1
|
Li R, Dai Q, Yu T, Sun Y, Li Y, Zhao T, Xu H, Wang L, Wang Y, Gao X, Liu X. Adolescent marginal zinc deficiency upregulated BDNF and TrkB expression, impaired hippocampal and cortical development, and induced abnormal behaviors in male mice. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110197. [PMID: 40154589 DOI: 10.1016/j.cbpc.2025.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Zinc deficiency during adolescence poses a significant yet understudied risk to brain development. The study aimed to investigate the effects of marginal zinc deficiency during adolescence on emotion and cognition, morphological changes and neuronal arrangement of hippocampus and cortical, and proBDNF, mBDNF and TrkB expression levels. The emotion was assessed using the open-field test and three-chamber test. Additionally, cognition was evaluated using the Morris water maze test and novel object recognition test. Morphological changes were evaluated using H&E staining, while Nissl staining was employed to analyze neuronal arrangement. Additionally, proBDNF, mBDNF and TrkB expression levels were quantified by western blot. The results showed that adolescent marginal zinc deficiency induced risk-taking behavior, impaired spatial learning and memory, and caused new object recognition deficits without affecting sociability. Moreover, marginal zinc deficiency critically disrupted hippocampal and cortical development, and aberrant neuronal arrangement. The expression levels of BDNF for both form states were not statistically significant upregulation in marginal zinc deficiency mice compared to controls, along with significantly increased TrkB expression. These findings suggested that adolescent marginal zinc deficiency increased the expression of BDNF and TrkB, as well as abnormal hippocampal and cortical development. These alterations may explain the observed abnormal behavior, including risk-taking behavior, impaired spatial learning and memory, and new object recognition decay.
Collapse
Affiliation(s)
- Rou Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Qiwei Dai
- Department of Stroke Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Tian Yu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yajing Sun
- Department of Pathology, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yanxia Li
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; Tianjin Key Laboratory of Epigenetic for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Tianyang Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongbin Xu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Liang Wang
- Neurosurgery department, Tianjin Fifth Central Hospital, Tianjin 300450, PR China
| | - Yuxiang Wang
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; Tianjin Key Laboratory of Epigenetic for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, PR China.
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetic for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; The Emergency Center, Tianjin Fifth Central Hospital, Tianjin 300450, PR China; Tianjin Binhai Huangnan Plateau Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture 811399, Qinghai Province, PR China.
| |
Collapse
|
2
|
Rannap M, Ohara S, Winterstein J, Roth FC, Draguhn A, Egorov AV. Functional and structural organization of medial entorhinal cortex layer VI. iScience 2025; 28:112207. [PMID: 40235593 PMCID: PMC11999471 DOI: 10.1016/j.isci.2025.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
Deep layers (V/VI) of the entorhinal cortex transfer hippocampal neuronal activity to downstream neocortical networks. In addition, neurons in layer VI (LVI) of the medial entorhinal cortex (MEC) project back to all hippocampal subregions and contribute to spatial coding and memory. Their role in the processing of hippocampal output signals and their interaction with LV neurons is, however, unknown. We show that spontaneously occurring hippocampal sharp wave-ripple complexes reliably propagate from area CA1 to MEC LVI. Using anterograde tracing and in vitro optogenetics, we confirm direct hippocampal projections to LVI and show that these follow a parallel dorsoventral topography. Further investigation of the MEC deep layer network revealed very sparse excitatory connections between LVI and LVb or LVI and LVa neurons in both directions. Together, our results establish organizational principles for the hippocampal-MEC LVI output circuit and suggest largely parallel signal processing through different cellular subpopulations in MEC deep layers.
Collapse
Affiliation(s)
- Märt Rannap
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Shinya Ohara
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| | - Janis Winterstein
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabian C. Roth
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexei V. Egorov
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Saito Y, Osako Y, Odagawa M, Oisi Y, Matsubara C, Kato S, Kobayashi K, Morita M, Johansen JP, Murayama M. Amygdalo-cortical dialogue underlies memory enhancement by emotional association. Neuron 2025; 113:931-948.e7. [PMID: 39884277 DOI: 10.1016/j.neuron.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Emotional arousal plays a critical role in determining what is remembered from experiences. It is hypothesized that activation of the amygdala by emotional stimuli enhances memory consolidation in its downstream brain regions. However, the physiological basis of the inter-regional interaction and its functions remain unclear. Here, by adding emotional information to a perceptual recognition task that relied on a frontal-sensory cortical circuit in mice, we demonstrated that the amygdala not only associates emotional information with perceptual information but also enhances perceptual memory retention via amygdalo-frontal cortical projections. Furthermore, emotional association increased reactivation of coordinated activity across the amygdalo-cortical circuit during non-rapid eye movement (NREM) sleep but not during rapid eye movement (REM) sleep. Notably, this increased reactivation was associated with amygdala high-frequency oscillations. Silencing of amygdalo-cortical inputs during NREM sleep selectively disrupted perceptual memory enhancement. Our findings indicate that inter-regional reactivation triggered by the amygdala during NREM sleep underlies emotion-induced perceptual memory enhancement.
