1
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
2
|
Koutník J, Neururer V, Gruber T, Peer S, Hermann-Kleiter N, Olson WJ, Labi V, Leitges M, Baier G, Siegmund K. Addressing the role of PKD3 in the T cell compartment with knockout mice. Cell Commun Signal 2022; 20:54. [PMID: 35440091 PMCID: PMC9020081 DOI: 10.1186/s12964-022-00864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Protein kinase D3 (PKD3) has been implicated in signal transduction downstream of the T cell receptor (TCR). However, its role for the activation of primary T lymphocytes has not been elucidated so far. METHODS Expression of PKD isoforms in primary murine T cells was determined by RT-PCR and SDS-Page. A germline PKD3-knockout mouse line was analyzed for its immune response to OVA/alum intraperitoneal immunization. Phenotyping of the T cell compartment ex vivo as well as upon stimulation in vitro was performed by flow cytometry. Additionally, cytokine expression was assessed by flow cytometry, RT-PCR and Luminex technology. RESULTS PKD expression in T cells is modulated by TCR stimulation, leading to a rapid down-regulation on mRNA and on protein level. PKD3-deficient mice respond to immunization with enhanced T follicular helper cell generation. Furthermore, peripheral PKD3-deficient CD4+ T cells express more interleukin-2 than wild type CD4+ T cells upon TCR stimulation ex vivo. However, purified naïve CD4+ T cells do not differ in their phenotype upon differentiation in vitro from wild type T cells. Moreover, we observed a shift towards an effector/memory phenotype of splenic T cells at steady state, which might explain the contradictory results obtained with pan-T cells ex vivo and naïve-sorted T cells. CONCLUSION While PKD3-deficiency in vivo in mice leads to a skewing of the T cell compartment towards a more activated phenotype, this kinase seems to be dispensable for naïve CD4+ T cell differentiation in vitro. Video Abstract.
Collapse
Affiliation(s)
- Jiří Koutník
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Neururer
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, 69008, Lyon, France
| | - Thomas Gruber
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Peer
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - William J Olson
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Medical University Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Michael Leitges
- Division of BioMedical Sciences, Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland Health Science Centre, 300 Prince Philip Drive, St. John's, NF, A1B 3V6, Canada
| | - Gottfried Baier
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Institute of Cell Genetics, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Steinberg SF. Decoding the Cardiac Actions of Protein Kinase D Isoforms. Mol Pharmacol 2021; 100:558-567. [PMID: 34531296 PMCID: PMC8626784 DOI: 10.1124/molpharm.121.000341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Protein kinase D (PKD) consists of a family of three structurally related enzymes that play key roles in a wide range of biological functions that contribute to the evolution of cardiac hypertrophy and heart failure. PKD1 (the founding member of this enzyme family) has been implicated in the phosphorylation of substrates that regulate cardiac hypertrophy, contraction, and susceptibility to ischemia/reperfusion injury, and de novo PRKD1 (protein kinase D1 gene) mutations have been identified in patients with syndromic congenital heart disease. However, cardiomyocytes coexpress all three PKDs. Although stimulus-specific activation patterns for PKD1, PKD2, and PKD3 have been identified in cardiomyocytes, progress toward identifying PKD isoform-specific functions in the heart have been hampered by significant gaps in our understanding of the molecular mechanisms that regulate PKD activity. This review incorporates recent conceptual breakthroughs in our understanding of various alternative mechanisms for PKD activation, with an emphasis on recent evidence that PKDs activate certain effector responses as dimers, to consider the role of PKD isoforms in signaling pathways that drive cardiac hypertrophy and ischemia/reperfusion injury. The focus is on whether the recently identified activation mechanisms that enhance the signaling repertoire of PKD family enzymes provide novel therapeutic strategies to target PKD enzymes and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling. SIGNIFICANCE STATEMENT: PKD isoforms regulate a large number of fundamental biological processes, but the understanding of the biological actions of individual PKDs (based upon studies using adenoviral overexpression or gene-silencing methods) remains incomplete. This review focuses on dimerization, a recently identified mechanism for PKD activation, and the notion that this mechanism provides a strategy to develop novel PKD-targeted pharmaceuticals that restrict proliferation, invasion, or angiogenesis in cancer and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling.
