1
|
Fujita W, Kuroiwa Y. Inflammatory Stimulation Upregulates the Receptor Transporter Protein 4 (RTP4) in SIM-A9 Microglial Cells. Int J Mol Sci 2024; 25:13676. [PMID: 39769444 PMCID: PMC11728443 DOI: 10.3390/ijms252413676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
The receptor transporter protein 4 (RTP4) is a receptor chaperone protein that targets class A G-protein coupled receptor (GPCR)s. Recently, it has been found to play a role in peripheral inflammatory regulation, as one of the interferon-stimulated genes (ISGs). However, the detailed role of RTP4 in response to inflammatory stress in the central nervous system has not yet been fully understood. While we have previously examined the role of RTP4 in the brain, particularly in neuronal cells, this study focuses on its role in microglial cells, immunoreactive cells in the brain that are involved in inflammation. For this, we examined the changes in the RTP4 levels in the microglial cells after exposure to inflammatory stress. We found that lipopolysaccharide (LPS) treatment (0.1~1 µg/mL, 24 h) significantly upregulated the RTP4 mRNA levels in the microglial cell line, SIM-A9. Furthermore, the interferon (IFN)-β mRNA levels and extracellular levels of IFN-β were also increased by LPS treatment. This upregulation was reversed by treatment with neutralizing antibodies targeting either the interferon receptor (IFNR) or toll-like receptor 4 (TLR4), and with a TLR4 selective inhibitor, or a Janus kinase (JAK) inhibitor. On the other hand, the mitogen-activated protein kinase kinase (MEK) inhibitor, U0126, significantly enhanced the increase in RTP4 mRNA following LPS treatment, whereas the PKC inhibitor, calphostin C, had no effect. These findings suggest that in microglial cells, LPS-induced inflammatory stress activates TLR4, leading to the production of type I IFN, the activation of IFN receptor and JAK, and finally, the induction of RTP4 gene expression. Based on these results, we speculate that RTP4 functions as an inflammation-responsive molecule in the brain. However, further research is needed to fully understand its role.
Collapse
Affiliation(s)
- Wakako Fujita
- Laboratory of Pharmacotherapeutics, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Yusuke Kuroiwa
- Department of Pharmacology and Therapeutic Innovation, School of Pharmaceutical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
2
|
Bárcenas-Preciado V, Mata-Haro V. Probiotics in miRNA-Mediated Regulation of Intestinal Immune Homeostasis in Pigs: A Physiological Narrative. Microorganisms 2024; 12:1606. [PMID: 39203448 PMCID: PMC11356641 DOI: 10.3390/microorganisms12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The microbiota plays a crucial role in maintaining the host's intestinal homeostasis, influencing numerous physiological functions. Various factors, including diet, stress, and antibiotic use, can lead to such imbalances. Probiotics have been shown to restore the microbiota, contributing to maintaining this balance. For instance, the weaning stage in piglets is crucial; this transition can cause unfavorable changes that may contribute to the onset of diarrhea. Probiotic supplementation has increased due to its benefits. However, its mechanism of action is still controversial; one involves the regulation of intestinal immunity. When recognized by immune system cells through membrane receptors, probiotics activate intracellular signaling pathways that lead to changes in gene expression, resulting in an anti-inflammatory response. This complex regulatory system involves transcriptional and post-transcriptional mechanisms, including the modulation of various molecules, emphasizing microRNAs. They have emerged as important regulators of innate and adaptive immune responses. Analyzing these mechanisms can enhance our understanding of probiotic-host microbiota interactions, providing insights into their molecular functions. This knowledge can be applied not only in the swine industry, but also in studying microbiota-related disorders. Moreover, these studies serve as animal models, helping to understand better conditions such as inflammatory bowel disease and other related disorders.
Collapse
Affiliation(s)
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, AC (CIAD) Carretera Gustavo E. Astiazarán 46, Col. La Victoria, Hermosillo 83304, Mexico;
| |
Collapse
|
3
|
Direct comparison of non-osteoarthritic and osteoarthritic synovial fluid-induced intracellular chondrocyte signaling and phenotype changes. Osteoarthritis Cartilage 2023; 31:60-71. [PMID: 36150677 DOI: 10.1016/j.joca.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Since the joint microenvironment and tissue homeostasis are highly dependent on synovial fluid, we aimed to compare the essential chondrocyte signaling signatures of non-osteoarthritic vs end-stage osteoarthritic knee synovial fluid. Moreover, we determined the phenotypic consequence of the distinct signaling patterns on articular chondrocytes. METHODS Protein profiling of synovial fluid was performed using antibody arrays. Chondrocyte signaling and phenotypic changes induced by non-osteoarthritic and osteoarthritic synovial fluid were analyzed using a phospho-kinase array, luciferase-based transcription factor activity assays, and RT-qPCR. The origin of osteoarthritic synovial fluid signaling was evaluated by comparing the signaling responses of conditioned media from cartilage, synovium, infrapatellar fat pad and meniscus. Osteoarthritic synovial fluid induced pathway-phenotype relationships were evaluated using pharmacological inhibitors. RESULTS Compared to non-osteoarthritic synovial fluid, osteoarthritic synovial fluid was enriched in cytokines, chemokines and growth factors that provoked differential MAPK, AKT, NFκB and cell cycle signaling in chondrocytes. Functional pathway analysis confirmed increased activity of these signaling events upon osteoarthritic synovial fluid stimulation. Tissue secretomes of osteoarthritic cartilage, synovium, infrapatellar fat pad and meniscus activated several inflammatory signaling routes. Furthermore, the distinct pathway signatures of osteoarthritic synovial fluid led to accelerated chondrocyte dedifferentiation via MAPK/ERK signaling, increased chondrocyte fibrosis through MAPK/JNK and PI3K/AKT activation, an elevated inflammatory response mediated by cPKC/NFκB, production of extracellular matrix-degrading enzymes by MAPK/p38 and PI3K/AKT routes, and enabling of chondrocyte proliferation. CONCLUSION This study provides the first mechanistic comparison between non-osteoarthritic and osteoarthritic synovial fluid, highlighting MAPKs, cPKC/NFκB and PI3K/AKT as crucial OA-associated intracellular signaling routes.
Collapse
|
4
|
Kuroki T, Takekoshi S, Kitatani K, Kato C, Miyasaka M, Akamatsu T. Protective Effect of Ebselen on Ischemia-reperfusion Injury in Epigastric Skin Flaps in Rats. Acta Histochem Cytochem 2022; 55:149-157. [PMID: 36405551 PMCID: PMC9631984 DOI: 10.1267/ahc.22-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to determine the role of oxidized diacylglycerol (DAG) and the molecular mechanism underlying ischemia-reperfusion (I/R) injury in rat skin flaps. The protective effect of ebselen on the viability of rat skin flaps with I/R injury was investigated. Flaps were designed and raised in the left inguinal region. Then, a microvascular clamp was applied to the vascular pedicle and reperfused after 6 hr. After 7 days of I/R (I/R group), the skin flap survival area ratio was significantly reduced compared to the normal skin. The administration of ebselen significantly improved the ratio compared to the I/R group. The flap survival area ratio of the I/R + ebselen group was significantly improved compared to the I/R + vehicle group. In the I/R + ebselen group, the oxidized DAG content and intensity of phosphorylated PKCα and PKCδ were significantly lower compared to the I/R + vehicle group. Furthermore, the inflammatory response was suppressed in the I/R + ebselen group compared to the I/R + vehicle group. These results indicate that ebselen is useful as a preventive and therapeutic agent for skin flap necrosis caused by I/R, because of reduction and elimination of oxidized DAG.
Collapse
Affiliation(s)
- Takahiko Kuroki
- Department of Plastic Surgery, Tokai University School of Medicine
| | - Susumu Takekoshi
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine
| | - Kanae Kitatani
- Support Center of Medical Research and Education, Tokai University School of Medicine
| | - Chikara Kato
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine
| | - Muneo Miyasaka
- Department of Plastic Surgery, Tokai University School of Medicine
| | - Tadashi Akamatsu
- Department of Plastic Surgery, Tokai University School of Medicine
| |
Collapse
|
5
|
Guo Y, Fan J, Liu S, Hao D. Orai1 downregulation causes proliferation reduction and cell cycle arrest via inactivation of the Ras-NF-κB signaling pathway in osteoblasts. BMC Musculoskelet Disord 2022; 23:347. [PMID: 35410330 PMCID: PMC8996479 DOI: 10.1186/s12891-022-05311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study was to determine the role of Orai1 in the regulation of the proliferation and cell cycle of osteoblasts. Methods The expression of Orai1 was inhibited by Orai1 small interfering RNA (siRNA) in MC3T3-E1 cells. Following Orai1 downregulation, cell proliferation and cell cycle were examined. Furthermore, the expression of cyclin D1, cyclin E, CDK4, and CDK6 was analyzed. The activity of the Ras-NF-κB signaling pathway was investigated to identify the role of Orai1 in the regulation of osteoblast proliferation. Results Orai1 was successfully downregulated in MC3T3-E1 cells by the Orai1 siRNA transfection (p < 0.05). We found that MC3T3-E1 cell proliferation was decreased, and the cell cycle was arrested by Orai1 downregulation (p < 0.05). Additionally, the expression of cyclin D1 was decreased by Orai1 downregulation (p < 0.05), as was the activity of the Ras-NF-κB signaling pathway (p < 0.05). Orai1 siRNA did not further reduce cell proliferation, the proportion of cells in the S phase, and cyclin D1 expression after chemical blockage of the Ras signaling pathway in MC3T3-E1 cells (p > 0.05). Conclusions The results reveal that Orai1 downregulation may reduce cyclin D1 expression by inactivating the Ras-NF-κB signaling pathway thus blocking osteoblast proliferation and cell cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05311-y.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of spinal surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| | - Jinzhu Fan
- Department of bone microsurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| | - Dingjun Hao
- Department of spinal surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, 710054, People's Republic of China.
| |
Collapse
|
6
|
Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:652-666. [PMID: 34148367 PMCID: PMC9057880 DOI: 10.1089/ars.2021.0116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Neutrophil behavior and function are altered by hyperglycemia associated with diabetes. Aberrant activation by hyperglycemia causes neutrophils to respond with increased production of reactive oxidative species (ROS). Excess ROS, a signature of primed neutrophils, can intracellularly induce neutrophils to undergo NETosis, flooding surrounding tissues with ROS and damage-associated molecular patterns such as S100 calcium binding proteins (S100A8/A9). The cargo associated with NETosis also attracts more immune cells to the site and signals for increased immune cell production. This inflammatory response to diabetes can accelerate other associated conditions such as atherosclerosis and thrombosis, increasing the risk of cardiovascular disease. Recent Advances: As the prevalence of diabetes continues to grow, more attention has been focused on developing effective treatment options. Currently, glucose-lowering medications and insulin injections are the most widely utilized treatments. As the disease progresses, medications are usually stacked to maintain glucose at desired target levels, but this approach often fails and does not effectively reduce cardiovascular risk, even with the latest drugs. Critical Issues: Despite advances in treatment options, diabetes remains a progressive disease as glucose lowering alone has failed to abolish the associated cardiovascular complications. Future Directions: Significant interest is being generated in developing treatments that do not solely focus on glucose control but rather mitigate glucotoxicity. Several therapies have been proposed that target cellular dysfunction downstream of hyperglycemia, such as using antioxidants to scavenge ROS, inhibiting ROS production from NOX, and suppressing neutrophil release of S100A8/A9 proteins. Antioxid. Redox Signal. 36, 652-666.
