1
|
Zhou M, Zhou M, Jin Y. Tumour Cell Size Control and Its Impact on Tumour Cell Function. Cell Prolif 2025:e70080. [PMID: 40525649 DOI: 10.1111/cpr.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2025] [Revised: 05/23/2025] [Accepted: 05/31/2025] [Indexed: 06/19/2025] Open
Abstract
Cell size is an important component of cell morphological characteristics. It reflects the characteristics of the cell type, nutritional status, growth stage and physiological function. The cell size of cells of the same type tends to be homogeneous and stable. However, in tumour cells, mutations in cell cycle genes and cytoskeletal genes and overexpression of the corresponding signalling pathways often lead to large variations in tumour cell size. Tumour cells regulate cell size and growth and proliferation through multiple signalling pathways, such as PI3K/Akt/mTOR, Myc and Hippo pathways, which work together to regulate cell size and proliferation. This allows tumour cells to adapt to different survival environments. Alterations in cell size also cause tumours to perform different functions, leading to alterations in tumour stemness, invasive migration and anti-tumour immunity by affecting immune cells in the tumour immune microenvironment. In this review, we describe the endogenous and exogenous factors affecting tumour cell size, analyse the mechanisms by which tumour cells regulate cell size and the effects of cell size on tumour malignancy and tumour immunity, summarise the potential therapeutic targets for cell size, and look forward to possible future research directions and clinical applications.
Collapse
Affiliation(s)
- Min Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Bi K, Zuo S, Lian J, Xu Z. Enhancing terpenoid production in Saccharomyces cerevisiae via cell morphology engineering. Biotechnol Lett 2025; 47:55. [PMID: 40381060 DOI: 10.1007/s10529-025-03584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/19/2025]
Abstract
There is a growing interest in establishing yeast as a cell factory for terpenoid production. Given the hydrophobicity of many terpenoids, expanding the intracellular storage pool is an effective strategy to improve titers. In this study, the storage capacity was enhanced by increasing yeast cell size through the knockout of EST1 and SSN8. The influence on lycopene and 7-dehydrocholesterol production were then evaluated. The results demonstrated that EST1 and SSN8 deletion resulted in 4.27- and 3.45-fold improvement on lycopene production, and 1.99- and 1.2-fold improvement on 7-dehydrocholesterol production, respectively. These findings suggest cell enlargement as a promising strategy for enhancing terpenoid production in yeast.
Collapse
Affiliation(s)
- Ke Bi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Siqi Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
3
|
Nagel M, Taatjes DJ. Regulation of RNA polymerase II transcription through re-initiation and bursting. Mol Cell 2025; 85:1907-1919. [PMID: 40378829 DOI: 10.1016/j.molcel.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 05/19/2025]
Abstract
The regulation of RNA polymerase II (RNAPII) activity requires orchestrated responses among genomic regulatory sequences and an expansive set of proteins and protein complexes. Despite intense study over five decades, mechanistic insights continue to emerge. Within the past 10 years, live-cell imaging and single-cell transcriptomics experiments have yielded new information about enhancer-promoter communication, transcription factor dynamics, and the kinetics of RNAPII transcription activation. These insights have established RNAPII re-initiation and bursting as a common regulatory phenomenon with widespread implications for gene regulation in health and disease. Here, we summarize regulatory strategies that help control RNAPII bursting in eukaryotic cells, which is defined as short periods of active transcription followed by longer periods of inactivity. We focus on RNAPII re-initiation (i.e., a "burst" of two or more polymerases that initiate from the same promoter), with an emphasis on molecular mechanisms, open questions, and controversies surrounding this distinct regulatory stage.
Collapse
Affiliation(s)
- Michael Nagel
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
4
|
Verhagen PGA, Hansen MMK. Exploring the central dogma through the lens of gene expression noise. J Mol Biol 2025:169202. [PMID: 40354878 DOI: 10.1016/j.jmb.2025.169202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Over the past two decades, cell-to-cell heterogeneity has garnered increasing attention due to its critical role in both developmental and pathological processes. This growing interest has been driven, in part, by the advancements in live-cell and single-molecule imaging techniques. These techniques have provided mechanistic insights into how processes, transcription in particular, contribute to gene expression noise and, ultimately, cell-to-cell heterogeneity. More recently, however, research has expanded to explore how downstream steps in the central dogma influence gene expression noise. In this review, we mostly examine the impact of transcriptional processes on the generation of gene expression noise but also discuss how post-transcriptional mechanisms modulate noise and its propagation to the protein level. This evaluation emphasizes the need for further investigation into how processes beyond transcription shape gene expression noise, highlighting unanswered questions that remain in the field.
