1
|
Li XH, Lu HZ, Yao JB, Zhang C, Shi TQ, Huang H. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnol Adv 2025; 81:108561. [PMID: 40086675 DOI: 10.1016/j.biotechadv.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Filamentous fungi are essential industrial microorganisms that can serve as sources of enzymes, organic acids, terpenoids, and other bioactive compounds with significant applications in food, medicine, and agriculture. However, the underdevelopment of gene editing tools limits the full exploitation of filamentous fungi, which still present numerous untapped potential applications. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) system, a versatile genome-editing tool, has advanced significantly and been widely applied in filamentous fungi, showcasing considerable research potential. This review examines the development and mechanisms of genome-editing tools in filamentous fungi, and contrasts the CRISPR/Cas9 and CRISPR/Cpf1 systems. The transformation and delivery strategies of the CRISPR/Cas system in filamentous fungi are also examined. Additionally, recent applications of CRISPR/Cas systems in filamentous fungi are summarized, such as gene disruption, base editing, and gene regulation. Strategies to enhance editing efficiency and reduce off-target effects are also highlighted, with the aim of providing insights for the future construction and optimization of CRISPR/Cas systems in filamentous fungi.
Collapse
Affiliation(s)
- Xu-Hong Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hui-Zhi Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ji-Bao Yao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
2
|
Ren C, Bao Z. Assessment of Miniature AsCas12f1 Variants for Gene Editing and Activation. Biotechnol Bioeng 2025; 122:1590-1597. [PMID: 40108777 DOI: 10.1002/bit.28978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Miniature CRISPR/Cas systems possess delivery advantages for gene therapy. The type V-F Cas12f1 from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been engineered by several studies as compact genome editing tools through protein and single guide RNA (sgRNA) engineering. However, a comparative evaluation of gene editing and activation efficiencies mediated by different AsCas12f1 variants and sgRNA scaffolds is lacking. This study tested combinations of four AsCas12f1 protein variants and six sgRNA scaffolds for their gene editing and transcription activation efficiencies. The protein variant AsCas12f1-HKRA performed the best in gene editing and activation when paired with sgRNA-en_v2.1 scaffold. Furthermore, we validated a super miniature gene activator by fusing a small activation domain to AsCas12f1-HKRA. Our findings recommend using AsCas12f1-HKRA and sgRNA-en_v2.1 for gene editing and activation applications.
Collapse
Affiliation(s)
- Chuanhong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zehua Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Kannan S, Altae-Tran H, Zhu S, Xu P, Strebinger D, Oshiro R, Faure G, Moeller L, Pham J, Mears KS, Ni HM, Macrae RK, Zhang F. Evolution-guided protein design of IscB for persistent epigenome editing in vivo. Nat Biotechnol 2025:10.1038/s41587-025-02655-3. [PMID: 40335752 DOI: 10.1038/s41587-025-02655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/26/2025] [Indexed: 05/09/2025]
Abstract
Naturally existing enzymes have been adapted for a variety of molecular technologies, with enhancements or modifications to the enzymes introduced to improve the desired function; however, it is difficult to engineer variants with enhanced activity while maintaining specificity. Here we engineer the compact Obligate Mobile Element Guided Activity (OMEGA) RNA-guided endonuclease IscB and its guiding RNA (ωRNA) by combining ortholog screening, structure-guided protein domain design and RNA engineering, and deep learning-based structure prediction to generate an improved variant, NovaIscB. We show that the compact NovaIscB achieves up to 40% indel activity (~100-fold improvement over wild-type OgeuIscB) on the human genome with improved specificity relative to existing IscBs. We further show that NovaIscB can be fused with a methyltransferase to create a programmable transcriptional repressor, OMEGAoff, that is compact enough to be packaged in a single adeno-associated virus vector for persistent in vivo gene repression. This study highlights the power of combining natural diversity with protein engineering to design enhanced enzymes for molecular biology applications.
Collapse
Affiliation(s)
- Soumya Kannan
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Han Altae-Tran
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Shiyou Zhu
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Peiyu Xu
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Daniel Strebinger
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Rachel Oshiro
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Guilhem Faure
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Lukas Moeller
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Julie Pham
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Kepler S Mears
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Heyuan M Ni
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Yang Tan Collective, Cambridge, MA, USA.
| |
Collapse
|
4
|
Bai S, Cao X, Hu L, Hu D, Li D, Sun Y. Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1153-1164. [PMID: 39799585 PMCID: PMC11933828 DOI: 10.1111/pbi.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
The Cas12j-8 nuclease, derived from the type V CRISPR system, is approximately half the size of Cas9 and recognizes a 5'-TTN-3' protospacer adjacent motif sequence, thus potentially having broad application in genome editing for crop improvement. However, its editing efficiency remains low in plants. In this study, we rationally engineered both the crRNA and the Cas12j-8 nuclease. The engineered crRNA and Cas12j-8 markedly improved genome editing efficiency in plants. When combined, they exhibited robust editing activity in soybean and rice, enabling the editing of target sites that were previously uneditable. Notably, for certain target sequences, the editing activity was comparable to that of SpCas9 when targeting identical sequences, and it outperformed the Cas12j-2 variant, nCas12j-2, across all tested targets. Additionally, we developed cytosine base editors based on the engineered crRNA and Cas12j-8, demonstrating an average increase of 5.36- to 6.85-fold in base-editing efficiency (C to T) compared with the unengineered system in plants, with no insertions or deletions (indels) observed. Collectively, these findings indicate that the engineered hypercompact CRISPR/Cas12j-8 system serves as an efficient tool for genome editing mediated by both nuclease cleavage and base editing in plants.
Collapse
Affiliation(s)
- Shasha Bai
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Xingyu Cao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Lizhe Hu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Danling Hu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Dongming Li
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of EducationInner Mongolia UniversityHohhotChina
| | - Yongwei Sun
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of EducationInner Mongolia UniversityHohhotChina
| |
Collapse
|
5
|
Zhang X, Li M, Chen K, Liu Y, Liu J, Wang J, Huang H, Zhang Y, Huang T, Ma S, Liao K, Zhou J, Wang M, Lin Y, Rong Z. Engineered circular guide RNAs enhance miniature CRISPR/Cas12f-based gene activation and adenine base editing. Nat Commun 2025; 16:3016. [PMID: 40148327 PMCID: PMC11950443 DOI: 10.1038/s41467-025-58367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
CRISPR system has been widely used due to its precision and versatility in gene editing. Un1Cas12f1 from uncultured archaeon (hereafter referred to as Cas12f), known for its compact size (529 aa), exhibits obvious delivery advantage for gene editing in vitro and in vivo. However, its activity remains suboptimal. In this study, we engineer circular guide RNA (cgRNA) for Cas12f and significantly improve the efficiency of gene activation about 1.9-19.2-fold. When combined with a phase separation system, the activation efficiency is further increased about 2.3-3.9-fold. In addition, cgRNA enhances the editing efficiency and narrows the editing window of adenine base editing about 1.2-2.5-fold. Importantly, this optimization strategy also boosts the Cas12f-induced gene activation efficiency in mouse liver. Therefore, we demonstrate that cgRNA is able to enhance Cas12f-based gene activation and adenine base editing, which holds great potential for gene therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengrao Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Kechen Chen
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Yuchen Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Jiawei Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Hongxin Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Yanqun Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Tao Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kaitong Liao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Jiayi Zhou
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China
| | - Mei Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China.
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Multi-organ Injury Prevention and Treatment, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Liu D, Cao D, Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025:S1525-0016(25)00200-X. [PMID: 40119516 DOI: 10.1016/j.ymthe.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The advent of gene-editing technologies, particularly CRISPR-based systems, has revolutionized the landscape of biomedical research and gene therapy. Ongoing research in gene editing has led to the rapid iteration of CRISPR technologies, such as base and prime editors, enabling precise nucleotide changes without the need for generating harmful double-strand breaks (DSBs). Furthermore, innovations such as CRISPR fusion systems with DNA recombinases, DNA polymerases, and DNA ligases have expanded the size limitations for edited sequences, opening new avenues for therapeutic development. Beyond the CRISPR system, mobile genetic elements (MGEs) and epigenetic editors are emerging as efficient alternatives for precise large insertions or stable gene manipulation in mammalian cells. These advances collectively set the stage for next-generation gene therapy development. This review highlights recent developments of genetic and epigenetic editing tools and explores preclinical innovations poised to advance the field.
