1
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
2
|
Sasaki K, Kubo M, Wang YC, Lu L, Vujevich V, Wood-Trageser MA, Golnoski K, Lesniak A, Gunabushanam V, Ganoza A, Wijkstrom MJ, Humar A, Demetris AJ, Thomson AW, Ezzelarab MB. Multiple infusions of ex vivo-expanded regulatory T cells promote CD163 + myeloid cells and kidney allograft survival in non-lymphodepleted non-human primates. Kidney Int 2024; 105:84-98. [PMID: 37839695 DOI: 10.1016/j.kint.2023.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Clinical verification of adoptively transferred regulatory T cell (Treg) efficacy in transplantation remains challenging. Here, we examined the influence of autologous ex vivo-expanded polyclonal Tregs on kidney graft survival in a clinically relevant non-human primate model. Peripheral blood Tregs were isolated and expanded using artificial antigen presenting cells. Immunosuppression was comprised of tapered tacrolimus and CTLA4 immunoglobulin, in five animals each without or with Treg infusions. Escalating Treg doses were administered 6, 10, 13, 16, 20, 23, 27 and 30 days after transplant. Infused Tregs were monitored for Treg signature, anti-apoptotic (Bcl-2) and proliferation (Ki67) marker expression. Treg infusions prolonged median graft survival time significantly from 35 to 70 days. Treg marker (Ki67 and Bcl-2) expression by infused Tregs diminished after their infusion but remained comparable to that of circulating native Tregs. No major changes in circulating donor-reactive T cell responses or total Treg percentages, or in graft-infiltrating T cell subsets were observed with Treg infusion. However, Treg infusion was associated with significant increases in CD163 expression by circulating HLA-DR+ myeloid cells and elevated levels of circulating soluble CD163. Further, graft-infiltrating CD163+ cells were increased with Treg infusion. Thus, multiple Treg infusions were associated with M2-like myeloid cell enhancement that may mediate immunomodulatory, anti-inflammatory and graft reparative effects.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masahiko Kubo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu-Chao Wang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veronica Vujevich
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle A Wood-Trageser
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kayla Golnoski
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew Lesniak
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vikraman Gunabushanam
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Armando Ganoza
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin J Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abhinav Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J Demetris
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Citta Nirmala E, Sudjarwo SA, Kuncorojakti S, Puspitasari H, A’la R, Yasmin Wijaya A, Susilowati H, Diyantoro D, Triakoso N, Setiawan B, Eru Wibowo A, Abdul Rantam F. The response of CD59 NK cell and IL-6 level in Cynomolgus macaque immunized with inactivated SARS-CoV-2 vaccine candidate. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2023:2847-2853. [DOI: 10.52711/0974-360x.2023.00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Vaccination is deemed the best approach against the COVID-19 pandemic. In regard of safety and protectivity, the whole inactivated vaccine platform is advantageous and widely used. Whole inactivated vaccine provides broader protection against various antigenic components of SARS-CoV-2. This study aims to analyze the immune response of cynomolgus macaques (Macaca fascicularis) following inactivated SARS-CoV-2 vaccine administration. The analysis utilized the flow cytometry and enzyme-linked immunosorbent assay to evaluate CD59 NK cell expression and serum IL-6 level. This research used 6 macaques which were divided into 2 groups: Adult and Adolescence. Each group was consisted of 3 macaques. The macaques received two doses of 3 µg of inactivated SARS-CoV-2 vaccine with 21 days interval between first and second dose. CD59 and IL-6 level were measured before the first vaccination (D0), 21 days post-vaccination but before second dose (D21), and 14 days after the second dose (D35). The result showed significant escalation (p ≤ 0.05) of CD59 NK cell expression between D0, D21, and D35 in both adult and adolescence macaques. Higher expression of CD59 NK cell was found in adult macaques compared to adolescence macaques. Meanwhile, the level of IL-6 remained constant (p > 0.05) throughout D0, D21, and D35 in both groups. In conclusion, the inactivated SARS-CoV-2 vaccine candidate can increase CD59 NK cell expression significantly, while IL-6 level was mildly elevated although the differences were insignificant.