Collapse
|
4
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in intracellular nutrient sensing and regulation of adaptive responses to the obese environment. Obes Rev 2021; 22:e13145. [PMID: 32929844 DOI: 10.1111/obr.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Obesity is associated with ectopic accumulation of lipids, which is implicated in the development of insulin resistance, type 2 diabetes mellitus and cardiovascular disease. As the global prevalence of obesity continues to rise, it is becoming increasingly important to understand the underlying cellular mechanisms of this disease. Protein kinase D (PKD) is an intracellular signalling kinase with well characterized roles in intracellular vesicle transport and secretion, cancer cell proliferation and cardiac hypertrophy. However, emerging evidence also highlights PKD as a novel nutrient sensor. PKD activation is mediated by the accumulation of the lipid intermediate diacylglycerol, and PKD activity in the liver, heart and adipose tissue increases upon feeding. In obesity, PKD signalling is linked to reduced insulin signalling and dysfunction in adipose tissue, liver and heart, whilst in the pancreas, PKD is essential for the compensatory increase in glucose-stimulated insulin secretion from β-cells during obesity. Collectively, these studies reveal aspects of PKD signalling that are involved in the tissue-specific responses to obesity. This review summarizes the emerging evidence suggesting that PKD plays an important role in regulating the adaptive response to the obese environment.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia
| |
Collapse
|
5
|
Craven KE, Gökmen-Polar Y, Badve SS. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci Rep 2021; 11:4691. [PMID: 33633150 PMCID: PMC7907367 DOI: 10.1038/s41598-021-83913-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms underlying these immune cell differences are not well delineated. In this study, analysis of hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel mechanisms by which the cancer cells attract immune cells and by which they evade or dampen the immune system during the cancer immunoediting process. This study suggests that integration of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel therapeutic targets in TNBC cases.
Collapse
Affiliation(s)
- Kelly E Craven
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Veazey JM, Eliseeva SI, Hillman SE, Stiles K, Smyth TR, Morrissey CE, Tillotson EJ, Topham DJ, Chapman TJ, Georas SN. Inhibiting Protein Kinase D Promotes Airway Epithelial Barrier Integrity in Mouse Models of Influenza A Virus Infection. Front Immunol 2020; 11:580401. [PMID: 33381112 PMCID: PMC7767883 DOI: 10.3389/fimmu.2020.580401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 11/13/2022] Open
Abstract
Rationale Protein kinase D (PKD) is a serine/threonine kinase family that is involved in a wide array of signaling pathways. Although PKD has been implicated in immune responses, relatively little is known about the function of PKD in the lung or during viral infections. Objectives We investigated the hypothesis that PKD is involved in multiple aspects of host response to viral infection. Methods The selective PKD inhibitor CRT0010166 was administered to C57BL/6 mice prior to and during challenge with either inhaled double-stranded RNA or Influenza A Virus. PKD signaling pathways were investigated in human bronchial epithelial cells treated with CRT0010166, double-stranded RNA, and/or infected with Influenza A Virus. Measurements Total protein and albumin accumulation in the bronchoalveolar fluid was used to asses inside/out leak. Clearance of inhaled FITC-dextran out of the airspace was used to assess outside/in leak. Cytokines and neutrophils in bronchoalveolar lavage were assayed with ELISAs and cytospins respectively. Viral RNA level was assessed with RT-PCR and protein level assessed by ELISA. Main Results PKD inhibition prevented airway barrier dysfunction and pro-inflammatory cytokine release. Epithelial cells express PKD3, and PKD3 siRNA knock-down inhibited polyI:C induced cytokine production. Lung epithelial-specific deletion of PKD3 (CC10-Cre x PKD3-floxed mice) partially attenuated polyI:C-induced barrier disruption in vivo. Mechanistically, we found that PKD promoted cytokine mRNA transcription, not secretion, likely through activating the transcription factor Sp1. Finally, prophylactic CRT treatment of mice promoted barrier integrity during influenza virus infection and reduced viral burden. Conclusions Inhibiting PKD promotes barrier integrity, limit pathogenic cytokine levels, and restrict Influenza A Virus infection. Therefore, PKD is an attractive target for novel antiviral therapeutics.
