1
|
Xu D, Chen Y, Gao X, Xie W, Wang Y, Shen J, Yang G, Xie B. The genetically predicted causal relationship of inflammatory bowel disease with bone mineral density and osteoporosis: evidence from two-sample Mendelian randomization. Front Immunol 2023; 14:1148107. [PMID: 37275908 PMCID: PMC10233018 DOI: 10.3389/fimmu.2023.1148107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Background Many existing studies indicated that patients with inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), tend to have the risk of low total body bone mineral density (BMD), and are more likely to have osteoporosis (OS). To determine the causal relationship between IBD and bone metabolic disorders, we herein performed a two-sample Mendelian randomization analysis (TSMR) using publicly available summary statistics. Methods Summary statistics of total body BMD, OS and IBD were downloaded from the Open Genome-Wide Association Study (GWAS), FinnGen consortium and International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). The European and East Asian populations have consisted in this Mendelian Randomization (MR) work. A range of quality control procedures were taken to select eligible instrument SNPs closely associated with total body BMD, OS and IBD. To make the conclusions more reliable, we applied five robust analytical methods, among which the inverse variance weighting (IVW) method acted as the major method. Besides, heterogeneity, pleiotropy and sensitivity were evaluated. Results In the European population, the genetic association of UC on total body BMD (OR=0.97, 95%CI=0.96,0.99, P<0.001) and overall IBD on total body BMD (OR=0.98, 95%CI=0.97,1.00, P=0.013) were significant, while the effect of CD on total body BMD was not significant enough (OR=0.99, 95%CI=0.98,1.00, P=0.085). All of UC, CD and overall IBD can be the genetic risk factor of having OS with pathological fracture (UC: OR=1.13, 95%CI=1.02,1.26, P=0.024, CD: OR=1.14, 95%CI=1.05,1.25, P=0.003, overall IBD: OR=1.13, 95%CI=1.02,1.24, P=0.015). In East Asian groups, only CD had a causal relationship with OS (OR=1.04, 95% CI=1.01,1.07, P=0.019). Conclusion Our study revealed genetically predicted associations between IBD on total body BMD and OS in European and East Asian populations. This work supplemented the results of previous retrospective studies and demonstrated the necessity of BMD monitoring in patients with IBD.
Collapse
Affiliation(s)
- Dengyong Xu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Gao
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weidong Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Wang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Hospital Infection-Control, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Hospital Infection-Control, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiaying Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guang Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Liu W, Jakobs J, Rink L. Proton-Pump Inhibitors Suppress T Cell Response by Shifting Intracellular Zinc Distribution. Int J Mol Sci 2023; 24:ijms24021191. [PMID: 36674704 PMCID: PMC9867219 DOI: 10.3390/ijms24021191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Proton-pump inhibitors (PPI), e.g., omeprazole or pantoprazole, are the most widely used drugs for various gastrointestinal diseases. However, more and more side effects, especially an increased risk of infections, have been reported in recent years. The underlying mechanism has still not yet been fully uncovered. Hence, in this study, we analyzed the T cell response after treatment with pantoprazole in vitro. Pantoprazole preincubation reduced the production and secretion of interferon (IFN)-γ and interleukin (IL)-2 after the T cells were activated with phytohemagglutinin (PHA)-L or toxic shock syndrome toxin-1 (TSST-1). Moreover, a lower zinc concentration in the cytoplasm and a higher concentration in the lysosomes were observed in the pantoprazole-treated group compared to the untreated group. We also tested the expression of the zinc transporter Zrt- and Irt-like protein (Zip)8, which is located in the lysosomal membrane and plays a key role in regulating intracellular zinc distribution after T cell activation. Pantoprazole reduced the expression of Zip8. Furthermore, we measured the expression of cAMP-responsive element modulator (CREM) α, which directly suppresses the expression of IL-2, and the expression of the phosphorylated cAMP response element-binding protein (pCREB), which can promote the expression of IFN-γ. The expression of CREMα was dramatically increased, and different isoforms appeared, whereas the expression of pCREB was downregulated after the T cells were treated with pantoprazole. In conclusion, pantoprazole downregulates IFN-γ and IL-2 expression by regulating the expression of Zip8 and pCREB or CREMα, respectively.
