1
|
Chi PL, Chen YW, Hsiao LD, Chen YL, Yang CM. Heme oxygenase 1 attenuates interleukin-1β-induced cytosolic phospholipase A2 expression via a decrease in NADPH oxidase/reactive oxygen species/activator protein 1 activation in rheumatoid arthritis synovial fibroblasts. ACTA ACUST UNITED AC 2012; 64:2114-25. [PMID: 22231145 DOI: 10.1002/art.34371] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Reactive oxygen species (ROS) produced by cytokines induce the expression of inflammatory mediators in rheumatoid arthritis (RA). Heme oxygenase 1 (HO-1) exerts an antiinflammatory effect. The aim of this study was to examine the mechanisms underlying interleukin-1β (IL-1β)-induced cytosolic phospholipase A2 (cPLA2) expression through ROS generation as modulated by HO-1 in RA synovial fibroblasts (RASFs). METHODS IL-1β-induced ROS generation was determined by flow cytometry. The involvement of MAPKs and NADPH oxidase (NOX)/ROS in IL-1β-induced cPLA2 expression was investigated using pharmacologic inhibitors and transfection with small interfering RNAs (siRNAs) and was analyzed by Western blotting and promoter assay. Overexpression of HO-1 was performed by transfection of RASFs with a recombinant adenovirus containing human HO-1 plasmid. SCID mice with inflammation caused by IL-1β were infected with adenovirus containing HO-1. Histologic characterization of joint inflammation and local expression of cPLA2 were evaluated after treatment. RESULTS IL-1β-induced cPLA2 expression was mediated through NOX activation/ROS production, which was attenuated by N-acetylcysteine (NAC; a scavenger of ROS), the inhibitors of NOX (diphenyleneiodonium chloride and apocynin), MEK-1/2 (U0126), and JNK-1/2 (SP600125), transfection with the respective siRNAs, and the overexpression of HO-1 in RASFs. IL-1β-induced cPLA2 expression was mediated through recruitment of activator protein 1 (AP-1) to the cPLA2 promoter region, which was attenuated by NAC and overexpression of HO-1. Furthermore, HO-1 overexpression inhibited IL-1β-mediated cPLA2 expression in SCID mice. CONCLUSION In RASFs, IL-1β induced cPLA2 expression via activation of p42/p44 MAPK and JNK-1/2, leading to p47phox phosphorylation, ROS production, and AP-1 activation. The induction of HO-1 exerted protective effects on the pathogenesis of RA.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
2
|
Kasahara K, Nakayama Y, Nakazato Y, Ikeda K, Kuga T, Yamaguchi N. Src Signaling Regulates Completion of Abscission in Cytokinesis through ERK/MAPK Activation at the Midbody. J Biol Chem 2007; 282:5327-39. [PMID: 17189253 DOI: 10.1074/jbc.m608396200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Src family non-receptor-type tyrosine kinases regulate a wide variety of cellular events including cell cycle progression in G(2)/M phase. Here, we show that Src signaling regulates the terminal step in cytokinesis called abscission in HeLa cells. Abscission failure with an unusually elongated intercellular bridge containing the midbody is induced by treatment with the chemical Src inhibitors PP2 and SU6656 or expression of membrane-anchored Csk chimeras. By anti-phosphotyrosine immunofluorescence and live cell imaging, completion of abscission requires Src-mediated tyrosine phosphorylation during early stages of mitosis (before cleavage furrow formation), which is subsequently delivered to the midbody through Rab11-driven vesicle transport. Treatment with U0126, a MEK inhibitor, decreases tyrosine phosphorylation levels at the midbody, leading to abscission failure. Activated ERK by MEK-catalyzed dual phosphorylation on threonine and tyrosine residues in the TEY sequence, which is strongly detected by anti-phosphotyrosine antibody, is transported to the midbody in a Rab11-dependent manner. Src kinase activity during the early mitosis mediates ERK activation in late cytokinesis, indicating that Src-mediated signaling for abscission is spatially and temporally transmitted. Thus, these results suggest that recruitment of activated ERK, which is phosphorylated by MEK downstream of Src kinases, to the midbody plays an important role in completion of abscission.