Collapse
Affiliation(s)
- Yoshihito Saito
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe-shi 657-8501, Hyogo, Japan
| | - Yuma Osako
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maya Odagawa
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Yasuhiro Oisi
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Chie Matsubara
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima-shi 960-1295, Fukushima, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe-shi 657-8501, Hyogo, Japan
| | - Joshua P Johansen
- Laboratory for the Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan
| | - Masanori Murayama
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Center for Brain Science, Wako-shi 351-0198, Saitama, Japan; RIKEN CBS-Kao Collaboration Center (BKCC), Wako-shi 351-0198, Saitama, Japan.
| |
Collapse
|
4
|
Coulter ME, Gillespie AK, Chu J, Denovellis EL, Nguyen TTK, Liu DF, Wadhwani K, Sharma B, Wang K, Deng X, Eden UT, Kemere C, Frank LM. Closed-loop modulation of remote hippocampal representations with neurofeedback. Neuron 2025; 113:949-961.e3. [PMID: 39837322 PMCID: PMC12067296 DOI: 10.1016/j.neuron.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/23/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
Humans can remember specific remote events without acting on them and influence which memories are retrieved based on internal goals. However, animal models typically present sensory cues to trigger memory retrieval and then assess retrieval based on action. Thus, it is difficult to determine whether measured neural activity patterns relate to the cue(s), the memory, or the behavior. We therefore asked whether retrieval-related neural activity could be generated in animals without cues or a behavioral report. We focused on hippocampal "place cells," which primarily represent the animal's current location (local representations) but can also represent locations away from the animal (remote representations). We developed a neurofeedback system to reward expression of remote representations and found that rats could learn to generate specific spatial representations that often jumped directly to the experimenter-defined target location. Thus, animals can deliberately engage remote representations, enabling direct study of retrieval-related activity in the brain.
Collapse
Affiliation(s)
- Michael E Coulter
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anna K Gillespie
- Departments of Neurobiology and Biophysics and Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Joshua Chu
- Department of Electrical and Computer Engineering and Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Eric L Denovellis
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Trevor Thai K Nguyen
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; SpikeGadgets Inc., San Francisco, CA, USA
| | - Daniel F Liu
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Katherine Wadhwani
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Baibhav Sharma
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kevin Wang
- SpikeGadgets Inc., San Francisco, CA, USA
| | - Xinyi Deng
- Department of Statistics, Beijing University of Technology, Beijing, China
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Caleb Kemere
- Department of Electrical and Computer Engineering and Neuroengineering Initiative, Rice University, Houston, TX, USA
| | - Loren M Frank
- Kavli Institute and Department of Physiology, UCSF, San Francisco, CA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Fan S, Qian R, Duan N, Wang H, Yu Y, Ji Y, Xie X, Wu Y, Tian Y. Abnormal Brain State in Major Depressive Disorder: A Resting-State Magnetic Resonance Study. Brain Connect 2025; 15:84-97. [PMID: 39899030 DOI: 10.1089/brain.2024.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background: Respective changes in resting-state linear and nonlinear measures in major depressive disorder (MDD) have been reported. However, few studies have used integrated measures of linear and nonlinear brain dynamics to explore the pathological mechanisms underlying MDD. Method: Forty-two patients with MDD and 42 sex- and age-matched healthy controls (HC) underwent resting-state functional magnetic resonance imaging to calculate multiscale entropy (MSE) and regional homogeneity (ReHo). The MSE-ReHo coupling of the whole gray matter and the MSE/ReHo ratio (the complexity of intensity homogeneity per unit time series) of each voxel were compared between the two groups. To evaluate the discriminative capacity of ratio features between patients with MDD and HC, we employed the support vector machine (SVM) learning method. Results: We observed that patients with MDD displayed increased MSE/ReHo ratio mainly in the orbitofrontal cortex, sensorimotor areas, and visual cortex. Moreover, significant correlations were observed between MSE/ReHo ratio and clinical indicators, including depression severity and cognitive function tests. The SVM model demonstrated high accuracy in differentiating patients with MDD from HC, highlighting the potential of the MSE/ReHo ratio as a diagnostic and prognostic tool. Conclusions: The aberrant MSE/ReHo ratio implicated the underlying mechanisms of depressive symptoms and cognitive impairment in patients with MDD. It may represent a critical state of the brain region, reflecting the degree of chaos and order in the brain region. Integrating linear and nonlinear combinations of brain signals holds promise for diagnosing psychiatric disorders.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Qian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nanxue Duan