Collapse
Affiliation(s)
- Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sreejit Gopalkrishna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Prabhakara R Nagareddy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
7
|
Shao C, Li Y, Chen J, Zheng L, Chen W, Peng Q, Chen R, Yuan A. Physical Exercise Repairs Obstructive Jaundice-Induced Damage to Intestinal Mucosal Barrier Function via H2S-Mediated Regulation of the HMGB1/Toll Like Receptors 4/Nuclear Factor Kappa B Pathway. Front Physiol 2022; 12:732780. [PMID: 35185593 PMCID: PMC8854792 DOI: 10.3389/fphys.2021.732780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to determine the effect of aerobic exercise on improving damage to intestinal mucosal barrier function caused by obstructive jaundice (OJ) and explore the mechanism. Fifty male KM mice were divided into five groups: sham operation group (S), model group (M), exercise group (TM), DL-propargylglycine + exercise (PT) group, and sodium hydrosulfide + exercise (NT) group. Additionally, mice in S group underwent common bile duct ligation for 48 h to establish a murine obstructive jaundice model. In PT group, propargylglycine (40 mg/kg) was intraperitoneally injected 7 days after surgery. NaHS (50 μmol/kg) was intraperitoneally injected into mice in the NT group 7 days after surgery. The TM group, NT group and PT group exercised on a slope of 0% at a speed of 10 m/min without weight training (30 min/day). HE staining showed that the intestinal mucosa of group M was atrophied and that the villi were broken. The intestinal mucosal structure of mice in the TM group was improved. Serum assays showed that H2S levels were higher in the TM group than in the M group; compared with the levels in the TM group, the PT group levels were decreased and the NT group levels were increased. In addition, aerobic exercise inhibits the HMGB1/TLR4/NF-κB signaling pathway by promoting endogenous H2S production, thereby exerting a protective effect on the intestinal mucosal barrier.
Collapse
|
8
|
Cook-Mills JM, Averill SH, Lajiness JD. Asthma, allergy and vitamin E: Current and future perspectives. Free Radic Biol Med 2022; 179:388-402. [PMID: 34785320 PMCID: PMC9109636 DOI: 10.1016/j.freeradbiomed.2021.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023]
Abstract
Asthma and allergic disease result from interactions of environmental exposures and genetics. Vitamin E is one environmental factor that can modify development of allergy early in life and modify responses to allergen after allergen sensitization. Seemingly varied outcomes from vitamin E are consistent with the differential functions of the isoforms of vitamin E. Mechanistic studies demonstrate that the vitamin E isoforms α-tocopherol and γ-tocopherol have opposite functions in regulation of allergic inflammation and development of allergic disease, with α-tocopherol having anti-inflammatory functions and γ-tocopherol having pro-inflammatory functions in allergy and asthma. Moreover, global differences in prevalence of asthma by country may be a result, at least in part, of differences in consumption of these two isoforms of tocopherols. It is critical in clinical and animal studies that measurements of the isoforms of tocopherols be determined in vehicles for the treatments, and in the plasma and/or tissues before and after intervention. As allergic inflammation is modifiable by tocopherol isoforms, differential regulation by tocopherol isoforms provide a foundation for development of interventions to improve lung function in disease and raise the possibility of early life dietary interventions to limit the development of lung disease.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Samantha H Averill
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jacquelyn D Lajiness
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
9
|
Alemán OR, Mora N, Rosales C. The Antibody Receptor Fc Gamma Receptor IIIb Induces Calcium Entry via Transient Receptor Potential Melastatin 2 in Human Neutrophils. Front Immunol 2021; 12:657393. [PMID: 34054821 PMCID: PMC8155622 DOI: 10.3389/fimmu.2021.657393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human neutrophils express two unique antibody receptors for IgG, the FcγRIIa and the FcγRIIIb. FcγRIIa contains an immunoreceptor tyrosine-based activation motif (ITAM) sequence within its cytoplasmic tail, which is important for initiating signaling. In contrast, FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor with no cytoplasmic tail. Although, the initial signaling mechanism for FcγRIIIb remains unknown, it is clear that both receptors are capable of initiating distinct neutrophil cellular functions. For example, FcγRIIa is known to induce an increase in L-selectin expression and efficient phagocytosis, while FcγRIIIb does not promote these responses. In contrast, FcγRIIIb has been reported to induce actin polymerization, activation of β1 integrins, and formation of neutrophils extracellular traps (NET) much more efficiently than FcγRIIa. Another function where these receptors seem to act differently is the increase of cytoplasmic calcium concentration. It has been known for a long time that FcγRIIa induces production of inositol triphosphate (IP3) to release calcium from intracellular stores, while FcγRIIIb does not use this phospholipid. Thus, the mechanism for FcγRIIIb-mediated calcium rise remains unknown. Transient Receptor Potential Melastatin 2 (TRPM2) is a calcium permeable channel expressed in many cell types including vascular smooth cells, endothelial cells and leukocytes. TRPM2 can be activated by protein kinase C (PKC) and by oxidative stress. Because we previously found that FcγRIIIb stimulation leading to NET formation involves PKC activation and reactive oxygen species (ROS) production, in this report we explored whether TRPM2 is activated via FcγRIIIb and mediates calcium rise in human neutrophils. Calcium rise was monitored after Fcγ receptors were stimulated by specific monoclonal antibodies in Fura-2-loaded neutrophils. The bacterial peptide fMLF and FcγRIIa induced a calcium rise coming initially from internal pools. In contrast, FcγRIIIb caused a calcium rise by inducing calcium entry from the extracellular medium. In addition, in the presence of 2-aminoethoxydiphenyl borate (2-APB) or of clotrimazole, two inhibitors of TRPM2, FcγRIIIb-induced calcium rise was blocked. fMLF- or FcγRIIa-induced calcium rise was not affected by these inhibitors. These data suggest for the first time that FcγRIIIb aggregation activates TRPM2, to induce an increase in cytoplasmic calcium concentration through calcium internalization in human neutrophils.
Collapse
Affiliation(s)
| | | | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Belkacemi L, Zhong W, Darmani NA. Signal transduction pathways involved in dopamine D 2 receptor-evoked emesis in the least shrew (Cryptotis parva). Auton Neurosci 2021; 233:102807. [PMID: 33865060 DOI: 10.1016/j.autneu.2021.102807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
With its five receptor subtypes (D1-5), dopamine is implicated in a myriad of neurological illnesses. Dopamine D2 receptor-based agonist therapy evokes nausea and vomiting. The signaling mechanisms by which dopamine D2 receptors evoke vomiting remains unknown. Phosphatidylinositol 3-kinases (PI3K)- and protein kinase C (PKC)-related signaling cascades stimulate vomiting post-injection of various emetogens in emetically competent animals. This study investigated potential mechanisms involved in dopamine D2 receptor-mediated vomiting using least shrews. We found that vomiting evoked by the selective dopamine D2 receptor agonist quinpirole (2 mg/kg, i.p.) was significantly suppressed by: i) a dopamine D2 preferring antagonist, sulpiride (s.c.); ii) a selective PI3K inhibitor, LY294002 (i.p.); iii) a PKCαβII inhibitor, GF109203X (i.p.); and iv) a selective inhibitor of extracellular signal-regulated protein kinase1/2 (ERK1/2), U0126 (i.p.). Quinpirole-evoked c-fos immunofluorescence in the nucleus tractus solitarius (NTS) was suppressed by pretreatment with sulpiride (8 mg/kg, s.c.). Western blot analysis of shrew brainstem emetic loci protein lysates revealed a significant and time-dependent increase in phosphorylation of Akt (protein kinase B (PKB)) at Ser473 following a 30-min exposure to quinpirole (2 mg/kg, i.p.). Pretreatment with effective antiemetic doses of sulpiride, LY294002, GF109203X, or U0126 significantly reduced quinpirole-stimulated phosphorylation of emesis-associated proteins including p-85PI3K, mTOR (Ser2448/2481), PKCαβII (Thr638/641), ERK1/2 (Thr202/204), and Akt (Ser473). Our results substantiate the implication of PI3K/mTOR/Akt and PI3K/PKCαβII/ERK1/2/Akt signaling pathways in dopamine D2 receptor-mediated vomiting. Potential novel antiemetics targeting emetic proteins associated with these signaling cascades may offer enhanced potency and/or efficacy against emesis.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
11
|
Rimessi A, Vitto VAM, Patergnani S, Pinton P. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Front Pharmacol 2021; 12:581645. [PMID: 33776759 PMCID: PMC7990772 DOI: 10.3389/fphar.2021.581645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by mutations in the cystic fibrosis transmembrane conductance regulator gene, which causes multifunctional defects that preferentially affect the airways. Abnormal viscosity of mucus secretions, persistent pathogen infections, hyperinflammation, and lung tissue damage compose the classical pathological manifestation referred to as CF lung disease. Among the multifunctional defects associated with defective CFTR, increasing evidence supports the relevant role of perturbed calcium (Ca2+) signaling in the pathophysiology of CF lung disease. The Ca2+ ion is a critical player in cell functioning and survival. Its intracellular homeostasis is maintained by a fine balance between channels, transporters, and exchangers, mediating the influx and efflux of the ion across the plasma membrane and the intracellular organelles. An abnormal Ca2+ profile has been observed in CF cells, including airway epithelial and immune cells, with heavy repercussions on cell function, viability, and susceptibility to pathogens, contributing to proinflammatory overstimulation, organelle dysfunction, oxidative stress, and excessive cytokines release in CF lung. This review discusses the role of Ca2+ signaling in CF and how its dysregulation in airway epithelial and immune cells contributes to hyperinflammation in the CF lung. Finally, we provide an outlook on the therapeutic options that target the Ca2+ signaling to treat the CF lung disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| | - Veronica A M Vitto
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.,Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Shu Y, Hassan F, Coppola V, Baskin KK, Han X, Mehta NK, Ostrowski MC, Mehta KD. Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis. Mol Metab 2021; 44:101133. [PMID: 33271332 PMCID: PMC7785956 DOI: 10.1016/j.molmet.2020.101133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Nonalcoholic hepatic steatosis, also known as fatty liver, is a uniform response of the liver to hyperlipidic-hypercaloric diet intake. However, the post-ingestive signals and mechanistic processes driving hepatic steatosis are not well understood. Emerging data demonstrate that protein kinase C beta (PKCβ), a lipid-sensitive kinase, plays a critical role in energy metabolism and adaptation to environmental and nutritional stimuli. Despite its powerful effect on glucose and lipid metabolism, knowledge of the physiological roles of hepatic PKCβ in energy homeostasis is limited. METHODS The floxed-PKCβ and hepatocyte-specific PKCβ-deficient mouse models were generated to study the in vivo role of hepatocyte PKCβ on diet-induced hepatic steatosis, lipid metabolism, and mitochondrial function. RESULTS We report that hepatocyte-specific PKCβ deficiency protects mice from development of hepatic steatosis induced by high-fat diet, without affecting body weight gain. This protection is associated with attenuation of SREBP-1c transactivation and improved hepatic mitochondrial respiratory chain. Lipidomic analysis identified significant increases in the critical mitochondrial inner membrane lipid, cardiolipin, in PKCβ-deficient livers compared to control. Moreover, hepatocyte PKCβ deficiency had no significant effect on either hepatic or whole-body insulin sensitivity supporting dissociation between hepatic steatosis and insulin resistance. CONCLUSIONS The above data indicate that hepatocyte PKCβ is a key focus of dietary lipid perception and is essential for efficient storage of dietary lipids in liver largely through coordinating energy utilization and lipogenesis during post-prandial period. These results highlight the importance of hepatic PKCβ as a drug target for obesity-associated nonalcoholic hepatic steatosis.