Collapse
Affiliation(s)
- Dongqi Liu
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Cao
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Ukaji T, Arai D, Tsutsumi H, Nakagawa R, Matsumoto F, Ikeda K, Nureki O, Kamiya K. AAV-mediated base editing restores cochlear gap junction in GJB2 dominant-negative mutation-associated syndromic hearing loss model. JCI Insight 2025; 10:e185193. [PMID: 40059830 PMCID: PMC11949026 DOI: 10.1172/jci.insight.185193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/24/2025] [Indexed: 03/29/2025] Open
Abstract
Mutations in the gap junction β2 (GJB2) gene, which encodes connexin 26, are the leading cause of genetic deafness. These mutations are characterized by the degeneration and fragmentation of gap junctions and gap junction plaques (GJPs) composed of connexin 26. Dominant-negative mutations of GJB2, such as R75W, cause syndromic hearing loss and palmoplantar keratoderma. We previously reported that the R75W mutation, a single-base substitution where C is replaced by T, causes fragmentation of GJPs. Therefore, an adenine base editor (ABE), which enables A-to-G base conversions, can potentially be useful for the treatment of this genetic disease. Here, we report that an all-in-one adeno-associated virus (AAV) vector, which includes a compact ABE (SaCas9-NNG-ABE8e) with broad targeting range, and a sgRNA targeting the R75W mutation in GJB2 corrected this pathogenic mutation and facilitated the recovery of the gap junction intercellular communication network of GJPs. In a transgenic mouse model with the GJB2 R75W mutation, AAV-mediated base editing also restored the fragmented GJPs to orderly outlines in cochlear supporting cells. Our findings suggest that an ABE-based base-editing strategy could be an optimal treatment for the dominant form of GJB2-related hearing loss, GJB2-related skin diseases, and other deafness-related mutations, especially single-base substitutions.
Collapse
Affiliation(s)
- Takao Ukaji
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daisuke Arai
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Harumi Tsutsumi
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryoya Nakagawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Fumihiko Matsumoto
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katsuhisa Ikeda
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazusaku Kamiya
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Gao S, Weng B, Wich D, Power L, Chen M, Guan H, Ye Z, Xu C, Xu Q. Improving adenine base editing precision by enlarging the recognition domain of CRISPR-Cas9. Nat Commun 2025; 16:2081. [PMID: 40021632 PMCID: PMC11871365 DOI: 10.1038/s41467-025-57154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
Domain expansion contributes to diversification of RNA-guided-endonucleases including Cas9. However, it remains unclear how REC domain expansion could benefit Cas9. In this study, we identify an insertion spot that is compatible with large REC insertion and succeeds in enlarging the non-catalytic REC domain of Streptococcus pyogenes Cas9. The natural-evolution-like giant SpCas9 (GS-Cas9) is created and shows substantially improved editing precision. We further discover that enlarging the REC domain could enable regulation of the N-terminal adenine deaminase TadA8e tethered to the Cas9 scaffold, which contributes to substantially reducing unexpected editing and improving the precision of the adenine base editor ABE8e. We provide proof of concept for evolution-inspired expansion of Cas9 and offer an alternative solution for optimizing gene editors. Our study also indicates a vast potential for engineering the topological malleability of RNA-guided endonucleases and base editors.
Collapse
Affiliation(s)
- Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Benson Weng
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Liam Power
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Mengting Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Huiwen Guan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Chutian Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
9
|
Thornton BW, Weissman RF, Tran RV, Duong BT, Rodriguez JE, Terrace CI, Groover ED, Park JU, Tartaglia J, Doudna JA, Savage DF. Latent activity in TnpB revealed by mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637750. [PMID: 39990302 PMCID: PMC11844463 DOI: 10.1101/2025.02.11.637750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
TnpB is an evolutionarily diverse family of RNA-guided endonucleases associated with prokaryotic transposons. Due to their small size and putative evolutionary relationship to Cas12s, TnpB holds significant potential for genome editing and mechanistic exploration. However, most TnpBs lack robust gene-editing activity, and unbiased profiling of mutational effects on editing activity has not been experimentally explored. Here, we mapped comprehensive sequence-function landscapes of a TnpB ribonucleoprotein and discovered many activating mutations in both the protein and RNA. Single-position changes in the RNA outperform existing variants, highlighting the utility of systematic RNA scaffold mutagenesis. Leveraging the mutational landscape of the TnpB protein, we identified enhanced protein variants from a combinatorial library of activating mutations. These variants increased editing in human cells and N. benthamiana by over two-fold and fifty-fold relative to wild-type TnpB, respectively. In total, this study highlights unknown elements critical for regulation of endonuclease activity in both the TnpB protein and the RNA, and reveals a surprising amount of latent activity accessible through mutation.
Collapse
Affiliation(s)
- Brittney W. Thornton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rachel F. Weissman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ryan V. Tran
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, US
- Scribe Therapeutics, Alameda, CA, 94501, USA
| | - Brenda T. Duong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, US
| | - Jorge E. Rodriguez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Cynthia I. Terrace
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Evan D. Groover
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jung-Un Park
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Julia Tartaglia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, US
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, US
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David F. Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Liang Z, Wu Y, Deng S, Wei S, Zhang K, Guo Y. Enhanced Genome Editing Activity with Novel Chimeric ScCas9 Variants in Rice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411549. [PMID: 39755933 PMCID: PMC11848528 DOI: 10.1002/advs.202411549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Indexed: 01/06/2025]
Abstract
The Streptococcus canis Cas9 protein (ScCas9) recognizes the NNG protospacer adjacent motif (PAM), offering a wider range of targets than that offered by the commonly used S. pyogenes Cas9 protein (SpCas9). However, both ScCas9 and its evolved Sc++ variant still exhibit low genome editing efficiency in plants, particularly at the less preferred NTG and NCG PAM targets. In this study, a chimeric SpcRN++ variant is engineered by grafting the recognition (REC) domain of SpCas9 into the Sc++ variant, incorporating the R221K/N394K mutations, and retaining the positively charged loop of S. anginosus Cas9. The SpcRN++ variant exhibits a higher genome editing capacity and wider target range than the Sc++ variant in rice protoplasts and stable transgenic plants. Further evidence indicates that nSpcRN++-based A3A/Y130F and TadA8e exhibit enhanced cytosine and adenine editing efficiency in plants. Finally, herbicide-resistant rice germplasms are produced by targeting the OsACC gene using nSpcRN++-based adenine base editors. These results demonstrate that SpcRN++ is a powerful tool for genome editing in plants, and this integrative protein engineering strategy holds promise for engineering other Cas9 proteins.
Collapse
Affiliation(s)
- Zhen Liang
- School of Life ScienceShanxi UniversityTaiyuanShanxi030006China
| | - Yuqing Wu
- School of Life ScienceShanxi UniversityTaiyuanShanxi030006China
| | - Shuke Deng
- School of Life ScienceShanxi UniversityTaiyuanShanxi030006China
| | - Sha Wei
- School of Life ScienceShanxi UniversityTaiyuanShanxi030006China
| | - Kai Zhang
- School of Life ScienceShanxi UniversityTaiyuanShanxi030006China
| | - Yingjie Guo
- Research Institute of Big Data Science and IndustryShanxi UniversityTaiyuanShanxi030006China
| |
Collapse
|
11
|
Ganguly C, Martin L, Aribam S, Thomas LM, Rajan R. Helical transition of the bridge helix of Cas12a is an allosteric regulator of R-loop formation and RuvC activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632262. [PMID: 39829887 PMCID: PMC11741254 DOI: 10.1101/2025.01.09.632262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
CRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Francisella novicida Cas12a variant (FnoCas12a KD2P ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH-mediated activation of Cas12a. We captured five structures of FnoCas12a KD2P at different states of conformational activation. Comparison with wild-type (FnoCas12a WT ) structures unravels a mechanism where BH acts as a trigger that allosterically activates REC lobe movements by tracking the number of base pairs in the growing RNA-DNA hybrid to undergo a loop-to-helical transition and bending to latch onto the hybrid. The transition of the BH is coupled to the previously reported loop-to-helix transition of the "lid", essential for opening RuvC endonuclease, through direct interactions of residues of the BH and the lid. We also observe structural details of cooperativity of BH and "helix-1" of RuvC for activation, a previously proposed interaction. Overall, our study enables development of high-fidelity Cas12a and Cas9 variants by BH-modifications.
