1
|
Ghosh S, Bishnoi B, Das S. Artery regeneration: Molecules, mechanisms and impact on organ function. Semin Cell Dev Biol 2025; 171:103611. [PMID: 40318557 DOI: 10.1016/j.semcdb.2025.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 05/07/2025]
Abstract
Replenishment of artery cells to repair or create new arteries is a promising strategy to re-vascularize ischemic tissue. However, limited understanding of cellular and molecular programs associated with artery (re-)growth impedes our efforts towards designing optimal therapeutic approaches. In this review, we summarize different cellular mechanisms that drive injury-induced artery regeneration in distinct organs and organisms. Artery formation during embryogenesis includes migration, self-amplification, and changes in cell fates. These processes are coordinated by multiple signaling pathways, like Vegf, Wnt, Notch, Cxcr4; many of which, also involved in injury-induced vascular responses. We also highlight how physiological and environmental factors determine the extent of arterial re-vascularization. Finally, we discuss different in vitro cellular reprogramming and tissue engineering approaches to promote artery regeneration, in vivo. This review provides the current understanding of endothelial cell fate reprogramming and explores avenues for regenerating arteries to restore organ function through efficient revascularization.
Collapse
Affiliation(s)
- Swarnadip Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, KA 560065, India.
| |
Collapse
|
2
|
Zhang Y, Zheng Z, Zhu S, Xu L, Zhang Q, Gao J, Ye M, Shen S, Xing J, Wu M, Xu RX. Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416267. [PMID: 40190057 PMCID: PMC12079356 DOI: 10.1002/advs.202416267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 05/16/2025]
Abstract
The incidence and burden of skin wounds, especially chronic and complex wounds, have a profound impact on healthcare. Effective wound healing strategies require a multidisciplinary approach, and advances in materials science and bioengineering have paved the way for the development of novel wound healing dressing. In this context, electrospun nanofibers can mimic the architecture of the natural extracellular matrix and provide new opportunities for wound healing. Inspired by the bioelectric phenomena in the human body, electrospun nanofibrous scaffolds with electroactive characteristics are gaining widespread attention and gradually emerging. To this end, this review first summarizes the basic process of wound healing, the causes of chronic wounds, and the current status of clinical treatment, highlighting the urgency and importance of wound dressings. Then, the biological effects of electric fields, the preparation materials, and manufacturing techniques of electroactive electrospun nanofibrous (EEN) scaffolds are discussed. The latest progress of EEN scaffolds in enhancing skin wound healing is systematically reviewed, mainly including treatment and monitoring. Finally, the importance of EEN scaffold strategies to enhance wound healing is emphasized, and the challenges and prospects of EEN scaffolds are summarized.
Collapse
Affiliation(s)
- Yang Zhang
- Department of RehabilitationThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhiyuan Zheng
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Shilu Zhu
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Liang Xu
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Qingdong Zhang
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Jie Gao
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Min Ye
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Shuwei Shen
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| | - Jinyu Xing
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ming Wu
- Department of RehabilitationThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ronald X. Xu
- Department of Precision Machinery and InstrumentationSchool of Engineering ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- School of Biomedical EngineeringDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215000China
| |
Collapse
|
3
|
Pi D, Braun J, Dutta S, Patra D, Bougaran P, Mompeón A, Ma F, Stock SR, Choi S, García-Ortega L, Pratama MY, Pichardo D, Ramkhelawon B, Benedito R, Bautch VL, Ornitz DM, Goyal Y, Iruela-Arispe ML. Resolving the design principles that control postnatal vascular growth and scaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627758. [PMID: 39713449 PMCID: PMC11661209 DOI: 10.1101/2024.12.10.627758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
After birth, tissues grow continuously until reaching adult size, with each organ exhibiting unique cellular dynamics, growth patterns, and (stem or non-stem) cell sources. Using a suite of experimental and computational multiscale approaches, we found that aortic expansion is guided by specific biological principles and scales with the vertebral column rather than animal body weight. Expansion proceeds via two distinct waves of arterial cell proliferation along blood flow that are spatially stochastic, yet temporally coordinated. Each wave exhibits unique cell cycle kinetics and properties, with the first wave exhibiting cell cycle durations as fast as 6 hours. Single-cell RNA sequencing showed changes in fatty acid metabolism concomitant with an increase in cell size. Mathematical modeling and experiments indicated endothelial cell extrusion is essential for homeostatic aortic growth and balancing excess proliferation. In a genetic model of achondroplasia, the aorta achieves proper scaling through enhanced cell extrusion while maintaining normal proliferation dynamics. Collectively, these results provide a blueprint of the principles that orchestrate aortic growth which depends entirely on differentiated cell proliferation rather than resident stem cells.