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongping Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Ji
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohui Xie
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wu
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Psychology and Sleep Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
6
|
Kinman AI, Merryweather DN, Erwin SR, Campbell RE, Sullivan KE, Kraus L, Kapustina M, Bristow BN, Zhang MY, Elder MW, Wood SC, Tarik A, Kim E, Tindall J, Daniels W, Anwer M, Guo C, Cembrowski MS. Atypical hippocampal excitatory neurons express and govern object memory. Nat Commun 2025; 16:1195. [PMID: 39939601 PMCID: PMC11822006 DOI: 10.1038/s41467-025-56260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025] Open
Abstract
Classically, pyramidal cells of the hippocampus are viewed as flexibly representing spatial and non-spatial information. Recent work has illustrated distinct types of hippocampal excitatory neurons, suggesting that hippocampal representations and functions may be constrained and interpreted by these underlying cell-type identities. In mice, here we reveal a non-pyramidal excitatory neuron type - the "ovoid" neuron - that is spatially adjacent to subiculum pyramidal cells but differs in gene expression, electrophysiology, morphology, and connectivity. Functionally, novel object encounters drive sustained ovoid neuron activity, whereas familiar objects fail to drive activity even months after single-trial learning. Silencing ovoid neurons prevents non-spatial object learning but leaves spatial learning intact, and activating ovoid neurons toggles novel-object seeking to familiar-object seeking. Such function is doubly dissociable from pyramidal neurons, wherein manipulation of pyramidal cells affects spatial assays but not non-spatial learning. Ovoid neurons of the subiculum thus illustrate selective cell-type-specific control of non-spatial memory and behavioral preference.
Collapse
Affiliation(s)
- Adrienne I Kinman
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Derek N Merryweather
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Sarah R Erwin
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Regan E Campbell
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Kaitlin E Sullivan
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Larissa Kraus
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Margarita Kapustina
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Brianna N Bristow
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Mingjia Y Zhang
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Madeline W Elder
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Sydney C Wood
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Ali Tarik
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Esther Kim
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Joshua Tindall
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - William Daniels
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Mehwish Anwer
- Dept. of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 1Z7, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Caiying Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, USA
| | - Mark S Cembrowski
- Dept. of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z3, Canada.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, USA.
- School of Biomedical Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, Canada.
| |
Collapse
|
7
|
Lei B, Kang B, Hao Y, Yang H, Zhong Z, Zhai Z, Zhong Y. Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating. Neuron 2025; 113:471-485.e6. [PMID: 39689709 DOI: 10.1016/j.neuron.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/23/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024]
Abstract
Recalling systems-consolidated neocortex-dependent remote memories re-engages the hippocampus in a process called systems reconsolidation. However, underlying mechanisms, particularly for the origin of the reinstated hippocampal memory engram, remain elusive. By developing a triple-event labeling tool and employing two-photon imaging, we trace hippocampal engram ensembles from memory acquisition to systems reconsolidation and find that remote recall recruits a new engram ensemble in the hippocampus for subsequent memory retrieval. Consistently, recruiting new engrams is supported by adult hippocampal neurogenesis-mediated silencing of original engrams. This new engram ensemble receives currently experienced contextual information, incorporates new information into the remote memory, and supports remote memory updating. Such a reconstructed hippocampal memory is then integrated with the valence of remote memory via medial prefrontal cortex projection-mediated activity coordination between the hippocampus and amygdala. Thus, the reconstruction of new memory engrams underlies systems reconsolidation, which explains how remote memories are updated with new information.
Collapse
Affiliation(s)
- Bo Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; Beijing Academy of Artificial Intelligence, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China.
| | - Bilin Kang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Yuejun Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Haoyu Yang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Zihan Zhong
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P.R. China
| | - Zihan Zhai
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
8
|
E Said S, Miyamoto D. Multi-region processing during sleep for memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:107-128. [PMID: 40074337 DOI: 10.2183/pjab.101.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.