Collapse
Affiliation(s)
- Eugenia Citta Nirmala
- Master’s Student, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Pharmacology Laboratory, Division of Basic Veterinary Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Suryo Kuncorojakti
- Histology Laboratory, Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Heni Puspitasari
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Rofiqul A’la
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Andi Yasmin Wijaya
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Diyantoro Diyantoro
- Department of Health Science, Faculty of Vocational Studies, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Nusdianto Triakoso
- Internal Medicine Department, Airlangga University Animal Hospital, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Boedi Setiawan
- Clinical Surgery Department, Airlangga University Animal Hospital, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Agung Eru Wibowo
- National Research and Innovation Agency, Central Jakarta, Jakarta, 10340, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
4
|
Ellis GI, Coker KE, Winn DW, Deng MZ, Shukla D, Bhoj V, Milone MC, Wang W, Liu C, Naji A, Duran-Struuck R, Riley JL. Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory T cells in Cynomolgus macaque. Cell Rep Med 2022; 3:100614. [PMID: 35551746 PMCID: PMC9133392 DOI: 10.1016/j.xcrm.2022.100614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
Abstract
Adoptive transfer of chimeric antigen receptor regulatory T cells (CAR Tregs) is a promising way to prevent allograft loss without the morbidity associated with current therapies. Non-human primates (NHPs) are a clinically relevant model to develop transplant regimens, but manufacturing and engraftment of NHP CAR Tregs have not been demonstrated yet. Here, we describe a culture system that massively expands CAR Tregs specific for the Bw6 alloantigen. In vitro, these Tregs suppress in an antigen-specific manner without pro-inflammatory cytokine secretion or cytotoxicity. In vivo, Bw6-specific CAR Tregs preferentially traffic to and persist in bone marrow for at least 1 month. Following transplant of allogeneic Bw6+ islets and autologous CAR Tregs into the bone marrow of diabetic recipients, CAR Tregs traffic to the site of islet transplantation and maintain a phenotype of suppressive Tregs. Our results establish a framework for the optimization of CAR Treg therapy in NHP disease models.
Collapse
Affiliation(s)
- Gavin I Ellis
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Coker
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Delaine W Winn
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Mosha Z Deng
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Divanshu Shukla
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Vijay Bhoj
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Ezzelarab MB, Zhang H, Sasaki K, Lu L, Zahorchak AF, van der Windt DJ, Dai H, Perez-Gutierrez A, Bhama JK, Thomson AW. Ex Vivo Expanded Donor Alloreactive Regulatory T Cells Lose Immunoregulatory, Proliferation, and Antiapoptotic Markers After Infusion Into ATG-lymphodepleted, Nonhuman Primate Heart Allograft Recipients. Transplantation 2021; 105:1965-1979. [PMID: 33587433 PMCID: PMC8239063 DOI: 10.1097/tp.0000000000003617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Regulatory T cell (Treg) therapy is a promising approach to amelioration of allograft rejection and promotion of organ transplant tolerance. However, the fate of infused Treg, and how this relates to their therapeutic efficacy using different immunosuppressive regimens is poorly understood. Our aim was to analyze the tissue distribution, persistence, replicative activity and phenotypic stability of autologous, donor antigen alloreactive Treg (darTreg) in anti-thymocyte globulin (ATG)-lymphodepleted, heart-allografted cynomolgus monkeys. METHODS darTreg were expanded ex vivo from flow-sorted, circulating Treg using activated donor B cells and infused posttransplant into recipients of major histocompatibility complex-mismatched heart allografts. Fluorochrome-labeled darTreg were identified and characterized in peripheral blood, lymphoid, and nonlymphoid tissues and the graft by flow cytometric analysis. RESULTS darTreg selectively suppressed autologous T cell responses to donor antigens in vitro. However, following their adoptive transfer after transplantation, graft survival was not prolonged. Early (within 2 wk posttransplant; under ATG, tacrolimus, and anti-IL-6R) or delayed (6-8 wk posttransplant; under rapamycin) darTreg infusion resulted in a rapid decline in transferred darTreg in peripheral blood. Following their early or delayed infusion, labeled cells were evident in lymphoid and nonlymphoid organs and the graft at low percentages (<4% CD4+ T cells). Notably, infused darTreg showed reduced expression of immunoregulatory molecules (Foxp3 and CTLA4), Helios, the proliferative marker Ki67 and antiapoptotic Bcl2, compared with preinfusion darTreg and endogenous CD4+CD25hi Treg. CONCLUSIONS Lack of therapeutic efficacy of infused darTreg in lymphodepleted heart graft recipients appears to reflect loss of a regulatory signature and proliferative and survival capacity shortly after infusion.