Collapse
|
4
|
Huveneers S, Phng LK. Endothelial cell mechanics and dynamics in angiogenesis. Curr Opin Cell Biol 2024; 91:102441. [PMID: 39342870 DOI: 10.1016/j.ceb.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
The efficient distribution of oxygen and metabolites is critical for embryonic development and growth as well as tissue homeostasis. This is achieved by endothelial cells forming and maintaining a closed, circulatory network of tubular blood vessels. Endothelial cells are highly plastic cells with the capability to generate diverse dynamic responses at different stages of vessel development in order to build vessel networks of tissue-specific patterns and morphologies. In this review, we discuss new conceptual advances gained from in vitro and in vivo models of angiogenesis on the control of endothelial cell dynamics. We highlight the complex interplay between mechanical cues, actin cytoskeleton and endothelial behaviors, and the emerging importance of hydrostatic pressure in complementing actin-dependent mechanisms to regulate endothelial cell mechanics and angiogenesis. Understanding these processes provides insights into vascular repair and regeneration mechanisms.
Collapse
Affiliation(s)
- Stephan Huveneers
- Amsterdam UMC, Location University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
5
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
7
|
Pulikkot S, Paul S, Hall A, Gardner B, Liu W, Hu L, Vella AT, Chen Y, Fan Z. Monitoring Circulating Myeloid Cells in Peritonitis with an In Vivo Imaging Flow Cytometer. Biomolecules 2024; 14:886. [PMID: 39199274 PMCID: PMC11351726 DOI: 10.3390/biom14080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Peritonitis is a common and life-threatening inflammatory disease. Myeloid cells are elevated in the peripheral blood and contribute to peritonitis, but their circulating dynamics are not clear. In vivo flow cytometry (IVFC) is a noninvasive technique for monitoring the dynamics of circulating cells in live animals. It has been extensively used to detect circulating tumor cells, but rarely for monitoring immune cells. Here, we describe a method adapting an intravital microscope for IVFC so that we can monitor LysM-EGFP-labeled circulating myeloid cells in a tumor necrosis factor (TNF) α-induced peritonitis mouse model. Using this IVFC method, we quantified the blood flow velocity and cell concentration in circulation. We observed a significant increase in LysM-EGFP+ cells in circulation after TNFα intraperitoneal (i.p.) injection, which reached a plateau in ~20 min. Conventional cytometry analysis showed that most LysM-EGFP+ cells were neutrophils. Increasing blood neutrophils were accompanied by neutrophil recruitment to the peritoneal cavity and neutrophil emigration from the bone marrow. We then monitored neutrophil CD64 expression in vivo and found a significant increase in TNFα-induced peritonitis. We also found that CD18 blockade doubled the circulating neutrophil number in TNFα-induced peritonitis, suggesting that CD18 is critical for neutrophil recruitment in peritonitis. Overall, we demonstrate that IVFC techniques are useful for studying the circulating dynamics of immune cells during inflammatory diseases.
Collapse
Affiliation(s)
- Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Souvik Paul
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Brianna Gardner
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Wei Liu
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
8
|
Greenspan LJ, Cisneros I, Weinstein BM. Dermal Dive: An Overview of Cutaneous Wounding Techniques in Zebrafish. J Invest Dermatol 2024; 144:1430-1439. [PMID: 38752940 PMCID: PMC11218931 DOI: 10.1016/j.jid.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024]
Abstract
Cutaneous wounds are common injuries that affect millions of people around the world. In vulnerable populations such as the elderly and those with diabetes, defects in wound healing can lead to the development of chronic open wounds. Although mammalian models are commonly used to study cutaneous wound healing, the challenges of in vivo imaging in mammals have hampered detailed observation of cell coordination and cell signaling during wound healing. The zebrafish is becoming increasingly popular for studying cutaneous wound healing owing to its genetic accessibility, suitability for experimental manipulation, and the ability to perform live, in vivo imaging with cellular or even subcellular resolution. In this paper, we review some of the techniques that have been developed for eliciting cutaneous wounds in the zebrafish, including an economical method we recently developed using a rotary tool that generates consistent and reproducible full-thickness wounds. Combined with the thousands of transgenic lines and experimental assays available in zebrafish, the ability to generate reproducible cutaneous wounds makes it possible to study key cellular and molecular events during wound healing using this powerful experimental model organism.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabella Cisneros