Collapse
Affiliation(s)
- Salma E Said
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Fan X, Mao X, Yu P, Han D, Chen C, Wang H, Zhang X, Liu S, Chen W, Chen Z, Du X, Jin L, Song Y, Li H, Zhang N, Wu Y, Chang L, Wang C. Sleep disturbance impaired memory consolidation via lateralized disruption of metabolite in the thalamus and hippocampus: A cross-sectional proton magnetic resonance spectroscopy study. J Alzheimers Dis 2024; 102:1057-1073. [PMID: 39584303 DOI: 10.1177/13872877241295401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Memory consolidation in sleep-dependent individuals involves the circuitry connections of cortex, thalamus and hippocampus, regulating via neural metabolites. However, the disruption of metabolic pattern in thalamus and hippocampus remains unclear. OBJECTIVE We aim to explore the disruptive effects of insomnia on the metabolites during memory consolidation, particularly the underlying neurometabolic mechanisms in comorbidity of failed memory consolidation. METHODS This study integrates clinical research with animal experiment. In clinical research, 49 participants were divided into four groups: healthy controls (HC, n = 11), insomnia with normal cognition (IS, n = 14), mild cognitive impairment without insomnia (MCI, n = 10), and insomnia with mild cognitive impairment (IS-MCI, n = 14). Magnetic resonance spectroscopy (MRS) was used to evaluate the neural γ-aminobutyric acid (GABA) and glutamate-glutamine (Glx) in bilateral thalamus. In experimental studies, the rat model of sleep deprivation combined with amyloid-β (Aβ) injection was established, after behavior testing, the levels of Glx, choline (Cho) and N-acetyl aspartate (NAA) in the bilateral hippocampus were evaluated with MRS. RESULTS The patients in the IS-MCI group exhibited significantly lower GABA level than IS, MCI and HC groups. Results from rat studies showed that sleep deprivation exacerbated asymmetric alterations in Aβ-induced bilateral hippocampal metabolite abnormalities, which correlated with cognition. These neuro-metabolite disruption accompanied with synaptic loss and activation of astrocytes. CONCLUSIONS The lateralized decrease in GABA levels of thalamus and NAA, Cho, and Glx levels of hippocampus under conditions of sleep disturbance with cognitive decline may provide evidence for the neural metabolic mechanisms underlying the disruption of memory consolidation.
Collapse
Affiliation(s)
- Xiaowei Fan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ping Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chuxin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xinyi Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Siyu Liu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Weijing Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Ziyan Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoqiang Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chunxue Wang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Coulter ME, Gillespie AK, Chu J, Denovellis EL, Nguyen TTK, Liu DF, Wadhwani K, Sharma B, Wang K, Deng X, Eden UT, Kemere C, Frank LM. Closed-loop modulation of remote hippocampal representations with neurofeedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593085. [PMID: 38766135 PMCID: PMC11100667 DOI: 10.1101/2024.05.08.593085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Humans can remember specific remote events without acting on them and influence which memories are retrieved based on internal goals. However, animal models typically present sensory cues to trigger memory retrieval and then assess retrieval based on action. Thus, it is difficult to determine whether measured neural activity patterns relate to the cue(s), the memory, or the behavior. We therefore asked whether retrieval-related neural activity could be generated in animals without cues or a behavioral report. We focused on hippocampal "place cells" which primarily represent the animal's current location (local representations) but can also represent locations away from the animal (remote representations). We developed a neurofeedback system to reward expression of remote representations and found that rats could learn to generate specific spatial representations that often jumped directly to the experimenter-defined target location. Thus, animals can deliberately engage remote representations, enabling direct study of retrieval-related activity in the brain.
Collapse
Affiliation(s)
- Michael E Coulter
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Anna K Gillespie
- Departments of Biological Structure and Lab Medicine and Pathology, University of Washington
| | - Joshua Chu
- Neuroengineering Initiative, Rice University
| | - Eric L Denovellis
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | | | - Daniel F Liu
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Katherine Wadhwani
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | - Baibhav Sharma
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| | | | - Xinyi Deng
- Dept. of Statistics, Beijing University of Technology
| | - Uri T Eden
- Dept. of Mathematics and Statistics, Boston University
| | | | - Loren M Frank
- Kavli Institute and Department of Physiology UCSF
- Howard Hughes Medical Institute
| |
Collapse
|
11
|
Hasegawa M, Huang Z, Paricio-Montesinos R, Gründemann J. Network state changes in sensory thalamus represent learned outcomes. Nat Commun 2024; 15:7830. [PMID: 39244616 PMCID: PMC11380690 DOI: 10.1038/s41467-024-51868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Thalamic brain areas play an important role in adaptive behaviors. Nevertheless, the population dynamics of thalamic relays during learning across sensory modalities remain unknown. Using a cross-modal sensory reward-associative learning paradigm combined with deep brain two-photon calcium imaging of large populations of auditory thalamus (medial geniculate body, MGB) neurons in male mice, we identified that MGB neurons are biased towards reward predictors independent of modality. Additionally, functional classes of MGB neurons aligned with distinct task periods and behavioral outcomes, both dependent and independent of sensory modality. During non-sensory delay periods, MGB ensembles developed coherent neuronal representation as well as distinct co-activity network states reflecting predicted task outcome. These results demonstrate flexible cross-modal ensemble coding in auditory thalamus during adaptive learning and highlight its importance in brain-wide cross-modal computations during complex behavior.