Collapse
Affiliation(s)
- Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Zhang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dirk J. van der Windt
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angelica Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jay K. Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Thomson AW, Sasaki K, Ezzelarab MB. Non-human Primate Regulatory T Cells and Their Assessment as Cellular Therapeutics in Preclinical Transplantation Models. Front Cell Dev Biol 2021; 9:666959. [PMID: 34211972 PMCID: PMC8239398 DOI: 10.3389/fcell.2021.666959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-human primates (NHP) are an important resource for addressing key issues regarding the immunobiology of regulatory T cells (Treg), their in vivo manipulation and the translation of adoptive Treg therapy to clinical application. In addition to their phenotypic and functional characterization, particularly in cynomolgus and rhesus macaques, NHP Treg have been isolated and expanded successfully ex vivo. Their numbers can be enhanced in vivo by administration of IL-2 and other cytokines. Both polyclonal and donor antigen (Ag) alloreactive NHP Treg have been expanded ex vivo and their potential to improve long-term outcomes in organ transplantation assessed following their adoptive transfer in combination with various cytoreductive, immunosuppressive and "Treg permissive" agents. In addition, important insights have been gained into the in vivo fate/biodistribution, functional stability, replicative capacity and longevity of adoptively-transferred Treg in monkeys. We discuss current knowledge of NHP Treg immunobiology, methods for their in vivo expansion and functional validation, and results obtained testing their safety and efficacy in organ and pancreatic islet transplantation models. We compare and contrast results obtained in NHP and mice and also consider prospects for future, clinically relevant studies in NHP aimed at improved understanding of Treg biology, and innovative approaches to promote and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kazuki Sasaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mohamed B. Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Pathak S, Meyer EH. Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation. Front Immunol 2021; 11:612737. [PMID: 33658995 PMCID: PMC7917336 DOI: 10.3389/fimmu.2020.612737] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 01/07/2023] Open
Abstract
Pancreatic islet transplantation is a promising method for the treatment of type 1 and type 3 diabetes whereby replacement of islets may be curative. However, long-term treatment with immunosuppressive drugs (ISDs) remains essential for islet graft survival. Current ISD regimens carry significant side-effects for transplant recipients, and are also toxic to the transplanted islets. Pre-clinical efforts to induce immune tolerance to islet allografts identify ways in which the recipient immune system may be reeducated to induce a sustained transplant tolerance and even overcome autoimmune islet destruction. The goal of these efforts is to induce tolerance to transplanted islets with minimal to no long-term immunosuppression. Two most promising cell-based therapeutic strategies for inducing immune tolerance include T regulatory cells (Tregs) and donor and recipient hematopoietic mixed chimerism. Here, we review preclinical studies which utilize Tregs for tolerance induction in islet transplantation. We also review myeloablative and non-myeloablative hematopoietic stem cell transplantation (HSCT) strategies in preclinical and clinical studies to induce sustained mixed chimerism and allograft tolerance, in particular in islet transplantation. Since Tregs play a critical role in the establishment of mixed chimerism, it follows that the combination of Treg and HSCT may be synergistic. Since the success of the Edmonton protocol, the feasibility of clinical islet transplantation has been established and nascent clinical trials testing immune tolerance strategies using Tregs and/or hematopoietic mixed chimerism are underway or being formulated.
