1
|
Zhang X, Hu S, Xiang X, Li Z, Chen Z, Xia C, He Q, Jin J, Chen H. Bulk and single-cell transcriptome profiling identify potential cellular targets of the long noncoding RNA Gas5 in renal fibrosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167206. [PMID: 38718848 DOI: 10.1016/j.bbadis.2024.167206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
The long noncoding RNA growth arrest-specific 5 (lncRNA Gas5) is implicated in various kidney diseases. In this study, we investigated the lncRNA Gas5 expression profile and its critical role as a potential biomarker in the progression of chronic kidney disease. Subsequently, we assessed the effect of lncRNA Gas5 deletion on renal fibrosis induced by unilateral ureteral obstruction (UUO). The results indicated that loss of lncRNA Gas5 exacerbates UUO-induced renal injury and extracellular matrix deposition. Notably, the deletion of lncRNA Gas5 had a similar effect on control mice. The fibrogenic phenotype observed in mice lacking lncRNA Gas5 correlates with peroxisome proliferator-activated receptor (PPAR) signaling pathway activation and aberrant cytokine and chemokine reprogramming. Single-cell RNA sequencing analysis revealed key transcriptomic features of fibroblasts after Gas5 deletion, revealing heterogeneous cellular states suggestive of a propensity for renal fibrosis. Our findings indicate that lncRNA Gas5 regulates the differentiation and activation of immune cells and the transcription of key genes in the PPAR signaling pathway. These data offer novel insights into the involvement of lncRNA Gas5 in renal fibrosis, potentially paving the way for innovative diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shouci Hu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaojun Xiang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhiyu Li
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhejun Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Cong Xia
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
2
|
Bu YJ, Cen X, Wang YQ, Fan R, Zhang F, Liu YQ, An J, Qiao J, Zhang SX, Chen JW. Study on the expression changes of lncRNA in patients with systemic lupus erythematosus and its correlation with Treg cells. Clin Rheumatol 2024; 43:993-1002. [PMID: 38253780 DOI: 10.1007/s10067-023-06844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVES We initially explored the link between the differentially expressed long non-coding RNAs (lncRNAs) and the number of regulatory T (Treg) cells by detecting the lncRNA expression profiles in patients with systemic lupus erythematosus (SLE), then analyzed the correlation between Treg-related lncRNAs and the clinical features of SLE patients, predicting the mechanism by which lncRNAs regulate the differentiation and development of Treg cells, and provided new ideas for the treatment of SLE. METHODS Peripheral blood of 9 active SLE patients were collected and mononuclear cells (PBMCs) were extracted; the lncRNA expression profiles of PBMCs were analyzed by whole transcriptome sequencing. Nine healthy people were used as controls to screen the differentially expressed lncRNAs, to analyze the correlation between lncRNAs and Treg cell number. Pearson test was used to analyze the correlation between lncRNAs and the number of Treg cell, and the correlation between Treg-associated lncRNA and SLEDAI score, ESR, C3, and C4 in SLE patients. The targeted genes of Treg-associated lncRNAs were predicted with miRcode and Targetscan databases and coexpression network. RESULTS There were 240 differentially expressed lncRNAs in SLE patients compared with healthy controls, including 134 highly expressed lncRNAs (p < 0.05) and 106 lowly expressed lncRNAs (p < 0.05). The expression of ANKRD44-AS1 (r = 0.7417, p = 0.0222), LINC00200 (r = 0.6960, p = 0.0373), AP001363.2 (r = 0.7766, p = 0.0138), and LINC02824 (r = 0.7893, p = 0.0114) were positively correlated with the number of Treg cell, and the expression of AP000640.1 (r = - 0.7225, p = 0.0279), AC124248.1 (r = - 0.7653, p = 0.0163), LINC00482 (r = - 0.8317, p = 0.0054), and MIR503HG (r = - 0.7617, p < 0.05) were negatively correlated with the number of Treg cell. Among these Treg-associated lncRNAs, the expression of LINC00482 (r = - 0.7348, p < 0.05) and MIR503 HG (r = - 0.7617, p < 0.05) were negatively correlated with C3. LINC00200, ANKRD44 - AS1, and AP000640.1 related to Treg cells regulate the expression of signal transducer and activator of transcription 5 (STAT5), phospholipase D1 (PLD1), homeodomain-only protein X (HOPX), and runt-related transcription factor 3 (RUNX3) through competitive binding of miRNA or trans-regulatory mechanism, thereby regulating the differentiation and development of Treg cell. CONCLUSIONS The lncRNA expression profiles were changed in SLE patients, the differentially expressed lncRNAs were associated with abnormal number and function of Treg cells in SLE, and Treg-associated lncRNAs were associated with SLE-disease activity, which may affect the expression of STAT5, PLD1, HOPX, RUNX3 and regulate Treg cell function and participate in the pathogenesis and progression of SLE by competitively binding to miRNAs or trans-regulatory mechanism. Key points • Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and systems. lncRNAs may affect Treg cells function by regulating genes expression, which may be an important pathogenesis of SLE. • This study, taking SLE as an example, preliminarily analyzed the correlation between lncRNA and Treg cells in SLE patients, analyzed the correlation between Treg-related lncRNA and the clinical characteristics of SLE, and speculated that lncRNA could regulate the differentiation and development of Treg cells through competitive combination with miRNA or trans-regulatory mechanisms. • It is possible to target epigenetic therapy for SLE.