Collapse
Affiliation(s)
- Masashi Hasegawa
- German Center for Neurodegenerative Diseases (DZNE), Neural Circuit Computations, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ziyan Huang
- German Center for Neurodegenerative Diseases (DZNE), Neural Circuit Computations, Bonn, Germany
| | | | - Jan Gründemann
- German Center for Neurodegenerative Diseases (DZNE), Neural Circuit Computations, Bonn, Germany.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- University of Bonn, Faculty of Medicine, Bonn, Germany.
| |
Collapse
|
12
|
Stieger JR, Pinheiro-Chagas P, Fang Y, Li J, Lusk Z, Perry CM, Girn M, Contreras D, Chen Q, Huguenard JR, Spreng RN, Edlow BL, Wagner AD, Buch V, Parvizi J. Cross-regional coordination of activity in the human brain during autobiographical self-referential processing. Proc Natl Acad Sci U S A 2024; 121:e2316021121. [PMID: 39078679 PMCID: PMC11317603 DOI: 10.1073/pnas.2316021121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
For the human brain to operate, populations of neurons across anatomical structures must coordinate their activity within milliseconds. To date, our understanding of such interactions has remained limited. We recorded directly from the hippocampus (HPC), posteromedial cortex (PMC), ventromedial/orbital prefrontal cortex (OFC), and the anterior nuclei of the thalamus (ANT) during two experiments of autobiographical memory processing that are known from decades of neuroimaging work to coactivate these regions. In 31 patients implanted with intracranial electrodes, we found that the presentation of memory retrieval cues elicited a significant increase of low frequency (LF < 6 Hz) activity followed by cross-regional phase coherence of this LF activity before select populations of neurons within each of the four regions increased high-frequency (HF > 70 Hz) activity. The power of HF activity was modulated by memory content, and its onset followed a specific temporal order of ANT→HPC/PMC→OFC. Further, we probed cross-regional causal effective interactions with repeated electrical pulses and found that HPC stimulations cause the greatest increase in LF-phase coherence across all regions, whereas the stimulation of any region caused the greatest LF-phase coherence between that particular region and ANT. These observations support the role of the ANT in gating, and the HPC in synchronizing, the activity of cortical midline structures when humans retrieve self-relevant memories of their past. Our findings offer a fresh perspective, with high temporal fidelity, about the dynamic signaling and underlying causal connections among distant regions when the brain is actively involved in retrieving self-referential memories from the past.
Collapse
Affiliation(s)
- James R. Stieger
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Pedro Pinheiro-Chagas
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
| | - Ying Fang
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Claire M. Perry
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
| | - Manesh Girn
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Diego Contreras
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA19104
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou510631, China
| | - John R. Huguenard
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department Neurology and Neurosurgery, McGill University, Montreal, QCH3G 1A4, Canada
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anthony D. Wagner
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Psychology, Stanford University, Stanford, CA94305
| | - Vivek Buch
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford, CA94305
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Stanford, CA94305
| |
Collapse
|
13
|
Yang Q, Yan C, Sun Y, Xie Z, Yang L, Jiang M, Ni J, Chen B, Xu S, Yuan Z, Wu Y, Liu X, Yuan Z, Bai Z. Extracellular Matrix Remodeling Alleviates Memory Deficits in Alzheimer's Disease by Enhancing the Astrocytic Autophagy-Lysosome Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400480. [PMID: 38881515 PMCID: PMC11336928 DOI: 10.1002/advs.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aβ) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aβ plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aβ clearance and alleviating AD pathology. ECM remodeling also promoted Aβ plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Chengxiang Yan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yahan Sun
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Liang Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Ming Jiang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Beining Chen
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Neurobiology, Interdisciplinary InnoCenter for Organoids, School of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Sen Xu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhaoyue Yuan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yanyan Wu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Xia Liu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zengqiang Yuan
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Zhantao Bai
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| |
Collapse
|
14
|
Regalado JM, Corredera Asensio A, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. eLife 2024; 13:RP93983. [PMID: 39037775 PMCID: PMC11262795 DOI: 10.7554/elife.93983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Andrew C Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | - Lauren A Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller UniversityNew YorkUnited States
| | | |
Collapse
|
15
|
Wang F, Sun H, Chen M, Feng B, Lu Y, Lyu M, Cui D, Zhai Y, Zhang Y, Zhu Y, Wang C, Wu H, Ma X, Zhu F, Wang Q, Li Y. The thalamic reticular nucleus orchestrates social memory. Neuron 2024; 112:2368-2385.e11. [PMID: 38701789 DOI: 10.1016/j.neuron.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.
