1
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Imaging Flies by Fluorescence Microscopy: Principles, Technologies, and Applications. Genetics 2019; 211:15-34. [PMID: 30626639 PMCID: PMC6325693 DOI: 10.1534/genetics.118.300227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The development of fluorescent labels and powerful imaging technologies in the last two decades has revolutionized the field of fluorescence microscopy, which is now widely used in diverse scientific fields from biology to biomedical and materials science. Fluorescence microscopy has also become a standard technique in research laboratories working on Drosophila melanogaster as a model organism. Here, we review the principles of fluorescence microscopy technologies from wide-field to Super-resolution microscopy and its application in the Drosophila research field.
Collapse
|
3
|
Miazzi F, Hansson BS, Wicher D. Odor-induced cAMP production in Drosophila melanogaster olfactory sensory neurons. ACTA ACUST UNITED AC 2016; 219:1798-803. [PMID: 27045092 DOI: 10.1242/jeb.137901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
Abstract
Insect odorant receptors are seven transmembrane domain proteins that form cation channels, whose functional properties such as receptor sensitivity are subject to regulation by intracellular signaling cascades. Here, we used the cAMP fluorescent indicator Epac1-camps to investigate the occurrence of odor-induced cAMP production in olfactory sensory neurons (OSNs) of Drosophila melanogaster We show that stimulation of the receptor complex with an odor mixture or with the synthetic agonist VUAA1 induces a cAMP response. Moreover, we show that while the intracellular Ca(2+) concentration influences cAMP production, the OSN-specific receptor OrX is necessary to elicit cAMP responses in Ca(2+)-free conditions. These results provide direct evidence of a relationship between odorant receptor stimulation and cAMP production in olfactory sensory neurons in the fruit fly antenna and show that this method can be used to further investigate the role that this second messenger plays in insect olfaction.
Collapse
Affiliation(s)
- Fabio Miazzi
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Str. 8, Jena D-07745, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Str. 8, Jena D-07745, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Str. 8, Jena D-07745, Germany
| |
Collapse
|
4
|
Patel N, Gold MG. The genetically encoded tool set for investigating cAMP: more than the sum of its parts. Front Pharmacol 2015; 6:164. [PMID: 26300778 PMCID: PMC4526808 DOI: 10.3389/fphar.2015.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/24/2015] [Indexed: 11/13/2022] Open
Abstract
Intracellular fluctuations of the second messenger cyclic AMP (cAMP) are regulated with spatial and temporal precision. This regulation is supported by the sophisticated arrangement of cyclases, phosphodiesterases, anchoring proteins, and receptors for cAMP. Discovery of these nuances to cAMP signaling has been facilitated by the development of genetically encodable tools for monitoring and manipulating cAMP and the proteins that support cAMP signaling. In this review, we discuss the state-of-the-art in development of different genetically encoded tools for sensing cAMP and the activity of its primary intracellular receptor protein kinase A (PKA). We introduce sequences for encoding adenylyl cyclases that enable cAMP levels to be artificially elevated within cells. We chart the evolution of sequences for selectively modifying protein-protein interactions that support cAMP signaling, and for driving cAMP sensors and manipulators to different subcellular locations. Importantly, these different genetically encoded tools can be applied synergistically, and we highlight notable instances that take advantage of this property. Finally, we consider prospects for extending the utility of the tool set to support further insights into the role of cAMP in health and disease.
Collapse
Affiliation(s)
- Neha Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| |
Collapse
|
5
|
Copf T. Developmental shaping of dendritic arbors in Drosophila relies on tightly regulated intra-neuronal activity of protein kinase A (PKA). Dev Biol 2014; 393:282-297. [PMID: 25017992 DOI: 10.1016/j.ydbio.2014.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/24/2022]
Abstract
Dendrites develop morphologies characterized by multiple levels of complexity that involve neuron type specific dendritic length and particular spatial distribution. How this is developmentally regulated and in particular which signaling molecules are crucial in the process is still not understood. Using Drosophila class IV dendritic arborization (da) neurons we test in vivo the effects of cell-autonomous dose-dependent changes in the activity levels of the cAMP-dependent Protein Kinase A (PKA) on the formation of complex dendritic arbors. We find that genetic manipulations of the PKA activity levels affect profoundly the arbor complexity with strongest impact on distal branches. Both decreasing and increasing PKA activity result in a reduced complexity of the arbors, as reflected in decreased dendritic length and number of branching points, suggesting an inverted U-shape response to PKA. The phenotypes are accompanied by changes in organelle distribution: Golgi outposts and early endosomes in distal dendritic branches are reduced in PKA mutants. By using Rab5 dominant negative we find that PKA interacts genetically with the early endosomal pathway. We test if the possible relationship between PKA and organelles may be the result of phosphorylation of the microtubule motor dynein components or Rab5. We find that Drosophila cytoplasmic dynein components are direct PKA phosphorylation targets in vitro, but not in vivo, thus pointing to a different putative in vivo target. Our data argue that tightly controlled dose-dependent intra-neuronal PKA activity levels are critical in determining the dendritic arbor complexity, one of the possible ways being through the regulation of organelle distribution.
Collapse
Affiliation(s)
- Tijana Copf
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, NY 10032, USA; Institute of Molecular Biology and Biotechnology, Nikolaou Plastira 100, P.O Box 1385, GR-70013 Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Rebollo E, Karkali K, Mangione F, Martín-Blanco E. Live imaging in Drosophila: The optical and genetic toolkits. Methods 2014; 68:48-59. [PMID: 24814031 DOI: 10.1016/j.ymeth.2014.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level.