Collapse
Affiliation(s)
- Yu-Jie Bu
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xing Cen
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yi-Qi Wang
- Department of Rheumatology and Immunology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, People's Republic of China
| | - Ru Fan
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Fen Zhang
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yu-Qing Liu
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Jia An
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Jun Qiao
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Sheng-Xiao Zhang
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Jun-Wei Chen
- Department of Rheumatology and Immunology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
3
|
Liu Q, Luo J, Wang H, Zhang L, Guo J, Jin G. GAS5, a long noncoding RNA, contributes to annulus fibroblast osteogenic differentiation and apoptosis in intervertebral disk degeneration via the miR-221-3p/SOX11 axis. Aging (Albany NY) 2024; 16:3896-3914. [PMID: 38407972 PMCID: PMC10929823 DOI: 10.18632/aging.205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
miR-221-3p has been reported to attenuate the osteogenic differentiation of annulus fibrosus cells (AFs), which has been implicated in intervertebral disk degeneration (IVDD) development. This study aimed to elucidate miR-221-3p's role in osteogenic differentiation and apoptosis of AFs in an IVDD model. After successfully establishing an IVDD rat model by annulus fibrosus needle puncture, AFs were isolated. Bioinformatics, dual-luciferase reporter, and AGO2-RNA immunoprecipitation (RIP) assays predicted and confirmed the potential miR-221-3p lncRNA and gene target. Functional analyses were performed after AF transfection to explore the roles of the identified lncRNA and gene. Western blotting, Alkaline phosphatase (ALP), and Alizarin red and TUNEL staining were performed to investigate AF apoptosis and osteogenic differentiation with different transfections. Compared with AFs isolated from sham rats, IVDD-isolated Afs exhibited stronger osteogenic potential and higher apoptosis rates accompanied by miR-221-3p downregulation. The growth arrest-specific transcript 5 (GAS5) was identified as miR-221-3p's target lncRNA, which was highly expressed in IVDD. GAS5 overexpression facilitated AF apoptosis and osteogenic differentiation, whereas silencing GAS5 had the opposite effect. SRY box-related11 (SOX11) was identified as a downstream miR-221-3p target gene in IVDD. GASS silencing-induced suppression of AF apoptosis and osteogenic differentiation could be reversed by SOX11 overexpression. Our findings uncovered a lncRNA GAS5/miR-221-3p/SOX11 axis in Afs under IVDD, which may help implement novel IVDD therapeutic strategies.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Jiaying Luo
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110000, China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Lei Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Jingwen Guo
- Institute of Health Sciences, China Medical University, Shenyang 110000, China
| | - Guoxin Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
4
|
Xu SJ, Chen JH, Chang S, Li HL. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol 2024; 14:1320305. [PMID: 38264670 PMCID: PMC10803515 DOI: 10.3389/fimmu.2023.1320305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
T helper (Th) cells are central members of adaptive immunity and comprise the last line of defense against pathogen infection and malignant cell invasion by secreting specific cytokines. These cytokines then attract or induce the activation and differentiation of other immune cells, including antibody-producing B cells and cytotoxic CD8+ T cells. Therefore, the bidirectional communication between Th cells and tumor cells and their positioning within the tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), sculpt the tumor immune landscape, which affects disease initiation and progression. The type, number, and condition of Th cells in the TME and TIME strongly affect tumor immunity, which is precisely regulated by key effectors, such as granzymes, perforins, cytokines, and chemokines. Moreover, microRNAs (miRNAs) have emerged as important regulators of Th cells. In this review, we discuss the role of miRNAs in regulating Th cell mediated adaptive immunity, focusing on the development, activation, fate decisions, and tumor immunity.
