1
|
Schaye V, DiTullio DJ, Sartori DJ, Hauck K, Haller M, Reinstein I, Guzman B, Burk-Rafel J. Artificial intelligence based assessment of clinical reasoning documentation: an observational study of the impact of the clinical learning environment on resident documentation quality. BMC MEDICAL EDUCATION 2025; 25:591. [PMID: 40264096 PMCID: PMC12016287 DOI: 10.1186/s12909-025-07191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Objective measures and large datasets are needed to determine aspects of the Clinical Learning Environment (CLE) impacting the essential skill of clinical reasoning documentation. Artificial Intelligence (AI) offers a solution. Here, the authors sought to determine what aspects of the CLE might be impacting resident clinical reasoning documentation quality assessed by AI. METHODS In this observational, retrospective cross-sectional analysis of hospital admission notes from the Electronic Health Record (EHR), all categorical internal medicine (IM) residents who wrote at least one admission note during the study period July 1, 2018- June 30, 2023 at two sites of NYU Grossman School of Medicine's IM residency program were included. Clinical reasoning documentation quality of admission notes was determined to be low or high-quality using a supervised machine learning model. From note-level data, the shift (day or night) and note index within shift (if a note was first, second, etc. within shift) were calculated. These aspects of the CLE were included as potential markers of workload, which have been shown to have a strong relationship with resident performance. Patient data was also captured, including age, sex, Charlson Comorbidity Index, and primary diagnosis. The relationship between these variables and clinical reasoning documentation quality was analyzed using generalized estimating equations accounting for resident-level clustering. RESULTS Across 37,750 notes authored by 474 residents, patients who were older, had more pre-existing comorbidities, and presented with certain primary diagnoses (e.g., infectious and pulmonary conditions) were associated with higher clinical reasoning documentation quality. When controlling for these and other patient factors, variables associated with clinical reasoning documentation quality included academic year (adjusted odds ratio, aOR, for high-quality: 1.10; 95% CI 1.06-1.15; P <.001), night shift (aOR 1.21; 95% CI 1.13-1.30; P <.001), and note index (aOR 0.93; 95% CI 0.90-0.95; P <.001). CONCLUSIONS AI can be used to assess complex skills such as clinical reasoning in authentic clinical notes that can help elucidate the potential impact of the CLE on resident clinical reasoning documentation quality. Future work should explore residency program and systems interventions to optimize the CLE.
Collapse
Affiliation(s)
- Verity Schaye
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Institute for Innovations in Medical Education, New York University Grossman School of Medicine, New York, NY, USA.
| | - David J DiTullio
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniel J Sartori
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kevin Hauck
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Matthew Haller
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ilan Reinstein
- Institute for Innovations in Medical Education, New York University Grossman School of Medicine, New York, NY, USA
| | - Benedict Guzman
- Division of Applied AI Technologies, New York University Langone Health, New York, NY, USA
| | - Jesse Burk-Rafel
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Institute for Innovations in Medical Education, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Jiang WI, Cao Y, Xue Y, Ji Y, Winer BY, Chandra R, Zhang XF, Zhang M, Singhal NS, Pierce JT, Chen S, Ma DK. Suppressing APOE4-induced neural pathologies by targeting the VHL-HIF axis. Proc Natl Acad Sci U S A 2025; 122:e2417515122. [PMID: 39874294 PMCID: PMC11804744 DOI: 10.1073/pnas.2417515122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
The ε4 variant of human apolipoprotein E (APOE4) is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of APOE4 has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human APOE4 in Caenorhabditis elegans. The protective effects of VHL-1 deletion are recapitulated by stabilized HIF-1 (hypoxia-inducible factor), a transcription factor degraded by VHL-1. HIF-1 activates a genetic program that safeguards against mitochondrial dysfunction, oxidative stress, proteostasis imbalance, and endolysosomal rupture-critical cellular events linked to neural pathologies and mortality. Furthermore, genetic inhibition of Vhl reduces cerebral vascular injury and synaptic lesions in APOE4 mice, suggesting an evolutionarily conserved mechanism. Thus, we identify the VHL-HIF axis as a potent modulator of APOE4-induced neural pathologies and propose that targeting this pathway in nonproliferative tissues may curb cellular damage, protect against neurodegeneration, and reduce tissue injuries and mortality.