Collapse
Affiliation(s)
- Pieter G A Verhagen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Hou X, Ren C, Jin J, Chen Y, Lyu X, Bi K, Carrillo ND, Cryns VL, Anderson RA, Sun J, Chen M. Phosphoinositide signalling in cell motility and adhesion. Nat Cell Biol 2025; 27:736-748. [PMID: 40169755 DOI: 10.1038/s41556-025-01647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Cell motility and adhesion are fundamental components for diverse physiological functions, including embryonic development, immune responses and tissue repair. Dysregulation of these processes can lead to a range of diseases, including cancer. Cell motility and adhesion are complex and often require regulation by an intricate network of signalling pathways, with phosphatidylinositol phosphates (PIPs) having a central role. PIPs are derived from phosphatidylinositol phosphorylation and are instrumental in mediating membrane dynamics, intracellular trafficking, cytoskeletal organization and signal transduction, all of which are crucial for cellular responses to environmental stimuli. Here we discuss the mechanisms through which PIPs modulate cell motility and adhesion by examining their roles at focal adhesions, within the cytoskeleton, at protein scaffolds and in the nucleus. By providing a comprehensive overview of PIP signalling, this Review underscores their significance in maintaining cellular homeostasis and highlights their potential as therapeutic targets in diseases characterized by aberrant cell motility and adhesion.
Collapse
Affiliation(s)
- Xiaoting Hou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jing Jin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College at Jinan University and The First Affiliated Hospital at the Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Yu Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xinyu Lyu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kangle Bi
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jichao Sun
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College at Jinan University and The First Affiliated Hospital at the Southern University of Science and Technology), Shenzhen, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells. Curr Biol 2025; 35:1601-1611.e5. [PMID: 40101718 PMCID: PMC11981834 DOI: 10.1016/j.cub.2025.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allow us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell-cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Tan C, Lanz MC, Swaffer M, Skotheim J, Chang F. Intracellular diffusion in the cytoplasm increases with cell size in fission yeast. Mol Biol Cell 2025; 36:ar51. [PMID: 39969966 PMCID: PMC12005113 DOI: 10.1091/mbc.e24-11-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Diffusion in the cytoplasm can greatly impact cellular processes, yet regulation of macromolecular diffusion remains poorly understood. There is increasing evidence that cell size affects the density and macromolecular composition of the cytoplasm. Here, we studied whether cell size affects diffusion at the scale of macromolecules tens of microns in diameter. We analyzed the diffusive motions of intracellular genetically-encoded multimeric 40 nm nanoparticles (cytGEMs) in the cytoplasm of the fission yeast Schizosaccharomyces pombe. Using cell size mutants, we showed that cytGEMs diffusion coefficients decreased in smaller cells and increased in larger cells. This increase in diffusion in large cells may be due to a decrease in the DNA-to-cytoplasm ratio, as diffusion was not affected in large multinucleate cytokinesis mutant cells. In investigating the underlying causes of altered cytGEMs diffusion, we found that the proteomes of large and small cells exhibited size-specific changes, including the subscaling of ribosomal proteins in large cells. Comparison with a similar dataset from human cells revealed that features of size-dependent proteome remodeling were conserved. These studies demonstrate that cell size is an important parameter in determining the biophysical properties and the composition of the cytoplasm.
Collapse
Affiliation(s)
- Catherine Tan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Michael C. Lanz
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jan Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
8
|
Lessenger AT, Skotheim JM, Swaffer MP, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. J Cell Biol 2025; 224:e202403154. [PMID: 39652010 PMCID: PMC11627111 DOI: 10.1083/jcb.202403154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Somatic polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood. Here, we show that polyploidy in the Caenorhabditis elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with dilute mRNA. Highly expressed transcripts were more sensitive to this mRNA dilution, whereas lowly expressed genes were partially compensated-in part by loading more RNA Polymerase II on the remaining genomes. Polyploidy-deficient animals produced fewer and slower-growing offspring, consistent with reduced synthesis of highly expressed yolk proteins. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing the expression of translational machinery at the expense of specialized, cell-type-specific proteins.