Collapse
Affiliation(s)
- Shi-Jun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Hua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hai-Liang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Wang H, Yu L, Cheng L, Guo Z. The roles of lncRNAs in Th17-associated diseases, with special focus on JAK/STAT signaling pathway. Clin Exp Med 2023; 23:3349-3359. [PMID: 37743424 DOI: 10.1007/s10238-023-01181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
One of the most crucial T cell subsets in a variety of autoimmune and chronic inflammatory illnesses is T helper (Th) 17 cells. Th17 cells appear to have an essential role in the clearance of extracellular pathogens during infections. However, Th17 cells are also involved in inflammation and have been implicated in the pathogenesis of several autoimmune diseases and human inflammatory conditions. Due to the involvement of Th17 cells in the onset of Th17-associated diseases, understanding molecular mechanisms of Th17 cell functions may open the door to developing tailored therapies to address these difficult disorders. However, the molecular mechanisms governing Th17 differentiation in various diseases are still not well understood. The JAK/STAT signaling pathway plays a critical role in immune responses and has been linked to various aspects of Th17 cell differentiation and function. In this article, we conducted a comprehensive review of various molecular mechanisms (JAK/STAT, microRNAs, etc.), that can affect the differentiation of Th17 cells in various Th17-associated diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lanlan Yu
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Li Cheng
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130031, China.
| |
Collapse
|
6
|
Saadh MJ, Arellano MTC, Saini RS, Amin AH, Sharma N, Arias-Gonzáles JL, Alsandook T, Cotrina-Aliaga JC, Akhavan-Sigari R. Molecular mechanisms of long non-coding RNAs in differentiation of T Helper17 cells. Int Immunopharmacol 2023; 123:110728. [PMID: 37572506 DOI: 10.1016/j.intimp.2023.110728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
T helper (Th) 17 cells are one of the most important T cell subsets in a number of autoimmune and chronic inflammatory diseases. During infections, Th17 cells appear to play an important role in the clearance of extracellular pathogens. Th17 cells, on the other hand, are engaged in inflammation and have been linked to the pathophysiology of a number of autoimmune illnesses and human inflammatory disorders. A diverse group of RNA molecules known as lncRNAs serve critical functions in gene expression regulation. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structure. LncRNAs, which have restricted or no protein-coding activity, are implicated in a number of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. Several lncRNAs have been associated with Th7 cell development in the context of immune cell differentiation. In this article, we cover new studies on the involvement of lncRNAs in Th17 cell differentiation in a variety of disorders, including auto-immune diseases, malignancies, asthma, heart disease, and infections.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | | | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Nidhi Sharma
- Department of Computer Engineering & Application, GLA University, Mathura, India.
| | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq.