Collapse
|
3
|
Luo S, Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Decreased SUV39H1 at the promoter region leads to increased CREMα and accelerates autoimmune response in CD4 + T cells from patients with systemic lupus erythematosus. Clin Epigenetics 2022; 14:181. [PMID: 36536372 PMCID: PMC9764740 DOI: 10.1186/s13148-022-01411-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Overproduction of cAMP-responsive element modulator α (CREMα) in total T cells from patients with systemic lupus erythematosus (SLE) can inhibit IL-2 and increase IL-17A. These ultimately promote progression of SLE. This study aims to investigate the expression of CREMα in SLE CD4+ T cells and find out the mechanisms for the regulation of CREMα in SLE CD4+ T cells. RESULTS CREMα mRNA was overexpressed in CD4+ T cells from SLE patients. The levels of histone H3 lysine 9 trimethylation (H3K9me3) and suppressor of variation 3-9 homolog 1 (SUV39H1) at the CREMα promoter of SLE CD4+ T cells were markedly decreased. Down-regulating SUV39H1 in normal CD4+ T cells elevated the levels of CREMα, IL-17A, and histone H3 lysine 4 trimethylation (H3K4me3) in the CREMα promoter region, and lowered IL-2, H3K9me3, DNA methylation, and DNA methyltransferase 3a (DNMT3a) enrichments within the CREMα promoter, while no sharp change in SET domain containing 1 (Set1) at the CREMα promoter. Up-regulating SUV39H1 in SLE CD4+ T cells had the opposite effects. The DNA methylation and DNMT3a levels were obviously reduced, and H3K4me3 enrichment was greatly increased at the CREMα promoter of CD4+ T cells from SLE patients. The Set1 binding in the CREMα promoter region upgraded significantly, and knocking down Set1 in SLE CD4+ T cells alleviated the H3K4me3 enrichment within this region, suppressed CREMα and IL-17A productions, and promoted the levels of IL-2, CREMα promoter DNA methylation, and DNMT3a. But there were no obviously alterations in H3K9me3 and SUV39H1 amounts in the region after transfection. CONCLUSIONS Decreased SUV39H1 in the CREMα promoter region of CD4+ T cells from SLE patients contributes to under-expression of H3K9me3 at this region. In the meantime, the Set1 binding at the CREMα promoter of SLE CD4+ T cells is up-regulated. As a result, DNMT3a and DNA methylation levels alleviate, and H3K4me3 binding increases. All these lead to overproduction of CREMα. Thus, the secretion of IL-2 down-regulates and the concentration of IL-17A up-regulates, ultimately promoting SLE.
Collapse
Affiliation(s)
- Shuangyan Luo
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Huilin Zhang
- grid.216417.70000 0001 0379 7164Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Yuming Xie
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Junke Huang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| | - Danhong Luo
- Department of Dermatology, The Fifth People’s Hospital of Hainan Province, #49 Longkun South Rd, Haikou, 570206 Hainan People’s Republic of China
| | - Qing Zhang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, 410011 Hunan People’s Republic of China
| |
Collapse
|
4
|
Beyond controlling cell size: functional analyses of S6K in tumorigenesis. Cell Death Dis 2022; 13:646. [PMID: 35879299 PMCID: PMC9314331 DOI: 10.1038/s41419-022-05081-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
As a substrate and major effector of the mammalian target of rapamycin complex 1 (mTORC1), the biological functions of ribosomal protein S6 kinase (S6K) have been canonically assigned for cell size control by facilitating mRNA transcription, splicing, and protein synthesis. However, accumulating evidence implies that diverse stimuli and upstream regulators modulate S6K kinase activity, leading to the activation of a plethora of downstream substrates for distinct pathobiological functions. Beyond controlling cell size, S6K simultaneously plays crucial roles in directing cell apoptosis, metabolism, and feedback regulation of its upstream signals. Thus, we comprehensively summarize the emerging upstream regulators, downstream substrates, mouse models, clinical relevance, and candidate inhibitors for S6K and shed light on S6K as a potential therapeutic target for cancers.