Collapse
Affiliation(s)
- Yaoling Shu
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Faizule Hassan
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Kedryn K Baskin
- Physiology and Cell Biology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xianlin Han
- Department of Medicine, UT Health, San Antonio, TX, USA
| | | | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Kamal D Mehta
- Department of Biological Chemistry and Pharmacology, Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
13
|
Signal Transduction in Immune Cells and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:133-149. [PMID: 33539014 DOI: 10.1007/978-3-030-49844-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immune response relies upon several intracellular signaling events. Among the protein kinases involved in these pathways, members of the protein kinase C (PKC) family are prominent molecules because they have the capacity to acutely and reversibly modulate effector protein functions, controlling both spatial distribution and dynamic properties of the signals. Different PKC isoforms are involved in distinct signaling pathways, with selective functions in a cell-specific manner.In innate system, Toll-like receptor signaling is the main molecular event triggering effector functions. Various isoforms of PKC can be common to different TLRs, while some of them are specific for a certain type of TLR. Protein kinases involvement in innate immune cells are presented within the chapter emphasizing their coordination in many aspects of immune cell function and, as important players in immune regulation.In adaptive immunity T-cell receptor and B-cell receptor signaling are the main intracellular pathways involved in seminal immune specific cellular events. Activation through TCR and BCR can have common intracellular pathways while others can be specific for the type of receptor involved or for the specific function triggered. Various PKC isoforms involvement in TCR and BCR Intracellular signaling will be presented as positive and negative regulators of the immune response events triggered in adaptive immunity.
Collapse
|
14
|
Role of Protein Kinase C in Immune Cell Activation and Its Implication Chemical-Induced Immunotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:151-163. [PMID: 33539015 DOI: 10.1007/978-3-030-49844-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKCs) isoforms play a key regulatory role in a variety of cellular functions, including cell growth and differentiation, gene expression, hormone secretion, etc. Patterns of expression for each PKC isoform differ among tissues, and it is also clear that different PKCs are often not functionally redundant, for example specific PKCs mediate specific cellular signals required for activation, proliferation, differentiation and survival of immune cells. In the last 20 years, we have been studying the role of PKCs, mainly PKCβ and its anchoring protein RACK1 (Receptor for Activated C Kinase 1), in immune cell activation, and their implication in immunosenescence and immunotoxicity. We could demonstrate that PKCβ and RACK1 are central in dendritic cell maturation and activation by chemical allergens, and their expressions can be targeted by EDCs and anti-inflammatory drugs. In this chapter, current knowledge on the role of PKC in immune cell activation and possible implication in immunotoxicity will be described.
Collapse
|
15
|
Jo BR, Yu JM, Jang S, Ahn JW, Kim HS, Seoung EA, Park HY, Jin DH, Joo SS. Cloning, Expression, and Purification of a Pathogenesis-Related Protein from Oenanthe javanica and Its Biological Properties. Biol Pharm Bull 2020; 43:158-168. [PMID: 31902921 DOI: 10.1248/bpb.b19-00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogenesis-related (PR) proteins are inducible and accumulated in plants upon pathogen challenge for survival. Interest in these proteins has arisen in many fields of research, including areas of protein defense mechanisms and plant-derived allergens. In this study, we cloned a PR protein gene (OJPR) from Oenanthe javanica, which consisted of 465 bp with an approximate molecular mass of 16 kDa. The DNA and deduced amino acid sequences of OJPR were 87% similar to Pimpinella brachycarpa PR-1 together with a glycine-rich loop which is a signature motif of PR-10. In microarray analysis, OJPR-transfected Raw264.7 (OJPR+) upregulated high mobility group box 1 and protein kinase Cα, and downregulated chemokine ligand 3 and interleukin 1β which are all related to toll-like receptor 4 (TLR4) and inflammation. TAK-242 and PD98059 inhibited the activation by OJPR, suggesting that OJPR transduce TLR4-mediated signaling. Interestingly, OJPR increased anti-viral repertoires, including interferon (IFN)α, IFNγ, OAS1, and Mx1 in CD4+ primary T cells. Taken together, we concluded that OJPR may play a role in modulating host defense responses via TLR signal transduction and provide new insights into the therapeutic and diagnostic advantages as a potential bioactive protein.
Collapse
Affiliation(s)
- Bo Ram Jo
- College of Life Science, Gangneung-Wonju National University
| | | | - Sukil Jang
- College of Life Science, Gangneung-Wonju National University
| | - Jeong Won Ahn
- College of Life Science, Gangneung-Wonju National University
| | - Hyun Soo Kim
- College of Life Science, Gangneung-Wonju National University
| | - Eun A Seoung
- College of Life Science, Gangneung-Wonju National University
| | | | - Deuk Hee Jin
- College of Life Science, Gangneung-Wonju National University
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University
| |
Collapse
|
16
|
Yan J, Wang D, Li K, Chen Q, Lai W, Tian L, Lin B, Tan Y, Liu X, Xi Z. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103485. [PMID: 32891757 DOI: 10.1016/j.etap.2020.103485] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 05/28/2023]
Abstract
This study aimed to compare the effects of three food-grade particles (micro-TiO2, nano-TiO2, and nano-SiO2) on the murine intestinal tract and to investigate their potential mechanisms of action. A 28-day oral exposure murine model was established. Samples of blood, intestinal tissues and colon contents were collected for detection. The results showed that all three particles could cause inflammatory damage to the intestine, with nano-TiO2 showing the strongest effects. Exposure also led to changes in gut microbiota, especially mucus-associated bacteria. Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signalling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Degang Wang
- National Center of Biomedical Analysis, No. 27, Tai-Ping Road, Beijing, 100850, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| |
Collapse
|
17
|
Cabrini G, Rimessi A, Borgatti M, Lampronti I, Finotti A, Pinton P, Gambari R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front Immunol 2020; 11:1438. [PMID: 32849500 PMCID: PMC7427443 DOI: 10.3389/fimmu.2020.01438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cystic fibrosis (CF) chronic respiratory disease is an extensive neutrophil infiltrate in the mucosa filling the bronchial lumen, starting early in life for CF infants. The genetic defect of the CF Transmembrane conductance Regulator (CFTR) ion channel promotes dehydration of the airway surface liquid, alters mucus properties, and decreases mucociliary clearance, favoring the onset of recurrent and, ultimately, chronic bacterial infection. Neutrophil infiltrates are unable to clear bacterial infection and, as an adverse effect, contribute to mucosal tissue damage by releasing proteases and reactive oxygen species. Moreover, the rapid cellular turnover of lumenal neutrophils releases nucleic acids that further alter the mucus viscosity. A prominent role in the recruitment of neutrophil in bronchial mucosa is played by CF bronchial epithelial cells carrying the defective CFTR protein and are exposed to whole bacteria and bacterial products, making pharmacological approaches to regulate the exaggerated neutrophil chemotaxis in CF a relevant therapeutic target. Here we revise: (a) the major receptors, kinases, and transcription factors leading to the expression, and release of neutrophil chemokines in bronchial epithelial cells; (b) the role of intracellular calcium homeostasis and, in particular, the calcium crosstalk between endoplasmic reticulum and mitochondria; (c) the epigenetic regulation of the key chemokines; (d) the role of mutant CFTR protein as a co-regulator of chemokines together with the host-pathogen interactions; and (e) different pharmacological strategies to regulate the expression of chemokines in CF bronchial epithelial cells through novel drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Giulio Cabrini
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Alessandro Rimessi
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center for Innovative Therapies in Cystic Fibrosis, University of Ferrara, Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Lee SU, Oh ES, Ryu HW, Kim MO, Kang MJ, Song YN, Lee RW, Kim DY, Ro H, Jung S, Hong ST, Oh SR. Longifolioside A inhibits TLR4-mediated inflammatory responses by blocking PKCδ activation in LPS-stimulated THP-1 macrophages. Cytokine 2020; 131:155116. [PMID: 32388485 DOI: 10.1016/j.cyto.2020.155116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Longifolioside A is an iridoid glucoside compound isolated from Pseudolysimachion rotundum var. subintegrum, which has been used in traditional herbal medicines to treat respiratory inflammatory diseases. Logifolioside A is a potent antioxidant; however, its underlying pharmacological mechanisms of action in inflammatory diseases are unknown. Here, we investigated the inhibitory effects of longifolioside A in lipopolysaccharide (LPS)-stimulated toll-like receptor 4 (TLR4) signal transduction systems using human THP-1 macrophages and HEK293 cells stably expressing human TLR4 protein (293/HA-hTLR4). Longifolioside A significantly reduced the release of inflammatory cytokines such as interleukin (IL)-6, -8, and tumor necrosis factor (TNF)-α in LPS-stimulated THP-1 macrophages. Furthermore, longifolioside A inhibited the expression of inflammatory mediator genes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 that produce nitric oxide (NO) and prostaglandin E2 (PGE2), respectively. Longifolioside A suppressed the phosphorylation of PKCδ, IRAK4, IKKα/β, IκBα, and mitogen-activated protein (MAP) kinases (ERK 1/2 and JNK, but not p38), thereby inactivating the nuclear localization of NF-κB and AP-1, and thus decreasing the expression of inflammatory response genes. Notably, longifolioside A disrupted the interaction between human TLR4 and the TIR domain-containing adaptor protein (TIRAP), an early step during TLR4 activation, thereby reducing IL-8 secretion in 293/HA-hTLR4 cells. This inhibitory effect was comparable to that of TAK-242 (a TLR4 inhibitor, or resatorvid). Our results indicate that longifolioside A prevents inflammatory response by suppressing TLR4 activation required for NF-κB and AP-1 activation.