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland.
| |
Collapse
|
7
|
Xia J, Liu Y, Ma Y, Yang F, Ruan Y, Xu JF, Pi J. Advances of Long Non-Coding RNAs as Potential Biomarkers for Tuberculosis: New Hope for Diagnosis? Pharmaceutics 2023; 15:2096. [PMID: 37631310 PMCID: PMC10458399 DOI: 10.3390/pharmaceutics15082096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
8
|
Qiao X, Ding Y, Wu D, Zhang A, Yin Y, Wang Q, Wang W, Kang J. The roles of long noncoding RNA-mediated macrophage polarization in respiratory diseases. Front Immunol 2023; 13:1110774. [PMID: 36685535 PMCID: PMC9849253 DOI: 10.3389/fimmu.2022.1110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Macrophages play an essential role in maintaining the normal function of the innate and adaptive immune responses during host defence. Macrophages acquire diverse functional phenotypes in response to various microenvironmental stimuli, and are mainly classified into classically activated macrophages (M1) and alternatively activated macrophages (M2). Macrophage polarization participates in the inflammatory, fibrotic, and oncogenic processes of diverse respiratory diseases by changing phenotype and function. In recent decades, with the advent of broad-range profiling methods such as microarrays and next-generation sequencing, the discovery of RNA transcripts that do not encode proteins termed "noncoding RNAs (ncRNAs)" has become more easily accessible. As one major member of the regulatory ncRNA family, long noncoding RNAs (lncRNAs, transcripts >200 nucleotides) participate in multiple pathophysiological processes, including cell proliferation, differentiation, and apoptosis, and vary with different stimulants and cell types. Emerging evidence suggests that lncRNAs account for the regulation of macrophage polarization and subsequent effects on respiratory diseases. In this review, we summarize the current published literature from the PubMed database concerning lncRNAs relevant to macrophage polarization and the underlying molecular mechanisms during the occurrence and development of respiratory diseases. These differentially expressed lncRNAs are expected to be biomarkers and targets for the therapeutic regulation of macrophage polarization during disease development.
Collapse
|
9
|
Liu C, Zhang Y, Ma Z, Yi H. Long Noncoding RNAs as Orchestrators of CD4+ T-Cell Fate. Front Cell Dev Biol 2022; 10:831215. [PMID: 35794862 PMCID: PMC9251064 DOI: 10.3389/fcell.2022.831215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cells differentiate towards different subpopulations through the regulation of lineage-specific cytokines and transcription factors, which flexibly respond to various immune challenges. However, considerable work has demonstrated that the CD4+ T-cell differentiation mechanism is complex and not limited to transcription factors and cytokines. Long noncoding RNAs (lncRNAs) are RNA molecules with lengths exceeding 200 base pairs that regulate various biological processes and genes. LncRNAs have been found to conciliate the plasticity of CD4+ T-cell differentiation. Then, we focused on lncRNAs involved in CD4+ T-cell differentiation and enlisted some molecular thought into the plasticity and functional heterogeneity of CD4+ T cells. Furthermore, elucidating how lncRNAs modulate CD4+ T-cell differentiation in disparate immune diseases may provide a basis for the pathological mechanism of immune-mediated diseases.