Collapse
Affiliation(s)
- Janelle M Veazey
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Sophia I Eliseeva
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States
| | - Sara E Hillman
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States
| | - Kristie Stiles
- Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States
| | - Timothy R Smyth
- Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| | | | - Erika J Tillotson
- Department of Biology, Cornell University, Ithaca, NY, United States
| | - Dave J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Timothy J Chapman
- Center for Infectious Disease and Immunology, Rochester Regional Health, Rochester, NY, United States
| | - Steve N Georas
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.,Department of Medicine, Pulmonary and Critical Care, University of Rochester, Rochester, NY, United States.,Department of Environmental Medicine, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
Mayer AE, Löffler MC, Loza Valdés AE, Schmitz W, El-Merahbi R, Viera JT, Erk M, Zhang T, Braun U, Heikenwalder M, Leitges M, Schulze A, Sumara G. The kinase PKD3 provides negative feedback on cholesterol and triglyceride synthesis by suppressing insulin signaling. Sci Signal 2019; 12:12/593/eaav9150. [PMID: 31387939 DOI: 10.1126/scisignal.aav9150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Alexander E Mayer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Angel E Loza Valdés
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Manuela Erk
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Thianzhou Zhang
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Ursula Braun
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Almut Schulze
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany. .,Nencki Institute of Experimental Biology, PAS, 02-093 Warsaw, Poland
| |
Collapse
|
8
|
Umezawa K, Nagano T, Kobayashi K, Dokuni R, Katsurada M, Yamamoto M, Yoshikawa Y, Kataoka T, Nishimura Y. Phospholipase Cε plays a crucial role in neutrophilic inflammation accompanying acute lung injury through augmentation of CXC chemokine production from alveolar epithelial cells. Respir Res 2019; 20:9. [PMID: 30634975 PMCID: PMC6330467 DOI: 10.1186/s12931-019-0975-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We have shown that phospholipase Cε (PLCε), an effector of Ras and Rap1 small GTPases, plays pivotal roles in inflammation and inflammation-associated carcinogenesis by augmenting proinflammatory cytokine production from epithelial cells of various organs. The purpose of this study is to analyze its role in neutrophilic alveolar inflammation accompanying acute lung injury (ALI), focusing on that in alveolar epithelial cells (AECs), which are known to make a major contribution to the pathogenesis of ALI. METHODS We examine the effect of the PLCε genotypes on the development of ALI induced by intratracheal administration of lipopolysaccharide (LPS) to PLCε wild-type (PLCε+/+) and knockout (PLCεΔX/ΔX) mice. Pathogenesis of ALI is analyzed by histological examination of lung inflammation and measurements of the levels of various cytokines, in particular neutrophil-attracting chemokines such as Cxcl5, by quantitative reverse transcription-polymerase chain reaction and immunostaining. Primary cultures of AECs, established from PLCε+/+ and PLCεΔX/ΔX mice, are used to analyze the roles of PLCε, protein kinase D (PKD) and nuclear factor-κB (NF-κB) in augmentation of LPS-induced Cxcl5 expression. RESULTS Compared to PLCε+/+ mice, PLCεΔX/ΔX mice exhibit marked alleviation of lung inflammation as shown by great reduction in lung wet/dry weight ratios, accumulation of inflammatory cells in the alveolar space and thickening of alveolar walls as well as the number of neutrophils and the protein concentration in bronchoalveolar lavage fluid. Also, LPS-induced expression of the CXC family of chemokines, in particular Cxcl5, is substantially diminished in the total lung and AECs of PLCεΔX/ΔX mice. Moreover, LPS-induced Cxcl5 expression in primary cultured AECs is markedly suppressed on the PLCεΔX/ΔX background (p < 0.05 versus PLCε+/+ AECs), which is accompanied by the reduction in phosphorylation of inhibitor κB (IκB), PKD and nuclear translocation of NF-κB p65. Also, it is suppressed by the treatment with inhibitors of PKD and IκB kinase, suggesting the involvement of the PLCε-PKD-IκB-NF-κB pathway. CONCLUSIONS PLCε-mediated augmentation of the production of the CXC family of chemokines, in particular Cxcl5, in AECs plays a crucial role in neutrophilic alveolar inflammation accompanying ALI, suggesting that PLCε may be a potential molecular target for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Kanoko Umezawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular and Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular and Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.,Kobe University Incubation Center, 1-5-6 Miyakojima Minami-cho, Chuo-ku, Kobe, 650-0047, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
9
|
Löffler MC, Mayer AE, Trujillo Viera J, Loza Valdes A, El-Merahbi R, Ade CP, Karwen T, Schmitz W, Slotta A, Erk M, Janaki-Raman S, Matesanz N, Torres JL, Marcos M, Sabio G, Eilers M, Schulze A, Sumara G. Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity. EMBO J 2018; 37:e99182. [PMID: 30389661 PMCID: PMC6236335 DOI: 10.15252/embj.201899182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022] Open
Abstract
Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the β3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.