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Medzhitov R, Iwasaki A. Exploring new perspectives in immunology. Cell 2024; 187:2079-2094. [PMID: 38670066 DOI: 10.1016/j.cell.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Several conceptual pillars form the foundation of modern immunology, including the clonal selection theory, antigen receptor diversity, immune memory, and innate control of adaptive immunity. However, some immunological phenomena cannot be explained by the current framework. Thus, we still do not know how to design vaccines that would provide long-lasting protective immunity against certain pathogens, why autoimmune responses target some antigens and not others, or why the immune response to infection sometimes does more harm than good. Understanding some of these mysteries may require that we question existing assumptions to develop and test alternative explanations. Immunology is increasingly at a point when, once again, exploring new perspectives becomes a necessity.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale School of Medicine, New Haven, CT, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Jiang Y, Perez-Moreno M. Translational frontiers: insight from lymphatics in skin regeneration. Front Physiol 2024; 15:1347558. [PMID: 38487264 PMCID: PMC10937408 DOI: 10.3389/fphys.2024.1347558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The remarkable regenerative ability of the skin, governed by complex molecular mechanisms, offers profound insights into the skin repair processes and the pathogenesis of various dermatological conditions. This understanding, derived from studies in human skin and various model systems, has not only deepened our knowledge of skin regeneration but also facilitated the development of skin substitutes in clinical practice. Recent research highlights the crucial role of lymphatic vessels in skin regeneration. Traditionally associated with fluid dynamics and immune modulation, these vessels are now recognized for interacting with skin stem cells and coordinating regeneration. This Mini Review provides an overview of recent advancements in basic and translational research related to skin regeneration, focusing on the dynamic interplay between lymphatic vessels and skin biology. Key highlights include the critical role of stem cell-lymphatic vessel crosstalk in orchestrating skin regeneration, emerging translational approaches, and their implications for skin diseases. Additionally, the review identifies research gaps and proposes potential future directions, underscoring the significance of this rapidly evolving research arena.
Collapse
Affiliation(s)
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Zhang B, Chen T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat Rev Mol Cell Biol 2024; 25:87-100. [PMID: 37903969 DOI: 10.1038/s41580-023-00662-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/01/2023]
Abstract
Hair follicles are essential appendages of the mammalian skin, as hair performs vital functions of protection, thermoregulation and sensation. Hair follicles harbour exceptional regenerative abilities as they contain multiple somatic stem cell populations such as hair follicle stem cells (HFSCs) and melanocyte stem cells. Surrounding the stem cells and their progeny, diverse groups of cells and extracellular matrix proteins are organized to form a microenvironment (called 'niche') that serves to promote and maintain the optimal functioning of these stem cell populations. Recent studies have shed light on the intricate nature of the HFSC niche and its crucial role in regulating hair follicle regeneration. In this Review, we describe how the niche serves as a signalling hub, communicating, deciphering and integrating both local signals within the skin and systemic inputs from the body and environment to modulate HFSC activity. We delve into the recent advancements in identifying the cellular and molecular nature of the niche, providing a holistic perspective on its essential functions in hair follicle morphogenesis, regeneration and ageing.
Collapse
Affiliation(s)
- Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Santamaría R, Cruz-Caballero J, Gkontra P, Jiménez-Montiel A, Clemente C, López JA, Villalba-Orero M, Vázquez J, Hutloff A, Lara-Pezzi E, Arroyo AG. Capillary pruning couples tissue perfusion and oxygenation with cardiomyocyte maturation in the postnatal mouse heart. Front Cell Dev Biol 2023; 11:1256127. [PMID: 38020883 PMCID: PMC10661946 DOI: 10.3389/fcell.2023.1256127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Removal of poorly perfused capillaries by pruning contributes to remodeling the microvasculature to optimize oxygen and nutrient delivery. Blood flow drives this process by promoting the intravascular migration of endothelial cells in developing networks, such as in the yolk sac, zebrafish brain or postnatal mouse retina. Methods: In this study, we have implemented innovative tools to recognize capillary pruning in the complex 3D coronary microvasculature of the postnatal mouse heart. We have also experimentally tested the impact of decreasing pruning on the structure and function of this network by altering blood flow with two different vasodilators: losartan and prazosin. Results: Although both drugs reduced capillary pruning, a combination of experiments based on ex vivo imaging, proteomics, electron microscopy and in vivo functional approaches showed that losartan treatment resulted in an inefficient coronary network, reduced myocardial oxygenation and metabolic changes that delayed the arrest of cardiomyocyte proliferation, in contrast to the effects of prazosin, probably due to its concomitant promotion of capillary expansion. Discussion: Our work demonstrates that capillary pruning contributes to proper maturation and function of the heart and that manipulation of blood flow may be a novel strategy to refine the microvasculature and improve tissue perfusion after damage.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Polyxeni Gkontra
- Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Spain
| | | | - Cristina Clemente
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Juan A. López
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María Villalba-Orero
- Myocardial Pathology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andreas Hutloff
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
- German Rheumatism Research Centre, A Leibniz Institute, Berlin, Germany
| | - Enrique Lara-Pezzi
- Myocardial Pathology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|