Collapse
Affiliation(s)
- Wei I. Jiang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
| | - Yiming Cao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Yue Xue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Yichun Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Benjamin Y. Winer
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- HHMI, Chevy Chase, MD20815
| | - Rashmi Chandra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
| | - Xingyuan Fischer Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
| | - Mengqi Zhang
- Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Neel S. Singhal
- Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Jonathan T. Pierce
- Department of Neuroscience, The Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, University of Texas at Austin, Austin, TX78712
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
- Department of Physiology, University of California San Francisco, San Francisco, CA94158
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| |
Collapse
|
3
|
Ji Z, Wang B, Chandra R, Liu J, Yang S, Long Y, Egan M, L’Etoile N, Ma DK. Non-Visual Light Sensing Enhances Behavioral Memory and Drives Gene Expression in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.634647. [PMID: 39975403 PMCID: PMC11838244 DOI: 10.1101/2025.01.27.634647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Visible light influences a range of physiological processes, yet how animals respond to it independently of the visual system remains largely unknown. Here, we uncover a previously undescribed light-induced transcriptional pathway that modulates behavioral plasticity in C. elegans, a roundworm without eyes. We demonstrate that ambient visible light or controlled-intensity visible-spectrum LED activates an effector gene cyp-14A5 in non-neuronal tissues through the bZIP transcription factors ZIP-2 and CEBP-2. Light induction of cyp-14A5 is more prominent at shorter wavelengths but is independent of the known blue light receptors LITE-1 and GUR-3 in C. elegans. This bZIP-dependent genetic pathway in non-neuronal tissues enhances behavioral adaptability and olfactory memory, suggesting a body-brain communication axis. Furthermore, we use the light-responsive cyp-14A5 promoter to drive ectopic gene expression, causing synthetic light-induced sleep and rapid aging phenotypes in C. elegans. These findings advance our understanding of light-responsive mechanisms outside the visual system and offer a new genetic tool for visible light-inducible gene expression in non-neuronal tissues.
Collapse
Affiliation(s)
- Zhijian Ji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rashmi Chandra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Junqiang Liu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Supeng Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yong Long
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Michael Egan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Molecular Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noelle L’Etoile
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Peedikayil-Kurien S, Haque R, Gat A, Oren-Suissa M. Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning. Nat Commun 2025; 16:662. [PMID: 39809755 PMCID: PMC11733012 DOI: 10.1038/s41467-025-55950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C. elegans males do not learn to avoid the pathogenic bacteria PA14 as efficiently and rapidly as hermaphrodites. Notably, neuronal activity following pathogen exposure was dimorphic: hermaphrodites generate robust representations, while males, in line with their behavior, exhibit contrasting representations. Transcriptomic and behavioral analysis revealed that the neuropeptide receptor npr-5, an ortholog of the mammalian NPY/NPF-like receptor, regulates male learning by modulating neuronal activity. Furthermore, we show the dependency of the males' decision-making on their sexual status and demonstrate the role of npr-5 as a modulator of incoming sensory cues. Taken together, these findings illustrate how neuromodulators drive sex-specific behavioral plasticity in response to a shared experience.
Collapse
Affiliation(s)
- Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
5
|
Rentsch D, Bergs A, Shao J, Elvers N, Ruse C, Seidenthal M, Aoki I, Gottschalk A. Tools and methods for cell ablation and cell inhibition in Caenorhabditis elegans. Genetics 2025; 229:1-48. [PMID: 39110015 PMCID: PMC11708922 DOI: 10.1093/genetics/iyae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 01/11/2025] Open
Abstract
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Nora Elvers
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Christiane Ruse
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
6
|
Pandi-Perumal SR, Saravanan KM, Paul S, Chidambaram SB. Harnessing Simple Animal Models to Decode Sleep Mysteries. Mol Biotechnol 2024:10.1007/s12033-024-01318-z. [PMID: 39579174 DOI: 10.1007/s12033-024-01318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Whether it involves human subjects or non-human animals, basic, translational, or clinical sleep research poses significant ethical challenges for researchers and ethical committees alike. Sleep research greatly benefits from using diverse animal models, each offering unique insights into sleep control mechanisms. The fruit fly (Drosophila melanogaster) is a superior genetic model due to its quick generation period, large progenies, and rich genetic tools. Its well-characterized genome and ability to respond to hypnotics and stimulants make it an effective tool for studying sleep genetics and physiological foundations. The nematode (Caenorhabditis elegans) has a simpler neural organization and transparent body, allowing researchers to explore molecular underpinnings of sleep control. Vertebrate models, like zebrafish (Danio rerio), provide insights into circadian rhythm regulation, memory consolidation, and drug effects on sleep. Invertebrate models, like California sea hare (Aplysia californica) and Upside-down jellyfish (Cassiopea xamachana), have simpler nervous systems and behave similarly to humans, allowing for the examination of sleep principles without logistical and ethical challenges. Combining vertebrate and invertebrate animal models offers a comprehensive approach to studying sleep, improving our understanding of sleep regulation and potentially leading to new drug discovery processes for sleep disorders and related illnesses.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India
- Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, Punjab, India
| | | | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India.