Collapse
|
12
|
Jiang K, Yan Z, Di Bernardo M, Sgrizzi SR, Villiger L, Kayabolen A, Kim BJ, Carscadden JK, Hiraizumi M, Nishimasu H, Gootenberg JS, Abudayyeh OO. Rapid in silico directed evolution by a protein language model with EVOLVEpro. Science 2025; 387:eadr6006. [PMID: 39571002 DOI: 10.1126/science.adr6006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 01/25/2025]
Abstract
Directed protein evolution is central to biomedical applications but faces challenges such as experimental complexity, inefficient multiproperty optimization, and local maxima traps. Although in silico methods that use protein language models (PLMs) can provide modeled fitness landscape guidance, they struggle to generalize across diverse protein families and map to protein activity. We present EVOLVEpro, a few-shot active learning framework that combines PLMs and regression models to rapidly improve protein activity. EVOLVEpro surpasses current methods, yielding up to 100-fold improvements in desired properties. We demonstrate its effectiveness across six proteins in RNA production, genome editing, and antibody binding applications. These results highlight the advantages of few-shot active learning with minimal experimental data over zero-shot predictions. EVOLVEpro opens new possibilities for artificial intelligence-guided protein engineering in biology and medicine.
Collapse
Affiliation(s)
- Kaiyi Jiang
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
- Department of Bioengineering Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhaoqing Yan
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Matteo Di Bernardo
- Whitehead Institute Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samantha R Sgrizzi
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Lukas Villiger
- Department of Dermatology and Allergology Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Alisan Kayabolen
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - B J Kim
- Koch Institute for Integrative Cancer Research at MIT Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josephine K Carscadden
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, Japan
| | - Jonathan S Gootenberg
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Omar O Abudayyeh
- Department of Medicine Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, MA, USA
- Gene and Cell Therapy Institute Mass General Brigham, Cambridge, MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Park SJ, Ju S, Jung WJ, Jeong TY, Yoon DE, Lee JH, Yang J, Lee H, Choi J, Kim HS, Kim K. Robust genome editing activity and the applications of enhanced miniature CRISPR-Cas12f1. Nat Commun 2025; 16:677. [PMID: 39809780 PMCID: PMC11733285 DOI: 10.1038/s41467-025-56048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
With recent advancements in gene editing technology using the CRISPR/Cas system, there is a demand for more effective gene editors. A key factor facilitating efficient gene editing is effective CRISPR delivery into cells, which is known to be associated with the size of the CRISPR system. Accordingly, compact CRISPR-Cas systems derived from various strains are discovered, among which Un1Cas12f1 is 2.6 times smaller than SpCas9, providing advantages for gene therapy research. Despite extensive engineering efforts to improve Un1Cas12f1, the editing efficiency of Un1Cas12f1 is still shown to be low depending on the target site. To overcome this limitation, we develop enhanced Cas12f1 (eCas12f1), which exhibits gene editing activity similar to SpCas9 and AsCpf1, even in gene targets where previously improved Un1Cas12f1 variants showed low gene editing efficiency. Furthermore, we demonstrate that eCas12f1 efficiently induces apoptosis in cancer cells and is compatible with base editing and regulation of gene expression, verifying its high utility and applicability in gene therapy research.
Collapse
Affiliation(s)
- Soo-Ji Park
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sungjin Ju
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Jun Jung
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Tae Yeong Jeong
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jang Hyeon Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jiyun Yang
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hojin Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Chakraborty A, Yu ASL. Prospects for gene therapy in polycystic kidney disease. Curr Opin Nephrol Hypertens 2025; 34:121-127. [PMID: 39499052 PMCID: PMC11606769 DOI: 10.1097/mnh.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW We aim to provide an updated perspective on the recent advancements in gene therapy for polycystic kidney disease (PKD), a genetic disorder with significant morbidity. Given the rapid evolution of gene therapy technologies and their potential for treating inherited diseases, this review explores the therapeutic prospects and challenges in applying these technologies to PKD. RECENT FINDINGS Significant progress has been made in understanding the genetic underpinnings of PKD, making it a prime candidate for gene therapy. Re-expression of the PKD genes, treatment with the C-terminal tail of polycystin 1 protein and antagomir therapy against miR-17 have shown promise in reducing cyst formation and preserving kidney function. The rapid development of gene-editing tools, antisense oligonucleotide-based strategies, programmable RNA, and advanced gene delivery systems has opened new possibilities for PKD treatment. However, challenges such as off-target effects, delivery efficiency, and long-term safety remain significant barriers to clinical application. SUMMARY Current research highlights the transformative potential of gene therapy for PKD. Ongoing studies are crucial to overcoming existing challenges and translating these findings into clinical practice. We highlight the need for multidisciplinary efforts to optimize gene-editing technologies and ensure their safety and efficacy in treating PKD.
Collapse
Affiliation(s)
- Anubhav Chakraborty
- The Jared Grantham Kidney Institute
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Alan S L Yu
- The Jared Grantham Kidney Institute
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
15
|
Xiao Q, Li G, Han D, Wang H, Yao M, Ma T, Zhou J, Zhang Y, Zhang X, He B, Yuan Y, Shi L, Li T, Yang H, Huang J, Zhang H. Engineered IscB-ωRNA system with expanded target range for base editing. Nat Chem Biol 2025; 21:100-108. [PMID: 39147927 PMCID: PMC11666462 DOI: 10.1038/s41589-024-01706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
As the evolutionary ancestor of Cas9 nuclease, IscB proteins serve as compact RNA-guided DNA endonucleases and nickases, making them strong candidates for base editing. Nevertheless, the narrow targeting scope limits the application of IscB systems; thus, it is necessary to find more IscBs that recognize different target-adjacent motifs (TAMs). Here, we identified 10 of 19 uncharacterized IscB proteins from uncultured microbes with activity in mammalian cells. Through protein and ωRNA engineering, we further enhanced the activity of IscB ortholog IscB.m16 and expanded its TAM scope from MRNRAA to NNNGNA, resulting in a variant named IscB.m16*. By fusing the deaminase domains with IscB.m16* nickase, we generated IscB.m16*-derived base editors that exhibited robust base-editing efficiency in mammalian cells and effectively restored Duchenne muscular dystrophy proteins in diseased mice through single adeno-associated virus delivery. Thus, this study establishes a set of compact base-editing tools for basic research and therapeutic applications.
Collapse
Affiliation(s)
- Qingquan Xiao
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Dingyi Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Mingyu Yao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Tingting Ma
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | | | - Yu Zhang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Xiumei Zhang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Bingbing He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Linyu Shi
- HuidaGene Therapeutics Co. Ltd., Shanghai, China
| | - Tong Li
- HuidaGene Therapeutics Co. Ltd., Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China.
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai, China.
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China.
| | - Hainan Zhang
- HuidaGene Therapeutics Co. Ltd., Shanghai, China.
| |
Collapse
|
16
|
Sukegawa S, Toki S, Saika H. Agrobacterium-Mediated Transformation and Targeted Mutagenesis Using SpCas12f in Rice. Methods Mol Biol 2025; 2869:75-90. [PMID: 39499469 DOI: 10.1007/978-1-0716-4204-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR-Cas) is an adaptive prokaryote immune system against foreign DNA/RNA that is now applied widely to genome editing. A miniature Cas, CRISPR-Cas12f, is one-half to one-third the size of the CRISPR-Cas9 that is commonly used in genome editing experiments in many organisms, including higher plants. The compactness of CRISPR-Cas12f is expected to be advantageous in terms of vector construction and transformation frequency. Moreover, CRISPR-Cas12f can be useful for virus vector-mediated genome editing because the size of the transgene is the major restriction in the use of virus vectors. Here, we describe our protocol for targeted mutagenesis using Cas12f derived from Syntrophomonas palmitatica (SpCas12f) via Agrobacterium-mediated transformation in rice. We also summarize some approaches to improve the frequency of targeted mutagenesis using SpCas12f.