Collapse
Affiliation(s)
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Mathew P. Swaffer
- Department of Biology, Stanford University, Stanford, CA, USA
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
9
|
Sivaramakrishnan P. When one nucleus is not enough: Intestinal polyploidy fuels healthier progeny in C. elegans. J Cell Biol 2025; 224:e202412192. [PMID: 39932557 PMCID: PMC11812568 DOI: 10.1083/jcb.202412192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
In this issue, Lessenger and colleagues (https://doi.org/10.1083/jcb.202403154) investigate why certain differentiated tissues require extremely high DNA content. Using the nematode worm Caenorhabditis elegans, they show that restricting genome copies in intestinal cells triggers compensatory gene expression adaptations, which maintain organismal fitness at the expense of offspring vitality.
Collapse
Affiliation(s)
- Priya Sivaramakrishnan
- Department of Pathology and Laboratory Medicine, Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.02.601447. [PMID: 39005340 PMCID: PMC11244959 DOI: 10.1101/2024.07.02.601447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N. Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M. Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Harper NW, Birdsall GA, Honeywell ME, Pai AA, Lee MJ. Pol II degradation activates cell death independently from the loss of transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.09.627542. [PMID: 39713309 PMCID: PMC11661175 DOI: 10.1101/2024.12.09.627542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Pol II-mediated transcription is essential for eukaryotic life. While loss of transcription is thought to be universally lethal, the associated mechanisms promoting cell death are not yet known. Here, we show that death following loss of Pol II is not caused by dysregulated gene expression. Instead, death occurs in response to the loss of Pol II protein itself, specifically loss of the enzymatic subunit, Rbp1. Loss of Pol II exclusively activates apoptosis, and expression of a transcriptionally inactive version of Rpb1 rescues cell viability. Using functional genomics, we identify a previously uncharacterized mechanism that regulates lethality following loss of Pol II, which we call the Pol II Degradation-dependent Apoptotic Response (PDAR). Using the genetic dependencies of PDAR, we identify clinically used drugs that owe their efficacy to a PDAR-dependent mechanism. Our findings unveil a novel apoptotic signaling response that contributes to the efficacy of a wide array of anti-cancer therapies.
Collapse
Affiliation(s)
- Nicholas W. Harper
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
| | - Gavin A. Birdsall
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
| | - Megan E. Honeywell
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
| | - Athma A. Pai
- RNA Therapeutics Institute, UMass Chan Medical School; Worcester, MA, USA
| | - Michael J. Lee
- Department of Systems Biology, UMass Chan Medical School; Worcester, MA, USA
- Program in Molecular Medicine, and Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School; Worcester, MA, USA
| |
Collapse
|
12
|
Mäkelä J, Papagiannakis A, Lin WH, Lanz MC, Glenn S, Swaffer M, Marinov GK, Skotheim JM, Jacobs-Wagner C. Genome concentration limits cell growth and modulates proteome composition in Escherichia coli. eLife 2024; 13:RP97465. [PMID: 39714909 DOI: 10.7554/elife.97465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Michael Charles Lanz
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Skye Glenn
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, United States
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
13
|
Cacioppo R, Gillis A, Shlamovitz I, Zeller A, Castiblanco D, Crisp A, Haworth B, Arabiotorre A, Abyaneh P, Bao Y, Sale JE, Berry S, Tufegdžić Vidaković A. CRL3 ARMC5 ubiquitin ligase and Integrator phosphatase form parallel mechanisms to control early stages of RNA Pol II transcription. Mol Cell 2024; 84:4808-4823.e13. [PMID: 39667934 PMCID: PMC7617427 DOI: 10.1016/j.molcel.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/16/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Control of RNA polymerase II (RNA Pol II) through ubiquitylation is essential for the DNA-damage response. Here, we reveal a distinct ubiquitylation pathway in human cells, mediated by CRL3ARMC5, that targets excessive and defective RNA Pol II molecules at the initial stages of the transcription cycle. Upon ARMC5 loss, RNA Pol II accumulates in the free pool and in the promoter-proximal zone but is not permitted into elongation. We identify Integrator subunit 8 (INTS8) as a gatekeeper preventing the release of excess RNA Pol II molecules into gene bodies. Combined loss of ARMC5 and INTS8 has detrimental effects on cell growth and results in the uncontrolled release of excessive RNA Pol II complexes into early elongation, many of which are transcriptionally incompetent and fail to reach the ends of genes. These findings uncover CRL3ARMC5 and Integrator as two distinct pathways acting in parallel to monitor the quantity and quality of transcription complexes before they are licensed into elongation.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Iván Shlamovitz
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Andrew Zeller
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Daniela Castiblanco
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Benjamin Haworth
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Angela Arabiotorre
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Pegah Abyaneh
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yu Bao
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Ana Tufegdžić Vidaković
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
14
|
Kim YK, Collignon E, Martin SB, Ramalho-Santos M. Hypertranscription: the invisible hand in stem cell biology. Trends Genet 2024; 40:1032-1046. [PMID: 39271397 DOI: 10.1016/j.tig.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells - self-renewal and differentiation - are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.