Collapse
Affiliation(s)
- Chang Liu
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
- *Correspondence: Huanfa Yi,
| |
Collapse
|
10
|
Xu Y, Ouyang Y. Long non-coding RNA growth arrest specific 5 regulates the T helper 17/regulatory T balance by targeting miR-23a in myasthenia gravis. J Int Med Res 2022; 50:3000605211053703. [PMID: 35707849 PMCID: PMC9208058 DOI: 10.1177/03000605211053703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder. Recent studies report that long non-coding RNAs (lncRNAs) play vital roles in the pathogenesis of various diseases. This study explored the molecular mechanism of lncRNA growth arrest specific 5 (GAS5) in regulating the T helper 17 (Th17)/regulatory T (Treg) cell balance in MG. METHODS GAS5 and miR-23a expression levels were detected by quantitative reverse transcription polymerase chain reaction. Flow cytometry was performed to examine the proportion of Th17 and Treg cells in CD4+ T cells from MG patients. The interaction between GAS5 and miR-23a was verified by luciferase reporter and RNA immunoprecipitation assays. Levels of Th17 and Treg-related proteins were examined using western blots and enzyme-linked immunosorbent assays. RESULTS GAS5 expression levels were significantly decreased in the CD4+ T cells of MG patients, and GAS5 overexpression restrained Th17 differentiation in CD4+ T cells. Moreover, miR-23a was confirmed as a downstream target of GAS5 and negatively regulated by GAS5 through a direct interaction. Further exploration showed that GAS5 can inhibit Th17 differentiation by downregulating miR-23a. CONCLUSION Collectively, our results indicate that GAS5 can regulate the Th17/Treg balance by targeting miR-23a expression, providing a scientific basis for clinical therapeutic development for MG.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, P. R. China
| | - Yiqun Ouyang
- Department of Emergency, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, P. R. China
| |
Collapse
|
11
|
Liu H, Bai C, Xian F, Liu S, Long C, Hu L, Liu T, Gu X. A high-calorie diet aggravates LPS-induced pneumonia by disturbing the gut microbiota and Th17/Treg balance. J Leukoc Biol 2022; 112:127-141. [PMID: 35638590 DOI: 10.1002/jlb.3ma0322-458rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The intestinal flora plays an important role in the inflammatory response to the systemic or local infections in the host. A high-calorie diet has been shown to aggravate pneumonia and delay recovery, especially in children. However, the underlying mechanisms remain unclear. Our previous studies demonstrated that a high-calorie diet and LPS atomization synergistically promoted lung inflammation injury in juvenile rats. In this study, specific pathogen-free juvenile rats were placed in a routine environment, and subjected to a high-calorie diet or LPS atomization in isolation as well as combination. Our data revealed that LPS nebulization combined with a high-calorie diet resulted in significant changes in rats, such as slow weight gain, increased lung index, and aggravated lung inflammatory damage. Meanwhile, we found that the aggravation of LPS-induced pneumonia by a high-calorie diet disturbs the balance of Th17/Treg cells. Furthermore, high-throughput sequencing of intestinal contents revealed that a high-calorie diet changed the gut microbiome composition, decreased microbial diversity, and particularly reduced the abundance of the intestinal microbiota associated with the production of short-chain fatty acids (SCFAs) in rats. Consequently, the levels of SCFAs, especially acetate, propionate, and butyrate, were significantly decreased following the intervention of a high-calorie diet. More critically, the effects of a high-calorie diet were shown to be transmissible among pneumonia rats through cohousing microbiota transplantation. Taken together, we provide evidence to support that a high-calorie diet can potentially reset the gut microbiome and metabolites, disrupt Th17/Treg cell balance and immune homeostasis, and aggravate LPS-induced lung inflammatory damage, which may provide a new perspective on the pathogenesis of lung inflammation injury, and suggest a novel microbiota-targeting therapy for inflammatory lung diseases.