Collapse
Affiliation(s)
- Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Sunin Jung
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
19
|
Zhao YY, Huang SX, Hao Z, Zhu HX, Xing ZL, Li MH. Fluid Shear Stress Induces Endothelial Cell Injury via Protein Kinase C Alpha-Mediated Repression of p120-Catenin and Vascular Endothelial Cadherin In Vitro. World Neurosurg 2020; 136:e469-e475. [PMID: 31953100 DOI: 10.1016/j.wneu.2020.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The present study aimed to characterize the mechanism of fluid shear stress (FSS)-induced endothelial cell (EC) injury via protein kinase C alpha (PKCα)-mediated vascular endothelial cadherin (VE-cadherin) and p120-catenin (p120ctn) expression. METHODS We designed a T chamber system that produced stable FSS on ECs in vitro. Human umbilical vein endothelial cells (HUVECs) in which PKCα was knocked down and normal HUVECs were cultured on the coverslips. FSS was impinged on these 2 types of ECs for 0 hours and 6 hours. The morphology and density of HUVECs were evaluated, and expression levels of phosphorylated PKCα, p120-catenin (p120ctn), VE-cadherin, phosphorylated p120ctn at S879 (p-S879p120ctn), and nuclear factor kappa B (NF-κB) were analyzed by Western blot. RESULTS HUVECs exposed to FSS were characterized by a polygonal shape and decreased cell density. The phosphorylated PKCα level was increased under FSS at 6 hours (P < 0.05). In normal HUVECs during FSS, p120ctn and VE-cadherin were decreased, whereas p-S879p120ctn and NF-κB were increased, at 6 hours (P < 0.05). In HUVECs after PKCα knockdown, p120ctn and VE-cadherin were not significantly changed (P > 0.05), p-S879p120ctn was undetectable, but NF-κB was decreased (P < 0.05) at 6 hours. CONCLUSIONS The possible mechanism of FSS-induced EC injury may be as follows: 1) PKCα induces low expression of p120ctn, which leads to activation of NF-κB and degradation of VE-cadherin; 2) PKCα-mediated phosphorylation of p120ctn at S879 disrupts p120ctn binding to VE-cadherin.
Collapse
Affiliation(s)
- Ye-Yu Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shao-Xin Huang
- College of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Zheng Hao
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua-Xin Zhu
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Long Xing
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mei-Hua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
20
|
Sommerville LJ, Gorman KL, Snyder SA, Monroe DM, Hoffman M. A unique protein kinase C-dependent pathway for tissue factor downregulation in pericytes. J Thromb Haemost 2019; 17:670-680. [PMID: 30698330 PMCID: PMC6813842 DOI: 10.1111/jth.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 11/29/2022]
Abstract
Essentials Many mediators increase tissue factor (TF) expression in a wide variety of cell types. The only known example of TF downregulation is by pericytes during wound healing angiogenesis. Downregulation of TF mRNA and protein in cultured pericytes is Protein Kinase C (PKC) dependent. Pericyte TF regulation is unique, since PKC mediates increased TF in all other cell types tested. SUMMARY: Background Embryonic and tumor-associated angiogenesis are linked to elevated expression of the procoagulant transmembrane receptor tissue factor (TF). In contrast, we have reported that high baseline TF expression by perivascular cells (pericytes) is dramatically reduced during angiogenesis at sites of wound healing. This is the only setting in which active TF downregulation has been reported, thus revealing a novel mechanism of TF regulation. Objectives To define the mechanisms underlying the unique pattern of TF expression in pericytes. Methods TF expression in primary cultures of human pericytes is not altered by angiogenic cytokines or growth factors, but is actively downregulated by phorbol 12-myristate 13-acetate (PMA). We characterized TF transcription, protein stability and trafficking in response to PMA. Results Exposure to PMA reduced TF mRNA synthesis and shortened the half-life of TF protein from 11 h to 4.5 h. Addition of PMA rapidly triggered endocytosis of cell surface TF, followed by degradation in lysosomes. Cell surface TF coagulant activity was maintained until internal stores were depleted. Reduction of TF transcription, TF endocytosis and enhanced degradation of TF protein were all blocked by broad-spectrum inhibitors of protein kinase C (PKC). This was a surprising finding, because PKC activation increases TF expression in other cell types that have been tested. Conclusions The unique PKC-dependent pathway of TF downregulation in pericytes suggests that TF downregulation may play a functional role in angiogenesis. Distinct pathways regulating pathological and physiological TF expression could be utilized to modulate TF expression for therapeutic purposes.
Collapse
Affiliation(s)
- Laura J. Sommerville
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristen L. Gorman
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stacey A. Snyder
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Dougald M. Monroe
- Department of Medicine-Hematology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maureane Hoffman
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Veterans Affairs Medical Center, Durham, North Carolina, USA
| |
Collapse
|
21
|
Ye C, Li R, Xu L, Qiu Y, Fu S, Liu Y, Wu Z, Hou Y, Hu CAA. Effects of Baicalin on piglet monocytes involving PKC-MAPK signaling pathways induced by Haemophilus parasuis. BMC Vet Res 2019; 15:98. [PMID: 30909903 PMCID: PMC6434632 DOI: 10.1186/s12917-019-1840-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background Haemophilus parasuis (HPS) is the causative agent of Glässer’s disease, characterized by arthritis, fibrinous polyserositis and meningitis, and resulting in worldwide economic losses in the swine industry. Baicalin (BA), a commonly used traditional Chinese medication, has been shown to possess a series of activities, such as anti-bacterial, anti-viral, anti-tumor, anti-oxidant and anti-inflammatory activities. However, whether BA has anti-apoptotic effects following HPS infection is unclear. Here, we investigated the anti-apoptotic effects and mechanisms of BA in HPS-induced apoptosis via the protein kinase C (PKC)–mitogen-activated protein kinase (MAPK) pathway in piglet’s mononuclear phagocytes (PMNP). Results Our data demonstrated that HPS could induce reactive oxygen species (ROS) production, arrest the cell cycle and promote apoptosis via the PKC–MAPK signaling pathway in PMNP. Moreover, when BA was administered, we observed a reduction in ROS production, suppression of cleavage of caspase-3 in inducing apoptosis, and inhibition of activation of the PKC–MAPK signaling pathway for down-regulating p-JNK, p-p38, p-ERK, p-PKC-α and PKC-δ in PMNP triggered by HPS. Conclusions Our data strongly suggest that BA can reverse the apoptosis initiated by HPS through regulating the PKC–MAPK signaling pathway, which represents a promising therapeutic agent in the treatment of HPS infection.
Collapse
Affiliation(s)
- Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Ruizhi Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Lei Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chien-An Andy Hu
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
22
|
Decreased Protein Kinase C-β Type II Associated with the Prominent Endotoxin Exhaustion in the Macrophage of FcGRIIb-/- Lupus Prone Mice is Revealed by Phosphoproteomic Analysis. Int J Mol Sci 2019; 20:ijms20061354. [PMID: 30889825 PMCID: PMC6472018 DOI: 10.3390/ijms20061354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/24/2023] Open
Abstract
Dysfunction of FcGRIIb, the only inhibitory receptor of the FcGR family, is commonly found in the Asian population and is possibly responsible for the extreme endotoxin exhaustion in lupus. Here, the mechanisms of prominent endotoxin (LPS) tolerance in FcGRIIb−/− mice were explored on bone marrow-derived macrophages using phosphoproteomic analysis. As such, LPS tolerance decreased several phosphoproteins in the FcGRIIb−/− macrophage, including protein kinase C-β type II (PRKCB), which was associated with phagocytosis function. Overexpression of PRKCB attenuated LPS tolerance in RAW264.7 cells, supporting the role of this gene in LPS tolerance. In parallel, LPS tolerance in macrophages and in mice was attenuated by phorbol 12-myristate 13-acetate (PMA) administration. This treatment induced several protein kinase C families, including PRKCB. However, PMA attenuated the severity of mice with cecal ligation and puncture on LPS tolerance preconditioning in FcGRIIb−/− but not in wild-type cells. The significant reduction of PRKCB in the FcGRIIb−/− macrophage over wild-type cell possibly induced the more severe LPS-exhaustion and increased the infection susceptibility in FcGRIIb−/− mice. PMA induced PRKCB, improved LPS-tolerance, and attenuated sepsis severity, predominantly in FcGRIIb−/− mice. PRKCB enhancement might be a promising strategy to improve macrophage functions in lupus patients with LPS-tolerance from chronic infection.
Collapse
|
23
|
Li MY, Sun L, Niu XT, Chen XM, Tian JX, Kong YD, Wang GQ. Astaxanthin protects lipopolysaccharide-induced inflammatory response in Channa argus through inhibiting NF-κB and MAPKs signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2019; 86:280-286. [PMID: 30448447 DOI: 10.1016/j.fsi.2018.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The present study was conducted to evaluate the protective effects of astaxanthin against lipopolysaccharide (LPS)-induced inflammatory responses in Channa argus in vivo and ex vivo. Primary hepatocytes were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of astaxanthin against LPS-induced inflammation were studied ex vivo and in vivo. Hepatocytes exposed to LPS (5-20 μg mL-1) alone for 24 h resulted in a significant increase in lactate dehydrogenase release (LDH), Nitric oxide (NO) production and Malondialdehyde (MDA) content, 10 μg mL-1 LPS could induced inflammatory response in hepatocytes. Gene expression of TLR4, NFkBp65, MAPKp38, TNF-α, IL-6 and IL-1β mRNA expression were also enhanced ex vivo (p < 0.05). In vivo test demonstrated that pretreatment with astaxanthin prevented the LPS-induced upregulation of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. Besides, astaxanthin blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα). Further study showed that astaxanthin could suppress the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. In conclusion, our results suggest that astaxanthin played an anti-inflammatory role by regulating TLR4 and the NF-κB and MAPK signaling pathways in C. argus.