Collapse
Affiliation(s)
- Feidi Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huan Sun
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingyue Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yu Lu
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mi Lyu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yaomin Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
16
|
Regalado JM, Asensio AC, Haunold T, Toader AC, Li YR, Neal LA, Rajasethupathy P. Neural activity ramps in frontal cortex signal extended motivation during learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.15.562395. [PMID: 37905153 PMCID: PMC10614791 DOI: 10.1101/2023.10.15.562395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.
Collapse
Affiliation(s)
- Josue M. Regalado
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | | | - Theresa Haunold
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Andrew C. Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Yan Ran Li
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Lauren A. Neal
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY 10065 USA
- Lead contact
| |
Collapse
|
17
|
Zárate-Rochín AM. Contemporary neurocognitive models of memory: A descriptive comparative analysis. Neuropsychologia 2024; 196:108846. [PMID: 38430963 DOI: 10.1016/j.neuropsychologia.2024.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The great complexity involved in the study of memory has given rise to numerous hypotheses and models associated with various phenomena at different levels of analysis. This has allowed us to delve deeper in our knowledge about memory but has also made it difficult to synthesize and integrate data from different lines of research. In this context, this work presents a descriptive comparative analysis of contemporary models that address the structure and function of multiple memory systems. The main goal is to outline a panoramic view of the key elements that constitute these models in order to visualize both the current state of research and possible future directions. The elements that stand out from different levels of analysis are distributed neural networks, hierarchical organization, predictive coding, homeostasis, and evolutionary perspective.
Collapse
Affiliation(s)
- Alba Marcela Zárate-Rochín
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa-Enríquez, Veracruz, Mexico.
| |
Collapse
|
18
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
19
|
Kapustina M, Zhang AA, Tsai JYJ, Bristow BN, Kraus L, Sullivan KE, Erwin SR, Wang L, Stach TR, Clements J, Lemire AL, Cembrowski MS. The cell-type-specific spatial organization of the anterior thalamic nuclei of the mouse brain. Cell Rep 2024; 43:113842. [PMID: 38427564 DOI: 10.1016/j.celrep.2024.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.
Collapse
Affiliation(s)
- Margarita Kapustina
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Angela A Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer Y J Tsai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brianna N Bristow
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Larissa Kraus
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kaitlin E Sullivan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sarah R Erwin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Lihua Wang
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tara R Stach
- School of Biomedical Engineering, Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jody Clements
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Andrew L Lemire
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
20
|
Wolff M, Halassa MM. The mediodorsal thalamus in executive control. Neuron 2024; 112:893-908. [PMID: 38295791 DOI: 10.1016/j.neuron.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024]
Abstract
Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.
Collapse
Affiliation(s)
- Mathieu Wolff
- University of Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France.
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
21
|
Fetcho RN, Parekh PK, Chou J, Kenwood M, Chalençon L, Estrin DJ, Johnson M, Liston C. A stress-sensitive frontostriatal circuit supporting effortful reward-seeking behavior. Neuron 2024; 112:473-487.e4. [PMID: 37963470 PMCID: PMC11533377 DOI: 10.1016/j.neuron.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Effort valuation-a process for selecting actions based on the anticipated value of rewarding outcomes and expectations about the work required to obtain them-plays a fundamental role in decision-making. Effort valuation is disrupted in chronic stress states and is supported by the anterior cingulate cortex (ACC), but the circuit-level mechanisms by which the ACC regulates effort-based decision-making are unclear. Here, we show that ACC neurons projecting to the nucleus accumbens (ACC-NAc) play a critical role in effort valuation behavior in mice. Activity in ACC-NAc cells integrates both reward- and effort-related information, encoding a reward-related signal that scales with effort requirements and is necessary for supporting future effortful decisions. Chronic corticosterone exposure reduces motivation, suppresses effortful reward-seeking, and disrupts ACC-NAc signals. Together, our results delineate a stress-sensitive ACC-NAc circuit that supports effortful reward-seeking behavior by integrating reward and effort signals and reinforcing effort allocation in the service of maximizing reward.