Collapse
Affiliation(s)
- Satoru Sukegawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Kyoto, Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
17
|
Li D, Zhang S, Lin S, Xing W, Yang Y, Zhu F, Su D, Chen C, Liu JJG. Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage. Nat Commun 2024; 15:10727. [PMID: 39737904 PMCID: PMC11685505 DOI: 10.1038/s41467-024-54491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/11/2024] [Indexed: 01/01/2025] Open
Abstract
Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties. To comprehensively understand the Cas12e family, we identify and characterize six unreported Cas12e members that vary in their CRISPR-locus architectures, PAM preferences, and cleavage efficacies. Interestingly, among all variants, PlmCas12e exhibits the most robust trans-cleavage activity and the lowest salt sensitivity in cis-cleavage. Further structural comparisons reveal that the unique NTSB domain in PlmCas12e is beneficial to DNA unwinding at high salt concentrations, while some NTSB-lacking Cas12e proteins rely on positively charged loops for dsDNA unwinding. These findings demonstrate how divergent evolution of structural elements shapes the nuclease diversity within the Cas12e family, potentially contributing to their adaptations to varying environmental conditions.
Collapse
Affiliation(s)
- Danyuan Li
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shouyue Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Lin
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Xing
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yun Yang
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fengxia Zhu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China.
| | - Chunlai Chen
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jun-Jie Gogo Liu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
19
|
Liu Z, Chen S, Lo CH, Wang Q, Sun Y. All-in-one AAV-mediated Nrl gene inactivation rescues retinal degeneration in Pde6a mice. JCI Insight 2024; 9:e178159. [PMID: 39499900 DOI: 10.1172/jci.insight.178159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Retinitis pigmentosa (RP) is a complex group of inherited retinal diseases characterized by progressive death of photoreceptor cells and eventual blindness. Pde6a, which encodes a cGMP-specific phosphodiesterase, is a crucial pathogenic gene for autosomal recessive RP (RP43); there is no effective therapy for this form of RP. The compact CRISPR/Staphylococcus aureus Cas9 (CRISPR/SaCas9) system, which can be packaged into a single adeno-associated virus (AAV), holds promise for simplifying effective gene therapy. Here, we demonstrated that all-in-one AAV-SaCas9-mediated Nrl gene inactivation can efficiently prevent retinal degeneration in a RP mouse model with Pde6anmf363/nmf363 mutation. We screened single-guide RNAs capable of efficiently editing the mouse Nrl gene in N2a cells and then achieved effective gene editing by using a single AAV to codeliver SaCas9 and an optimal Nrl-sg2 into the mouse retina. Excitingly, in vivo inactivation of Nrl improved photoreceptor cell survival and rescued retinal function in treated Pde6a-deficient mice. Thus, we showed that a practical, gene-independent method, AAV-SaCas9-mediated Nrl inactivation, holds promise for future therapeutic applications in patients with RP.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Siyu Chen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA
- Palo Alto Veterans Administration, Palo Alto, California, USA
| |
Collapse
|
20
|
Song X, Chen Z, Sun W, Yang H, Guo L, Zhao Y, Li Y, Ren Z, Shi J, Liu C, Ma P, Huang X, Ji Q, Sun B. CRISPR-AsCas12f1 couples out-of-protospacer DNA unwinding with exonuclease activity in the sequential target cleavage. Nucleic Acids Res 2024; 52:14030-14042. [PMID: 39530229 DOI: 10.1093/nar/gkae989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Type V-F CRISPR-Cas12f is a group of hypercompact RNA-guided nucleases that present a versatile in vivo delivery platform for gene therapy. Upon target recognition, Acidibacillus sulfuroxidans Cas12f (AsCas12f1) distinctively engenders three DNA break sites, two of which are located outside the protospacer. Combining ensemble and single-molecule approaches, we elucidate the molecular details underlying AsCas12f1-mediated DNA cleavages. We find that following the protospacer DNA unwinding and non-target strand (NTS) DNA nicking, AsCas12f1 surprisingly carries out bidirectional exonucleolytic cleavage from the nick. Subsequently, DNA unwinding is extended to the out-of-protospacer region, and AsCas12f1 gradually digests the unwound DNA beyond the protospacer. Eventually, the single endonucleolytic target-strand DNA cleavage at 3 nt downstream of the protospacer readily dissociates the ternary AsCas12f1-sgRNA-DNA complex from the protospacer adjacent motif-distal end, leaving a staggered double-strand DNA break. The coupling between the unwinding and cleavage of both protospacer and out-of-protospacer DNA is promoted by Mg2+. Kinetic analysis on the engineered AsCas12f1-v5.1 variant identifies the only accelerated step of the protospacer NTS DNA trimming within the sequential DNA cleavage. Our findings provide a dynamic view of AsCas12f1 catalyzing DNA unwinding-coupled nucleolytic cleavage and help with practical improvements of Cas12f-based genome editing tools.
Collapse
Affiliation(s)
- Xiaoxuan Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Wenjun Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiyun Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | | | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
21
|
Kong X, Li T, Yang H. AAV-mediated gene therapies by miniature gene editing tools. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2540-2553. [PMID: 39388062 DOI: 10.1007/s11427-023-2608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 10/15/2024]
Abstract
The advent of CRISPR-Cas has revolutionized precise gene editing. While pioneering CRISPR nucleases like Cas9 and Cas12 generate targeted DNA double-strand breaks (DSB) for knockout or homology-directed repair, next generation CRISPR technologies enable gene editing without DNA DSB. Base editors directly convert bases, prime editors make diverse alterations, and dead Cas-regulator fusions allow nuanced control of gene expression, avoiding potentially risks like translocations. Meanwhile, the discovery of diminutive Cas12 orthologs and Obligate Mobile Element-Guided Activity (OMEGA) nucleases has overcome cargo limitations of adeno-associated viral vectors, expanding prospects for in vivo therapeutic delivery. Here, we review the ever-evolving landscape of cutting-edge gene editing tools, focusing on miniature Cas12 orthologs and OMEGA effectors amenable to single AAV packaging. We also summarize CRISPR therapies delivered using AAV vectors, discuss challenges such as efficiency and specificity, and look to the future of this transformative field of in vivo gene editing enabled by AAV vectors delivery.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Tong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hui Yang
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China.
| |
Collapse
|
22
|
Togashi T, Baatartsogt N, Nagao Y, Kashiwakura Y, Hayakawa M, Hiramoto T, Fujiwara T, Morishita E, Nureki O, Ohmori T. Cure of Congenital Purpura Fulminans via Expression of Engineered Protein C Through Neonatal Genome Editing in Mice. Arterioscler Thromb Vasc Biol 2024; 44:2616-2627. [PMID: 39508105 PMCID: PMC11594008 DOI: 10.1161/atvbaha.123.319460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND PC (protein C) is a plasma anticoagulant encoded by PROC; mutation in both PROC alleles results in neonatal purpura fulminans-a fatal systemic thrombotic disorder. In the present study, we aimed to develop a genome editing treatment to cure congenital PC deficiency. METHODS We generated an engineered APC (activated PC) to insert a furin-cleaving peptide sequence between light and heavy chains. The engineered PC was expressed in the liver of mice using an adeno-associated virus vector or CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-mediated genome editing using an adeno-associated virus vector in vivo. RESULTS The engineered PC could be released in its activated form and significantly prolonged the plasma coagulation time independent of the cofactor activity of PS (protein S) in vitro. The adeno-associated virus vector-mediated expression of the engineered PC, but not wild-type PC, prolonged coagulation time owing to the inhibition of activated coagulation FV (factor V) in a dose-dependent manner and abolished pathological thrombus formation in vivo in C57BL/6J mice. The insertion of EGFP (enhanced green fluorescent protein) sequence conjugated with self-cleaving peptide sequence at Alb locus via neonatal in vivo genome editing using adeno-associated virus vector resulted in the expression of EGFP in 7% of liver cells, mainly via homology-directed repair, in mice. Finally, we succeeded in improving the survival of PC-deficient mice by expressing the engineered PC via neonatal genome editing in vivo. CONCLUSIONS These results suggest that the expression of engineered PC via neonatal genome editing is a potential cure for severe congenital PC deficiency.
Collapse
Affiliation(s)
- Tomoki Togashi
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan (T.T., E.M.)