Collapse
Affiliation(s)
- Hui Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| | - Chen Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| | - Fuyang Xian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| | - Shaoyang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| | - Chaojun Long
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| | - Li Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| | - Tiegang Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| | - Xiaohong Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No.11, Bei San Huan East Road, Beijing, China
| |
Collapse
|
12
|
Zhang W, Chen B, Chen W. LncRNA GAS5 relates to Th17 cells and serves as a potential biomarker for sepsis inflammation, organ dysfunctions and mortality risk. J Clin Lab Anal 2022; 36:e24309. [PMID: 35325494 PMCID: PMC9102497 DOI: 10.1002/jcla.24309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Long noncoding RNA GAS5 (lnc-GAS5) is able to regulate macrophage M1 polarization and Th17 cell differentiation, also engaged in sepsis-induced inflammation and organ injury. This study aimed to further evaluate its linkage with Th1 cells and Th17 cells, as well as its clinical value in sepsis management. METHODS About 101 sepsis patients were enrolled followed by peripheral blood mononuclear cell (PBMC) and serum samples collection. PBMC lnc-GAS5 was detected by RT-qPCR; Th1 cells and Th17 cells in PBMC CD4+ T cells were detected by flow cytometry; serum IFN-γ and IL-17A were detected by ELISA. Besides, PBMC lnc-GAS5 was also detected in 50 health controls (HCs). RESULTS Lnc-GAS5 was reduced in sepsis patients than in HCs (p < 0.001), which also well-distinguished sepsis patients from HCs with AUC 0.860. Lnc-GAS5 did not relate to Th1 cells (p = 0.059) or IFN-γ (p = 0.192); while negatively linked with Th17 cells (p = 0.002) and IL-17A (p = 0.019) in sepsis patients. Interestingly, lnc-GAS5 negatively correlated with SOFA score (p = 0.001), SOFA-Respiratory system score (p = 0.001), SOFA-Coagulation score (p = 0.015), and SOFA-Renal system score (p = 0.026), but not SOFA-Liver score (p = 0.080), SOFA-Cardiovascular system score (p = 0.207) or SOFA-Nervous system score (p = 0.182) in sepsis patients. Furthermore, lnc-GAS5 was negatively related to CRP (p = 0.002) and APACHE II score (p = 0.004) in sepsis patients. Finally, lnc-GAS5 was decreased in dead sepsis patients compared to survivors (p = 0.007), which also distinguished sepsis deaths from survivors with AUC 0.713. CONCLUSION Lnc-GAS5 relates to Th17 cells and serves as a potential biomarker for sepsis severity and mortality risk.
Collapse
Affiliation(s)
- Weizhen Zhang
- Intensive Care Unit, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingqing Chen
- Internal Medicine Department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Chen
- Intensive Care Unit, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Jiang Y, Du T. Relation of circulating lncRNA GAS5 and miR-21 with biochemical indexes, stenosis severity, and inflammatory cytokines in coronary heart disease patients. J Clin Lab Anal 2022; 36:e24202. [PMID: 34997773 PMCID: PMC8842157 DOI: 10.1002/jcla.24202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background Long noncoding RNA GAS5 (lnc‐GAS5) and its target microRNA‐21 (miR‐21) regulate blood lipid, macrophages, Th cells, vascular smooth muscle cells to participate in atherosclerosis, and related coronary heart disease (CHD). The study aimed to further explore the linkage of their circulating expressions with common biochemical indexes, stenosis severity and inflammatory cytokines in CHD patients. Methods Ninety‐eight CHD patients and 100 controls confirmed by coronary angiography were enrolled. Plasma samples were collected for lnc‐GAS5 and miR‐21 detection by reverse transcription‐quantitative polymerase chain reaction and inflammatory cytokines determination by enzyme‐linked immunosorbent assay. Results Lnc‐GAS5 was increased in CHD patients compared with controls (2.270 (interquartile range [IQR]: 1.676–3.389) vs. 0.999 ([IQR: 0.602–1.409], p < 0.001), whereas miR‐21 showed opposite tread (0.442 [IQR: 0.318–0.698] vs. 0.997 [IQR: 0.774–1.368], p < 0.001). In aspect of their intercorrelation, lnc‐GAS5 negatively linked with miR‐21 in CHD patients (p < 0.001) instead of controls (p = 0.211). Interestingly, among the common biochemical indexes, lnc‐GAS5 related to decreased high‐density lipoprotein cholesterol (p = 0.008) and increased C‐reactive protein (CRP) (p < 0.001), while miR‐21 correlated with lower total cholesterol (p = 0.024) and CRP (p < 0.001) in CHD patients. As stenosis degree, lnc‐GAS5 positively correlated with Gensini score (p < 0.001), but miR‐21 exhibited negative association (p = 0.003) in CHD patients. In terms of inflammatory cytokines, lnc‐GAS5 positively related to tumor necrosis factor α (TNF‐α) and interleukin (IL)‐17A, while miR‐21 negatively linked with TNF‐α, IL‐1β, IL‐6, and IL‐17 in CHD patients (all p < 0.05). Conclusion Circulating lnc‐GAS5 and its target miR‐21 exhibit potency to serve as biomarkers for CHD management.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Nosocomial Infection Management, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Tian Du