Collapse
Affiliation(s)
- Kousuke Kasahara
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K. Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 2007; 26:12904-13. [PMID: 17167081 PMCID: PMC6674962 DOI: 10.1523/jneurosci.2531-06.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is pathologically characterized by inflammatory demyelination and neuronal injury. Although phagocytosis of myelin debris by microglia and macrophages in acute MS lesions is well documented, its pathophysiological significance is unclear. Using real-time quantitative PCR, flow cytometry, ELISA, and reactive oxygen species (ROS) measurement assays, we demonstrated that phagocytosis of myelin modulates activation of microglial cells prestimulated by interferon-gamma (IFN-gamma) or a combination of IFN-gamma and lipopolysaccharide with a biphasic temporal pattern, i.e., enhanced production of proinflammatory mediators during the first phase (< or = 6 h), followed by suppression during the second (6-24 h) phase. In this second phase, myelin phagocytosis leads to an enhanced release of prostaglandin E2 and ROS in microglia, whereas the production of anti-inflammatory cytokines (particularly interleukin-10) remains unchanged. Suppression of inflammatory microglial activation by myelin phagocytosis was reversed by treatment with superoxide dismutase and catalase, by inhibition of the NADPH-oxidase complex, or by specific knockdown of the NADPH-oxidase-required adaptor p47-phagocyte oxidase (PHOX). Furthermore, we observed that myelin phagocytosis destabilized tumor necrosis factor-alpha and interferon-induced protein-10 mRNA through an adenine-uridine-rich elements-involved mechanism, which was reversed by blocking the function of NADPH-oxidase complex. We conclude that phagocytosis of myelin suppresses microglial inflammatory activities via enhancement of p47-PHOX-mediated ROS generation. These results suggest that intervention in ROS generation could represent a novel therapeutic strategy to reduce neuroinflammation in MS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Wenlin Hao
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
- Neuroimmunology Unit, European Neuroscience Institute Göttingen, University of Göttingen, 37073 Göttingen, Germany
| | - Maryse Letiembre
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Silke Walter
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Miroslav Kulanga
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Harald Neumann
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, University of Bonn Life and Brain Center and Hertie Foundation, 53127 Bonn, Germany, and
- Neuroimmunology Unit, European Neuroscience Institute Göttingen, University of Göttingen, 37073 Göttingen, Germany
| | - Klaus Fassbender
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| |
Collapse
|
4
|
Taniguchi T, Shimizu M, Nakamura H, Hirabayashi T, Fujino H, Murayama T. Hydrogen peroxide-induced arachidonic acid release in L929 cells; roles of Src, protein kinase C and cytosolic phospholipase A2α. Eur J Pharmacol 2006; 546:1-10. [PMID: 16914136 DOI: 10.1016/j.ejphar.2006.06.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/28/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) stimulates the release of arachidonic acid from cells, but the signaling mechanism(s) involved remains to be elucidated. We investigated the roles of alpha-type cytosolic phospholipase A(2) (cPLA(2)alpha), Src family kinases (Src) and protein kinase C (PKC) in the release of arachidonic acid from L929 cells (a murine fibroblast cell line), C12 cells (a variant of L929 that lacks cPLA(2)alpha) and a stable clone of C12 cells expressing cPLA(2)alpha (C12-cPLA(2)alpha cells). In the presence of 10 muM A23187, 100 nM phorbol myristate acetate (PMA) and 1 mM H(2)O(2) synergistically stimulated arachidonic acid release from L929 cells and C12-cPLA(2)alpha cells, and to a much lesser extent from C12 cells. The reagents alone and co-treatment with PMA and H(2)O(2) without A23187 had marginal effects. No arachidonic acid was released by PMA/A23187 or H(2)O(2)/A23187 in CaCl(2)-free buffer and the release was inhibited by a selective cPLA(2)alpha inhibitor (3 microM pyrrophenone). Addition of 10 microM H(2)O(2), which did not stimulate arachidonic acid release with A23187, enhanced the response to PMA/A23187. The release induced by PMA/A23187 and by H(2)O(2)/A23187 was significantly inhibited by a PKC inhibitor (10 microM GF109203X) and in PKC-depleted cells, and by a Src inhibitor (2 microM PP2). The phosphorylation of extracellular signal-regulated kinase 1/2 induced by PMA/A23187 and H(2)O(2)/A23187 was significantly decreased by inhibitors of PKC and Src. These findings suggest that H(2)O(2) with Ca(2+) stimulates arachidonic acid release via cPLA(2)alpha in a Src- and PKC-dependent manner in L929 cells. The role of cross-talk between Src and PKC in arachidonic acid release is discussed.
Collapse
Affiliation(s)
- Tomoko Taniguchi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Akiyama N, Nabemoto M, Hatori Y, Nakamura H, Hirabayashi T, Fujino H, Saito T, Murayama T. Up-regulation of cytosolic phospholipase A2α expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide. Toxicol Appl Pharmacol 2006; 215:218-27. [PMID: 16603213 DOI: 10.1016/j.taap.2006.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/23/2006] [Accepted: 02/27/2006] [Indexed: 11/18/2022]
Abstract
Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the alpha type of cytosolic phospholipase A(2) (cPLA(2)alpha) in PC12 cells. Treatment with 80-120 microM DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA(2)alpha mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N(G) nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA(2)alpha expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA(2). Furthermore, DDC treatment of the cells enhanced Ca(2+)-ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA(2)alpha expression by DDC treatment in neuronal cells.