Collapse
Affiliation(s)
- Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Alexander E Mayer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Angel Loza Valdes
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Carsten P Ade
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Till Karwen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Anja Slotta
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Manuela Erk
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Sudha Janaki-Raman
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Nuria Matesanz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Martin Eilers
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Almut Schulze
- Biocenter, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Azoitei N, Cobbaut M, Becher A, Van Lint J, Seufferlein T. Protein kinase D2: a versatile player in cancer biology. Oncogene 2017; 37:1263-1278. [PMID: 29259300 DOI: 10.1038/s41388-017-0052-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022]
Abstract
Protein kinase D2 (PKD2) is a serine/threonine kinase that belongs to the PKD family of calcium-calmodulin kinases, which comprises three isoforms: PKD1, PKD2, and PKD3. PKD2 is activated by many stimuli including growth factors, phorbol esters, and G-protein-coupled receptor agonists. PKD2 participation to uncontrolled growth, survival, neovascularization, metastasis, and invasion has been documented in various tumor types including pancreatic, colorectal, gastric, hepatic, lung, prostate, and breast cancer, as well as glioma multiforme and leukemia. This review discusses the versatile functions of PKD2 from the perspective of cancer hallmarks as described by Hanahan and Weinberg. The PKD2 status, signaling pathways affected in different tumor types and the molecular mechanisms that lead to tumorigenesis and tumor progression are presented. The latest developments of small-molecule inhibitors selective for PKD/PKD2, as well as the need for further chemotherapies that prevent, slow down, or eliminate tumors are also discussed in this review.
Collapse
Affiliation(s)
- Ninel Azoitei
- Center for Internal Medicine I, University of Ulm, Ulm, Germany.
| | - Mathias Cobbaut
- Laboratory for Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | | - Johan Van Lint
- Laboratory for Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
11
|
Hu J, Wang G, Liu X, Zhou L, Jiang M, Yang L. Polo-like kinase 1 (PLK1) is involved in toll-like receptor (TLR)-mediated TNF-α production in monocytic THP-1 cells. PLoS One 2013; 8:e78832. [PMID: 24205328 PMCID: PMC3799749 DOI: 10.1371/journal.pone.0078832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
Polo-like kinases (PLKs) have been reported to be essential components of anti-viral pathways. However, the role of PLKs in the production of pro-inflammatory cytokines induced by TLR activation is uncertain. We report here that monocytic THP-1 cells expressed PLK1, PLK2, PLK3 and PLK4. When THP-1 cells were treated with GW843682X, an inhibitor of PLK1 and PLK3, the results showed that GW843682X down-regulated Pam3CSK4- and LPS-induced TNF-α at both the gene and protein levels. GW843682X did not impact Pam3CSK4-induced IL-1β and IL-8 or LPS-induced IL-1β, but it down-regulated LPS-induced IL-8 significantly. Moreover, western blot results showed that TLRs activated PLK1, and PLK1 inhibition by RNA interference down-regulated Pam3CSK4-induced TNF-α production, suggesting the involvement of PLK1 in TNF-α up-regulation. In addition, GW843682X treatment for 12 to 24 h induced cell death and down-regulated MyD88, but neither of these roles contributed to the down-regulation of TNF-α, as TNF-α gene expression was up-regulated at 1 h. Furthermore, GW843682X inhibited Pam3CSK4-induced activation of ERK and NF-κB, which contributed to Pam3CSK4-induced up-regulation of TNF-α. GW843682X also inhibited LPS-induced activation of ERK, p38 and NF-κB, which contributed to LPS-induced up-regulation of TNF-α. Taken together, these results suggested that PLK1 is involved in TLR2- and TLR4-induced inflammation, and GW843682X may be valuable for the regulation of the inflammatory response.