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, 570015, Karnataka, India.
| |
Collapse
|
7
|
Zhou S, Liu C, Liu W, Wang Y. Mechanism of the anterior cingulate cortex in sleep regulation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1576-1581. [PMID: 40074306 PMCID: PMC11897975 DOI: 10.11817/j.issn.1672-7347.2024.240343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Indexed: 03/14/2025]
Abstract
Sleep disorders refer to conditions characterized by abnormal sleep duration and quality, including insomnia, sleep-disordered breathing, and fragmented sleep, and have become one of the major challenges to modern physical and mental health. The anterior cingulate cortex (ACC) is an important component of the limbic system, located between the cingulate sulcus and the callosal sulcus on the medial surface of the cerebral hemispheres, and plays a critical role in regulating autonomic movements, emotions, and pain. It is an important part of the sleep regulation system. In patients with primary insomnia, reduced sleep duration is associated with lower levels of gamma-aminobutyric acid in the ACC, and these patients often exhibit increased ACC volume and altered functional structure. The ACC is recognized as a central region for pain perception and the regulation of negative emotions; it participates in the control of chronic pain and regulates pain-related insomnia via descending projections. Moreover, the ACC is a key area in the pathophysiology of major depressive disorder, where individuals with depression or poor sleep quality show enhanced functional connectivity between the ACC and regions such as the lateral orbitofrontal cortex, posterior cingulate cortex, precuneus, angular gyrus, and temporal cortex. Abnormal functional connectivity within ACC subregions is implicated in anhedonia and impaired sleep quality in patients with major depressive disorder.
Collapse
Affiliation(s)
- Shangtao Zhou
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000.
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China.
| | - Chengxi Liu
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China
| | - Wenjie Liu
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China
| | - Yan Wang
- Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000.
- Clinical Research Center for Acute and Chronic Pain in Hunan Province, Hengyang Hunan 421000, China.
| |
Collapse
|
8
|
Zou C, Cai R, Li Y, Xue Y, Zhang G, Alitongbieke G, Pan Y, Zhang S. β-chitosan attenuates hepatic macrophage-driven inflammation and reverses aging-related cognitive impairment. iScience 2024; 27:110766. [PMID: 39280626 PMCID: PMC11401205 DOI: 10.1016/j.isci.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, increasing evidence has shown the association between liver abnormal inflammation and cognition impairment, yet their age-related pathogenesis remains obscure. Here, our study provides a potential mechanistic link between liver macrophage excessive activation and neuroinflammation in aging progression. In aged and LPS-injected C57BL/6J mice, systemic administration of β-chitosan ameliorates hepatic macrophage-driven inflammation and reduces peripheral accumulations of TNF-α and IL-1β. Downregulation of circulatory pro-inflammatory cytokines then decreases vascular VCAM1 expression and neuroinflammation in the hippocampus, leading to cognitive improvement in aged/LPS-stimulated mice. Interestingly, β-chitosan treatment also exhibits the beneficial effects on the behavioral recovery of aged/LPS-stimulated zebrafish and Caenorhabditis elegans. In our cell culture and molecular docking experiments, we found that β-chitosan prefers shielding the MD-2 pocket, thus blocking the activation of TLR4-MD-2 complex to suppress NF-κB signaling pathway activation. Together, our findings highlight the extensive therapeutic potential of β-chitosan in reversing aged-related/LPS-induced cognitive impairment via the liver-brain axis.
Collapse
Affiliation(s)
- Chenming Zou
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Ruihua Cai
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yunbing Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Gulimiran Alitongbieke
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Sanguo Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
9
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Pang X, Zhou B, Wu J, Mo Q, Yang L, Liu T, Jin G, Zhang L, Liu X, Xu X, Wang B, Cao H. Lacticaseibacillus rhamnosus GG alleviates sleep deprivation-induced intestinal barrier dysfunction and neuroinflammation in mice. Food Funct 2024; 15:8740-8758. [PMID: 39101469 DOI: 10.1039/d4fo00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Consuming probiotic products is a solution that people are willing to choose to augment health. As a global health hazard, sleep deprivation (SD) can cause both physical and mental diseases. The present study investigated the protective effects of Lacticaseibacillus rhamnosus GG (LGG), a widely used probiotic, on a SD mouse model. Here, it has been shown that SD induced intestinal damage in mice, while LGG supplementation attenuated disruption of the intestinal barrier and enhanced the antioxidant capacity. Microbiome analysis revealed that SD caused dysbiosis in the gut microbiota, characterized by increased levels of Clostridium XlVa, Alistipes, and Desulfovibrio, as well as decreased levels of Ruminococcus, which were partially ameliorated by LGG. Moreover, SD resulted in elevated pro-inflammatory cytokine concentrations in both the intestine and the brain, while LGG provided protection in both organs. LGG supplementation significantly improved locomotor activity in SD mice. Although heat-killed LGG showed some protective effects in SD mice, its overall efficacy was inferior to that of live LGG. In terms of mechanism, it was found that AG1478, an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase, could diminish the protective effects of LGG. In conclusion, LGG demonstrated the ability to alleviate SD-induced intestinal barrier dysfunction through EGFR activation and alleviate neuroinflammation.