Collapse
Affiliation(s)
- Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada.
| | - Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre (U-CRC) and Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - S Bryn Martin
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada.
| |
Collapse
|
15
|
Lanz MC, Zhang S, Swaffer MP, Ziv I, Götz LH, Kim J, McCarthy F, Jarosz DF, Elias JE, Skotheim JM. Genome dilution by cell growth drives starvation-like proteome remodeling in mammalian and yeast cells. Nat Struct Mol Biol 2024; 31:1859-1871. [PMID: 39048803 DOI: 10.1038/s41594-024-01353-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Cell size is tightly controlled in healthy tissues and single-celled organisms, but it remains unclear how cell size influences physiology. Increasing cell size was recently shown to remodel the proteomes of cultured human cells, demonstrating that large and small cells of the same type can be compositionally different. In the present study, we utilize the natural heterogeneity of hepatocyte ploidy and yeast genetics to establish that the ploidy-to-cell size ratio is a highly conserved determinant of proteome composition. In both mammalian and yeast cells, genome dilution by cell growth elicits a starvation-like phenotype, suggesting that growth in large cells is restricted by genome concentration in a manner that mimics a limiting nutrient. Moreover, genome dilution explains some proteomic changes ascribed to yeast aging. Overall, our data indicate that genome concentration drives changes in cell composition independently of external environmental cues.
Collapse
Affiliation(s)
- Michael C Lanz
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA.
| | - Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Jacob Kim
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Frank McCarthy
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Joshua E Elias
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Steinbrecht D, Minia I, Milek M, Meisig J, Blüthgen N, Landthaler M. Subcellular mRNA kinetic modeling reveals nuclear retention as rate-limiting. Mol Syst Biol 2024; 20:1346-1371. [PMID: 39548324 PMCID: PMC11611909 DOI: 10.1038/s44320-024-00073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Eukaryotic mRNAs are transcribed, processed, translated, and degraded in different subcellular compartments. Here, we measured mRNA flow rates between subcellular compartments in mouse embryonic stem cells. By combining metabolic RNA labeling, biochemical fractionation, mRNA sequencing, and mathematical modeling, we determined the half-lives of nuclear pre-, nuclear mature, cytosolic, and membrane-associated mRNAs from over 9000 genes. In addition, we estimated transcript elongation rates. Many matured mRNAs have long nuclear half-lives, indicating nuclear retention as the rate-limiting step in the flow of mRNAs. In contrast, mRNA transcripts coding for transcription factors show fast kinetic rates, and in particular short nuclear half-lives. Differentially localized mRNAs have distinct rate constant combinations, implying modular regulation. Membrane stability is high for membrane-localized mRNA and cytosolic stability is high for cytosol-localized mRNA. mRNAs encoding target signals for membranes have low cytosolic and high membrane half-lives with minor differences between signals. Transcripts of nuclear-encoded mitochondrial proteins have long nuclear retention and cytoplasmic kinetics that do not reflect co-translational targeting. Our data and analyses provide a useful resource to study spatiotemporal gene expression regulation.
Collapse
Affiliation(s)
- David Steinbrecht
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Igor Minia
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Johannes Meisig
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Nils Blüthgen
- Charite-Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany.
- Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany.
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology, Berlin, Germany.