Collapse
Affiliation(s)
- Robert N Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Puja K Parekh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Margaux Kenwood
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Chalençon
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Estrin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
22
|
Xue M, Chen QY, Shi W, Zhou Z, Li X, Xu F, Bi G, Yang X, Lu JS, Zhuo M. Whole-brain mapping of afferents to the anterior cingulate cortex in adult mice. Mol Pain 2024; 20:17448069241300990. [PMID: 39614717 DOI: 10.1177/17448069241300990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
The anterior cingulate cortex (ACC) is critical for pain perception, emotion and cognition. Previous studies showed that the ACC has a complex network architecture, which can receive some projection fibers from many brain regions, including the thalamus, the cerebral cortex and other brain regions. However, there was still a lack of whole-brain mapping of the ACC in adult mice. In the present study, we utilized a rabies virus-based retrograde trans-monosynaptic tracing system to map whole-brain afferents to the unilateral ACC in adult mice. We also combined with a new high-throughput, high-speed and high-resolution VISoR imaging technique to generate a three-dimensional whole-brain reconstruction. Our results showed that several principal groups of brain structures send direct monosynaptic inputs to the ACC, including the cerebral cortex, amygdala, striatum, the thalamus, and the brainstem. We also found that cortical neurons in the ACC mainly receive ipsilateral monosynaptic projections. Some cortical areas and forebrain regions also bilaterally projected to the ACC. These findings provide a complete analysis of the afferents to the ACC in adult mice, and whole-brain mapping of ACC afferents would provide important anatomic evidence for the study of pain, memory, and cognition.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qi-Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Wantong Shi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhaoxiang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuhui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Guoqiang Bi
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing-Shan Lu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Xue F, Li F, Zhang KM, Ding L, Wang Y, Zhao X, Xu F, Zhang D, Sun M, Lau PM, Zhu Q, Zhou P, Bi GQ. Multi-region calcium imaging in freely behaving mice with ultra-compact head-mounted fluorescence microscopes. Natl Sci Rev 2024; 11:nwad294. [PMID: 38288367 PMCID: PMC10824555 DOI: 10.1093/nsr/nwad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024] Open
Abstract
To investigate the circuit-level neural mechanisms of behavior, simultaneous imaging of neuronal activity in multiple cortical and subcortical regions is highly desired. Miniature head-mounted microscopes offer the capability of calcium imaging in freely behaving animals. However, implanting multiple microscopes on a mouse brain remains challenging due to space constraints and the cumbersome weight of the equipment. Here, we present TINIscope, a Tightly Integrated Neuronal Imaging microscope optimized for electronic and opto-mechanical design. With its compact and lightweight design of 0.43 g, TINIscope enables unprecedented simultaneous imaging of behavior-relevant activity in up to four brain regions in mice. Proof-of-concept experiments with TINIscope recorded over 1000 neurons in four hippocampal subregions and revealed concurrent activity patterns spanning across these regions. Moreover, we explored potential multi-modal experimental designs by integrating additional modules for optogenetics, electrical stimulation or local field potential recordings. Overall, TINIscope represents a timely and indispensable tool for studying the brain-wide interregional coordination that underlies unrestrained behaviors.
Collapse
Affiliation(s)
- Feng Xue
- Department of Precision Machinery and Precision Instruments, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Fei Li
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ke-ming Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Lufeng Ding
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xingtao Zhao
- Department of Modern Life Sciences and Biotecnology, Xiongan Institute of Innovation, Xiongan New Area, Xiongan 071899, China
| | - Fang Xu
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Danke Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mingzhai Sun
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Pak-Ming Lau
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Qingyuan Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Pengcheng Zhou
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| |
Collapse
|
24
|
Zhang Y, Roy DS. Memory Storage in Distributed Engram Cell Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:29-43. [PMID: 39008009 DOI: 10.1007/978-3-031-62983-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
One of the most fascinating aspects of the brain is its ability to acquire new information from experience and retain it over time as memory. The search for physical correlates of memory, the memory engram, has been a longstanding priority in modern neurobiology. Advanced genetic approaches have led to the localization of engram cells in a few brain regions, including the hippocampus and cortex. Additionally, engram cells exhibit learning-induced, persistent modifications and have at least two states, active and silent. However, it has been hypothesized that engrams for a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Recent tissue-clearing techniques have permitted high-throughput analyses of intact brain samples, which have been used to obtain a map of the engram complex for a contextual fear memory. Careful examination of these engram complex maps has revealed a potentially underappreciated contribution of subcortical regions, specifically thalamic nuclei, to memory function. These more holistic studies support the unified engram complex hypothesis for memory storage and have important implications for understanding dysfunctional engrams in the context of human disease.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Dheeraj S Roy
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
25
|
Avgan N, Sutherland HG, Lea RA, Haupt LM, Shum DHK, Griffiths LR. Association Study of a Comprehensive Panel of Neuropeptide-Related Polymorphisms Suggest Potential Roles in Verbal Learning and Memory. Genes (Basel) 2023; 15:30. [PMID: 38254919 PMCID: PMC10815468 DOI: 10.3390/genes15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Neuropeptides are mostly expressed in regions of the brain responsible for learning and memory and are centrally involved in cognitive pathways. The majority of neuropeptide research has been performed in animal models; with acknowledged differences between species, more research into the role of neuropeptides in humans is necessary to understand their contribution to higher cognitive function. In this study, we investigated the influence of genetic polymorphisms in neuropeptide genes on verbal learning and memory. Variants in genes encoding neuropeptides and neuropeptide receptors were tested for association with learning and memory measures using the Hopkins Verbal Learning Test-Revised (HVLT-R) in a healthy cohort of individuals (n = 597). The HVLT-R is a widely used task for verbal learning and memory assessment and provides five sub-scores: recall, delay, learning, retention, and discrimination. To determine the effect of candidate variants on learning and memory performance, genetic association analyses were performed for each HVLT-R sub-score with over 1300 genetic variants from 124 neuropeptide and neuropeptide receptor genes, genotyped on Illumina OmniExpress BeadChip arrays. This targeted analysis revealed numerous suggestive associations between HVLT-R test scores and neuropeptide and neuropeptide receptor gene variants; candidates include the SCG5, IGFR1, GALR1, OXTR, CCK, and VIPR1 genes. Further characterization of these genes and their variants will improve our understanding of the genetic contribution to learning and memory and provide insight into the importance of the neuropeptide network in humans.