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Nemekhbayar Baatartsogt
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Yasumitsu Nagao
- Center for Experimental Medicine (Y.N.), Jichi Medical University, Tochigi, Japan
| | - Yuji Kashiwakura
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research (Y.K., M.H., T.O.), Jichi Medical University, Tochigi, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research (Y.K., M.H., T.O.), Jichi Medical University, Tochigi, Japan
| | - Takafumi Hiramoto
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Takayuki Fujiwara
- Division of Cell and Molecular Medicine Center for Molecular Medicine (T.F.), Jichi Medical University, Tochigi, Japan
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Japan (T.F.)
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan (T.T., E.M.)
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan (O.N.)
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research (Y.K., M.H., T.O.), Jichi Medical University, Tochigi, Japan
| |
Collapse
|
23
|
Wu WY, Adiego-Pérez B, van der Oost J. Biology and applications of CRISPR-Cas12 and transposon-associated homologs. Nat Biotechnol 2024; 42:1807-1821. [PMID: 39633151 DOI: 10.1038/s41587-024-02485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated Cas12 proteins are a highly variable collection of nucleic acid-targeting proteins. All Cas12 variants use RNA guides and a single nuclease domain to target complementary DNA or, in rare cases, RNA. The high variability of Cas12 effectors can be explained by a series of independent evolution events from different transposon-associated TnpB-like ancestors. Despite basic structural and functional similarities, this has resulted in unprecedented variation of the Cas12 effector proteins in terms of size, domain composition, guide structure, target identity and interference strategy. In this Review, we compare the unique molecular features of natural and engineered Cas12 and TnpB variants. Furthermore, we provide an overview of established genome editing and diagnostic applications and discuss potential future directions.
Collapse
Affiliation(s)
- Wen Y Wu
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.
| | - Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
24
|
Wang F, Ma S, Zhang S, Ji Q, Hu C. CRISPR beyond: harnessing compact RNA-guided endonucleases for enhanced genome editing. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2563-2574. [PMID: 39012436 DOI: 10.1007/s11427-023-2566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 07/17/2024]
Abstract
The CRISPR-Cas system, an adaptive immunity system in prokaryotes designed to combat phages and foreign nucleic acids, has evolved into a groundbreaking technology enabling gene knockout, large-scale gene insertion, base editing, and nucleic acid detection. Despite its transformative impact, the conventional CRISPR-Cas effectors face a significant hurdle-their size poses challenges in effective delivery into organisms and cells. Recognizing this limitation, the imperative arises for the development of compact and miniature gene editors to propel advancements in gene-editing-related therapies. Two strategies were accepted to develop compact genome editors: harnessing OMEGA (Obligate Mobile Element-guided Activity) systems, or engineering the existing CRISPR-Cas system. In this review, we focus on the advances in miniature genome editors based on both of these strategies. The objective is to unveil unprecedented opportunities in genome editing by embracing smaller, yet highly efficient genome editors, promising a future characterized by enhanced precision and adaptability in the genetic interventions.
Collapse
Affiliation(s)
- Feizuo Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shengsheng Ma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Senfeng Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Quanquan Ji
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117597, Singapore.
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
25
|
Xuan Q, Wang J, Nie Y, Fang C, Liang W. Research Progress and Application of Miniature CRISPR-Cas12 System in Gene Editing. Int J Mol Sci 2024; 25:12686. [PMID: 39684395 DOI: 10.3390/ijms252312686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
CRISPR-Cas system, a natural acquired immune system in prokaryotes that defends against exogenous DNA invasion because of its simple structure and easy operation, has been widely used in many research fields such as synthetic biology, crop genetics and breeding, precision medicine, and so on. The miniature CRISPR-Cas12 system has been an emerging genome editing tool in recent years. Compared to the commonly used CRISPR-Cas9 and CRISPR-Cas12a, the miniature CRISPR-Cas12 system has unique advantages, such as rich PAM sites, higher specificity, smaller volume, and cytotoxicity. However, the application of miniature Cas12 proteins and the methods to improve its editing efficiency have not been systematically summarized. In this review, we introduce the classification of CRISPR-Cas system and summarize the structural characteristics of type V CRISPR-Cas system and the cleavage mechanism of five miniature Cas12 proteins. The application of a miniature CRISPR-Cas12 system in the gene editing of animals, plants, and microorganisms is summarized, and the strategies to improve the editing efficiency of the miniature CRISPR-Cas12 system are discussed, aiming to provide reference for further understanding the functional mechanism and engineering modification of the miniature CRISPR-Cas12 system.
Collapse
Affiliation(s)
- Qiangbing Xuan
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Junjie Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yuanqing Nie
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Chaowei Fang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Weihong Liang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
26
|
Degtev D, Bravo J, Emmanouilidi A, Zdravković A, Choong OK, Liz Touza J, Selfjord N, Weisheit I, Francescatto M, Akcakaya P, Porritt M, Maresca M, Taylor D, Sienski G. Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nat Commun 2024; 15:9173. [PMID: 39511150 PMCID: PMC11544209 DOI: 10.1038/s41467-024-53418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Clinical implementation of therapeutic genome editing relies on efficient in vivo delivery and the safety of CRISPR-Cas tools. Previously, we identified PsCas9 as a Type II-B family enzyme capable of editing mouse liver genome upon adenoviral delivery without detectable off-targets and reduced chromosomal translocations. Yet, its efficacy remains insufficient with non-viral delivery, a common challenge for many Cas9 orthologues. Here, we sought to redesign PsCas9 for in vivo editing using lipid nanoparticles. We solve the PsCas9 ribonucleoprotein structure with cryo-EM and characterize it biochemically, providing a basis for its rational engineering. Screening over numerous guide RNA and protein variants lead us to develop engineered PsCas9 (ePsCas9) with up to 20-fold increased activity across various targets and preserved safety advantages. We apply the same design principles to boost the activity of FnCas9, an enzyme phylogenetically relevant to PsCas9. Remarkably, a single administration of mRNA encoding ePsCas9 and its guide formulated with lipid nanoparticles results in high levels of editing in the Pcsk9 gene in mouse liver, a clinically relevant target for hypercholesterolemia treatment. Collectively, our findings introduce ePsCas9 as a highly efficient, and precise tool for therapeutic genome editing, in addition to the engineering strategy applicable to other Cas9 orthologues.