Collapse
Affiliation(s)
- Shiva Pathak
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Alonso-Guallart P, Llore N, Lopes E, Kofman SB, Ho SH, Stern J, Pierre G, Bruestle K, Tang Q, Sykes M, Griesemer A. CD40L-stimulated B cells for ex-vivo expansion of polyspecific non-human primate regulatory T cells for translational studies. Clin Exp Immunol 2020; 203:480-492. [PMID: 33058141 DOI: 10.1111/cei.13537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/31/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022] Open
Abstract
The therapeutic applications of regulatory T cells (Tregs ) include treating autoimmune diseases, graft-versus-host disease and induction of transplantation tolerance. For ex-vivo expanded Tregs to be used in deceased donor transplantation, they must be able to suppress T cell responses to a broad range of human leukocyte antigen (HLA). Here, we present a novel approach for the expansion of polyspecific Tregs in cynomolgus macaques that was adapted from a good manufacturing practice-compliant protocol. Tregs were isolated by fluorescence-activated cell sorting (FACS) and expanded in the presence of a panel of CD40L-stimulated B cells (CD40L-sBc). Prior to Treg culture, CD40L-sBc were expanded in vitro from multiple major histocompatibility complex (MHC)-disparate macaques. Expanded Tregs expressed high levels of forkhead box protein 3 (FoxP3) and Helios, a high percentage of Treg -specific demethylated region (TSDR) demethylation and strong suppression of naïve T cell responses in vitro. In addition, these Tregs produced low levels of inflammatory cytokines and were able to expand post-cryopreservation. Specificity assays confirmed that these Tregs were suppressive upon activation by any antigen-presenting cells (APCs) whose MHC was shared by CD40L-sBc used during expansion, proving that they are polyspecific. We developed an approach for the expansion of highly suppressive cynomolgus macaque polyspecific Tregs through the use of a combination of CD40L-engineered B cells with the potential to be translated to clinical studies. To our knowledge, this is the first report that uses a pool of MHC-mismatched CD40L-sBc to create polyspecific Tregs suitable for use in deceased-donor transplants.
Collapse
Affiliation(s)
- P Alonso-Guallart
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - N Llore
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - E Lopes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - S-B Kofman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - S-H Ho
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - J Stern
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - G Pierre
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - K Bruestle
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Q Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - M Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Department of Surgery, Columbia University Medical Center, New York, NY, USA
| | - A Griesemer
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Tran LM, Thomson AW. Detection and Monitoring of Regulatory Immune Cells Following Their Adoptive Transfer in Organ Transplantation. Front Immunol 2020; 11:614578. [PMID: 33381125 PMCID: PMC7768032 DOI: 10.3389/fimmu.2020.614578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Application of cell-based immunotherapy in organ transplantation to minimize the burden of immunosuppressive medication and promote allograft tolerance has expanded significantly over the past decade. Adoptively transferred regulatory immune cells prolong allograft survival and transplant tolerance in pre-clinical models. Many cell products are currently under investigation in early phase human clinical trials designed to assess feasibility and safety. Despite rapid advances in manufacturing practices, defining the appropriate protocol that will optimize in vivo conditions for tolerance induction remains a major challenge and depends heavily on understanding the fate, biodistribution, functional stability and longevity of the cell product after administration. This review focuses on in vivo detection and monitoring of various regulatory immune cell types administered for allograft tolerance induction in both pre-clinical animal models and early human clinical trials. We discuss the current status of various non-invasive methods for tracking regulatory cell products in the context of organ transplantation and implications for enhanced understanding of the therapeutic potential of cell-based therapy in the broad context of control of immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Lillian M Tran