Collapse
Affiliation(s)
- Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Qi Mo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Lan Zhang
- Department of Geriatrics, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Xin Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| |
Collapse
|
11
|
Li D, Chen D, Li W, Ou G. Inhibition of a cyclic nucleotide-gated channel on neuronal cilia activates unfolded protein response in intestinal cells to promote longevity. Proc Natl Acad Sci U S A 2024; 121:e2321228121. [PMID: 38857399 PMCID: PMC11194586 DOI: 10.1073/pnas.2321228121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Ciliary defects are linked to ciliopathies, but impairments in the sensory cilia of Caenorhabditis elegans neurons extend lifespan, a phenomenon with previously unclear mechanisms. Our study reveals that neuronal cilia defects trigger the unfolded protein response of the endoplasmic reticulum (UPRER) within intestinal cells, a process dependent on the insulin/insulin-like growth factor 1 (IGF-1) signaling transcription factor and the release of neuronal signaling molecules. While inhibiting UPRER doesn't alter the lifespan of wild-type worms, it normalizes the extended lifespan of ciliary mutants. Notably, deactivating the cyclic nucleotide-gated (CNG) channel TAX-4 on the ciliary membrane promotes lifespan extension through a UPRER-dependent mechanism. Conversely, constitutive activation of TAX-4 attenuates intestinal UPRER in ciliary mutants. Administering a CNG channel blocker to worm larvae activates intestinal UPRER and increases adult longevity. These findings suggest that ciliary dysfunction in sensory neurons triggers intestinal UPRER, contributing to lifespan extension and implying that transiently inhibiting ciliary channel activity may effectively prolong lifespan.
Collapse
Affiliation(s)
- Dongdong Li
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Di Chen
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
- McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Škop V, Liu N, Xiao C, Stinson E, Chen KY, Hall KD, Piaggi P, Gavrilova O, Reitman ML. Beyond day and night: The importance of ultradian rhythms in mouse physiology. Mol Metab 2024; 84:101946. [PMID: 38657735 PMCID: PMC11070603 DOI: 10.1016/j.molmet.2024.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma Stinson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Kevin D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Cowen MH, Raizen DM, Hart MP. Structural neuroplasticity after sleep loss modifies behavior and requires neurexin and neuroligin. iScience 2024; 27:109477. [PMID: 38551003 PMCID: PMC10973677 DOI: 10.1016/j.isci.2024.109477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 03/08/2024] [Indexed: 02/08/2025] Open
Abstract
Structural neuroplasticity (changes in the size, strength, number, and targets of synaptic connections) can be modified by sleep and sleep disruption. However, the causal relationships between genetic perturbations, sleep loss, neuroplasticity, and behavior remain unclear. The C. elegans GABAergic DVB neuron undergoes structural plasticity in adult males in response to adolescent stress, which rewires synaptic connections, alters behavior, and is dependent on conserved autism-associated genes NRXN1/nrx-1 and NLGN3/nlg-1. We find that four methods of sleep deprivation transiently induce DVB neurite extension in day 1 adults and increase the time to spicule protraction, which is the functional and behavioral output of the DVB neuron. Loss of nrx-1 and nlg-1 prevent DVB structural plasticity and behavioral changes at day 1 caused by adolescent sleep loss. Therefore, nrx-1 and nlg-1 mediate the morphologic and behavioral consequences of sleep loss, providing insight into the relationship between sleep, neuroplasticity, behavior, and neurologic disease.
Collapse
Affiliation(s)
- Mara H. Cowen
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Majeed M, Han H, Zhang K, Cao WX, Liao CP, Hobert O, Lu H. Toolkits for detailed and high-throughput interrogation of synapses in C. elegans. eLife 2024; 12:RP91775. [PMID: 38224479 PMCID: PMC10945580 DOI: 10.7554/elife.91775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other 'punctate' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.
Collapse
Affiliation(s)
- Maryam Majeed
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Haejun Han
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Keren Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Wen Xi Cao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Hang Lu
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
15
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
16
|
Poe GR, Donlea JM. Sleep sculpts circuits in every species studied. Cell 2023; 186:2730-2732. [PMID: 37352834 DOI: 10.1016/j.cell.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
In this issue of Cell, we see first evidence of sleep-dependent circuit remodeling alongside behavioral memory consolidation in C. elegans. Examining memory of a never-rewarded odor during post-training sleep from synapse to behavior all in one organism opens the opportunity to use this well-mapped nervous system to study mechanisms of sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- Gina R Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey M Donlea
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|