| |
Collapse
|
17
|
Beitz A, Teves J, Oakes C, Johnstone C, Wang N, Brickman JM, Galloway KE. Cells transit through a quiescent-like state to convert to neurons at high rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624928. [PMID: 39651159 PMCID: PMC11623504 DOI: 10.1101/2024.11.22.624928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While transcription factors (TFs) provide essential cues for directing and redirecting cell fate, TFs alone are insufficient to drive cells to adopt alternative fates. Rather, transcription factors rely on receptive cell states to induce novel identities. Cell state emerges from and is shaped by cellular history and the activity of diverse processes. Here, we define the cellular and molecular properties of a highly receptive state amenable to transcription factor-mediated direct conversion from fibroblasts to induced motor neurons. Using a well-defined model of direct conversion to a post-mitotic fate, we identify the highly proliferative, receptive state that transiently emerges during conversion. Through examining chromatin accessibility, histone marks, and nuclear features, we find that cells reprogram from a state characterized by global reductions in nuclear size and transcriptional activity. Supported by globally increased levels of H3K27me3, cells enter a quiescent-like state of reduced RNA metabolism and elevated expression of REST and p27, markers of quiescent neural stem cells. From this transient state, cells convert to neurons at high rates. Inhibition of Ezh2, the catalytic subunit of PRC2 that deposits H3K27me3, abolishes conversion. Our work offers a roadmap to identify global changes in cellular processes that define cells with different conversion potentials that may generalize to other cell-fate transitions. Highlights Proliferation drives cells to a compact nuclear state that is receptive to TF-mediated conversion.Increased receptivity to TFs corresponds to reduced nuclear volumes.Reprogrammable cells display global, genome-wide increases in H3K27me3.High levels of H3K27me3 support cells' transits through a state of altered RNA metabolism.Inhibition of Ezh2 increases nuclear size, reduces the expression of the quiescence marker p27.Acute inhibition of Ezh2 abolishes motor neuron conversion. One Sentence Summary Cells transit through a quiescent-like state characterized by global reductions in nuclear size and transcriptional activity to convert to neurons at high rates.
Collapse
|
18
|
Chatzitheodoridou D, Bureik D, Padovani F, Nadimpalli KV, Schmoller KM. Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients. EMBO J 2024; 43:5141-5168. [PMID: 39271795 PMCID: PMC11535423 DOI: 10.1038/s44318-024-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
To maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry. Here we show that budding yeast achieves histone homeostasis in different nutrients through a decoupling of transcript and protein abundance. We find that cells downregulate histone transcripts in poor nutrients to avoid toxic histone overexpression, but produce constant amounts of histone proteins through nutrient-specific regulation of translation efficiency. Our findings suggest that this allows cells to balance the need for rapid histone production under fast growth conditions with the tight regulation required to avoid toxic overexpression in poor nutrients.
Collapse
Affiliation(s)
- Dimitra Chatzitheodoridou
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kalyan V Nadimpalli
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
19
|
Tan C, Lanz MC, Swaffer M, Skotheim J, Chang F. Intracellular diffusion in the cytoplasm increases with cell size in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.613766. [PMID: 39386641 PMCID: PMC11463555 DOI: 10.1101/2024.09.21.613766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Diffusion in the cytoplasm can greatly impact cellular processes, yet regulation of macromolecular diffusion remains poorly understood. There is increasing evidence that cell size affects the density and macromolecular composition of the cytoplasm. Here, we studied whether cell size affects diffusion at the scale of macromolecules tens of microns in diameter. We analyzed the diffusive motions of intracellular genetically-encoded multimeric 40 nm nanoparticles (cytGEMs) in the cytoplasm of the fission yeast Schizosaccharomyces pombe . Using cell size mutants, we showed that cytGEMs diffusion coefficients decreased in smaller cells and increased in larger cells. This increase in diffusion in large cells may be due to a decrease in the DNA-to-Cytoplasm ratio, as diffusion was not affected in large multinucleate cytokinesis mutants. In investigating the underlying causes of altered cytGEMs diffusion, we found that the proteomes of large and small cells exhibited size-specific changes, including the sub-scaling of ribosomal proteins in large cells. Comparison with a similar dataset from human cells revealed that features of size-dependent proteome remodeling were conserved. These studies demonstrate that cell size is an important parameter in determining the biophysical properties and the composition of the cytoplasm.