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Mukhatayev Z, Dellacecca ER, Cosgrove C, Shivde R, Jaishankar D, Pontarolo-Maag K, Eby JM, Henning SW, Ostapchuk YO, Cedercreutz K, Issanov A, Mehrotra S, Overbeck A, Junghans RP, Leventhal JR, Le Poole IC. Antigen Specificity Enhances Disease Control by Tregs in Vitiligo. Front Immunol 2020; 11:581433. [PMID: 33335528 PMCID: PMC7736409 DOI: 10.3389/fimmu.2020.581433] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Vitiligo is an autoimmune skin disease characterized by melanocyte destruction. Regulatory T cells (Tregs) are greatly reduced in vitiligo skin, and replenishing peripheral skin Tregs can provide protection against depigmentation. Ganglioside D3 (GD3) is overexpressed by perilesional epidermal cells, including melanocytes, which prompted us to generate GD3-reactive chimeric antigen receptor (CAR) Tregs to treat vitiligo. Mice received either untransduced Tregs or GD3-specific Tregs to test the hypothesis that antigen specificity contributes to reduced autoimmune reactivity in vitro and in vivo. CAR Tregs displayed increased IL-10 secretion in response to antigen, provided superior control of cytotoxicity towards melanocytes, and supported a significant delay in depigmentation compared to untransduced Tregs and vehicle control recipients in a TCR transgenic mouse model of spontaneous vitiligo. The latter findings were associated with a greater abundance of Tregs and melanocytes in treated mice versus both control groups. Our data support the concept that antigen-specific Tregs can be prepared, used, and stored for long-term control of progressive depigmentation.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Emilia R Dellacecca
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Cormac Cosgrove
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Rohan Shivde
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Dinesh Jaishankar
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | | | - Jonathan M Eby
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Steven W Henning
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Yekaterina O Ostapchuk
- Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Kettil Cedercreutz
- Department of Dermatology, Northwestern University, Chicago, IL, United States
| | - Alpamys Issanov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Andreas Overbeck
- Department for Surgery of Pigment Disorders, Lumiderm, Madrid, Spain
| | - Richard P Junghans
- Department of Hematology/Oncology, Boston University, Boston MA, United States
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Northwestern Memorial Hospital, Chicago, IL, United States
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
11
|
Li LZ, Zhang Z, Bhoj VG. Conventional T cell therapies pave the way for novel Treg therapeutics. Cell Immunol 2020; 359:104234. [PMID: 33153708 DOI: 10.1016/j.cellimm.2020.104234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022]
Abstract
Approaches to harness the immune system to alleviate disease have become remarkably sophisticated since the crude, yet impressively-effective, attempts using live bacteria in the late 1800s. Recent evidence that engineered T cell therapy can deliver durable results in patients with cancer has spurred frenzied development in the field of T cell therapy. The myriad approaches include an innumerable variety of synthetic transgenes, multiplex gene-editing, and broader application to diseases beyond cancer. In this article, we review the preclinical studies and over a decade of clinical experience with engineered conventional T cells that have paved the way for translating engineered regulatory T cell therapies.
Collapse
Affiliation(s)
- Lucy Z Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Sánchez‐Fueyo A, Whitehouse G, Grageda N, Cramp ME, Lim TY, Romano M, Thirkell S, Lowe K, Fry L, Heward J, Kerr A, Ali J, Fisher C, Lewis G, Hope A, Kodela E, Lyne M, Farzaneh F, Kordasti S, Rebollo‐Mesa I, Jose Lozano J, Safinia N, Heaton N, Lechler R, Martínez‐Llordella M, Lombardi G. Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation. Am J Transplant 2020; 20:1125-1136. [PMID: 31715056 PMCID: PMC7154724 DOI: 10.1111/ajt.15700] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023]
Abstract
Regulatory T cells (Tregs) are a lymphocyte subset with intrinsic immunosuppressive properties that can be expanded in large numbers ex vivo and have been shown to prevent allograft rejection and promote tolerance in animal models. To investigate the safety, applicability, and biological activity of autologous Treg adoptive transfer in humans, we conducted an open-label, dose-escalation, Phase I clinical trial in liver transplantation. Patients were enrolled while awaiting liver transplantation or 6-12 months posttransplant. Circulating Tregs were isolated from blood or leukapheresis, expanded under good manufacturing practices (GMP) conditions, and administered intravenously at either 0.5-1 million Tregs/kg or 3-4.5 million Tregs/kg. The primary endpoint was the rate of dose- limiting toxicities occurring within 4 weeks of infusion. The applicability of the clinical protocol was poor unless patient recruitment was deferred until 6-12 months posttransplant. Thus, only 3 of the 17 patients who consented while awaiting liver transplantation were dosed. In contrast, all six patients who consented 6-12 months posttransplant received the cell infusion. Treg transfer was safe, transiently increased the pool of circulating Tregs and reduced anti-donor T cell responses. Our study opens the door to employing Treg immunotherapy to facilitate the reduction or complete discontinuation of immunosuppression following liver transplantation.