Collapse
Affiliation(s)
- Mu-Yang Li
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Li Sun
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China; Changchun Testing Center of Quality and Safety in Aquatic Product, 777 CaiYu Road, Changchun, Jilin, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Jia-Xin Tian
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Yi-Di Kong
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agriculture University, 2888 Xincheng Road, Changchun, Jilin, China.
| |
Collapse
|
24
|
Intracellular emetic signaling cascades by which the selective neurokinin type 1 receptor (NK 1R) agonist GR73632 evokes vomiting in the least shrew (Cryptotis parva). Neurochem Int 2018; 122:106-119. [PMID: 30453005 DOI: 10.1016/j.neuint.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
To characterize mechanisms involved in neurokinin type 1 receptor (NK1R)-mediated emesis, we investigated the brainstem emetic signaling pathways following treating least shrews with the selective NK1R agonist GR73632. In addition to episodes of vomiting over a 30-min observation period, a significant increase in substance P-immunoreactivity in the emetic brainstem dorsal motor nucleus of the vagus (DMNX) occurred at 15 min post an intraperitoneal (i.p.) injection GR73632 (5 mg/kg). In addition, time-dependent upregulation of phosphorylation of several emesis -associated protein kinases occurred in the brainstem. In fact, Western blots demonstrated significant phosphorylations of Ca2+/calmodulin kinase IIα (CaMKIIα), extracellular signal-regulated protein kinase1/2 (ERK1/2), protein kinase B (Akt) as well as α and βII isoforms of protein kinase C (PKCα/βII). Moreover, enhanced phospho-ERK1/2 immunoreactivity was also observed in both brainstem slices containing the dorsal vagal complex emetic nuclei as well as in jejunal sections from the shrew small intestine. Furthermore, our behavioral findings demonstrated that the following agents suppressed vomiting evoked by GR73632 in a dose-dependent manner: i) the NK1R antagonist netupitant (i.p.); ii) the L-type Ca2+ channel (LTCC) antagonist nifedipine (subcutaneous, s.c.); iii) the inositol trisphosphate receptor (IP3R) antagonist 2-APB (i.p.); iv) store-operated Ca2+ entry inhibitors YM-58483 and MRS-1845, (i.p.); v) the ERK1/2 pathway inhibitor U0126 (i.p.); vi) the PKC inhibitor GF109203X (i.p.); and vii) the inhibitor of phosphatidylinositol 3-kinase (PI3K)-Akt pathway LY294002 (i.p.). Moreover, NK1R, LTCC, and IP3R are required for GR73632-evoked CaMKIIα, ERK1/2, Akt and PKCα/βII phosphorylation. In addition, evoked ERK1/2 phosphorylation was sensitive to inhibitors of PKC and PI3K. These findings indicate that the LTCC/IP3R-dependent PI3K/PKCα/βII-ERK1/2 signaling pathways are involved in NK1R-mediated vomiting.
Collapse
|
25
|
Snider SA, Margison KD, Ghorbani P, LeBlond ND, O'Dwyer C, Nunes JRC, Nguyen T, Xu H, Bennett SAL, Fullerton MD. Choline transport links macrophage phospholipid metabolism and inflammation. J Biol Chem 2018; 293:11600-11611. [PMID: 29880645 DOI: 10.1074/jbc.ra118.003180] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Choline is an essential nutrient that is required for synthesis of the main eukaryote phospholipid, phosphatidylcholine. Macrophages are innate immune cells that survey and respond to danger and damage signals. Although it is well-known that energy metabolism can dictate macrophage function, little is known as to the importance of choline homeostasis in macrophage biology. We hypothesized that the uptake and metabolism of choline are important for macrophage inflammation. Polarization of primary bone marrow macrophages with lipopolysaccharide (LPS) resulted in an increased rate of choline uptake and higher levels of PC synthesis. This was attributed to a substantial increase in the transcript and protein expression of the choline transporter-like protein-1 (CTL1) in polarized cells. We next sought to determine the importance of choline uptake and CTL1 for macrophage immune responsiveness. Chronic pharmacological or CTL1 antibody-mediated inhibition of choline uptake resulted in altered cytokine secretion in response to LPS, which was associated with increased levels of diacylglycerol and activation of protein kinase C. These experiments establish a previously unappreciated link between choline phospholipid metabolism and macrophage immune responsiveness, highlighting a critical and regulatory role for macrophage choline uptake via the CTL1 transporter.
Collapse
Affiliation(s)
- Shayne A Snider
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kaitlyn D Margison
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Peyman Ghorbani
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Nicholas D LeBlond
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Conor O'Dwyer
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Julia R C Nunes
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Thao Nguyen
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hongbin Xu
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steffany A L Bennett
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Morgan D Fullerton
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
26
|
Li L, Li X, Gong P, Zhang X, Yang Z, Yang J, Li J. Trichomonas vaginalis Induces Production of Proinflammatory Cytokines in Mouse Macrophages Through Activation of MAPK and NF-κB Pathways Partially Mediated by TLR2. Front Microbiol 2018; 9:712. [PMID: 29692771 PMCID: PMC5902545 DOI: 10.3389/fmicb.2018.00712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
Trichomoniasis, caused by Trichomonas vaginalis infection, is the most prevalent sexually transmitted disease in female and male globally. However, the mechanisms by innate immunity against T. vaginalis infection have not been fully elucidated. Toll-like receptor2 (TLR2) has been shown to be involved in pathogen recognition, innate immunity activation, and inflammatory response to the pathogens. Nonetheless, the function of TLR2 against T. vaginalis remains unclear. In the present study, we investigated the role of TLR2 in mouse macrophages against T. vaginalis. RT-qPCR analysis revealed that T. vaginalis stimulation increased the gene expression of TLR2 in wild-type (WT) mouse macrophages. T. vaginalis also induced the secretion of IL-6, TNF-α, and IFN-γ in WT mouse macrophages, and the expression of these cytokines significantly decreased in TLR2-/- mouse macrophages and in WT mouse macrophages pretreated with MAPK inhibitors SB203580 (p38) and PD98059 (ERK). Western blot analysis demonstrated that T. vaginalis stimulation induced the activation of p38, ERK, and p65 NF-κB signal pathways in WT mouse macrophages, and the phosphorylation of p38, ERK, and p65 NF-κB significantly decreased in TLR2-/- mouse macrophages. Taken together, our data suggested that T. vaginalis may regulates proinflammatory cytokines production by activation of p38, ERK, and NF-κB p65 signal pathways via TLR2 in mouse macrophages. TLR2 might be involved in the defense and elimination of T. vaginalis infection.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
27
|
PKCα-LSD1-NF-κB-Signaling Cascade Is Crucial for Epigenetic Control of the Inflammatory Response. Mol Cell 2018; 69:398-411.e6. [PMID: 29395062 DOI: 10.1016/j.molcel.2018.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 01/05/2023]
Abstract
The inflammatory response mediated by nuclear factor κB (NF-κB) signaling is essential for host defense against pathogens. Although the regulatory mechanism of NF-κB signaling has been well studied, the molecular basis for epigenetic regulation of the inflammatory response is poorly understood. Here we identify a new signaling axis of PKCα-LSD1-NF-κB, which is critical for activation and amplification of the inflammatory response. In response to excessive inflammatory stimuli, PKCα translocates to the nucleus and phosphorylates LSD1. LSD1 phosphorylation is required for p65 binding and facilitates p65 demethylation, leading to enhanced stability. In vivo genetic analysis using Lsd1SA/SA mice with ablation of LSD1 phosphorylation and chemical approaches in wild-type mice with inhibition of PKCα or LSD1 activity show attenuated sepsis-induced inflammatory lung injury and mortality. Together, we demonstrate that the PKCα-LSD1-NF-κB signaling cascade is crucial for epigenetic control of the inflammatory response, and targeting this signaling could be a powerful therapeutic strategy for systemic inflammatory diseases, including sepsis.
Collapse
|
28
|
Diego García L, Sebastián-Serrano Á, Hernández IH, Pintor J, Lucas JJ, Díaz-Hernández M. The regulation of proteostasis in glial cells by nucleotide receptors is key in acute neuroinflammation. FASEB J 2018; 32:3020-3032. [DOI: 10.1096/fj.201701064rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Laura Diego García
- Department of Biochemistry and Molecular BiologyFaculty of Optic and OptometryUniversidad Complutense of Madrid Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdlSSC) Madrid Spain
| | - Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular BiologyFaculty of Optic and OptometryUniversidad Complutense of Madrid Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdlSSC) Madrid Spain
- Instituto de Investigaciones Biomedicas “Alberto Sols, ” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC–UAM) Madrid Spain
- Centro de Investigacioí n Biomeí dica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos III Madrid Spain
| | - Ivó H. Hernández
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid (CSIC–UAM) Madrid Spain
- Departamento de BiologíaFacultad de CienciasUAM Madrid Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED)Instituto de Salud Carlos III Madrid Spain
| | - Jesús Pintor
- Faculty of Optic and OptometryUniversidad Complutense of Madrid Madrid Spain
| | - José J. Lucas
- Centro de Biología Molecular Severo OchoaConsejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid (CSIC–UAM) Madrid Spain
- Departamento de BiologíaFacultad de CienciasUAM Madrid Spain
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular BiologyFaculty of Optic and OptometryUniversidad Complutense of Madrid Madrid Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdlSSC) Madrid Spain
| |
Collapse
|
29
|
Hu G, Hong D, Zhang T, Duan H, Wei P, Guo X, Mu X. Cynatratoside-C from Cynanchum atratum displays anti-inflammatory effect via suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Chem Biol Interact 2018; 279:187-195. [DOI: 10.1016/j.cbi.2017.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/11/2017] [Accepted: 10/16/2017] [Indexed: 01/29/2023]
|
30
|
Kim YS, Shin WB, Dong X, Kim EK, Nawarathna WPAS, Kim H, Park PJ. Anti-inflammatory effect of the extract from fermented Asterina pectinifera with Cordyceps militaris mycelia in LPS-induced RAW264.7 macrophages. Food Sci Biotechnol 2017; 26:1633-1640. [PMID: 30263700 PMCID: PMC6049704 DOI: 10.1007/s10068-017-0233-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 08/10/2017] [Indexed: 12/29/2022] Open
Abstract
In our previous work, Asterina pectinifera was fermented with Cordyceps militaris mycelia to improve its bioactivities and was reported to have strong antioxidant activities. The aim of the current study was to investigate its anti-inflammatory effect and mechanisms of action. In this study, we observed the inhibitory effect of the extract from fermented A. pectinifera with C. militaris mycelia (FACM) on nitric oxide (NO) production and its molecular mechanism in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. FACM could decrease LPS-induced NO production. Western blot analysis showed that FACM could down-regulate LPS-induced expression of inducible NO synthase without affecting cyclooxygenase-2. Moreover, FACM exhibited anti-inflammatory activity in LPS-induced RAW264.7 mouse macrophage cells through proinflammatory mediators including TNF-α and IL-6 via nuclear factor kappa B pathway. FACM inhibited LPS-induced phosphorylation of extracellular-signal-regulated kinase expression. Our results suggest that FACM may be a potential candidate for inflammation therapy by attenuating the generation of cytokines, production of NO, and generation of ROS in RAW264.7 cells.