Collapse
|
20
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
21
|
Francette AM, Arndt KM. Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications. Cell Rep 2024; 43:114730. [PMID: 39244754 PMCID: PMC11498942 DOI: 10.1016/j.celrep.2024.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
22
|
Xu Y, Zhu W, Dai B, Xiao H, Chen J. The rod cell, a small form of Candida albicans, possesses superior fitness to the host gut and adaptation to commensalism. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1278-1288. [PMID: 38887798 PMCID: PMC11532210 DOI: 10.3724/abbs.2024066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/06/2024] [Indexed: 06/20/2024] Open
Abstract
Candida albicans deploys various morphological forms through complex switching mechanisms, ensuring its survival and thriving as a commensal or pathogen in vastly different human niches. In this study, we demonstrate that a novel ''rod'' morphological form of C. albicans coexists and is interchangeable with previously reported white, gray, and opaque forms, constituting a tetra-stable phenotypic switching system. Rod cells arise from the efg1 mutant of SC5314 cells or from the clinical BJ1097 strain cultured under glucose-free conditions. They are characterized by a distinct gene expression profile and can be stably maintained through in vitro passaging or in vivo inhabitation of the gastrointestinal (GI) tract of mice. Remarkably, the majority of the efg1 mutant cells become rod cells in N-acetylglucosamine (GlcNAc)-containing medium, and the GlcNAc sensor Ngs1 is instrumental in converting the white or gray cells to the rod cells. Conversely, glucose inhibits rod cells through Cph1; consequently, the loss of Cph1 in the efg1 mutant cells permits their conversion to rod cells in glucose-replete media. Notably, rod cells of the efg1/ cph1 mutant display superior adaptation and longer persistence in the murine GI environment than wild-type white cells. Taken together, these findings establish rod cells as a previously unappreciated form that is not only morphologically and transcriptionally distinguishable but also defined by specific genetic and environmental determinants, shedding light on complex fungus-host interactions.
Collapse
Affiliation(s)
- Yinxing Xu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Wencheng Zhu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- Institute of NeuroscienceCAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Baodi Dai
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Hui Xiao
- The Center for MicrobesDevelopment and HealthCAS Key Laboratory of Molecular Virology & ImmunologyShanghai Institute of Immunity and InfectionUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiangye Chen
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| |
Collapse
|
23
|
Vidal PJ, Pérez AP, Yahya G, Aldea M. Transcriptomic balance and optimal growth are determined by cell size. Mol Cell 2024; 84:3288-3301.e3. [PMID: 39084218 DOI: 10.1016/j.molcel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
Collapse
Affiliation(s)
- Pedro J Vidal
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Alexis P Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, 44511 Zagazig, Egypt.
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
24
|
Park JM, Forsburg SL. Analysis of transcriptional response in haploid and diploid Schizosaccharomyces pombe under genotoxic stress. G3 (BETHESDA, MD.) 2024; 14:jkae177. [PMID: 39120426 PMCID: PMC11373635 DOI: 10.1093/g3journal/jkae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Whole genome duplications are implicated in genome instability and tumorigenesis. Human and yeast polyploids exhibit increased replication stress and chromosomal instability, both hallmarks of cancer. In this study, we investigate the transcriptional response of Schizosaccharomyces pombe to increased ploidy generally, and in response to treatment with the genotoxin methyl methanesulfonate (MMS). We find that treatment of MMS induces upregulation of genes involved in general response to genotoxins, in addition to cell cycle regulatory genes. Downregulated genes are enriched in transport and sexual reproductive pathways. We find that the diploid response to MMS is muted compared to the haploid response, although the enriched pathways remain largely the same. Overall, our data suggests that the global S. pombe transcriptome doubles in response to increased ploidy but undergoes modest transcriptional changes in both unperturbed and genotoxic stress conditions.
Collapse
Affiliation(s)
- Joshua M Park
- Section of Molecular & Computational Biology, University of Southern California, 1050 Childs Way, RRI 108, Los Angeles, CA 90089, USA
| | - Susan L Forsburg
- Section of Molecular & Computational Biology, University of Southern California, 1050 Childs Way, RRI 108, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
Wang Q, Lin J. Homeostasis of mRNA concentrations through coupling transcription, export, and degradation. iScience 2024; 27:110531. [PMID: 39175768 PMCID: PMC11338957 DOI: 10.1016/j.isci.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Many experiments showed that eukaryotic cells maintain a constant mRNA concentration upon various perturbations by actively regulating mRNA production and degradation rates, known as mRNA buffering. However, the underlying mechanism is still unknown. In this work, we unveil a mechanistic model of mRNA buffering: the releasing-shuttling (RS) model. The model incorporates two crucial proteins, X and Y, which play several roles, including transcription, decay, and export factors, in the different stages of mRNA metabolism. The RS model predicts the constant mRNA concentration under genome-wide genetic perturbations and cell volume changes, the slowed-down mRNA degradation after Pol II depletion, and the temporal transcription dynamics after exonuclease depletion, in agreement with multiple experiments. Finally, we present a list of X and Y candidates and propose an experimental method to identify X. Our work uncovers potentially universal pathways coupling transcription, export, and degradation that help cells maintain mRNA homeostasis.