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| |
Collapse
|
14
|
Li Y, Sun L, Liu J, Xu G, Hu Y, Qin A. Down-regulation of GAS5 has diagnostic value for tuberculosis and regulates the inflammatory response in mycobacterium tuberculosis infected THP-1 cells. Tuberculosis (Edinb) 2022; 132:102141. [PMID: 34808575 DOI: 10.1016/j.tube.2021.102141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression of long non-coding RNA (lncRNA) growth arrest-special transcript 5 (GAS5) in the serum of tuberculosis (TB) patients and discuss the mechanism of GAS5 in TB by establishing an in-vitro TB cell model. METHODS Serum expressions of GAS5 and miR-18a-5p were determined by quantitative real-time PCR (qRT-PCR). The effects of GAS5 on macrophage cell viability and the inflammatory response after MTB infection were assessed by CCK-8 and ELISA. Luciferase reporter gene assay was applied to delve into the potential target gene of GAS5. RESULTS The expression of GAS5 in TB patients was down-regulated, while miR-18a-5p was up-regulated, and the serum inflammatory factors were negatively correlated with the expression level of GAS5. MTB infection induced significant upregulation on the cell viability and inflammatory response but the acceleration effect could be rescued by GAS5-overexpression. Meanwhile, miR-18a-5p was recognized as the target gene of GAS5. CONCLUSION This study indicated that the expression level of GAS5 in the serum of TB patients was decreased, while in the cells infected with MTB, the down-regulated GAS5 might develop a role in facilitating the cell vitality and the inflammatory response by adsorbing miR-18a-5p in the form of molecular sponge.
Collapse
Affiliation(s)
- Yusong Li
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China
| | - Lihua Sun
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China
| | - Juan Liu
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China
| | - Guoying Xu
- School of Medical Technology, Jiangsu College of Nursing, Jiangsu, 223007, China
| | - Yan Hu
- Clinical Laboratory and Pathology Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Andong Qin
- Department of Laboratory Medicine, The Fourth People's Hospital of Huai'an, Jiangsu, 223001, China.
| |
Collapse
|
15
|
Chen J, Zhang Y, Tan W, Gao H, Xiao S, Gao J, Zhu Z. Silencing of long non-coding RNA NEAT1 improves Treg/Th17 imbalance in preeclampsia via the miR-485-5p/AIM2 axis. Bioengineered 2021; 12:8768-8777. [PMID: 34696702 PMCID: PMC8806521 DOI: 10.1080/21655979.2021.1982306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
T-regulatory (Treg)/T-helper 17 (Th17) imbalance is associated with preeclampsia (PE). Herein, we aimed to explore the effect and mechanism of lncRNA NEAT1 on the Treg/Th17 balance. The levels of nuclear enriched abundant transcript 1 (NEAT1), miR-485-5p, and absent in melanoma 2 (AIM2) in CD4+ T cells were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Treg and Th17 cells were examined using flow cytometry. The relationship between miR-485-5p and NEAT1 or AIM2 was assessed using a dual-luciferase reporter assay. Pearson’s correlation coefficient was used to analyze the correlation. All the data indicated that NEAT1 was upregulated in PE. The number of Treg cells decreased and was negatively related to NEAT1, whereas the number of Th17 cells increased and was positively related to NEAT1 in PE. Knockdown of NEAT1 increased the Treg cells and Treg/Th17 but decreased Th17 cells. Furthermore, NEAT1 sponges miR-485-5p to suppress the target AIM2 levels. Inhibition of miR-485-5p or upregulation of AIM2 abrogated the effect on Treg/Th17 balance induced by knockdown of NEAT1. In conclusion, silencing of NEAT1 promoted Treg/Th17 balance via the miR-485-5p/AIM2 axis in PE, suggesting that NEAT1 is a potential target for the treatment of PE.
Collapse
Affiliation(s)
- Jiying Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Wenqing Tan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Shuixiu Xiao
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Jinhua Gao
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Zhiying Zhu
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|