Collapse
Affiliation(s)
- Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk 27478 Korea
- Nokyong Research Center, Konkuk University, Chungju, Chungbuk 27478 Korea
| | - Woen-Bin Shin
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk 27478 Korea
| | - Xin Dong
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk 27478 Korea
| | - Eun-Kyung Kim
- Division of Food and Bio Science, Konkuk University, Chungju, 27478 Korea
| | | | - Hakju Kim
- Seojin Biotech Co., Ltd., Yongin, Gyeonggi 17015 Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Konkuk University, Chungju, Chungbuk 27478 Korea
- Nokyong Research Center, Konkuk University, Chungju, Chungbuk 27478 Korea
| |
Collapse
|
31
|
Yao D, Dong Q, Tian Y, Dai C, Wu S. Lipopolysaccharide stimulates endogenous β-glucuronidase via PKC/NF-κB/c-myc signaling cascade: a possible factor in hepatolithiasis formation. Mol Cell Biochem 2017; 444:93-102. [PMID: 29188532 DOI: 10.1007/s11010-017-3234-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
Hepatolithiasis is commonly encountered in Southeastern and Eastern Asian countries, but the pathogenesis mechanism of stone formation is still not well understood. Now, the role of endogenous β-glucuronidase in pigment stones formation is being gradually recognized. In this study, the mechanism of increased expression and secretion of endogenous β-glucuronidase during hepatolithiasis formation was investigated. We assessed the endogenous β-glucuronidase, c-myc, p-p65, and p-PKC expression in liver specimens with hepatolithiasis by immunohistochemical staining, and found that compared with that in normal liver samples, the expression of endogenous β-glucuronidase, c-myc, p-p65, and p-PKC in liver specimens with hepatolithiasis significantly increased, and their expressions were positively correlated with each other. Lipopolysaccharide (LPS) induced increased expression of endogenous β-glucuronidase and c-myc in hepatocytes and intrahepatic biliary epithelial cells in a dose- and time-dependent manner, and endogenous β-glucuronidase secretion increased, correspondingly. C-myc siRNA transfection effectively inhibited the LPS-induced expression of endogenous β-glucuronidase. Furthermore, NF-κB inhibitor pyrrolidine dithiocarbamate or PKC inhibitor chelerythrine could effectively inhibit the LPS-induced expression of c-myc and endogenous β-glucuronidase, and the expression of p-p65 was also partly inhibited by chelerythrine. Our clinical observations and experimental data indicate that LPS could induce the increased expression and secretion of endogenous β-glucuronidase via a signaling cascade of PKC/NF-κB/c-myc in hepatocytes and intrahepatic biliary epithelial cells, and endogenous β-glucuronidase might play a possible role in the formation of hepatolithiasis.
Collapse
Affiliation(s)
- Dianbo Yao
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.
- Department of General Surgery, Shengjing Hospital, China Medical University, No. 36, San Hao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
32
|
Kiser JN, Neupane M, White SN, Neibergs HL. Identification of genes associated with susceptibility to Mycobacterium avium ssp. paratuberculosis (Map) tissue infection in Holstein cattle using gene set enrichment analysis-SNP. Mamm Genome 2017; 29:539-549. [PMID: 29185027 DOI: 10.1007/s00335-017-9725-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Multiple genome-wide association analyses have investigated susceptibility to bovine paratuberculosis, but few loci have been identified across independent cattle populations. A SNP-based gene set enrichment analysis (GSEA-SNP) allows expanded identification of genes with moderate effects on a trait through the enrichment of gene sets instead of identifying only few loci with large effects. Therefore, the objective of this study was to identify genes that were moderately associated with Mycobacterium avium ssp. paratuberculosis (Map) tissue infection using GSEA-SNP in Holstein cattle from the Pacific Northwest (PNW; n = 205) and from the PNW and Northeast (PNW+NE; n = 245) which were previously genotyped with the Illumina BovineSNP50 BeadChip. The GSEA-SNP utilized 4389 gene sets from five databases. For each annotated gene in the UMD3.1 assembly (n = 19,723), the most significant SNP within each gene and its surrounding region (10 kb up- and downstream) was selected as a proxy for that gene. Any gene set with a normalized enrichment score > 2.5 was considered enriched. Thirteen gene sets (8 PNW GSEA-SNP; 5 PNW+NE) were enriched in these analyses and all have functions that relate to nuclear factor kappa beta. Nuclear factor kappa beta is critical to gut immune responses, implicated in host immune responses to other mycobacterial diseases, and has established roles in inflammation as well as cancer. Gene sets and genes moderately associated with Map infection could be used in genomic selection to allow producers to select for less susceptible cattle, lower the prevalence of the disease, and reduce economic losses.
Collapse
Affiliation(s)
- J N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - M Neupane
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - S N White
- USDA-ARS Animal Disease Research Unit, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
| | - H L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
33
|
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8416763. [PMID: 28819546 PMCID: PMC5551541 DOI: 10.1155/2017/8416763] [Citation(s) in RCA: 2255] [Impact Index Per Article: 281.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a phenomenon caused by an imbalance between production and accumulation of oxygen reactive species (ROS) in cells and tissues and the ability of a biological system to detoxify these reactive products. ROS can play, and in fact they do it, several physiological roles (i.e., cell signaling), and they are normally generated as by-products of oxygen metabolism; despite this, environmental stressors (i.e., UV, ionizing radiations, pollutants, and heavy metals) and xenobiotics (i.e., antiblastic drugs) contribute to greatly increase ROS production, therefore causing the imbalance that leads to cell and tissue damage (oxidative stress). Several antioxidants have been exploited in recent years for their actual or supposed beneficial effect against oxidative stress, such as vitamin E, flavonoids, and polyphenols. While we tend to describe oxidative stress just as harmful for human body, it is true as well that it is exploited as a therapeutic approach to treat clinical conditions such as cancer, with a certain degree of clinical success. In this review, we will describe the most recent findings in the oxidative stress field, highlighting both its bad and good sides for human health.
Collapse
Affiliation(s)
- Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mariapaola Cucinotta
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
34
|
Chen PG, Guan YJ, Zha GM, Jiao XQ, Zhu HS, Zhang CY, Wang YY, Li HP. Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget 2017; 8:61958-61968. [PMID: 28977918 PMCID: PMC5617478 DOI: 10.18632/oncotarget.18740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
To explore the role of IRF3/IRF7 during inflammatory responses, we investigated the effects of swine IRF3/IRF7 on TLR4 signaling pathway and inflammatory factors expression in porcine kidney epithelial PK15 cell lines. We successfully constructed eukaryotic vectors PB-IRF3 and PB-IRF7, transfected these vectors into PK15 cells and observed GFP under a fluorescence microscope. In addition, RT-PCR was also used to detect transfection efficiency. We found that IRF3/IRF7 was efficiently overexpressed in PK15 cells. Moreover, we evaluated the effects of IRF3/IRF7 on the TLR4 signaling pathway and inflammatory factors by RT-PCR. Transfected cells were treated with lipopolysaccharide (LPS) alone, or in combination with a TBK1 inhibitor (LiCl). We revealed that IRF3/IRF7 enhanced IFNα production, and decreased IL-6 mRNA expression. Blocking the TBK1 pathway, inhibited the changes in IFNα, but not IL-6 mRNA. This illustrated that IRF3/IRF7 enhanced IFNα production through TLR4/TBK1 signaling pathway and played an anti-inflammatory role, while IRF3/IRF7 decreased IL-6 expression independent of the TBK1 pathway. Trends in MyD88, TRAF6, TBK1 and NFκB mRNA variation were similar in all treatments. LPS increased MyD88, TRAF6, TBK1 and NFκB mRNA abundance in PBR3/PBR7 and PBv cells, while LiCl blocked the LPS-mediated effects. The levels of these four factors in PBR3/PBR7 cells were higher than those in PBv. These results demonstrated that IRF3/IRF7 regulated the inflammatory response through the TLR4 signaling pathway. Overexpression of swine IRF3/IRF7 in PK15 cells induced type I interferons production, and attenuated inflammatory responses through TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pei-Ge Chen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan-Jing Guan
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xian-Qin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Shui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cheng-Yu Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Ping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Stache V, Verlaat L, Gätjen M, Heinig K, Westermann J, Rehm A, Höpken UE. The splenic marginal zone shapes the phenotype of leukemia B cells and facilitates their niche-specific retention and survival. Oncoimmunology 2017; 6:e1323155. [PMID: 28680761 DOI: 10.1080/2162402x.2017.1323155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
Abstract
Microenvironmental regulation in lymphoid tissues is essential for the development of chronic lymphocytic leukemia. We identified cellular and molecular factors provided by the splenic marginal zone (MZ), which alter the migratory and adhesive behavior of leukemic cells. We used the Cxcr5-/-Eµ-Tcl1 leukemia mouse model, in which tumor cells are excluded from B cell follicles and instead accumulate within the MZ. Genes involved in MZ B cell development and genes encoding for adhesion molecules were upregulated in MZ-localized Cxcr5-/-Eµ-Tcl1 cells. Likewise, surface expression of the adhesion and homing molecules, CD49d/VLA-4 and CXCR7, and of NOTCH2 was increased. In vitro, exposing Eµ-Tcl1 cells or human CLL cells to niche-specific stimuli, like B cell receptor- or Toll-like receptor ligands, caused surface expression of these molecules characteristic for a follicular or MZ-like microenvironment, respectively. In vivo, inhibition of VLA-4-mediated adhesion and CXCL13-mediated follicular homing displaced leukemic cells not only from the follicle, but also from the MZ and reduced leukemia progression. We conclude that MZ-specific factors shape the phenotype of leukemic cells and facilitate their niche-specific retention. This strong microenvironmental influence gains pathogenic significance independent from tumor-specific genetic aberrations.
Collapse
Affiliation(s)
- Vanessa Stache
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Lydia Verlaat
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Marcel Gätjen
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Kristina Heinig
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine , Berlin, Germany
| | - Armin Rehm
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Uta E Höpken
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| |
Collapse
|
36
|
Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Özer NK. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med 2017; 102:16-36. [PMID: 27816611 DOI: 10.1016/j.freeradbiomed.2016.09.017] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/11/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
The discovery of vitamin E will have its 100th anniversary in 2022, but we still have more questions than answers regarding the biological functions and the essentiality of vitamin E for human health. Discovered as a factor essential for rat fertility and soon after characterized for its properties of fat-soluble antioxidant, vitamin E was identified to have signaling and gene regulation effects in the 1980s. In the same years the cytochrome P-450 dependent metabolism of vitamin E was characterized and a first series of studies on short-chain carboxyethyl metabolites in the 1990s paved the way to the hypothesis of a biological role for this metabolism alternative to vitamin E catabolism. In the last decade other physiological metabolites of vitamin E have been identified, such as α-tocopheryl phosphate and the long-chain metabolites formed by the ω-hydroxylase activity of cytochrome P-450. Recent findings are consistent with gene regulation and homeostatic roles of these metabolites in different experimental models, such as inflammatory, neuronal and hepatic cells, and in vivo in animal models of acute inflammation. Molecular mechanisms underlying these responses are under investigation in several laboratories and side-glances to research on other fat soluble vitamins may help to move faster in this direction. Other emerging aspects presented in this review paper include novel insights on the mechanisms of reduction of the cardiovascular risk, immunomodulation and antiallergic effects, neuroprotection properties in models of glutamate excitotoxicity and spino-cerebellar damage, hepatoprotection and prevention of liver toxicity by different causes and even therapeutic applications in non-alcoholic steatohepatitis. We here discuss these topics with the aim of stimulating the interest of the scientific community and further research activities that may help to celebrate this anniversary of vitamin E with an in-depth knowledge of its action as vitamin.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Laboratory of Clinical Biochemistry and Nutrition, Via del Giochetto, 06126 Perugia, Italy.
| | - Angelo Azzi
- USDA-HNRCA at Tufts University, 711 Washington St., Boston, MA 02111, United States.