Collapse
Affiliation(s)
- Dmitrii Degtev
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jack Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Aikaterini Emmanouilidi
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Aleksandar Zdravković
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Oi Kuan Choong
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Isabel Weisheit
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Margherita Francescatto
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Michelle Porritt
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - David Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
27
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024; 33:323-357. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
29
|
Ishibashi K, Sukegawa S, Endo M, Hara N, Nureki O, Saika H, Toki S. Systemic delivery of engineered compact AsCas12f by a positive-strand RNA virus vector enables highly efficient targeted mutagenesis in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1454554. [PMID: 39323536 PMCID: PMC11423357 DOI: 10.3389/fpls.2024.1454554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Because virus vectors can spread systemically autonomously, they are powerful vehicles with which to deliver genome-editing tools into plant cells. Indeed, a vector based on a positive-strand RNA virus, potato virus X (PVX), harboring SpCas9 and its single guide RNA (sgRNA), achieved targeted mutagenesis in inoculated leaves of Nicotiana benthamiana. However, the large size of the SpCas9 gene makes it unstable in the PVX vector, hampering the introduction of mutations in systemic leaves. Smaller Cas variants are promising tools for virus vector-mediated genome editing; however, they exhibit far lower nuclease activity than SpCas9. Recently, AsCas12f, one of the smallest known Cas proteins so far (one-third the size of SpCas9), was engineered to improve genome-editing activity dramatically. Here, we first confirmed that engineered AsCas12f variants including I123Y/D195K/D208R/V232A exhibited enhanced genome-editing frequencies in rice. Then, a PVX vector harboring this AsCas12f variant was inoculated into N. benthamiana leaves by agroinfiltration. Remarkably, and unlike with PVX-SpCas9, highly efficient genome editing was achieved, not only in PVX-AsCas12f-inoculated leaves but also in leaves above the inoculated leaf (fourth to sixth upper leaves). Moreover, genome-edited shoots regenerated from systemic leaves were obtained at a rate of >60%, enabling foreign DNA-free genome editing. Taken together, our results demonstrate that AsCas12f is small enough to be maintained in the PVX vector during systemic infection in N. benthamiana and that engineered AsCas12f offers advantages over SpCas9 for plant genome editing using virus vectors.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Satoru Sukegawa
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaki Endo
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naho Hara
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Hiroaki Saika
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Seiichi Toki
- Division of Crop Genome Editing Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
30
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
31
|
Kumagai S, Nakajima T, Muramatsu SI. Intraparenchymal delivery of adeno-associated virus vectors for the gene therapy of neurological diseases. Expert Opin Biol Ther 2024; 24:773-785. [PMID: 39066718 DOI: 10.1080/14712598.2024.2386339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION In gene therapy with adeno-associated virus (AAV) vectors for diseases of the central nervous system, the vectors can be administered into blood vessels, cerebrospinal fluid space, or the brain parenchyma. When gene transfer to a large area of the brain is required, the first two methods are used, but for diseases in which local gene transfer is expected to be effective, vectors are administered directly into the brain parenchyma. AREAS COVERED Strategies for intraparenchymal vector delivery in gene therapy for Parkinson's disease, aromatic l-amino acid decarboxylase (AADC) deficiency, and epilepsy are reviewed. EXPERT OPINION Stereotactic intraparenchymal injection of AAV vectors allows precise gene delivery to the target site. Although more surgically invasive than intravascular or intrathecal administration, intraparenchymal vector delivery has the advantage of a lower vector dose, and preexisting neutralizing antibodies have little effect on the transduction efficacy. This approach improves motor function in AADC deficiency and led to regulatory approval of an AAV vector for the disease in the EU. Although further validation through clinical studies is needed, direct infusion of viral vectors into the brain parenchyma is expected to be a novel treatment for Parkinson's disease and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
32
|
Wang Y, Wang Y, Tang N, Wang Z, Pan D, Ji Q. Characterization and Engineering of a Novel Miniature Eubacterium siraeum CRISPR-Cas12f System. ACS Synth Biol 2024; 13:2115-2127. [PMID: 38941613 DOI: 10.1021/acssynbio.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cas12f nucleases are one of the most compact genome editors, exhibiting promising potential for in vivo therapeutic applications. However, the availability of active Cas12f genome editors remains relatively limited in the field. Here, we report the characterization and engineering of a novel miniature Cas12f endonuclease from Eubacterium siraeum (EsCas12f1, 433 amino acids). We elucidate the specific Protospacer Adjacent Motifs preference and the detailed biochemical properties for DNA targeting and cleavage. By employing rational design strategies, we systematically optimize the guide RNA of EsCas12f1, converting the initially ineffective CRISPR-EsCas12f1 system into an efficient bacterial genome editor. Furthermore, we demonstrate the capacity of EsCas12f1 for in vitro nucleic-acid diagnostics. In summary, our results enrich the miniature CRISPR-Cas toolbox and pave the way for the application of EsCas12f1 for both genome editing and in vitro diagnostics.
Collapse
Affiliation(s)
- Yannan Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yujue Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Na Tang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhipeng Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Deng Pan
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
33
|
Tang N, Ji Q. Miniature CRISPR-Cas12 Systems: Mechanisms, Engineering, and Genome Editing Applications. ACS Chem Biol 2024; 19:1399-1408. [PMID: 38899980 DOI: 10.1021/acschembio.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The therapeutic application of CRISPR-based gene editing technology is hindered by the delivery challenges of large Cas nucleases. The emergence of miniature editing tools derived from type V CRISPR systems and their ancestor TnpB nucleases presents promising solutions to counter these obstacles. Notably, the type V CRISPR-Cas12f and -Cas12n systems exhibit not only a concise gene size but also remarkable precision in targeted editing, thereby underscoring their potential as supreme gene editing tools. Although both systems are considered as intermediates in the evolution of TnpB to mature Cas12 effectors, they exhibit distinct biochemical and structural characteristics, demonstrating the diversity and complexity of TnpB's evolutionary outcomes. The diverse evolutionary branches indicate the existence of numerous unexplored compact CRISPR systems in nature, the mining and development of which could potentially revolutionize gene manipulation techniques and pave the way for innovative applications in gene therapy. In this Account, we summarize the recent advances from our group with the research and development of Cas12f and Cas12n genome editing systems, including the identification, characterization, and engineering for improving the editing efficiency. Additionally, we discuss the evolutionary process of the ancestral nuclease TnpB growing into various type V CRISPR systems, giving insight into the discovery of novel compact gene editing systems.
Collapse
Affiliation(s)
- Na Tang
- School of Physical Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
34
|
Jiang K, Yan Z, Di Bernardo M, Sgrizzi SR, Villiger L, Kayabolen A, Kim B, Carscadden JK, Hiraizumi M, Nishimasu H, Gootenberg JS, Abudayyeh OO. Rapid protein evolution by few-shot learning with a protein language model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604015. [PMID: 39071429 PMCID: PMC11275896 DOI: 10.1101/2024.07.17.604015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Directed evolution of proteins is critical for applications in basic biological research, therapeutics, diagnostics, and sustainability. However, directed evolution methods are labor intensive, cannot efficiently optimize over multiple protein properties, and are often trapped by local maxima. In silico-directed evolution methods incorporating protein language models (PLMs) have the potential to accelerate this engineering process, but current approaches fail to generalize across diverse protein families. We introduce EVOLVEpro, a few-shot active learning framework to rapidly improve protein activity using a combination of PLMs and protein activity predictors, achieving improved activity with as few as four rounds of evolution. EVOLVEpro substantially enhances the efficiency and effectiveness of in silico protein evolution, surpassing current state-of-the-art methods and yielding proteins with up to 100-fold improvement of desired properties. We showcase EVOLVEpro for five proteins across three applications: T7 RNA polymerase for RNA production, a miniature CRISPR nuclease, a prime editor, and an integrase for genome editing, and a monoclonal antibody for epitope binding. These results demonstrate the advantages of few-shot active learning with small amounts of experimental data over zero-shot predictions. EVOLVEpro paves the way for broader applications of AI-guided protein engineering in biology and medicine.
Collapse
Affiliation(s)
- Kaiyi Jiang
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
- Department of Bioengineering Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Zhaoqing Yan
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Matteo Di Bernardo
- Department of Bioengineering Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Samantha R. Sgrizzi
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Lukas Villiger
- Department of Dermatology and Allergology Kantonspital St. Gallen St. Gallen, 9000, Switzerland
| | - Alisan Kayabolen
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Byungji Kim
- Koch Institute for Integrative Cancer Research At MIT Massachusetts Institute of Technology Cambridge, 02139 MA, USA
| | - Josephine K. Carscadden
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Inamori Research Institute for Science 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Jonathan S. Gootenberg
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| | - Omar O. Abudayyeh
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, 02115 MA, USA
- Gene and Cell Therapy Institute Mass General Brigham Cambridge, 02139 MA, USA
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School Boston, 02115 MA, USA
| |
Collapse
|
35
|
Jiao C, Peeck NL, Yu J, Ghaem Maghami M, Kono S, Collias D, Martinez Diaz SL, Larose R, Beisel CL. TracrRNA reprogramming enables direct PAM-independent detection of RNA with diverse DNA-targeting Cas12 nucleases. Nat Commun 2024; 15:5909. [PMID: 39003282 PMCID: PMC11246509 DOI: 10.1038/s41467-024-50243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Many CRISPR-Cas immune systems generate guide (g)RNAs using trans-activating CRISPR RNAs (tracrRNAs). Recent work revealed that Cas9 tracrRNAs could be reprogrammed to convert any RNA-of-interest into a gRNA, linking the RNA's presence to Cas9-mediated cleavage of double-stranded (ds)DNA. Here, we reprogram tracrRNAs from diverse Cas12 nucleases, linking the presence of an RNA-of-interest to dsDNA cleavage and subsequent collateral single-stranded DNA cleavage-all without the RNA necessarily encoding a protospacer-adjacent motif (PAM). After elucidating nuclease-specific design rules, we demonstrate PAM-independent RNA detection with Cas12b, Cas12e, and Cas12f nucleases. Furthermore, rationally truncating the dsDNA target boosts collateral cleavage activity, while the absence of a gRNA reduces background collateral activity and enhances sensitivity. Finally, we apply this platform to detect 16 S rRNA sequences from five different bacterial pathogens using a universal reprogrammed tracrRNA. These findings extend tracrRNA reprogramming to diverse dsDNA-targeting Cas12 nucleases, expanding the flexibility and versatility of CRISPR-based RNA detection.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Natalia L Peeck
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Mohammad Ghaem Maghami
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sarah Kono
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Daphne Collias
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Sandra L Martinez Diaz
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Rachael Larose
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
36
|
Nakane T, Nakagawa R, Ishiguro S, Okazaki S, Mori H, Shuto Y, Yamashita K, Yachie N, Nishimasu H, Nureki O. Structure and engineering of Brevibacillus laterosporus Cas9. Commun Biol 2024; 7:803. [PMID: 38961195 PMCID: PMC11222456 DOI: 10.1038/s42003-024-06422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets complementary to an RNA guide, and is widely used as a powerful genome-editing tool. Here, we report the crystal structure of Brevibacillus laterosporus Cas9 (BlCas9, also known as BlatCas9), in complex with a guide RNA and its target DNA at 2.4-Å resolution. The structure reveals that the BlCas9 guide RNA adopts an unexpected architecture containing a triple-helix, which is specifically recognized by BlCas9, and that BlCas9 recognizes a unique N4CNDN protospacer adjacent motif through base-specific interactions on both the target and non-target DNA strands. Based on the structure, we rationally engineered a BlCas9 variant that exhibits enhanced genome- and base-editing activities with an expanded target scope in human cells. This approach may further improve the performance of the enhanced BlCas9 variant to generate useful genome-editing tools that require only a single C PAM nucleotide and can be packaged into a single AAV vector for in vivo gene therapy.
