Demonstrating feasibility under industrial-scale and realistic conditions is crucial for advancing towards commercialization.
Collapse
Affiliation(s)
- Aldo Amaro-Reyes
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (D.M.-R.); (C.R.)
| | - Diana Marcial-Ramírez
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (D.M.-R.); (C.R.)
| | - Pedro Alberto Vázquez-Landaverde
- Center for Research in Applied Science and Advanced Technology, Querétaro Unit, National Polytechnic Institute, Cerro Blanco 141, Colinas del Cimatario, Querétaro 76090, QRO, Mexico;
| | - José Utrilla
- Synthetic Biology Program, Center for Genomic Sciences, National Autonomous University of Mexico, Avenida Universidad 2001, Chamilpa, Cuernavaca 62210, MOR, Mexico;
| | - Monserrat Escamilla-García
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
| | - Carlos Regalado
- Department of Food Research and Postgraduate Studies, Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (D.M.-R.); (C.R.)
| | - Gonzalo Macias-Bobadilla
- Division of Postgraduate Studies, Faculty of Engineering, Autonomous University of Querétaro, Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico;
| | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
| | - Miguel Angel Ramos-López
- Faculty of Chemistry, Autonomous University of Queretaro, C.U., Cerro de las Campanas S/N, Las Campanas, Querétaro 76010, QRO, Mexico; (M.E.-G.); (J.C.-G.); (M.A.R.-L.)
| | - Sarai E. Favela-Camacho
- Institute of Engineering and Technology, Autonomous University of Ciudad Juárez, Avenida del Charro s/n y, Calle Henry Dunant, Omega, Cd Juárez 32584, CHIH, Mexico;
| |
Collapse
|
14
|
Fan J, Zhang Y, Li W, Li Z, Zhang D, Mo Q, Cao M, Yuan J. Multidimensional Optimization of Saccharomyces cerevisiae for Carotenoid Overproduction. BIODESIGN RESEARCH 2024; 6:0026. [PMID: 38213763 PMCID: PMC10777738 DOI: 10.34133/bdr.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Microbial synthesis of carotenoids is a highly desirable alternative to plant extraction and chemical synthesis. In this study, we investigated multidimensional strategies to improve the carotenoid synthesis in the industrial workhorse of Saccharomyces cerevisiae. First, we rewired the yeast central metabolism by optimizing non-oxidative glycolysis pathway for an improved acetyl-CoA supply. Second, we restricted the consumption of farnesyl pyrophosphate (FPP) by the down-regulation of squalene synthase using the PEST degron. Third, we further explored the human lipid binding/transfer protein saposin B (hSapB)-mediated metabolic sink for an enhanced storage of lipophilic carotenoids. Last, the copper-induced GAL expression system was engineered to function in the yeast-peptone-dextrose medium for an increased biomass accumulation. By combining the abovementioned strategies, the final engineered yeast produced 166.79 ± 10.43 mg/l β-carotene in shake flasks, which was nearly 5-fold improvement of the parental carotenoid-producing strain. Together, we envision that multidimensional strategies reported here might be applicable to other hosts for the future industrial development of carotenoid synthesis from renewable feedstocks.
Collapse
Affiliation(s)
- Jian Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Wenhao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Zhizhen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Danli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Mingfeng Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| |
Collapse
|
15
|
Gu C, Li X, Zong G, Wang H, Shears SB. IP8: A quantitatively minor inositol pyrophosphate signaling molecule that punches above its weight. Adv Biol Regul 2024; 91:101002. [PMID: 38064879 DOI: 10.1016/j.jbior.2023.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024]
Abstract
The inositol pyrophosphates (PP-IPs) are specialized members of the wider inositol phosphate signaling family that possess functionally significant diphosphate groups. The PP-IPs exhibit remarkable functionally versatility throughout the eukaryotic kingdoms. However, a quantitatively minor PP-IP - 1,5 bisdiphosphoinositol tetrakisphosphate (1,5-IP8) - has received considerably less attention from the cell signalling community. The main purpose of this review is to summarize recently-published data which have now brought 1,5-IP8 into the spotlight, by expanding insight into the molecular mechanisms by which this polyphosphate regulates many fundamental biological processes.