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany.
| | - Joan M Cook-Mills
- Allergy/Immunology Division, Northwestern University, 240 E Huron, Chicago, IL 60611, United States.
| | | | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 25, 07743 Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany.
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
37
|
Wang D, Xu N, Zhang Z, Yang S, Qiu C, Li C, Deng G, Guo M. Sophocarpine displays anti-inflammatory effect via inhibiting TLR4 and TLR4 downstream pathways on LPS-induced mastitis in the mammary gland of mice. Int Immunopharmacol 2016; 35:111-118. [DOI: 10.1016/j.intimp.2016.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
38
|
Bi CL, Wang H, Wang YJ, Sun J, Dong JS, Meng X, Li JJ. Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages. Eur J Pharmacol 2016; 780:159-65. [DOI: 10.1016/j.ejphar.2016.03.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/25/2022]
|
39
|
Martín-Ávila A, Medina-Tamayo J, Ibarra-Sánchez A, Vázquez-Victorio G, Castillo-Arellano JI, Hernández-Mondragón AC, Rivera J, Madera-Salcedo IK, Blank U, Macías-Silva M, González-Espinosa C. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion. THE JOURNAL OF IMMUNOLOGY 2016; 196:5075-88. [PMID: 27183589 DOI: 10.4049/jimmunol.1501823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/β, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/β activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/β necessary for the secretion of TNF by VAMP3(+) carriers.
Collapse
Affiliation(s)
- Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Jaciel Medina-Tamayo
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Jorge Iván Castillo-Arellano
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Alma Cristal Hernández-Mondragón
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico
| | - Juan Rivera
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1820; and
| | - Iris K Madera-Salcedo
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Ulrich Blank
- INSERM UMRS1149, Faculté de Médecine, Université Paris-Diderot, Site X, Bichat, Paris 75018, France
| | - Marina Macías-Silva
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Sede Sur, Tlalpan, CP 14330 Mexico City, Mexico;
| |
Collapse
|
40
|
Lee CW, Chung SW, Bae MJ, Song S, Kim SP, Kim K. Peptidoglycan Up-Regulates CXCL8 Expression via Multiple Pathways in Monocytes/Macrophages. Biomol Ther (Seoul) 2015; 23:564-70. [PMID: 26535082 PMCID: PMC4624073 DOI: 10.4062/biomolther.2015.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 11/22/2022] Open
Abstract
Peptidoglycan (PG), the gram positive bacterial pathogen-associated molecular patterns (PAMP), is detected in a high proportion in macrophage-rich atheromatous regions, and expression of chemokine CXCL8, which triggers monocyte arrest on early atherosclerotic endothelium, is elevated in monocytes/macrophages in human atherosclerotic lesion. The aim of this study was to investigate whether PG induced CXCL8 expression in the cell type and to determine cellular signaling pathways involved in that process. Exposure of THP-1 cell, human monocyte/macrophage cell line, to PG not only enhanced CXCL8 release but also profoundly induced il8 gene transcription. PG-induced release of CXCL8 and induction of il8 gene transcription were blocked by OxPAPC, an inhibitor of TLR-2/4 and TLR4, but not by polymyxin B, an inhibitor of LPS. PG-mediated CXCL8 release was significantly attenuated by inhibitors of PI3K-Akt-mTOR pathways. PKC inhibitors, MAPK inhibitors, and ROS quenchers also significantly attenuated expression of CXCL8. The present study proposes that PG contributes to inflammatory reaction and progression of atherosclerosis by inducing CXCL8 expression in monocytes/macrophages, and that TLR-2, PI3K-Akt-mTOR, PKC, ROS, and MAPK are actively involved in the process.
Collapse
Affiliation(s)
- Chung Won Lee
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea ; Medical Research Institute, Pusan National University Hospital, Pusan 602-739, Republic of Korea
| | - Sung Woon Chung
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Mi Ju Bae
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Seunghwan Song
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Sang-Pil Kim
- Department of Thoracic and Cardiovascular Surgery, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, Pusan National University - School of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
41
|
Jacobsen MC, Dusart PJ, Kotowicz K, Bajaj-Elliott M, Hart SL, Klein NJ, Dixon GL. A critical role for ATF2 transcription factor in the regulation of E-selectin expression in response to non-endotoxin components of Neisseria meningitidis. Cell Microbiol 2015; 18:66-79. [PMID: 26153406 PMCID: PMC4973847 DOI: 10.1111/cmi.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 01/15/2023]
Abstract
Vascular injury is a serious complication of sepsis due to the gram‐negative bacterium Neisseria meningitidis. One of the critical early steps in initiating this injury is via the interaction of leucocytes, particularly neutrophils, with adhesion molecules expressed on inflamed endothelium. We have previously demonstrated that both lipopolysaccharide (LPS) and non‐LPS components of meningococci can induce very high levels of expression of the vascular endothelial cell adhesion molecule E‐selectin, which is critical for early tethering and capture of neutrophils onto endothelium under flow. Using an LPS‐deficient strain of meningococcus, we showed that very high levels of expression can be induced in primary endothelial cells, even in the context of weak activation of the major host signal transduction factor [nuclear factor‐κB (NF‐κB)]. In this study, we show that the particular propensity for N. meningitidis to induce high levels of expression is regulated at a transcriptional level, and demonstrate a significant role for phosphorylation of the ATF2 transcription factor, likely via mitogen‐activated protein (MAP) kinases, on the activity of the E‐selectin promoter. Furthermore, inhibition of E‐selectin expression in response to the lpxA− strain by a p38 inhibitor indicates a significant role of a p38‐dependent MAPK signalling pathway in ATF2 activation. Collectively, these data highlight the role that LPS and other bacterial components have in modulating endothelial function and their involvement in the pathogenesis of meningococcal sepsis. Better understanding of these multiple mechanisms induced by complex stimuli such as bacteria, and the specific inflammatory pathways they activate, may lead to improved, focused interventions in both meningococcal and potentially bacterial sepsis more generally.
Collapse
Affiliation(s)
- M C Jacobsen
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Biology, Faculty of Science, University of Regina, Regina, SK, Canada
| | - P J Dusart
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Science for Life Laboratory, Clinical Applied Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - K Kotowicz
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - M Bajaj-Elliott
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - S L Hart
- Experimental and Personalised Medicine Section, Institute of Child Health, University College London, London, UK
| | - N J Klein
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - G L Dixon
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Microbiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
42
|
Ben Haij N, Planès R, Leghmari K, Serrero M, Delobel P, Izopet J, BenMohamed L, Bahraoui E. HIV-1 Tat Protein Induces Production of Proinflammatory Cytokines by Human Dendritic Cells and Monocytes/Macrophages through Engagement of TLR4-MD2-CD14 Complex and Activation of NF-κB Pathway. PLoS One 2015; 10:e0129425. [PMID: 26090662 PMCID: PMC4474861 DOI: 10.1371/journal.pone.0129425] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/10/2015] [Indexed: 11/18/2022] Open
Abstract
We recently reported that the human immunodeficiency virus type-1 (HIV-1) Tat protein induced the expression of programmed death ligand-1 (PD-L1) on dendritic cells (DCs) through a TLR4 pathway. However, the underlying mechanisms by which HIV-1 Tat protein induces the abnormal hyper-activation of the immune system seen in HIV-1 infected patients remain to be fully elucidated. In the present study, we report that HIV-1 Tat protein induced the production of significant amounts of the pro-inflammatory IL-6 and IL-8 cytokines by DCs and monocytes from both healthy and HIV-1 infected patients. Such production was abrogated in the presence of anti-TLR4 blocking antibodies or soluble recombinant TLR4-MD2 as a decoy receptor, suggesting TLR4 was recruited by Tat protein. Tat-induced murine IL-6 and CXCL1/KC a functional homologue of human IL-8 was abolished in peritoneal macrophages derived from TLR4 KO but not from Wt mice, confirming the involvement of the TLR4 pathway. Furthermore, the recruitment of TLR4-MD2-CD14 complex by Tat protein was demonstrated by the activation of TLR4 downstream pathways including NF-κB and SOCS-1 and by down-modulation of cell surface TLR4 by endocytosis in dynamin and lipid-raft-dependent manners. Collectively, these findings demonstrate, for the first time, that HIV-1 Tat interacts with TLR4-MD2-CD14 complex and activates the NF-κB pathway, leading to overproduction of IL-6 and IL-8 pro-inflammatory cytokines by myeloid cells from both healthy and HIV-1 infected patients. This study reveals a novel mechanism by which HIV-1, via its early expressed Tat protein, hijacks the TLR4 pathway, hence establishing abnormal hyper-activation of the immune system.
Collapse
Affiliation(s)
- Nawal Ben Haij
- INSERM, U1043, Toulouse, France, CNRS, U5282, Toulouse, France
- Université Paul Sabatier Toulouse, Toulouse, France
- Department of Infectious Diseases, Toulouse University Hospital, Toulouse, France
| | - Rémi Planès
- INSERM, U1043, Toulouse, France, CNRS, U5282, Toulouse, France
- Université Paul Sabatier Toulouse, Toulouse, France
- Department of Infectious Diseases, Toulouse University Hospital, Toulouse, France
| | - Kaoutar Leghmari
- INSERM, U1043, Toulouse, France, CNRS, U5282, Toulouse, France
- Université Paul Sabatier Toulouse, Toulouse, France
- Department of Infectious Diseases, Toulouse University Hospital, Toulouse, France
| | - Manutea Serrero
- INSERM, U1043, Toulouse, France, CNRS, U5282, Toulouse, France
- Université Paul Sabatier Toulouse, Toulouse, France
- Department of Infectious Diseases, Toulouse University Hospital, Toulouse, France
| | - Pierre Delobel
- INSERM, U1043, Toulouse, France, CNRS, U5282, Toulouse, France
- Université Paul Sabatier Toulouse, Toulouse, France
- Department of Infectious Diseases, Toulouse University Hospital, Toulouse, France
| | - Jacques Izopet
- INSERM, U1043, Toulouse, France, CNRS, U5282, Toulouse, France
- Université Paul Sabatier Toulouse, Toulouse, France
- Department of Infectious Diseases, Toulouse University Hospital, Toulouse, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697, United States of America
- Institute for Immunology, Irvine, CA, 92697, United States of America
- Department of Molecular Biology & Biochemistry, University of California Irvine, School of Medicine, Irvine, CA, 92697, United States of America
| | - Elmostafa Bahraoui
- INSERM, U1043, Toulouse, France, CNRS, U5282, Toulouse, France
- Université Paul Sabatier Toulouse, Toulouse, France
- Department of Infectious Diseases, Toulouse University Hospital, Toulouse, France
- * E-mail:
| |
Collapse
|
43
|
The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat Immunol 2015; 16:729-36. [PMID: 26030023 DOI: 10.1038/ni.3196] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) can initiate immune responses by presenting exogenous antigens to T cells via both major histocompatibility complex (MHC) class I pathways and MHC class II pathways. Lysosomal activity has an important role in modulating the balance between these two pathways. The transcription factor TFEB regulates lysosomal function by inducing lysosomal activation. Here we report that TFEB expression inhibited the presentation of exogenous antigen by MHC class I while enhancing presentation via MHC class II. TFEB promoted phagosomal acidification and protein degradation. Furthermore, we found that the activation of TFEB was regulated during DC maturation and that phagosomal acidification was impaired in DCs in which the gene encoding TFEB was silenced. Our data indicate that TFEB is a key participant in the differential regulation of the presentation of exogenous antigens by DCs.