Collapse
Affiliation(s)
- Nobuteru Akiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim DS, Jeon SE, Jeong YM, Kim SY, Kwon SB, Park KC. Hydrogen peroxide is a mediator of indole-3-acetic acid/horseradish peroxidase-induced apoptosis. FEBS Lett 2006; 580:1439-46. [PMID: 16460736 DOI: 10.1016/j.febslet.2006.01.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/06/2006] [Accepted: 01/24/2006] [Indexed: 12/01/2022]
Abstract
Recently, we reported that a combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) induces apoptosis in G361 human melanoma cells. However, the apoptotic mechanism involved has been poorly studied. It is known that when IAA is oxidized by HRP, free radicals are produced, and since oxidative stress can induce apoptosis, we investigated whether reactive oxygen species (ROS) are involved in IAA/HRP-induced apoptosis. Our results show that IAA/HRP-induced free radical production is inhibited by catalase, but not by superoxide dismutase or sodium formate. Furthermore, catalase was found to prevent IAA/HRP-induced apoptotic cell death, indicating that IAA/HRP-produced hydrogen peroxide (H2O2) may be involved in the apoptotic process. Moreover, the antiapoptotic effect of catalase is potentiated by NADPH, which is known to protect catalase. On further investigating the IAA/HRP-mediated apoptotic pathway, we found that the IAA/HRP reaction leads to caspase-3 activation and poly(ADP-ribose) polymerase (PARP) cleavage, which was also blocked by catalase. Additionally, we found that IAA/HRP produces H2O2 and induces peroxiredoxin (Prx) sulfonylation. Consequently, our results suggest that H2O2 plays a major role in IAA/HRP-induced apoptosis.
Collapse
Affiliation(s)
- Dong-Seok Kim
- Research Division for Human Life Sciences, Seoul National University, Cancer Research Institute, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
7
|
Kim DS, Kim SY, Jeong YM, Jeon SE, Kim MK, Kwon SB, Park KC. Indole-3-Acetic Acid/Horseradish Peroxidase-Induced Apoptosis Involves Cell Surface CD95 (Fas/APO-1) Expression. Biol Pharm Bull 2006; 29:1625-9. [PMID: 16880616 DOI: 10.1248/bpb.29.1625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we showed that a combination of indole-3-acetic acid (IAA) and horseradish peroxidase (HRP) produces hydrogen peroxide (H2O2), and that this leads to the apoptosis of G361 human melanoma cells. In the present study, flow cytometric analysis confirmed that H2O2 is involved the IAA/HRP-induced apoptotic process. We also found that IAA/HRP increases cell surface CD95 (Fas/APO-1) expression, and that this is blocked by catalase treatment. Furthermore, blocking CD95 with a neutralizing antibody significantly restored IAA/HRP-induced apoptosis. In addition, the IAA/HRP-induced activations of CD95 downstream molecules, i.e., caspase-8, Bid, and caspase-3, were also inhibited by catalase. Moreover, a caspase-8 inhibitor significantly blocked IAA/HRP-induced apoptosis. These results indicate that IAA/HRP-induced apoptosis involves a CD95-initiated death receptor signaling pathway initiated by hydrogen peroxide.
Collapse
Affiliation(s)
- Dong-Seok Kim
- Research Division for Human Life Sciences, Seoul National University, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Takashiro Y, Nakamura H, Koide Y, Nishida A, Murayama T. Involvement of p38 MAP kinase-mediated cytochrome c release on sphingosine-1-phosphate (S1P)- and N-monomethyl-S1P-induced cell death of PC12 cells. Biochem Pharmacol 2005; 70:258-65. [PMID: 15907808 DOI: 10.1016/j.bcp.2005.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
d-erythro-Sphingosine-1-phosphate (S1P), a sphingolipid metabolite, affects various neuronal functions including cell fate. S1P appears to have contradictory effects in PC12 cells, a neuronal model cell line; neurite retraction and cell survival/differentiation. In the present study, we examined whether S1P induces cell death in undifferentiated PC12 cells. Culture with S1P at 20 microM for 4 h caused lactate dehydrogenase leakage 24 h later. The response was reduced by an inhibitor of caspases and accompanied by the release of cytochrome c and DNA fragmentation. S1P caused the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) within 10 min. An inhibitor of p38 MAPK (10 microM SB203580) inhibited both the release of cytochrome c and DNA fragmentation induced by S1P. Treatment with nerve growth factor or pertussis toxin (PTX) decreased S1P-induced phosphorylation of p38 MAPK and cell death. These findings suggest that S1P-activated p38 MAPK acts as a death signal upstream of the release of cytochrome c. N-Monomethyl-S1P (MM-S1P), a weak agonist in cells expressing S1P1 receptors, had marked effects (phosphorylation of p38 MAPK, release of cytochrome c and DNA fragmentation) at lower concentrations than S1P and in a PTX-sensitive manner. These findings show that the activation of S1P receptors by S1P and MM-S1P causes cell death accompanied by DNA fragmentation via the p38 MAPK pathway-mediated release of cytochrome c in PC12 cells. The potential of S1P and MM-S1P to act as agonists of S1P receptors and as intracellular messengers is discussed.
Collapse
Affiliation(s)
- Yuko Takashiro
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | |
Collapse
|