Collapse
Affiliation(s)
- Toshihiro Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryoya Nakagawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Soh Ishiguro
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6S 0L4, Canada
| | - Sae Okazaki
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hideto Mori
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0035, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yutaro Shuto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keitaro Yamashita
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Nozomu Yachie
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6S 0L4, Canada
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
38
|
Banda A, Impomeni O, Singh A, Baloch AR, Hu W, Jaijyan DK. Precision in Action: The Role of Clustered Regularly Interspaced Short Palindromic Repeats/Cas in Gene Therapies. Vaccines (Basel) 2024; 12:636. [PMID: 38932365 PMCID: PMC11209408 DOI: 10.3390/vaccines12060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated enzyme-CAS holds great promise for treating many uncured human diseases and illnesses by precisely correcting harmful point mutations and disrupting disease-causing genes. The recent Food and Drug Association (FDA) approval of the first CRISPR-based gene therapy for sickle cell anemia marks the beginning of a new era in gene editing. However, delivering CRISPR specifically into diseased cells in vivo is a significant challenge and an area of intense research. The identification of new CRISPR/Cas variants, particularly ultra-compact CAS systems with robust gene editing activities, paves the way for the low-capacity delivery vectors to be used in gene therapies. CRISPR/Cas technology has evolved beyond editing DNA to cover a wide spectrum of functionalities, including RNA targeting, disease diagnosis, transcriptional/epigenetic regulation, chromatin imaging, high-throughput screening, and new disease modeling. CRISPR/Cas can be used to engineer B-cells to produce potent antibodies for more effective vaccines and enhance CAR T-cells for the more precise and efficient targeting of tumor cells. However, CRISPR/Cas technology has challenges, including off-target effects, toxicity, immune responses, and inadequate tissue-specific delivery. Overcoming these challenges necessitates the development of a more effective and specific CRISPR/Cas delivery system. This entails strategically utilizing specific gRNAs in conjunction with robust CRISPR/Cas variants to mitigate off-target effects. This review seeks to delve into the intricacies of the CRISPR/Cas mechanism, explore progress in gene therapies, evaluate gene delivery systems, highlight limitations, outline necessary precautions, and scrutinize the ethical considerations associated with its application.
Collapse
Affiliation(s)
- Amrutha Banda
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Olivia Impomeni
- Department of Biology, The College of New Jersey, Ewing Township, NJ 08618, USA
| | - Aparana Singh
- Department of Chemistry, National Institute of Technology Agartala, Agartala 799046, India;
| | - Abdul Rasheed Baloch
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Wenhui Hu
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Dabbu Kumar Jaijyan
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
39
|
Ye Z, Zhang Y, He S, Li S, Luo L, Zhou Y, Tan J, Wan J. Efficient genome editing in rice with miniature Cas12f variants. ABIOTECH 2024; 5:184-188. [PMID: 38974870 PMCID: PMC11224166 DOI: 10.1007/s42994-024-00168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/09/2024]
Abstract
Genome editing, particularly using the CRISPR/Cas system, has revolutionized biological research and crop improvement. Despite the widespread use of CRISPR/Cas9, it faces limitations such as PAM sequence requirements and challenges in delivering its large protein into plant cells. The hypercompact Cas12f, derived from Acidibacillus sulfuroxidans (AsCas12f), stands out due to its small size of only 422 amino acids and its preference for a T-rich motif, presenting advantageous features over SpCas9. However, its editing efficiency is extremely low in plants. Recent studies have generated two AsCas12f variants, AsCas12f-YHAM and AsCas12f-HKRA, demonstrating higher editing efficiencies in mammalian cells, yet their performance in plants remains unexplored. In this study, through a systematic investigation of genome cleavage activity in rice, we unveiled a substantial enhancement in editing efficiency for both AsCas12f variants, particularly for AsCas12f-HKRA, which achieved an editing efficiency of up to 53%. Furthermore, our analysis revealed that AsCas12f predominantly induces deletion in the target DNA, displaying a unique deletion pattern primarily concentrated at positions 12, 13, 23, and 24, resulting in deletion size mainly of 10 and 11 bp, suggesting significant potential for targeted DNA deletion using AsCas12f. These findings expand the toolbox for efficient genome editing in plants, offering promising prospects for precise genetic modifications in agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00168-2.
Collapse
Affiliation(s)
- Zhengyan Ye
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Yuanyan Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Shiqi He
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Shaokang Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Longjiong Luo
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Yanbiao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410001 China
| | - Junjie Tan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Jianmin Wan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| |
Collapse
|
40
|
Cui T, Cai B, Tian Y, Liu X, Liang C, Gao Q, Li B, Ding Y, Li R, Zhou Q, Li W, Teng F. Therapeutic In Vivo Gene Editing Achieved by a Hypercompact CRISPR-Cas12f1 System Delivered with All-in-One Adeno-Associated Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308095. [PMID: 38408137 PMCID: PMC11109646 DOI: 10.1002/advs.202308095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/29/2024] [Indexed: 02/28/2024]
Abstract
CRISPR-based gene therapies are making remarkable strides toward the clinic. But the large size of most widely used Cas endonucleases including Cas9 and Cas12a restricts their efficient delivery by the adeno-associated virus (AAV) for in vivo gene editing. Being exceptionally small, the recently engineered type V-F CRISPR-Cas12f1 systems can overcome the cargo packaging bottleneck and present as strong candidates for therapeutic applications. In this study, the pairwise editing efficiencies of different engineered Cas12f1/sgRNA scaffold combinations are systemically screened and optimized, and the CasMINI_v3.1/ge4.1 system is identified as being able to significantly boost the gene editing activity. Moreover, packaged into single AAV vectors and delivered via subretinal injection, CasMINI_v3.1/ge4.1 achieves remarkably high in vivo editing efficiencies, over 70% in transduced retinal cells. Further, the efficacy of this Cas12f1 system-based gene therapy to treat retinitis pigmentosa in RhoP23H mice is demonstrated by the therapeutic benefits achieved including rescued visual function and structural preservation. And minimal bystander editing activity is detected. This work advances and expands the therapeutic potential of the miniature Cas12f1 system to support efficient and accurate in vivo gene therapy.
Collapse
Affiliation(s)
- Tongtong Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| | - Bingyu Cai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yao Tian
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Xin Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Chen Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Qingqin Gao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Bojin Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Yali Ding
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Rongqi Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
| | - Qi Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Wei Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing101408China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Fei Teng
- University of Chinese Academy of SciencesBeijing101408China
| |
Collapse
|
41
|
Zhang Z, Zhang S, Wong HT, Li D, Feng B. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs 2024; 38:369-385. [PMID: 38489061 PMCID: PMC11055778 DOI: 10.1007/s40259-024-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.
