1
|
Pan W, Lin Z, Chen S, Li J, Wang Y, Chen K, Zhang M. SAMD12 as a Master Regulator of MAP4Ks by Decoupling Kinases From the CNKSR2 Scaffold. J Mol Biol 2025; 437:169034. [PMID: 40010432 DOI: 10.1016/j.jmb.2025.169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
The MAP4K member TNIK and the multi-domain scaffold protein CNKSR2, both of which are clustered at neuronal synapses, interact with each other and are closely associated with neurodevelopmental disorders, although the mechanism underlying their interaction is unclear. In this study, we characterized the interaction mechanisms between MAP4K kinases (MAP4K4, MINK1 and TNIK) and the CNKSR1/2/3 scaffold proteins, and discovered that SAMD12, a familial adult myoclonic epilepsy disease gene product, or its close homolog SAMD10, binds to CNKSR1/2/3 with exceptionally strong affinities and can quantitatively displace MAP4K from CNKSR1/2/3 scaffolds. Additionally, we demonstrated that CNKSR2 acts as both a scaffold and an activator of TNIK during neuronal synapse development. Ectopic expression of SAMD12 can effectively alter synapse development, likely by inhibiting TNIK activity through the dissociation of the kinase from CNKSR2. Our findings may have broad implications on the roles of MAP4Ks and CNKSR1/2/3 in the nervous system and in other tissues under physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Wen Pan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhijie Lin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shiwen Chen
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jiahui Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yu Wang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| | - Mingjie Zhang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
2
|
Juin A, Spence HJ, Machesky LM. Dichotomous role of the serine/threonine kinase MAP4K4 in pancreatic ductal adenocarcinoma onset and metastasis through control of AKT and ERK pathways. J Pathol 2024; 262:454-466. [PMID: 38229581 DOI: 10.1002/path.6248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
MAP4K4 is a serine/threonine kinase of the STE20 family involved in the regulation of actin cytoskeleton dynamics and cell motility. It has been proposed as a target of angiogenesis and inhibitors show potential in cardioprotection. MAP4K4 also mediates cell invasion in vitro, is overexpressed in various types of cancer, and is associated with poor patient prognosis. Recently, MAP4K4 has been shown to be overexpressed in pancreatic cancer, but its role in tumour initiation, progression, and metastasis is unknown. Here, using the KrasG12D Trp53R172H Pdx1-Cre (KPC) mouse model of pancreatic ductal adenocarcinoma (PDAC), we show that deletion of Map4k4 drives tumour initiation and progression. Moreover, we report that the acceleration of tumour onset is also associated with an overactivation of ERK and AKT, two major downstream effectors of KRAS, in vitro and in vivo. In contrast to the accelerated tumour onset caused by loss of MAP4K4, we observed a reduction in metastatic burden with both the KPC model and in an intraperitoneal transplant assay indicating a major role of MAP4K4 in metastatic seeding. In summary, our study sheds light on the dichotomous role of MAP4K4 in the initiation of PDAC onset, progression, and metastatic dissemination. It also identifies MAP4K4 as a possible druggable target against pancreatic cancer spread, but with the caveat that targeting MAP4K4 might accelerate early tumorigenesis. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Laura M Machesky
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Kwon YS, Lee MG, Kim NY, Nam GS, Nam KS, Jang H, Kim S. Overcoming radioresistance of breast cancer cells with MAP4K4 inhibitors. Sci Rep 2024; 14:7410. [PMID: 38548749 PMCID: PMC10978830 DOI: 10.1038/s41598-024-57000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) has recently emerged as a promising therapeutic target in cancer. In this study, we explored the biological function of MAP4K4 in radioresistant breast cancer cells using two MAP4K4 inhibitors, namely PF06260933 and GNE-495. Radioresistant SR and MR cells were established by exposing SK-BR-3 and MCF-7 breast cancer cells to 48-70 Gy of radiation delivered at 4-5 Gy twice a week over 10 months. Surprisingly, although radioresistant cells were derived from two different subtypes of breast cancer cell lines, MAP4K4 was significantly elevated regardless of subtype. Inhibition of MAP4K4 with PF06260933 or GNE-495 selectively targeted radioresistant cells and improved the response to irradiation. Furthermore, MAP4K4 inhibitors induced apoptosis through the accumulation of DNA damage by inhibiting DNA repair systems in radioresistant cells. Notably, Inhibition of MAP4K4 suppressed the expressions of ACSL4, suggesting that MAP4K4 functioned as an upstream effector of ACSL4. This study is the first to report that MAP4K4 plays a crucial role in mediating the radioresistance of breast cancer by acting upstream of ACSL4 to enhance DNA damage response and inhibit apoptosis. We hope that our findings provide a basis for the development of new drugs targeting MAP4K4 to overcome radioresistance.