Collapse
Affiliation(s)
- Nesli Avgan
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| | - Heidi G. Sutherland
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| | - Rod A. Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| | - Larisa M. Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia;
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia
| | - David H. K. Shum
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Lyn R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; (N.A.); (H.G.S.); (R.A.L.)
| |
Collapse
|
26
|
Yu Y, Wu K, Yang X, Long J, Chang C. Terahertz Photons Improve Cognitive Functions in Posttraumatic Stress Disorder. RESEARCH (WASHINGTON, D.C.) 2023; 6:0278. [PMID: 38111677 PMCID: PMC10726292 DOI: 10.34133/research.0278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a serious psychosis leading to cognitive impairment. To restore cognitive functions for patients, the main treatments are based on medication or rehabilitation training but with limited effectiveness and strong side effects. Here, we demonstrate a new treatment approach for PTSD by using terahertz (THz) photons stimulating the hippocampal CA3 subregion. We verified that this method can nonthermally restore cognitive function in PTSD rats in vivo. After THz photon irradiation, the PTSD rats' recognitive index improved by about 10% in a novel object recognition test, the PTSD rats' accuracy improved by about 100% in a shuttler box test, the PTSD rats' numbers to identify target box was about 5 times lower in a Barnes maze test, and the rate of staying in new arm increased by approximately 40% in a Y-maze test. Further experimental studies found that THz photon (34.5 THz) irradiation could improve the expression of NR2B (increased by nearly 40%) and phosphorylated NR2B (increased by about 50%). In addition, molecular dynamics simulations showed that THz photons at a frequency of 34.5 THz are mainly absorbed by the pocket of glutamate receptors rather than by glutamate molecules. Moreover, the binding between glutamate receptors and glutamate molecules was increased by THz photons. This study offers a nondrug, nonthermal approach to regulate the binding between the excitatory neurotransmitter (glutamate) and NR2B. By increasing synaptic plasticity, it effectively improves the cognitive function of animals with PTSD, providing a promising treatment strategy for NR2B-related cognitive disorders.
Collapse
Affiliation(s)
- Yun Yu
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Jiangang Long
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics,
Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Hamilton JJ, Dalrymple-Alford JC. The thalamic reuniens is associated with consolidation of non-spatial memory too. Front Behav Neurosci 2023; 17:1215625. [PMID: 37600760 PMCID: PMC10433182 DOI: 10.3389/fnbeh.2023.1215625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The nucleus reuniens (RE) is situated in the midline thalamus and provides a key link between the hippocampus and prefrontal cortex. This anatomical relationship positions the Re as an ideal candidate to facilitate memory consolidation. However, there is no evidence that this role extends beyond spatial memory and contextual fear memory, which are both strongly associated with hippocampal function. We, therefore, trained intact male Long-Evans rats on an odor-trace-object paired-associate task where the explicit 10-s delay between paired items renders the task sensitive to hippocampal function. Neurons in the RE showed significantly increased activation of the immediate early gene (Zif268) when rats were re-tested for previous non-spatial memory 25 days after acquisition training, compared to a group tested at 5-days post-acquisition, as well as a control group tested 25 days after acquisition but with a new pair of non-spatial stimuli, and home cage controls. The remote recall group also showed relatively augmented IEG expression in the superficial layers of the medial PFC (anterior cingulate cortex and prelimbic cortex). These findings support the conclusion that the RE is preferentially engaged during remote recall in this non-spatial task and thus has a role beyond spatial memory and contextual fear memory.
Collapse
Affiliation(s)
- Jennifer J. Hamilton
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| | - John C. Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- Brain Research New Zealand – Rangahau Roro Aotearoa, a National Centre of Research Excellence, University of Otago, Dunedin, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|