Collapse
Affiliation(s)
- Qirun Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Taylor A, Prasad A, Mueller RL. Amphibian Segmentation Clock Models Suggest How Large Genome and Cell Sizes Slow Developmental Rate. Integr Org Biol 2024; 6:obae021. [PMID: 39006893 PMCID: PMC11245677 DOI: 10.1093/iob/obae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Evolutionary increases in genome size, cell volume, and nuclear volume have been observed across the tree of life, with positive correlations documented between all three traits. Developmental tempo slows as genomes, nuclei, and cells increase in size, yet the driving mechanisms are poorly understood. To bridge this gap, we use a mathematical model of the somitogenesis clock to link slowed developmental tempo with changes in intra-cellular gene expression kinetics induced by increasing genome size and nuclear volume. We adapt a well-known somitogenesis clock model to two model amphibian species that vary 10-fold in genome size: Xenopus laevis (3.1 Gb) and Ambystoma mexicanum (32 Gb). Based on simulations and backed by analytical derivations, we identify parameter changes originating from increased genome and nuclear size that slow gene expression kinetics. We simulate biological scenarios for which these parameter changes mathematically recapitulate slowed gene expression in A. mexicanum relative to X. laevis, and we consider scenarios for which additional alterations in gene product stability and chromatin packing are necessary. Results suggest that slowed degradation rates as well as changes induced by increasing nuclear volume and intron length, which remain relatively unexplored, are significant drivers of slowed developmental tempo.
Collapse
Affiliation(s)
- A Taylor
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - A Prasad
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - R Lockridge Mueller
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
27
|
Gillis A, Berry S. Global control of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195024. [PMID: 38552781 DOI: 10.1016/j.bbagrm.2024.195024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
RNA polymerase II (Pol II) is the multi-protein complex responsible for transcribing all protein-coding messenger RNA (mRNA). Most research on gene regulation is focused on the mechanisms controlling which genes are transcribed when, or on the mechanics of transcription. How global Pol II activity is determined receives comparatively less attention. Here, we follow the life of a Pol II molecule from 'assembly of the complex' to nuclear import, enzymatic activity, and degradation. We focus on how Pol II spends its time in the nucleus, and on the two-way relationship between Pol II abundance and activity in the context of homeostasis and global transcriptional changes.
Collapse
Affiliation(s)
- Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
28
|
Diaz-Cuadros M. Mitochondrial metabolism and the continuing search for ultimate regulators of developmental rate. Curr Opin Genet Dev 2024; 86:102178. [PMID: 38461774 DOI: 10.1016/j.gde.2024.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
The rate of embryonic development is a species-specific trait that depends on the properties of the intracellular environment, namely, the rate at which gene products flow through the central dogma of molecular biology. Although any given step in the production and degradation of gene products could theoretically be co-opted by evolution to modulate developmental speed, species are observed to accelerate or slow down all steps simultaneously. This suggests the rate of these molecular processes is jointly regulated by an upstream, ultimate factor. Mitochondrial metabolism was recently proposed to act as an ultimate regulator by controlling the pace of protein synthesis upstream of developmental tempo. Alternative candidates for ultimate regulators include species-specific gene expression levels of factors involved in the central dogma, as well as species-specific cell size. Overall, much work remains to be done before we can confidently identify the ultimate causes of species-specific developmental rates.
Collapse
Affiliation(s)
- Margarete Diaz-Cuadros
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Calabrese L, Ciandrini L, Cosentino Lagomarsino M. How total mRNA influences cell growth. Proc Natl Acad Sci U S A 2024; 121:e2400679121. [PMID: 38753514 PMCID: PMC11126920 DOI: 10.1073/pnas.2400679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Experimental observations tracing back to the 1960s imply that ribosome quantities play a prominent role in determining a cell's growth. Nevertheless, in biologically relevant scenarios, growth can also be influenced by the levels of mRNA and RNA polymerase. Here, we construct a quantitative model of biosynthesis providing testable scenarios for these situations. The model explores a theoretically motivated regime where RNA polymerases compete for genes and ribosomes for transcripts and gives general expressions relating growth rate, mRNA concentrations, ribosome, and RNA polymerase levels. On general grounds, the model predicts how the fraction of ribosomes in the proteome depends on total mRNA concentration and inspects an underexplored regime in which the trade-off between transcript levels and ribosome abundances sets the cellular growth rate. In particular, we show that the model predicts and clarifies three important experimental observations, in budding yeast and Escherichia coli bacteria: i) that the growth-rate cost of unneeded protein expression can be affected by mRNA levels, ii) that resource optimization leads to decreasing trends in mRNA levels at slow growth, and iii) that ribosome allocation may increase, stay constant, or decrease, in response to transcription-inhibiting antibiotics. Since the data indicate that a regime of joint limitation may apply in physiological conditions and not only to perturbations, we speculate that this regime is likely self-imposed.