Collapse
Affiliation(s)
- Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Guihua Wang
- Cancer Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Lina Zhou
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Li Yang
- Tuberculosis Research Center, Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
12
|
Chan PL, Zheng J, Liu Y, Lam KT, Xiang Z, Mao H, Liu Y, Qin G, Lau YL, Tu W. TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells. PLoS One 2013; 8:e67969. [PMID: 23844139 PMCID: PMC3700901 DOI: 10.1371/journal.pone.0067969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/23/2013] [Indexed: 01/07/2023] Open
Abstract
Although diverse functions of different toll-like receptors (TLR) on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4hiCD25+ regulatory T cells from naïve CD4+CD25− T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4hiCD25+ regulatory T cells. It was found that induced CD4hiCD25+ regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4hiCD25+ regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4hiCD25+ regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4hiCD25+ regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4hiCD25+ regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.
Collapse
Affiliation(s)
- Ping-Lung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Jian Zheng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Kwok-Tai Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Huawei Mao
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yuan Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Gang Qin
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong. Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
13
|
LaValle CR, Zhang L, Xu S, Eiseman JL, Wang QJ. Inducible silencing of protein kinase D3 inhibits secretion of tumor-promoting factors in prostate cancer. Mol Cancer Ther 2012; 11:1389-99. [PMID: 22532599 DOI: 10.1158/1535-7163.mct-11-0887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein kinase D (PKD) acts as a major mediator of several signaling pathways related to cancer development. Aberrant PKD expression and activity have been shown in multiple cancers, and novel PKD inhibitors show promising anticancer activities. Despite these advances, the mechanisms through which PKD contributes to the pathogenesis of cancer remain unknown. Here, we establish a novel role for PKD3, the least studied member of the PKD family, in the regulation of prostate cancer cell growth and motility through modulation of secreted tumor-promoting factors. Using both a stable inducible knockdown cell model and a transient knockdown system using multiple siRNAs, we show that silencing of endogenous PKD3 significantly reduces prostate cancer cell proliferation, migration, and invasion. In addition, conditioned medium from PKD3-knockdown cells exhibits less migratory potential compared with that from control cells. Further analysis indicated that depletion of PKD3 blocks secretion of multiple key tumor-promoting factors including matrix metalloproteinase (MMP)-9, interleukin (IL)-6, IL-8, and GROα but does not alter mRNA transcript levels for these factors, implying impairment of the secretory pathway. More significantly, inducible depletion of PKD3 in a subcutaneous xenograft model suppresses tumor growth and decreases levels of intratumoral GROα in mice. These data validate PKD3 as a promising therapeutic target in prostate cancer and shed light on the role of secreted tumor-promoting factors in prostate cancer progression.