Collapse
Affiliation(s)
- Alberto Sánchez‐Fueyo
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Gavin Whitehouse
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Nathali Grageda
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Matthew E. Cramp
- Hepatology Research GroupPlymouth University Peninsula Schools of Medicine and DentistrySouthwest Liver UnitDerriford HospitalPlymouth Hospitals NHS TrustPlymouthUK
| | - Tiong Y. Lim
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Marco Romano
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Sarah Thirkell
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Katie Lowe
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Laura Fry
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Julie Heward
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Alex Kerr
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Jakia Ali
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Chris Fisher
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Gillian Lewis
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Andrew Hope
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Elisavet Kodela
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Mike Lyne
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Farzin Farzaneh
- School of Cancer and Pharmaceutical SciencesKing's College LondonLondonUK
| | - Shahram Kordasti
- Systems Cancer Immunology LabComprehensive Cancer CentreKing’s College London, & Haematology Department Guy’s HospitalLondonUK
| | - Irene Rebollo‐Mesa
- BiostatisticsInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Juan Jose Lozano
- Bioinformatic PlatformBiomedical Research Center in Hepatic and Digestive Diseases (CIBEREHD)Instituto de Salud Carlos IIISpain
| | - Niloufar Safinia
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Nigel Heaton
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Robert Lechler
- NIHR Biomedical Research CentreGuy's and St Thomas' NHS Foundation Trust and King's College LondonLondonUK
| | - Marc Martínez‐Llordella
- Institute of Liver StudiesMRC Centre for TransplantationDepartment of Inflammation BiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| | - Giovanna Lombardi
- MRC Centre for TransplantationPeter Gorer Department of ImmunobiologyFaculty of Life Sciences & MedicineKing's College LondonLondonUK
| |
Collapse
|
13
|
Fogel O, Bitoun S. Rheumatology residency in France: an assessment of the past and the unknowns of a new reform. Joint Bone Spine 2019; 86:673-677. [PMID: 31067500 DOI: 10.1016/j.jbspin.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/17/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Olivier Fogel
- Rheumatology department Université Paris Descartes, AP-HP, Hôpitaux Universitaires Paris-centre. 27, rue du Faubourg Saint Jacques, 75014 Paris France
| | - Samuel Bitoun
- Rheumatology department Université Paris-Sud, AP-HP, Hôpitaux Universitaires Paris-Sud, Inserm U1184, 78, avenue du Général Leclerc, 94270 Le Kremlin Bicêtre, France.
| |
Collapse
|
14
|
Fitch Z, Schmitz R, Kwun J, Hering B, Madsen J, Knechtle SJ. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant Rev (Orlando) 2019; 33:115-129. [PMID: 31027947 PMCID: PMC6599548 DOI: 10.1016/j.trre.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Research in transplant immunology using non-human primate (NHP) species to evaluate immunologic strategies to prevent rejection and prolong allograft survival has yielded results that have translated successfully into human organ transplant patient management. Other therapies have not proceeded to human translation due to failure in NHP testing, arguably sparing humans the futility and risk of such testing. The NHP transplant models are ethically necessary for drug development in this field and provide the closest analogue to human transplant patients available. The refinement of this resource with respect to colony MHC typing, reagent and assay development, and availability to the research community has greatly enhanced knowledge about transplant immunology and drug development.