Collapse
Affiliation(s)
- Yun-Suk Kwon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Jeju-do, 63240, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Nam-Yi Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, Honam University, Gwangsan-gu, Gwangju, 62399, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea
| | - Hyunsoo Jang
- Department of Radiation Oncology, Pohang St. Mary's Hospital, Pohang, Gyeongsangbuk-do, 37661, Republic of Korea
| | - Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do, 38066, Republic of Korea.
| |
Collapse
|
4
|
Roy R, Singh SK, Rana A. Editorial: Diverse roles of MAP4K4 in MAP kinase signaling and its implication for cancer therapeutics. Front Oncol 2023; 13:1248808. [PMID: 37546416 PMCID: PMC10396797 DOI: 10.3389/fonc.2023.1248808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Affiliation(s)
- Ruchi Roy
- UICentre for Drug Discovery, The University of Illinois at Chicago, Chicago, IL, United States
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers (Basel) 2023; 15:cancers15082272. [PMID: 37190200 PMCID: PMC10136566 DOI: 10.3390/cancers15082272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are crucial in extracellular signal transduction to cellular responses. The classical three-tiered MAPK cascades include signaling through MAP kinase kinase kinase (MAP3K) that activates a MAP kinase kinase (MAP2K), which in turn induces MAPK activation and downstream cellular responses. The upstream activators of MAP3K are often small guanosine-5'-triphosphate (GTP)-binding proteins, but in some pathways, MAP3K can be activated by another kinase, which is known as a MAP kinase kinase kinase kinase (MAP4K). MAP4K4 is one of the widely studied MAP4K members, known to play a significant role in inflammatory, cardiovascular, and malignant diseases. The MAP4K4 signal transduction plays an essential role in cell proliferation, transformation, invasiveness, adhesiveness, inflammation, stress responses, and cell migration. Overexpression of MAP4K4 is frequently reported in many cancers, including glioblastoma, colon, prostate, and pancreatic cancers. Besides its mainstay pro-survival role in various malignancies, MAP4K4 has been implicated in cancer-associated cachexia. In the present review, we discuss the functional role of MAP4K4 in malignant/non-malignant diseases and cancer-associated cachexia and its possible use in targeted therapy.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruchi Roy
- UICentre for Drug Discovery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Vascular smooth muscle RhoA counteracts abdominal aortic aneurysm formation by modulating MAP4K4 activity. Commun Biol 2022; 5:1071. [PMID: 36207400 PMCID: PMC9546906 DOI: 10.1038/s42003-022-04042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Whether a small GTPase RhoA plays a role in the pathology of abdominal aortic aneurysm (AAA) has not been determined. We show here that RhoA expression is reduced in human AAA lesions, compared with normal areas. Furthermore, incidence of AAA formation is increased in vascular smooth muscle cell (VSMC)-specific RhoA conditional knockout (cKO) mice. The contractility of the aortic rings and VSMCs from RhoA cKO mice is reduced, and expression of genes related to the VSMC contractility is attenuated by loss of RhoA. RhoA depletion activates the mitogen-activated protein (MAP) kinase signaling, including MAP4K4, in the aorta and VSMCs. Inhibition of MAP4K4 activity by DMX-5804 decreases AAA formation. Set, a binding protein to active RhoA, functions as an activator of MAP4K4 by sequestering PP2A, an inhibitor of MAP4K4, in the absence of RhoA. In conclusion, RhoA counteracts AAA formation through inhibition of MAP4K4 in cooperation with Set.