Collapse
Affiliation(s)
- Courtney R LaValle
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
14
|
Steinberg SF. Regulation of protein kinase D1 activity. Mol Pharmacol 2012; 81:284-91. [PMID: 22188925 PMCID: PMC3286295 DOI: 10.1124/mol.111.075986] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/21/2011] [Indexed: 12/20/2022] Open
Abstract
Protein kinase D1 (PKD1) is a stress-activated serine/threonine kinase that plays a vital role in various physiologically important biological processes, including cell growth, apoptosis, adhesion, motility, and angiogenesis. Dysregulated PKD1 expression also contributes to the pathogenesis of certain cancers and cardiovascular disorders. Studies to date have focused primarily on the canonical membrane-delimited pathway for PKD1 activation by G protein-coupled receptors or peptide growth factors. Here, agonist-dependent increases in diacylglycerol accumulation lead to the activation of protein kinase C (PKC) and PKC-dependent phosphorylation of PKD1 at two highly conserved serine residues in the activation loop; this modification increases PKD1 catalytic activity, as assessed by PKD1 autophosphorylation at a consensus phosphorylation motif at the extreme C terminus. However, recent studies expose additional controls and consequences for PKD1 activation loop and C-terminal phosphorylation as well as additional autophosphorylation reactions and trans-phosphorylations (by PKC and other cellular enzymes) that contribute to the spatiotemporal control of PKD1 signaling in cells. This review focuses on the multisite phosphorylations that are known or predicted to influence PKD1 catalytic activity and may also influence docking interactions with cellular scaffolds and trafficking to signaling microdomains in various subcellular compartments. These modifications represent novel targets for the development of PKD1-directed pharmaceuticals for the treatment of cancers and cardiovascular disorders.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Guo J, Gertsberg Z, Ozgen N, Sabri A, Steinberg SF. Protein kinase D isoforms are activated in an agonist-specific manner in cardiomyocytes. J Biol Chem 2010; 286:6500-9. [PMID: 21156805 DOI: 10.1074/jbc.m110.208058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein kinase D (PKD) exists as a family of structurally related enzymes that are activated through similar phosphorylation-dependent mechanisms involving protein kinase C (PKC). While individual PKD isoforms could in theory mediate distinct biological functions, previous studies identify a high level of functional redundancy for PKD1 and PKD2 in various cellular contexts. This study shows that PKD1 and PKD2 are activated in a stimulus-specific manner in neonatal cardiomyocytes. The α(1)-adrenergic receptor agonist norepinephrine selectively activates PKD1, thrombin and PDGF selectively activate PKD2, and endothelin-1 and PMA activate both PKD1 and PKD2. PKC activity is implicated in the α(1)-adrenergic receptor pathway that activates PKD1 and the thrombin- and PDGF-dependent pathways that activate PKD2. Endothelin-1 activates PKD via both rapid PKC-dependent and more sustained PKC-independent mechanisms. The functional consequences of PKD activation were assessed by tracking phosphorylation of CREB and cardiac troponin I (cTnI), two physiologically relevant PKD substrates in cardiomyocytes. We show that overexpression of an activated PKD1-S744E/S748E transgene increases CREB-Ser(133) and cTnI-Ser(23)/Ser(24) phosphorylation, but agonist-dependent pathways that activate native PKD1 or PKD2 selectively increase CREB-Ser(133) phosphorylation; there is no associated increase in cTnI-Ser(23)/Ser(24) phosphorylation. Gene silencing studies provide unanticipated evidence that PKD1 down-regulation leads to a compensatory increase in PKD2 activity and that down-regulation of PKD1 (alone or in combination with PKD2) leads to an increase in CREB-Ser(133) phosphorylation. Collectively, these studies identify distinct roles for native PKD1 and PKD2 enzymes in stress-dependent pathways that influence cardiac remodeling and the progression of heart failure.
Collapse
Affiliation(s)
- Jianfen Guo
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Mammalian PKD (protein kinase D) isoforms have been implicated in the regulation of diverse biological processes in response to diacylglycerol and PKC (protein kinase C) signalling. To compare the functions of PKD1 and PKD2 in vivo, we generated mice deficient in either PKD1 or PKD2 enzymatic activity, via homozygous expression of PKD1S744A/S748A or PKD2S707A/S711A ‘knockin’ alleles. We also examined PKD2-deficient mice generated using ‘gene-trap’ technology. We demonstrate that, unlike PKD1, PKD2 catalytic activity is dispensable for normal embryogenesis. We also show that PKD2 is the major PKD isoform expressed in lymphoid tissues, but that PKD2 catalytic activity is not essential for the development of mature peripheral T- and B-lymphocytes. PKD2 catalytic activity is, however, required for efficient antigen receptor-induced cytokine production in T-lymphocytes and for optimal T-cell-dependent antibody responses in vivo. Our results reveal a key in vivo role for PKD2 in regulating the function of mature peripheral lymphocytes during adaptive immune responses. They also confirm the functional importance of PKC-mediated serine phosphorylation of the PKD catalytic domain for PKD activation and downstream signalling and reveal that different PKD family members have unique and non-redundant roles in vivo.
Collapse
|