Collapse
Affiliation(s)
- Chunfang Gu
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Xingyao Li
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Guangning Zong
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA
| | - Huanchen Wang
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| | - Stephen B Shears
- Inositol signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 USA.
| |
Collapse
|
16
|
Zhang Y, Guo J, Gao P, Yan W, Shen J, Luo X, Keasling JD. Development of an efficient yeast platform for cannabigerolic acid biosynthesis. Metab Eng 2023; 80:232-240. [PMID: 37890610 DOI: 10.1016/j.ymben.2023.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Cannabinoids are important therapeutical molecules for human ailments, cancer treatment, and SARS-CoV-2. The central cannabinoid, cannabigerolic acid (CBGA), is generated from geranyl pyrophosphate and olivetolic acid by Cannabis sativa prenyltransferase (CsPT4). Despite efforts to engineer microorganisms such as Saccharomyces cerevisiae (S. cerevisiae) for CBGA production, their titers remain suboptimal because of the low conversion of hexanoate into olivetolic acid and the limited activity and stability of the CsPT4. To address the low hexanoate conversion, we eliminated hexanoate consumption by the beta-oxidation pathway and reduced its incorporation into fatty acids. To address CsPT4 limitations, we expanded the endoplasmic reticulum and fused an auxiliary protein to CsPT4. Consequently, the engineered S. cerevisiae chassis showed a marked improvement of 78.64-fold in CBGA production, reaching a titer of 510.32 ± 10.70 mg l-1 from glucose and hexanoate.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiulong Guo
- Synceres Biosciences (Shenzhen) CO., LTD, China
| | - PeiZhen Gao
- Synceres Biosciences (Shenzhen) CO., LTD, China
| | - Wei Yan
- Synceres Biosciences (Shenzhen) CO., LTD, China
| | - Junfeng Shen
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jay D Keasling
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Joint BioEnergy Institute, Emeryville, CA, 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Cool L, Hanon S, Verstrepen KJ. Metabolism: How a eukaryote adapted to life without respiration. Curr Biol 2023; 33:R444-R447. [PMID: 37279666 DOI: 10.1016/j.cub.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new study finds that Schizosaccharomyces japonicus, a eukaryote that lost the ability to respire, modified its central carbon metabolism to maintain efficient ATP production, cofactor regeneration, and amino-acid production. This remarkable metabolic flexibility opens new avenues towards applications.
Collapse
Affiliation(s)
- Lloyd Cool
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Samuel Hanon
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium; CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium.
| |
Collapse
|
18
|
Kurz L, Schmieder P, Veiga N, Fiedler D. One Scaffold, Two Conformations: The Ring-Flip of the Messenger InsP8 Occurs under Cytosolic Conditions. Biomolecules 2023; 13:biom13040645. [PMID: 37189392 DOI: 10.3390/biom13040645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are central eukaryotic messengers. These very highly phosphorylated molecules can exist in two distinct conformations, a canonical one with five phosphoryl groups in equatorial positions, and a “flipped” conformation with five axial substituents. Using 13C-labeled InsPs/PP-InsPs, the behavior of these molecules was investigated by 2D-NMR under solution conditions reminiscent of a cytosolic environment. Remarkably, the most highly phosphorylated messenger 1,5(PP)2-InsP4 (also termed InsP8) readily adopts both conformations at physiological conditions. Environmental factors—such as pH, metal cation composition, and temperature—strongly influence the conformational equilibrium. Thermodynamic data revealed that the transition of InsP8 from the equatorial to the axial conformation is, in fact, an exothermic process. The speciation of InsPs and PP-InsPs also affects their interaction with protein binding partners; addition of Mg2+ decreased the binding constant Kd of InsP8 to an SPX protein domain. The results illustrate that PP-InsP speciation reacts very sensitively to solution conditions, suggesting it might act as an environment-responsive molecular switch.
Collapse
Affiliation(s)
- Leonie Kurz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Nicolás Veiga
- Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República (UdelaR), Av. Gral. Flores 2124, Montevideo 11800, Uruguay
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|