Collapse
Affiliation(s)
- Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Siqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Hoi Ting Wong
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
42
|
Ruta GV, Ciciani M, Kheir E, Gentile MD, Amistadi S, Casini A, Cereseto A. Eukaryotic-driven directed evolution of Cas9 nucleases. Genome Biol 2024; 25:79. [PMID: 38528620 PMCID: PMC10962177 DOI: 10.1186/s13059-024-03215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Further advancement of genome editing highly depends on the development of tools with higher compatibility with eukaryotes. A multitude of described Cas9s have great potential but require optimization for genome editing purposes. Among these, the Cas9 from Campylobacter jejuni, CjCas9, has a favorable small size, facilitating delivery in mammalian cells. Nonetheless, its full exploitation is limited by its poor editing activity. RESULTS Here, we develop a Eukaryotic Platform to Improve Cas Activity (EPICA) to steer weakly active Cas9 nucleases into highly active enzymes by directed evolution. The EPICA platform is obtained by coupling Cas nuclease activity with yeast auxotrophic selection followed by mammalian cell selection through a sensitive reporter system. EPICA is validated with CjCas9, generating an enhanced variant, UltraCjCas9, following directed evolution rounds. UltraCjCas9 is up to 12-fold more active in mammalian endogenous genomic loci, while preserving high genome-wide specificity. CONCLUSIONS We report a eukaryotic pipeline allowing enhancement of Cas9 systems, setting the ground to unlock the multitude of RNA-guided nucleases existing in nature.
Collapse
Affiliation(s)
- Giulia Vittoria Ruta
- Laboratory of Molecular Virology, Department CIBIO, University of Trento, Trento, Italy.
| | - Matteo Ciciani
- Laboratory of Molecular Virology, Department CIBIO, University of Trento, Trento, Italy
- Laboratory of Computational Metagenomics, Department CIBIO, University of Trento, Trento, Italy
| | - Eyemen Kheir
- Laboratory of Molecular Virology, Department CIBIO, University of Trento, Trento, Italy
| | | | - Simone Amistadi
- Laboratory of Molecular Virology, Department CIBIO, University of Trento, Trento, Italy
- Present address: Laboratory of Chromatin and Gene Regulation During Development, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | | | - Anna Cereseto
- Laboratory of Molecular Virology, Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
43
|
De Marchi D, Shaposhnikov R, Gobaa S, Pastorelli D, Batt G, Magni P, Pasotti L. Design and Model-Driven Analysis of Synthetic Circuits with the Staphylococcus aureus Dead-Cas9 (sadCas9) as a Programmable Transcriptional Regulator in Bacteria. ACS Synth Biol 2024; 13:763-780. [PMID: 38374729 DOI: 10.1021/acssynbio.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Synthetic circuit design is crucial for engineering microbes that process environmental cues and provide biologically relevant outputs. To reliably scale-up circuit complexity, the availability of parts toolkits is central. Streptococcus pyogenes (sp)-derived CRISPR interference/dead-Cas9 (CRISPRi/spdCas9) is widely adopted for implementing programmable regulations in synthetic circuits, and alternative CRISPRi systems will further expand our toolkits of orthogonal components. Here, we showcase the potential of CRISPRi using the engineered dCas9 from Staphylococcus aureus (sadCas9), not previously used in bacterial circuits, that is attractive for its low size and high specificity. We designed a collection of ∼20 increasingly complex circuits and variants in Escherichia coli, including circuits with static function like one-/two-input logic gates (NOT, NAND), circuits with dynamic behavior like incoherent feedforward loops (iFFLs), and applied sadCas9 to fix a T7 polymerase-based cascade. Data demonstrated specific and efficient target repression (100-fold) and qualitatively successful functioning for all circuits. Other advantageous features included low sadCas9-borne cell load and orthogonality with spdCas9. However, different circuit variants showed quantitatively unexpected and previously unreported steady-state responses: the dynamic range, switch point, and slope of NOT/NAND gates changed for different output promoters, and a multiphasic behavior was observed in iFFLs, differing from the expected bell-shaped or sigmoidal curves. Model analysis explained the observed curves by complex interplays among components, due to reporter gene-borne cell load and regulator competition. Overall, CRISPRi/sadCas9 successfully expanded the available toolkit for bacterial engineering. Analysis of our circuit collection depicted the impact of generally neglected effects modulating the shape of component dose-response curves, to avoid drawing wrong conclusions on circuit functioning.
Collapse
Affiliation(s)
- Davide De Marchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Roman Shaposhnikov
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Samy Gobaa
- Institut Pasteur, Université Paris Cité, Biomaterials and Microfluidics Core Facility, 28 Rue du Docteur Roux, 75015 Paris, France
| | - Daniele Pastorelli
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
44
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
45
|
Fan P, Wang H, Zhao F, Zhang T, Li J, Sun X, Yu Y, Xiong H, Lai L, Sui T. Targeted mutagenesis in mice via an engineered AsCas12f1 system. Cell Mol Life Sci 2024; 81:63. [PMID: 38280977 PMCID: PMC10821844 DOI: 10.1007/s00018-023-05100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024]
Abstract
SpCas9 and AsCas12a are widely utilized as genome editing tools in human cells, but their applications are largely limited by their bulky size. Recently, AsCas12f1 protein, with a small size (422 amino acids), has been demonstrated to be capable of cleaving double-stranded DNA protospacer adjacent motif (PAM). However, low editing efficiency and large differences in activity against different genomic loci have been a limitation in its application. Here, we show that engineered AsCas12f1 sgRNA has significantly improved the editing efficiency in human cells and mouse embryos. Moreover, we successfully generated three stable mouse mutant disease models using the engineered CRISPR-AsCas12f1 system in this study. Collectively, our work uncovers the engineered AsCas12f1 system expands mini CRISPR toolbox, providing a remarkable promise for therapeutic applications.
Collapse
Affiliation(s)
- Peng Fan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hejun Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Feiyu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Tao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jinze Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaodi Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yongduo Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Haoyang Xiong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong, China.
| | - Tingting Sui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
46
|
Crunkhorn S. Engineering a compact genome-editing tool. Nat Rev Drug Discov 2023; 22:953. [PMID: 37884601 DOI: 10.1038/d41573-023-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
|
47
|
Hiramoto T, Inaba H, Baatartsogt N, Kashiwakura Y, Hayakawa M, Kamoshita N, Nishimasu H, Nureki O, Kinai E, Ohmori T. Genome editing of patient-derived iPSCs identifies a deep intronic variant causing aberrant splicing in hemophilia A. Blood Adv 2023; 7:7017-7027. [PMID: 37792826 PMCID: PMC10690555 DOI: 10.1182/bloodadvances.2023010838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
The importance of genetic diagnosis for patients with hemophilia has been recently demonstrated. However, the pathological variant cannot be identified in some patients. Here, we aimed to identify the pathogenic intronic variant causing hemophilia A using induced pluripotent stem cells (iPSCs) from patients and genome editing. We analyzed siblings with moderate hemophilia A and without abnormalities in the F8 exon. Next-generation sequencing of the entire F8 revealed 23 common intron variants. Variant effect predictor software indicated that the deep intronic variant at c.5220-8563A>G (intron 14) might act as a splicing acceptor. We developed iPSCs from patients and used genome editing to insert the elongation factor 1α promoter to express F8 messenger RNA (mRNA). Then, we confirmed the existence of abnormal F8 mRNA derived from aberrant splicing, resulting in a premature terminal codon as well as a significant reduction in F8 mRNA in iPSCs due to nonsense-mediated RNA decay. Gene repair by genome editing recovered whole F8 mRNA expression. Introduction of the intron variant into human B-domain-deleted F8 complementary DNA suppressed factor VIII (FVIII) activity and produced abnormal FVIII lacking the light chain in HEK293 cells. Furthermore, genome editing of the intron variant restored FVIII production. In summary, we have directly proven that the deep intronic variant in F8 results in aberrant splicing, leading to abnormal mRNA and nonsense-mediated RNA decay. Additionally, genome editing targeting the variant restored F8 mRNA and FVIII production. Our approach could be useful not only for identifying causal variants but also for verifying the therapeutic effect of personalized genome editing.
Collapse
Affiliation(s)
- Takafumi Hiramoto
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Hiroshi Inaba
- Department of Laboratory Medicine, Tokyo Medical University, Tokyo, Japan
| | - Nemekhbayar Baatartsogt
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Yuji Kashiwakura
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
- Center for Gene Therapy Research, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Nobuhiko Kamoshita
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
- Center for Gene Therapy Research, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ei Kinai
- Department of Laboratory Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
- Center for Gene Therapy Research, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|