Collapse
Affiliation(s)
- Zachary Fitch
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA; Center for Transplantation Sciences, Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, White 510c, 55 Fruit Street, Boston, MA, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Bernhard Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joren Madsen
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Gao C, Song Q, Zhang M, Li J, Yi M, Dong J. A method for expansion of T cells from cynomolgus monkey (Macaca fascicularis). In Vitro Cell Dev Biol Anim 2018; 54:549-554. [PMID: 30112696 DOI: 10.1007/s11626-018-0278-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
T cells have been successfully applied to cancer immunotherapy. However, a challenge is an expansion of T cells from cynomolgus monkey, which is a valuable non-human primate model for T cell therapy transferring to the clinic. Here, we compared several strategies to expand cynomolgus monkey T cell and developed an appropriate method. Our study demonstrated that 100 ng/ml CD3 mAb + 1% PHA+ 1000 U/ml IL2 therapy significantly expanded peripheral blood CD3+ T cells without compromising T cell phenotype in vitro. The results of this study could be used for T cell remodeling, which has significant therapeutic potential in Chimeric Antigen Receptor-T (CAR-T) cell immunotherapy.
Collapse
Affiliation(s)
- Change Gao
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Qian Song
- Department of Medical Oncology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Ming Zhang
- Department of Radiotherapy, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jian Li
- Kunming Biological Diversity Regional Center of Instruments, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Miao Yi
- Department of Medical Oncology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Jian Dong
- Department of Medical Oncology, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
16
|
Gołąb K, Grose R, Placencia V, Wickrema A, Solomina J, Tibudan M, Konsur E, Ciepły K, Marek-Trzonkowska N, Trzonkowski P, Millis JM, Fung J, Witkowski P. Cell banking for regulatory T cell-based therapy: strategies to overcome the impact of cryopreservation on the Treg viability and phenotype. Oncotarget 2018; 9:9728-9740. [PMID: 29515766 PMCID: PMC5839397 DOI: 10.18632/oncotarget.23887] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
The first clinical trials with adoptive Treg therapy have shown safety and potential efficacy. Feasibility of such therapy could be improved if cells are cryopreserved and stored until optimal timing for infusion. Herein, we report the evaluation of two cell-banking strategies for Treg therapy: 1) cryopreservation of CD4+ cells for subsequent Treg isolation/expansion and 2) cryopreservation of ex-vivo expanded Tregs (CD4+CD25hiCD127lo/- cells). First, we checked how cryopreservation affects cell viability and Treg markers expression. Then, we performed Treg isolation/expansion with the final products release testing. We observed substantial decrease in cell number recovery after thawing and overnight culture. This observation might be explained by the high percentage of necrotic and apoptotic cells found just after thawing. Furthermore, we noticed fluctuations in percentage of CD4+CD25hiCD127- and CD4+FoxP3+ cells obtained from cryopreserved CD4+ as well as Treg cells. However, after re-stimulation Tregs expanded well, presented a stable phenotype and fulfilled the release criteria at the end of expansions. Cryopreservation of CD4+ cells for subsequent Treg isolation/expansion and cryopreservation of expanded Tregs with re-stimulation and expansion after thawing, are promising solutions to overcome detrimental effects of cryopreservation. Both of these cell-banking strategies for Treg therapy can be applied when designing new clinical trials.