Collapse
Affiliation(s)
- Ludovico Calabrese
- IFOM-ETS–The AIRC Institute of Molecular Oncology, The Associazione Italiana di Ricerca sul Cancro (AIRC) Institute of Molecular Oncology, Milan20139, Italy
| | - Luca Ciandrini
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Institut Universitaire de France
| | - Marco Cosentino Lagomarsino
- IFOM-ETS–The AIRC Institute of Molecular Oncology, The Associazione Italiana di Ricerca sul Cancro (AIRC) Institute of Molecular Oncology, Milan20139, Italy
- Dipartimento di Fisica, Universitá degli Studi di Milano, Milano20133, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Milano, Milano20133, Italy
| |
Collapse
|
30
|
Marinov GK, Chen X, Swaffer MP, Xiang T, Grossman AR, Greenleaf WJ. Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. Genome Biol 2024; 25:115. [PMID: 38711126 PMCID: PMC11071213 DOI: 10.1186/s13059-024-03261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. RESULTS In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays. CONCLUSIONS Our results provide the first window into the 5-hmU and chromatin accessibility landscapes in dinoflagellates.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew P Swaffer
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
31
|
Tomaz da Silva P, Zhang Y, Theodorakis E, Martens LD, Yépez VA, Pelechano V, Gagneur J. Cellular energy regulates mRNA degradation in a codon-specific manner. Mol Syst Biol 2024; 20:506-520. [PMID: 38491213 PMCID: PMC11066088 DOI: 10.1038/s44320-024-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood. Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Mathematical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly alter the effect of codon usage. This new mode of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.
Collapse
Affiliation(s)
- Pedro Tomaz da Silva
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Yujie Zhang
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evangelos Theodorakis
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Laura D Martens
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Vicent Pelechano
- Scilifelab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
32
|
Francette AM, Arndt KM. Multiple direct and indirect roles of Paf1C in elongation, splicing, and histone post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591159. [PMID: 38712269 PMCID: PMC11071476 DOI: 10.1101/2024.04.25.591159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Paf1C is a highly conserved protein complex with critical functions during eukaryotic transcription. Previous studies have shown that Paf1C is multi-functional, controlling specific aspects of transcription, ranging from RNAPII processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and extended roles of each Paf1C subunit in transcription elongation and transcript regulation.
Collapse
Affiliation(s)
- Alex M. Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
- Lead contact
| |
Collapse
|
33
|
Lessenger AT, Swaffer MP, Skotheim JM, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586714. [PMID: 38585999 PMCID: PMC10996643 DOI: 10.1101/2024.03.25.586714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood, and the impacts of polyploidy in non-disease states is not well studied. Here, we show that polyploidy in the C. elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with more dilute mRNA. Highly-expressed transcripts were more sensitive to this mRNA dilution, whereas lowly-expressed genes were partially compensated - in part by loading more RNA Polymerase II on the remaining genomes. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing production of translational machinery at the expense of specialized, cell-type specific proteins.
Collapse
|
34
|
Pérez-Ortín JE, García-Marcelo MJ, Delgado-Román I, Muñoz-Centeno MC, Chávez S. Influence of cell volume on the gene transcription rate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195008. [PMID: 38246270 DOI: 10.1016/j.bbagrm.2024.195008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Cells vary in volume throughout their life cycle and in many other circumstances, while their genome remains identical. Hence, the RNA production factory must adapt to changing needs, while maintaining the same production lines. This paradox is resolved by different mechanisms in distinct cells and circumstances. RNA polymerases have evolved to cope with the particular circumstances of each case and the different characteristics of the several RNA molecule types, especially their stabilities. Here we review current knowledge on these issues. We focus on the yeast Saccharomyces cerevisiae, where many of the studies have been performed, although we compare and discuss the results obtained in other eukaryotes and propose several ideas and questions to be tested and solved in the future. TAKE AWAY.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | - María J García-Marcelo
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain; Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María C Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. del Rocío, Seville 41012, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|