Collapse
|
8
|
Kharbanda A, Tran P, Zhang L, Leung YK, Li HY, Frett B. Discovery of 4-aminoquinolines as highly selective TGFβR1 inhibitors with an attenuated MAP4K4 profile for potential applications in immuno-oncology. Eur J Med Chem 2021; 225:113763. [PMID: 34419892 DOI: 10.1016/j.ejmech.2021.113763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
The tumor microenvironment contains high concentrations of TGFβ, a crucial immunosuppressive cytokine. TGFβ stimulates immune escape by promoting peripheral immune tolerance to avoid tumoricidal attack. Small-molecule inhibitors of TGFβR1 are a prospective method for next-generation immunotherapies. In the present study, we identified selective 4-aminoquinoline-based inhibitors of TGFβR1 through structural and rational-based design strategies. This led to the identification of compound 4i, which was found to be selective for TGFβR1 with the exception of MAP4K4 in the kinase profiling assay. The compound was then further optimized to remove MAP4K4 activity, since MAP4K4 is vital for proper T-cell function and its inhibition could exacerbate tumor immunosuppression. Optimization efforts led to compound 4s that inhibited TGFβR1 at an IC50 of 0.79 ± 0.19 nM with 2000-fold selectivity against MAP4K4. Compound 4s represents a highly selective TGFβR1 inhibitor that has potential applications in immuno-oncology.
Collapse
Affiliation(s)
- Anupreet Kharbanda
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Phuc Tran
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lingtian Zhang
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Brendan Frett
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Abstract
Metastasis is the process of cancer cell dissemination from primary tumors to different organs being the bone the preferred site for metastatic homing of prostate cancer (PCa) cells. Prostate tumorigenesis is a multi-stage process that ultimately tends to advance to become metastatic PCa. Once PCa patients develop skeletal metastases, they eventually succumb to the disease. Therefore, it is imperative to identify essential molecular drivers of this process to develop new therapeutic alternatives for the treatment of this devastating disease. Here, we have identified MAP4K4 as a relevant gene for metastasis in PCa. Our work shows that genetic deletion of MAP4K4 or pharmacological inhibition of its encoded kinase, HGK, inhibits metastatic PCa cells migration and clonogenic properties. Hence, MAP4K4 might promote metastasis and tumor growth. Mechanistically, our results indicate that HGK depleted cells exhibit profound differences in F-actin organization, increasing cell spreading and focal adhesion stability. Additionally, HGK depleted cells fails to respond to TNF-α stimulation and chemoattractant action. Moreover, here we show that HGK upregulation in PCa samples from TCGA and other databases correlates with a poor prognosis of the disease. Hence, we suggest that it could be used as prognostic biomarker to predict the appearance of an aggressive phenotype of PCa tumors and ultimately, the appearance of metastasis. In summary, our results highlight an essential role for HGK in the dissemination of PCa cells and its potential use as prognostic biomarker.
Collapse
|
10
|
Auguste G, Rouhi L, Matkovich SJ, Coarfa C, Robertson MJ, Czernuszewicz G, Gurha P, Marian AJ. BET bromodomain inhibition attenuates cardiac phenotype in myocyte-specific lamin A/C-deficient mice. J Clin Invest 2021; 130:4740-4758. [PMID: 32484798 DOI: 10.1172/jci135922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
Mutation in the LMNA gene, encoding lamin A/C, causes a diverse group of diseases called laminopathies. Cardiac involvement is the major cause of death and manifests as dilated cardiomyopathy, heart failure, arrhythmias, and sudden death. There is no specific therapy for LMNA-associated cardiomyopathy. We report that deletion of Lmna in cardiomyocytes in mice leads to severe cardiac dysfunction, conduction defect, ventricular arrhythmias, fibrosis, apoptosis, and premature death within 4 weeks. The phenotype is similar to LMNA-associated cardiomyopathy in humans. RNA sequencing, performed before the onset of cardiac dysfunction, led to identification of 2338 differentially expressed genes (DEGs) in Lmna-deleted cardiomyocytes. DEGs predicted activation of bromodomain-containing protein 4 (BRD4), a regulator of chromatin-associated proteins and transcription factors, which was confirmed by complementary approaches, including chromatin immunoprecipitation sequencing. Daily injection of JQ1, a specific BET bromodomain inhibitor, partially reversed the DEGs, including those encoding secretome; improved cardiac function; abrogated cardiac arrhythmias, fibrosis, and apoptosis; and prolonged the median survival time 2-fold in the myocyte-specific Lmna-deleted mice. The findings highlight the important role of LMNA in cardiomyocytes and identify BET bromodomain inhibition as a potential therapeutic target in LMNA-associated cardiomyopathy, for which there is no specific effective therapy.