Collapse
|
5
|
Zhang H, Xie Y, Huang J, Luo D, Zhang Q. Reduced expression of hematopoietic progenitor kinase 1 in T follicular helper cells causes autoimmunity of systemic lupus erythematosus. Lupus 2021; 31:28-38. [PMID: 34968152 DOI: 10.1177/09612033211062524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUD T follicular helper (Tfh) cells have been discovered to be the main CD4+ T cells assisting B cells to produce antibody. They are over activated in patients with systemic lupus erythematosus (SLE) and consequently lead to excessive immunity. Hematopoietic progenitor kinase 1 (HPK1) negatively regulates T cell-mediated immune responses and TCR signal. This study aimed to investigate the roles of HPK1 in SLE Tfh cells. METHODS HPK1 mRNA and protein levels in Tfh cells were measured by real-time quantitative PCR and western blot analysis, respectively. The production of IL-21, B cell-activating factor (BAFF), interferon γ (IFNγ), IL-17A, IgM, IgG1, IgG2, and IgG3 were analyzed using enzyme linked immunosorbent assay. Tfh cells proliferation was evaluated with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS HPK1 mRNA and protein levels were significantly reduced in SLE Tfh cells, and negatively correlated with SLE disease activity index (SLEDAI) and Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for SLE (SDI). Knocking down HPK1 with siRNA in normal Tfh cells greatly elevated Tfh cells proliferation and secretions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3. There were no marked alterations in IL-17A and IgM productions. The opposite effects were observed in SLE Tfh cells transfected with HPK1 overexpressing plasmid: Tfh cells proliferation and productions of IL-21, BAFF, IFNγ, IgG1, IgG2, and IgG3 were all alleviated. And there were no significant changes in IL-17A and IgM levels. CONCLUSION Our results suggest for the first time that inhibited expression of HPK1 in SLE Tfh cells leading to Tfh cells overactivation and B cells overstimulation, subsequently, the onset and progression of SLE.
Collapse
Affiliation(s)
- Huilin Zhang
- Clinical Nursing Teaching and Research Section, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuming Xie
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Junke Huang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| | - Danhong Luo
- Department of Dermatology, Fifth People's Hospital of Hainan Province, Haikou, China
| | - Qing Zhang
- Department of Dermatology, 70566Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Seidl MD, Fels B, Kranick D, Sternberg A, Grimm K, Stümpel FT, Pluteanu F, Schulte JS, Heinick A, Kojima N, Endo S, Huge A, Stoll M, Müller FU. Induction of ICER is superseded by smICER, challenging the impact of ICER under chronic beta-adrenergic stimulation. FASEB J 2020; 34:11272-11291. [PMID: 32602979 DOI: 10.1096/fj.201902301rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/30/2020] [Accepted: 04/21/2020] [Indexed: 11/11/2022]
Abstract
ICER (inducible cAMP early repressor) isoforms are transcriptional repressors encoded by the Crem (cAMP responsive element modulator) gene. They were linked to the regulation of a multitude of cellular processes and pathophysiological mechanisms. Here, we show for the first time that two independent induction patterns for CREM repressor isoforms exist in the heart, namely for ICER and smICER (small ICER), which are induced in response to β-adrenergic stimulation in a transient- and saturation-like manner, respectively. This time-shifted induction pattern, driven by two internal promoters in the Crem gene, leads to the predominant transcription of smIcer after prolonged β-adrenergic stimulation. Using an ICER knockout mouse model with preserved smICER induction, we show that the transient-like induction of Icer itself has minor effects on gene regulation, cardiac hypertrophy or contractile function in the heart. We conclude that the functions previously linked to ICER may be rather attributed to smICER, also beyond the cardiac background.