Collapse
|
44
|
Huang MT, Chen ST, Wu HY, Chen YJ, Chou TY, Hsieh SL. DcR3 suppresses influenza virus-induced macrophage activation and attenuates pulmonary inflammation and lethality. J Mol Med (Berl) 2015; 93:1131-43. [PMID: 25940317 DOI: 10.1007/s00109-015-1291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED Influenza A virus (IAV) infects macrophages and stimulates innate immunity receptors and sensors to produce proinflammatory cytokines and chemokines, which are responsible for IAV-induced pulmonary inflammation and injury. Decoy receptor 3 (DcR3) is a soluble protein belonging to the tumor necrosis factor receptor superfamily (TNFRSF), and is able to skew macrophage differentiation into an M2 phenotype. We demonstrated that DcR3 attenuated IAV-induced secretion of proinflammatory cytokines and chemokine from macrophages, and mitigated pulmonary infiltration and reduce lethality. Proteome-wide phosphoproteomic mapping revealed that DcR3 not only activated STK10, a negative regulator of cell migration, but also inactivated PKC-α, which are crucial for the activation of ERK and JNK in human macrophages. Furthermore, less pulmonary infiltration with lower levels of proinflammatory cytokines and chemokine in bronchoalveolar lavage fluid (BALF) were observed in DcR3-transgenic mice. Moreover, recombinant DcR3.Fc and heparan sulfate proteoglycan binding domain of DcR3.Fc (HBD.Fc) fusion proteins attenuated weight loss and protected mice from IAV-induced lethality. Thus, DcR3-mediated protection is not only via suppression of proinflammatory cytokine and chemokine release, but also via activation of STK10 to inhibit cell infiltration. DcR3 fusion proteins may become therapeutic agents to protect host from IAV-induced lethality in the future. KEY MESSAGE • DcR3 suppresses IAV-induced cytokine secretion.• DcR3 inhibits IAV-induced JNK and ERK activation in human macrophages.• DcR3 downregulates TLR3 and 7 expressions in human macrophages.• DcR3 protects mice from IAV-induced lethality.
Collapse
Affiliation(s)
- Ming-Ting Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Ting Chen
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
45
|
Mattila JT, Maiello P, Sun T, Via LE, Flynn JL. Granzyme B-expressing neutrophils correlate with bacterial load in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Microbiol 2015; 17:1085-97. [PMID: 25653138 DOI: 10.1111/cmi.12428] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/04/2015] [Accepted: 02/02/2015] [Indexed: 01/21/2023]
Abstract
The role of neutrophils in tuberculosis (TB), and whether neutrophils express granzyme B (grzB), a pro-apoptotic enzyme associated with cytotoxic T cells, is controversial. We examined neutrophils in peripheral blood (PB) and lung granulomas of Mycobacterium tuberculosis-infected cynomolgus macaques and humans to determine whether mycobacterial products or pro-inflammatory factors induce neutrophil grzB expression. We found large numbers of grzB-expressing neutrophils in macaque and human granulomas and these cells contained more grzB+ granules than T cells. Higher neutrophil, but not T cell, grzB expression correlated with increased bacterial load. Although unstimulated PB neutrophils lacked grzB expression, grzB expression increased upon exposure to M.tuberculosis bacilli, M.tuberculosis culture filtrate protein or lipopolysaccharide from Escherichia coli. Perforin is required for granzyme-mediated cytotoxicity by T cells, but was not observed in PB or granuloma neutrophils. Nonetheless, stimulated PB neutrophils secreted grzB as determined by enzyme-linked immunospot assays. Purified grzB was not bactericidal or bacteriostatic, suggesting secreted neutrophil grzB acts on extracellular targets, potentially enhancing neutrophil migration through extracellular matrix and regulating apoptosis or activation in other cell types. These data indicate mycobacterial products and the pro-inflammatory environment of granulomas up-regulates neutrophil grzB expression and suggests a previously unappreciated aspect of neutrophil biology in TB.
Collapse
Affiliation(s)
- Joshua T Mattila
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Sun
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Das S, Bhattacharjee O, Goswami A, Pal NK, Majumdar S. Arabinosylated lipoarabinomannan (Ara-LAM) mediated intracellular mechanisms against tuberculosis infection: Involvement of protein kinase C (PKC) mediated signaling. Tuberculosis (Edinb) 2015; 95:208-16. [DOI: 10.1016/j.tube.2014.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/30/2014] [Indexed: 12/14/2022]
|
47
|
|
48
|
Abstract
The acute respiratory distress syndrome (ARDS) is a major public health problem and a leading source of morbidity in intensive care units. Lung tissue in patients with ARDS is characterized by inflammation, with exuberant neutrophil infiltration, activation, and degranulation that is thought to initiate tissue injury through the release of proteases and oxygen radicals. Treatment of ARDS is supportive primarily because the underlying pathophysiology is poorly understood. This gap in knowledge must be addressed to identify urgently needed therapies. Recent research efforts in anti-inflammatory drug development have focused on identifying common control points in multiple signaling pathways. The protein kinase C (PKC) serine-threonine kinases are master regulators of proinflammatory signaling hubs, making them attractive therapeutic targets. Pharmacological inhibition of broad-spectrum PKC activity and, more importantly, of specific PKC isoforms (as well as deletion of PKCs in mice) exerts protective effects in various experimental models of lung injury. Furthermore, PKC isoforms have been implicated in inflammatory processes that may be involved in the pathophysiologic changes that result in ARDS, including activation of innate immune and endothelial cells, neutrophil trafficking to the lung, regulation of alveolar epithelial barrier functions, and control of neutrophil proinflammatory and prosurvival signaling. This review focuses on the mechanistic involvement of PKC isoforms in the pathogenesis of ARDS and highlights the potential of developing new therapeutic paradigms based on the selective inhibition (or activation) of specific PKC isoforms.
Collapse
|
49
|
Pakpour N, Camp L, Smithers HM, Wang B, Tu Z, Nadler SA, Luckhart S. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes. PLoS One 2013; 8:e76535. [PMID: 24146884 PMCID: PMC3795702 DOI: 10.1371/journal.pone.0076535] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/01/2013] [Indexed: 11/19/2022] Open
Abstract
Anopheline mosquitoes are the primary vectors of parasites in the genus Plasmodium, the causative agents of malaria. Malaria parasites undergo a series of complex transformations upon ingestion by the mosquito host. During this process, the physical barrier of the midgut epithelium, along with innate immune defenses, functionally restrict parasite development. Although these defenses have been studied for some time, the regulatory factors that control them are poorly understood. The protein kinase C (PKC) gene family consists of serine/threonine kinases that serve as central signaling molecules and regulators of a broad spectrum of cellular processes including epithelial barrier function and immunity. Indeed, PKCs are highly conserved, ranging from 7 isoforms in Drosophila to 16 isoforms in mammals, yet none have been identified in mosquitoes. Despite conservation of the PKC gene family and their potential as targets for transmission-blocking strategies for malaria, no direct connections between PKCs, the mosquito immune response or epithelial barrier integrity are known. Here, we identify and characterize six PKC gene family members--PKCδ, PKCε, PKCζ, PKD, PKN, and an indeterminate conventional PKC--in Anopheles gambiae and Anopheles stephensi. Sequence and phylogenetic analyses of the anopheline PKCs support most subfamily assignments. All six PKCs are expressed in the midgut epithelia of A. gambiae and A. stephensi post-blood feeding, indicating availability for signaling in a tissue that is critical for malaria parasite development. Although inhibition of PKC enzymatic activity decreased NF-κB-regulated anti-microbial peptide expression in mosquito cells in vitro, PKC inhibition had no effect on expression of a panel of immune genes in the midgut epithelium in vivo. PKC inhibition did, however, significantly increase midgut barrier integrity and decrease development of P. falciparum oocysts in A. stephensi, suggesting that PKC-dependent signaling is a negative regulator of epithelial barrier function and a potential new target for transmission-blocking strategies.
Collapse
Affiliation(s)
- Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Lauren Camp
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Hannah M. Smithers
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Zhijian Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Steven A. Nadler
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
50
|
Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc Natl Acad Sci U S A 2013; 110:8744-9. [PMID: 23650383 PMCID: PMC3666735 DOI: 10.1073/pnas.1221294110] [Citation(s) in RCA: 493] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In animals and plants, pathogen recognition triggers the local activation of intracellular signaling that is prerequisite for mounting systemic defenses in the whole organism. We identified that Arabidopsis thaliana isoform CPK5 of the plant calcium-dependent protein kinase family becomes rapidly biochemically activated in response to pathogen-associated molecular pattern (PAMP) stimulation. CPK5 signaling resulted in enhanced salicylic acid-mediated resistance to the bacterial pathogen Pst DC3000, differential plant defense gene expression, and synthesis of reactive oxygen species (ROS). Using selected reaction monitoring MS, we identified the plant NADPH oxidase, respiratory burst oxidase homolog D (RBOHD), as an in vivo phosphorylation target of CPK5. Remarkably, CPK5-dependent in vivo phosphorylation of RBOHD occurs on both PAMP- and ROS stimulation. Furthermore, rapid CPK5-dependent biochemical and transcriptional activation of defense reactions at distal sites is compromised in cpk5 and rbohd mutants. Our data not only identify CPK5 as a key regulator of innate immune responses in plants but also support a model of ROS-mediated cell-to-cell communication, where a self-propagating mutual activation circuit consisting of the protein kinase, CPK5, and the NADPH oxidase RBOHD facilitates rapid signal propagation as a prerequisite for defense response activation at distal sites within the plant.
Collapse
Affiliation(s)
- Ullrich Dubiella
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Heike Seybold
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Guido Durian
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Eileen Komander
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Roman Lassig
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Claus-Peter Witte
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany; and
| | - Waltraud X. Schulze
- Department of Metabolic Networks, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany; and
| |
Collapse
|