Collapse
Affiliation(s)
- Gaelle Auguste
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Scot J Matkovich
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cristian Coarfa
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Grazyna Czernuszewicz
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Esen E, Sergin I, Jesudason R, Himmels P, Webster JD, Zhang H, Xu M, Piskol R, McNamara E, Gould S, Capietto AH, Delamarre L, Walsh K, Ye W. MAP4K4 negatively regulates CD8 T cell-mediated antitumor and antiviral immunity. Sci Immunol 2020; 5:5/45/eaay2245. [PMID: 32220977 DOI: 10.1126/sciimmunol.aay2245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
During cytotoxic T cell activation, lymphocyte function-associated antigen-1 (LFA-1) engages its ligands on antigen-presenting cells (APCs) or target cells to enhance T cell priming or lytic activity. Inhibiting LFA-1 dampens T cell-dependent symptoms in inflammation, autoimmune diseases, and graft-versus-host disease. However, the therapeutic potential of augmenting LFA-1 function is less explored. Here, we show that genetic deletion or inhibition of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) enhances LFA-1 activation on CD8 T cells and improves their adherence to APCs or LFA-1 ligand. In addition, loss of Map4k4 increases CD8 T cell priming, which culminates in enhanced antigen-dependent activation, proliferation, cytokine production, and cytotoxic activity, resulting in impaired tumor growth and improved response to viral infection. LFA-1 inhibition reverses these phenotypes. The ERM (ezrin, radixin, and moesin) proteins reportedly regulate T cell-APC conjugation, but the molecular regulator and effector of ERM proteins in T cells have not been defined. In this study, we demonstrate that the ERM proteins serve as mediators between MAP4K4 and LFA-1. Last, systematic analyses of many organs revealed that inducible whole-body deletion of Map4k4 in adult animals is tolerated under homeostatic conditions. Our results uncover MAP4K4 as a potential target to augment antitumor and antiviral immunity.
Collapse
Affiliation(s)
- Emel Esen
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Ismail Sergin
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Rajiv Jesudason
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Patricia Himmels
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Erin McNamara
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Stephen Gould
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | | | - Lélia Delamarre
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Kevin Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| | - Weilan Ye
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
12
|
Botros L, Pronk MCA, Juschten J, Liddle J, Morsing SKH, van Buul JD, Bates RH, Tuinman PR, van Bezu JSM, Huveneers S, Bogaard HJ, van Hinsbergh VWM, Hordijk PL, Aman J. Bosutinib prevents vascular leakage by reducing focal adhesion turnover and reinforcing junctional integrity. J Cell Sci 2020; 133:jcs240077. [PMID: 32198280 DOI: 10.1242/jcs.240077] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
Endothelial barrier dysfunction leads to edema and vascular leak, causing high morbidity and mortality. Previously, Abl kinase inhibition has been shown to protect against vascular leak. Using the distinct inhibitory profiles of clinically available Abl kinase inhibitors, we aimed to provide a mechanistic basis for novel treatment strategies against vascular leakage syndromes. We found that the inhibitor bosutinib most potently protected against inflammation-induced endothelial barrier disruption. In vivo, bosutinib prevented lipopolysaccharide (LPS)-induced alveolar protein extravasation in an acute lung injury mice model. Mechanistically, mitogen-activated protein 4 kinase 4 (MAP4K4) was identified as important novel mediator of endothelial permeability, which signaled via ezrin, radixin and moesin proteins to increase turnover of integrin-based focal adhesions. The combined inhibition of MAP4K4 and Abl-related gene (Arg, also known as ABL2) by bosutinib preserved adherens junction integrity and reduced turnover of focal adhesions, which synergistically act to stabilize the endothelial barrier during inflammation. We conclude that MAP4K4 is an important regulator of endothelial barrier integrity, increasing focal adhesion turnover and disruption of cell-cell junctions during inflammation. Because it inhibits both Arg and MAP4K4, use of the clinically available drug bosutinib might form a viable strategy against vascular leakage syndromes.