Collapse
Affiliation(s)
- Matthias D Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Benedikt Fels
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Daniel Kranick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexandra Sternberg
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Kristina Grimm
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank T Stümpel
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Florentina Pluteanu
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Jan S Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Alexander Heinick
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | | | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Andreas Huge
- Core Facility Genomik, Medical Faculty, University of Muenster, Germany
| | - Monika Stoll
- Core Facility Genomik, Medical Faculty, University of Muenster, Germany
| | - Frank U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Zhang Q, Ding S, Zhang H, Long H, Wu H, Zhao M, Chan V, Lau CS, Lu Q. Increased Set1 binding at the promoter induces aberrant epigenetic alterations and up-regulates cyclic adenosine 5'-monophosphate response element modulator alpha in systemic lupus erythematosus. Clin Epigenetics 2016; 8:126. [PMID: 27904655 PMCID: PMC5122196 DOI: 10.1186/s13148-016-0294-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Up-regulated cyclic adenosine 5'-monophosphate response element modulator α (CREMα) which can inhibit IL-2 and induce IL-17A in T cells plays a critical role in the pathogenesis of systemic lupus erythematosus (SLE). This research aimed to investigate the mechanisms regulating CREMα expression in SLE. RESULTS From the chromatin immunoprecipitation (ChIP) microarray data, we found a sharply increased H3 lysine 4 trimethylation (H3K4me3) amount at the CREMα promoter in SLE CD4+ T cells compared to controls. Then, by ChIP and real-time PCR, we confirmed this result. Moreover, H3K4me3 amount at the promoter was positively correlated with CREMα mRNA level in SLE CD4+ T cells. In addition, a striking increase was observed in SET domain containing 1 (Set1) enrichment, but no marked change in mixed-lineage leukemia 1 (MLL1) enrichment at the CREMα promoter in SLE CD4+ T cells. We also proved Set1 enrichment was positively correlated with both H3K4me3 amount at the CREMα promoter and CREMα mRNA level in SLE CD4+ T cells. Knocking down Set1 with siRNA in SLE CD4+ T cells decreased Set1 and H3K4me3 enrichments, and elevated the levels of DNMT3a and DNA methylation, while the amounts of H3 acetylation (H3ac) and H4 acetylation (H4ac) didn't alter greatly at the CREMα promoter. All these changes inhibited the expression of CREMα, then augmented IL-2 and down-modulated IL-17A productions. Subsequently, we observed that DNA methyltransferase (DNMT) 3a enrichment at the CREMα promoter was down-regulated significantly in SLE CD4+ T cells, and H3K4me3 amount was negatively correlated with both DNA methylation level and DNMT3a enrichment at the CREMα promoter in SLE CD4+ T cells. CONCLUSIONS In SLE CD4+ T cells, increased Set1 enrichment up-regulates H3K4me3 amount at the CREMα promoter, which antagonizes DNMT3a and suppresses DNA methylation within this region. All these factors induce CREMα overexpression, consequently result in IL-2 under-expression and IL-17A overproduction, and contribute to SLE at last. Our findings provide a novel approach in SLE treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Shu Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Huilin Zhang
- Emergency Department, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| | - Vera Chan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chak-Sing Lau
- Division of Rheumatology and Clinical Immunology, Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 China
| |
Collapse
|
8
|
Ponsuksili S, Du Y, Hadlich F, Siengdee P, Murani E, Schwerin M, Wimmers K. Correlated mRNAs and miRNAs from co-expression and regulatory networks affect porcine muscle and finally meat properties. BMC Genomics 2013; 14:533. [PMID: 23915301 PMCID: PMC3750351 DOI: 10.1186/1471-2164-14-533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/30/2013] [Indexed: 12/21/2022] Open
Abstract
Background Physiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes. Results We applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits. Conclusions Porcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Group Functional Genome Analyses, Leibniz Institute for Farm Animal Biology, FBN, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Association between leptin and systemic lupus erythematosus. Rheumatol Int 2013; 34:559-63. [DOI: 10.1007/s00296-013-2774-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 05/04/2013] [Indexed: 11/27/2022]
|