Collapse
Affiliation(s)
- Karolina Gołąb
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Randall Grose
- South Australian Health and Medical Research Institute, University of Adelaide, SA, Australia
| | - Veronica Placencia
- Department of Medicine, Hematology-Oncology, Cancer Research Center, University of Chicago, Chicago, IL, USA
| | - Amittha Wickrema
- Department of Medicine, Hematology-Oncology, Cancer Research Center, University of Chicago, Chicago, IL, USA
| | - Julia Solomina
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Martin Tibudan
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Evelyn Konsur
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Kamil Ciepły
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | | | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - John Fung
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Piotr Witkowski
- Department of Surgery, University of Chicago, Chicago, IL, USA
| |
Collapse
|
17
|
Ezzelarab MB, Thomson AW. Adoptive Cell Therapy with Tregs to Improve Transplant Outcomes: The Promise and the Stumbling Blocks. CURRENT TRANSPLANTATION REPORTS 2016; 3:265-274. [PMID: 28529840 PMCID: PMC5435383 DOI: 10.1007/s40472-016-0114-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The contribution of regulatory T cells (Treg) to the induction and maintenance of tolerance is well-recognized in rodents and may contribute to long-term human organ allograft survival. The therapeutic efficacy of adoptively-transferred Treg in promoting tolerance to organ allografts is well-recognized in mouse models. Early phase 1/2 clinical studies of Treg therapy have been conducted in patients with type-1 (autoimmune) diabetes and refractory Crohn's disease, and for inhibition of graft-versus-host disease following bone marrow transplantation with proven safety. The feasibility of adoptive Treg therapy in the clinic is subject to various parameters, including optimal cell source, isolation procedure, expansion, target dose, time of infusion, as well as generation of a GMP-cell product. Several phase 1/2 Treg dose-escalation studies are underway in organ transplantation. Recent evidence suggests that additional factors are critical to ensure Treg safety and efficacy in allograft recipients, including Treg characterization, stability, longevity, trafficking, concomitant immunosuppression, and donor antigen specificity. Accordingly, Treg therapy in the context of organ transplantation may prove more challenging in comparison to other prospective clinical settings of Treg immunotherapy, such as type-1 diabetes.
Collapse
Affiliation(s)
- Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
18
|
Ezzelarab MB, Zhang H, Guo H, Lu L, Zahorchak AF, Wiseman RW, Nalesnik MA, Bhama JK, Cooper DKC, Thomson AW. Regulatory T Cell Infusion Can Enhance Memory T Cell and Alloantibody Responses in Lymphodepleted Nonhuman Primate Heart Allograft Recipients. Am J Transplant 2016; 16:1999-2015. [PMID: 26700196 PMCID: PMC4919255 DOI: 10.1111/ajt.13685] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/25/2015] [Accepted: 12/13/2015] [Indexed: 01/25/2023]
Abstract
The ability of regulatory T cells (Treg) to prolong allograft survival and promote transplant tolerance in lymphodepleted rodents is well established. Few studies, however, have addressed the therapeutic potential of adoptively transferred, CD4(+) CD25(+) CD127(-) Foxp3(+) (Treg) in clinically relevant large animal models. We infused ex vivo-expanded, functionally stable, nonselected Treg (up to a maximum cumulative dose of 1.87 billion cells) into antithymocyte globulin-lymphodepleted, MHC-mismatched cynomolgus monkey heart graft recipients before homeostatic recovery of effector T cells. The monkeys also received tacrolimus, anti-interleukin-6 receptor monoclonal antibodies and tapered rapamycin maintenance therapy. Treg administration in single or multiple doses during the early postsurgical period (up to 1 month posttransplantation), when host T cells were profoundly depleted, resulted in inferior graft function compared with controls. This was accompanied by increased incidences of effector memory T cells, enhanced interferon-γ production by host CD8(+) T cells, elevated levels of proinflammatory cytokines, and antidonor alloantibodies. The findings caution against infusion of Treg during the early posttransplantation period after lymphodepletion. Despite marked but transient increases in Treg relative to endogenous effector T cells and use of reputed "Treg-friendly" agents, the host environment/immune effector mechanisms instigated under these conditions can perturb rather than favor the potential therapeutic efficacy of adoptively transferred Treg.
Collapse
Affiliation(s)
- M. B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - H. Zhang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - H. Guo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A. F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - R. W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| | - M. A. Nalesnik
- Department of Pathology, University of Pittsburgh School of Medicine
| | - J. K. Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine
| | - D. K. C. Cooper
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine
| | - A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine,Corresponding author: Angus W. Thomson PhD DSc,
| |
Collapse
|
19
|
Chen RC, Xu LM, Du SJ, Huang SS, Wu H, Dong JJ, Huang JR, Wang XD, Feng WK, Chen YP. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances T reg and T H 17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicol Lett 2016; 241:103-10. [DOI: 10.1016/j.toxlet.2015.11.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
|
20
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|