Collapse
Affiliation(s)
- Liza Botros
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Manon C A Pronk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Jenny Juschten
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, 1105 AZ Amsterdam, The Netherlands
| | - John Liddle
- GlaxoSmithKline, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Sofia K H Morsing
- Molecular Cell Biology Lab at Dept. Molecular Cellular Haemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Dept. Molecular Cellular Haemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | - Pieter R Tuinman
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, 1105 AZ Amsterdam, The Netherlands
| | - Jan S M van Bezu
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Peter L Hordijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| | - Jurjan Aman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Amsterdam Cardiovascular Sciences, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
13
|
Dent P, Booth L, Poklepovic A, Martinez J, Hoff DV, Hancock JF. Neratinib degrades MST4 via autophagy that reduces membrane stiffness and is essential for the inactivation of PI3K, ERK1/2, and YAP/TAZ signaling. J Cell Physiol 2020; 235:7889-7899. [PMID: 31912905 DOI: 10.1002/jcp.29443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
The irreversible ERBB1/2/4 inhibitor neratinib causes plasma membrane-associated K-RAS to mislocalize into intracellular vesicles liminal to the plasma membrane; this effect is enhanced by HDAC inhibitors and is now a Phase I trial (NCT03919292). The combination of neratinib and HDAC inhibitors killed pancreatic cancer and lymphoma T cells. Neratinib plus HDAC inhibitor exposure was as efficacious as (paclitaxel+gemcitabine) at killing pancreatic cancer cells. Neratinib reduced the phosphorylation of PAK1, Merlin, LATS1/2, AKT, mTOR, p70 S6K, and ERK1/2 which required expression of Rubicon, Beclin1, and Merlin. Neratinib altered pancreatic tumor cell morphology which was associated with MST4 degradation reduced Ezrin phosphorylation and enhanced phosphorylation of MAP4K4 and LATS1/2. Knockdown of the MAP4K4 activator and sensor of membrane rigidity RAP2A reduced basal LATS1/2 and YAP phosphorylation but did not prevent neratinib from stimulating LATS1/2 or YAP phosphorylation. Beclin1 knockdown prevented MST4 degradation, Ezrin dephosphorylation and neratinib-induced alterations in tumor cell morphology. Our findings demonstrate that neratinib enhances LATS1/2 phosphorylation independently of RAP2A/MAP4K4 and that MST4 degradation and Ezrin dephosphorylation may represent a universal trigger for the biological actions of neratinib.
Collapse
Affiliation(s)
- Paul Dent
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Jennifer Martinez
- Inflammation & Autoimmunity Group, National Institute of Environmental Health Sciences, Triangle Park, North Carolina
| | - Daniel Von Hoff
- Translational Genomics Research Institute (TGEN), Phoenix, Arizona
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
14
|
Kim JW, Berrios C, Kim M, Schade AE, Adelmant G, Yeerna H, Damato E, Iniguez AB, Florens L, Washburn MP, Stegmaier K, Gray NS, Tamayo P, Gjoerup O, Marto JA, DeCaprio J, Hahn WC. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. eLife 2020; 9:e53003. [PMID: 31913126 PMCID: PMC6984821 DOI: 10.7554/elife.53003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations involving serine-threonine phosphatase PP2A subunits occur in a range of human cancers, and partial loss of PP2A function contributes to cell transformation. Displacement of regulatory B subunits by the SV40 Small T antigen (ST) or mutation/deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells, leading to transformation. Here, we show that ST not only displaces common PP2A B subunits but also promotes A-C subunit interactions with alternative B subunits (B''', striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex. We found that STRN4, a member of STRIPAK, is associated with ST and is required for ST-PP2A-induced cell transformation. ST recruitment of STRIPAK facilitates PP2A-mediated dephosphorylation of MAP4K4 and induces cell transformation through the activation of the Hippo pathway effector YAP1. These observations identify an unanticipated role of MAP4K4 in transformation and show that the STRIPAK complex regulates PP2A specificity and activity.
Collapse
Affiliation(s)
- Jong Wook Kim
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoUnited States
| | - Christian Berrios
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
| | - Miju Kim
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Amy E Schade
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUnited States
| | - Huwate Yeerna
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Emily Damato
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Amanda Balboni Iniguez
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Pediatric OncologyDana-Farber Cancer InstituteBostonUnited States
| | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUnited States
| | - Kim Stegmaier
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Pediatric OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Nathanael S Gray
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
| | - Pablo Tamayo
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoUnited States
| | - Ole Gjoerup
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUnited States
| | - James DeCaprio
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - William C Hahn
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
15
|
Yu R, Li Q, Feng Z, Cai L, Xu Q. m6A Reader YTHDF2 Regulates LPS-Induced Inflammatory Response. Int J Mol Sci 2019; 20:ijms20061323. [PMID: 30875984 PMCID: PMC6470741 DOI: 10.3390/ijms20061323] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification that affects multiple biological processes, including those involved in the cell stress response and viral infection. YTH domain family 2 (YTHDF2) is an m6A-binding protein that affects the localization and stability of targeted mRNA. RNA-binding proteins (RBPs) can regulate the stability of inflammatory gene mRNA transcripts, thus participating in the regulation of inflammatory processes. As an RBP, the role of YTHDF2 in the LPS-induced inflammatory reaction has not been reported. To elucidate the function of YTHDF2 in the inflammatory response of macrophages, we first detected the expression level of YTHDF2 in RAW 264.7 cells, and found that it was upregulated after LPS stimulation. YTHDF2 knockdown significantly increased the LPS-induced IL-6, TNF-α, IL-1β, and IL-12 expression and the phosphorylation of p65, p38, and ERK1/2 in NF-κB and MAPK signaling. Moreover, the upregulated expression of TNF-α and IL-6 in cells with silenced YTHDF2 expression was downregulated by the NF-κB, p38, and ERK inhibitors. YTHDF2 depletion increased the expression and stability of MAP2K4 and MAP4K4 mRNAs. All of these results suggest that YTHDF2 knockdown increases mRNA expression levels of MAP2K4 and MAP4K4 via stabilizing the mRNA transcripts, which activate MAPK and NF-κB signaling pathways, which promote the expression of proinflammatory cytokines and aggravate the inflammatory response in LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Ruiqing Yu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qimeng Li
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhihui Feng
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Luhui Cai
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
16
|
Zhou B, Chu M, Xu S, Chen X, Liu Y, Wang Z, Zhang F, Han S, Yin J, Peng B, He X, Liu W. Hsa-let-7c-5p augments enterovirus 71 replication through viral subversion of cell signaling in rhabdomyosarcoma cells. Cell Biosci 2017; 7:7. [PMID: 28101327 PMCID: PMC5237547 DOI: 10.1186/s13578-017-0135-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Background Human enterovirus 71 (EV71) causes severe hand, foot and mouse disease, accompanied by neurological complications. During the interaction between EV71 and the host, the virus subverts host cell machinery for its own replication. However, the roles of microRNAs (miRNAs) in this process remain obscure. Results In this study, we found that the miRNA hsa-let-7c-5p was significantly upregulated in EV71-infected rhabdomyosarcoma cells. The overexpression of hsa-let-7c-5p promoted replication of the virus, and the hsa-let-7c-5p inhibitor suppressed viral replication. Furthermore, hsa-let-7c-5p targeted mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) and inhibited its expression. Interestingly, downregulation of MAP4K4 expression led to an increase in EV71 replication. In addition, MAP4K4 knockdown or transfection with the hsa-let-7c-5p mimic led to activation of the c-Jun NH2-terminal kinase (JNK) signaling pathway, whereas the hsa-let-7c-5p inhibitor inhibited activation of this pathway. Moreover, EV71 infection promoted JNK pathway activation to facilitate viral replication. Conclusions Our data suggested that hsa-let-7c-5p facilitated EV71 replication by inhibiting MAP4K4 expression, which might be related to subversion of the JNK pathway by the virus. These results may shed light on a novel mechanism underlying the defense of EV71 against cellular responses. In addition, these findings may facilitate the development of new antiviral strategies for use in future therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13578-017-0135-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingfei Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Min Chu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Shanshan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Xiong Chen
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Yongjuan Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Zhihao Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Fengfeng Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071 China ; Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 China
| |
Collapse
|
17
|
Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci 2016; 6:56. [PMID: 27800153 PMCID: PMC5084373 DOI: 10.1186/s13578-016-0121-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine kinase MAP4K4 is a member of the Ste20p (sterile 20 protein) family. MAP4K4 was initially discovered in 1995 as a key kinase in the mating pathway in Saccharomyces cerevisiae and was later found to be involved in many aspects of cell functions and many biological and pathological processes. The role of MAP4K4 in immunity, inflammation, metabolic and cardiovascular disease has been recognized. Information regarding MAP4K4 in cancers is extremely limited, but increasing evidence suggests that MAP4K4 also plays an important role in cancer and MAP4K4 may represent a novel actionable cancer therapeutic target. This review summarizes our current understanding of MAP4K4 regulation and MAP4K4 in cancer. MAP4K4-specific inhibitors have been recently developed. We hope that this review article would advocate more basic and preclinical research on MAP4K4 in cancer, which could ultimately provide biological and mechanistic justifications for preclinical and clinical test of MAP4K4 inhibitor in cancer patients.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China ; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Guoxiang Liu
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
18
|
Jin M, Chu H, Li Y, Tao X, Cheng Z, Pan Y, Meng Q, Li L, Hou X, Chen Y, Huang H, Jia G, Shang J, Zhu T, Shang L, Hao W, Wei X. MAP4K4 deficiency in CD4(+) T cells aggravates lung damage induced by ozone-oxidized black carbon particles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:246-254. [PMID: 27504712 DOI: 10.1016/j.etap.2016.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
As the main composition of combustion, black carbon (BC) is becoming more and more noticeable at home and abroad. Ozone-oxidized black carbon (oBC) was produced through aging of ozone, one of the near-surface pollutants, to black carbon. And oBC was found to be more oxidation and cell toxicity when compared with BC. Besides, as a key cell of immunity, whether CD4(+) T cell would involve in lung inflammation induced by particular matter is still unclear. This study aims to observe the effect of oBC on lung damage in mice and discuss how the functional MAP4K4 defect CD4(+) T cells (conditional knockout of MAP4K4) presents its role in this process. In our study, MAP4K4 deletion in CD4(+) T cells (MAP4K4 cKO) could increase cell number of macrophages, lymphocytes and neutrophils in bronchoalveolar lavage fluid (BALF) exposed to oBC. MAP4K4 deletion in CD4(+) T cell also affected CD4(+) T cell differentiation in mediastinal lymph nodes after oBC stimulation. The number of CD4(+) IL17(+) T cell increased obviously. The levels of IL-6 mRNA of lung in MAP4K4 cKO mice was higher than that in wild type mice after exposed to oBC, while the level of IL-6 in BALF had the same trend. Histological examination showed that MAP4K4 deletion in CD4(+) T cells affected lung inflammation induced by oBC. Results indicated that MAP4K4 cKO in CD4(+) T cells upgraded the level of inflammation in lung when exposed to oBC, which may be connected to the CD4(+) T cell differentiation and JNK, ERK and P38 pathways.
Collapse
Affiliation(s)
- Ming Jin
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuan Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xi Tao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yao Pan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Leilei Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yueyue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Hongpeng Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lanqin Shang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
19
|
Virbasius JV, Czech MP. Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends Endocrinol Metab 2016; 27:484-492. [PMID: 27160798 PMCID: PMC4912878 DOI: 10.1016/j.tem.2016.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
Mitogen-activated kinase kinase kinase kinase 4 (Map4k4), originally identified in small interfering (si)RNA screens and characterized by tissue-specific gene deletions, is emerging as a regulator of glucose homeostasis and cardiovascular health. Recent studies have shown that Map4k4 gene ablation or inhibition of its kinase activity attenuates hyperglycemia and plaque formation in mouse models of insulin resistance and atherosclerosis, and suggest roles for Map4k4 in multiple signaling systems, including NFκB activation, small GTPase regulation, the Hippo cascade, and regulation of cell dynamics by FERM domain proteins. This new and promising area of inquiry raises key questions that need to be addressed, such as defining which of the above or other effectors mediate Map4k4 control of metabolic and vascular functions, and identifying upstream activators of Map4k4.
Collapse
Affiliation(s)
- Joseph V Virbasius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
|