Collapse
Affiliation(s)
- Elena Rebollo
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Katerina Karkali
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Federica Mangione
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Sample V, Mehta S, Zhang J. Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems. J Cell Sci 2014; 127:1151-60. [PMID: 24634506 PMCID: PMC3953811 DOI: 10.1242/jcs.099994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
In this Commentary, we discuss two sets of genetically encoded molecular tools that have significantly enhanced our ability to observe and manipulate complex biochemical processes in their native context and that have been essential in deepening our molecular understanding of how intracellular signaling networks function. In particular, genetically encoded biosensors are widely used to directly visualize signaling events in living cells, and we highlight several examples of basic biosensor designs that have enabled researchers to capture the spatial and temporal dynamics of numerous signaling molecules, including second messengers and signaling enzymes, with remarkable detail. Similarly, we discuss a number of genetically encoded biochemical perturbation techniques that are being used to manipulate the activity of various signaling molecules with far greater spatial and temporal selectivity than can be achieved using standard pharmacological or genetic techniques, focusing specifically on examples of chemically driven and light-inducible perturbation strategies. We then describe recent efforts to combine these diverse and powerful molecular tools into a unified platform that can be used to elucidate the molecular details of biological processes that may potentially extend well beyond the realm of signal transduction.
Collapse
Affiliation(s)
- Vedangi Sample
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Oldach L, Zhang J. Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. ACTA ACUST UNITED AC 2014; 21:186-97. [PMID: 24485761 DOI: 10.1016/j.chembiol.2013.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/22/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Abstract
Fluorescence-based, genetically encodable biosensors are widely used tools for real-time analysis of biological processes. Over the last few decades, the number of available genetically encodable biosensors and the types of processes they can monitor have increased rapidly. Here, we aim to introduce the reader to general principles and practices in biosensor development and highlight ways in which biosensors can be used to illuminate outstanding questions of biological function. Specifically, we focus on sensors developed for monitoring kinase activity and use them to illustrate some common considerations for biosensor design. We describe several uses to which kinase and second-messenger biosensors have been put, and conclude with considerations for the use of biosensors once they are developed. Overall, as fluorescence-based biosensors continue to diversify and improve, we expect them to continue to be widely used as reliable and fruitful tools for gaining deeper insights into cellular and organismal function.
Collapse
Affiliation(s)
- Laurel Oldach
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Department of Oncology, The Johns Hopkins University School of Medicine, 307 Hunterian Building, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Pech U, Dipt S, Barth J, Singh P, Jauch M, Thum AS, Fiala A, Riemensperger T. Mushroom body miscellanea: transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells. Front Neural Circuits 2013; 7:147. [PMID: 24065891 PMCID: PMC3779816 DOI: 10.3389/fncir.2013.00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster represents a key model organism for analyzing how neuronal circuits regulate behavior. The mushroom body in the central brain is a particularly prominent brain region that has been intensely studied in several insect species and been implicated in a variety of behaviors, e.g., associative learning, locomotor activity, and sleep. Drosophila melanogaster offers the advantage that transgenes can be easily expressed in neuronal subpopulations, e.g., in intrinsic mushroom body neurons (Kenyon cells). A number of transgenes has been described and engineered to visualize the anatomy of neurons, to monitor physiological parameters of neuronal activity, and to manipulate neuronal function artificially. To target the expression of these transgenes selectively to specific neurons several sophisticated bi- or even multipartite transcription systems have been invented. However, the number of transgenes that can be combined in the genome of an individual fly is limited in practice. To facilitate the analysis of the mushroom body we provide a compilation of transgenic fruit flies that express transgenes under direct control of the Kenyon-cell specific promoter, mb247. The transgenes expressed are fluorescence reporters to analyze neuroanatomical aspects of the mushroom body, proteins to restrict ectopic gene expression to mushroom bodies, or fluorescent sensors to monitor physiological parameters of neuronal activity of Kenyon cells. Some of the transgenic animals compiled here have been published already, whereas others are novel and characterized here for the first time. Overall, the collection of transgenic flies expressing sensor and reporter genes in Kenyon cells facilitates combinations with binary transcription systems and might, ultimately, advance the physiological analysis of mushroom body function.
Collapse
Affiliation(s)
- Ulrike Pech
- Department of Molecular Neurobiology of Behavior, Georg-August-Universität Göttingen Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
From FRET Imaging to Practical Methodology for Kinase Activity Sensing in Living Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 113:145-216. [DOI: 10.1016/b978-0-12-386932-6.00005-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
12
|
Korzh V, Wohland T. Analysis of properties of single molecules in vivo or … why small fish is better than empty dish. Russ J Dev Biol 2012. [DOI: 10.1134/s106236041202004x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Edwards HV, Christian F, Baillie GS. cAMP: novel concepts in compartmentalised signalling. Semin Cell Dev Biol 2011; 23:181-90. [PMID: 21930230 DOI: 10.1016/j.semcdb.2011.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/08/2011] [Indexed: 12/12/2022]
Abstract
Cyclic adenosine 3,'5'-monophosphate (cAMP) is the archetypal second messenger produced at the membrane by adenylyl cyclase following activation of many different G protein-coupled receptor (GPCR) types. Although discovered over fifty years ago, the notion that cAMP responses were compartmentalised was born in the 1980s. Since then, modern molecular techniques have facilitated visualisation of cellular cAMP dynamics in real time and helped us to understand how a single, ubiquitous second messenger can direct receptor-specific functions in cells. The aim of this review is to highlight emerging ideas in the cAMP field that are currently developing the concept of compartmentalised cAMP signalling systems.
Collapse
Affiliation(s)
- Helen V Edwards
- Institute of Neuroscience and Molecular Pharmacology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
14
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
15
|
Calebiro D. Thyroid-stimulating hormone receptor activity after internalization. ANNALES D'ENDOCRINOLOGIE 2011; 72:64-7. [PMID: 21511242 DOI: 10.1016/j.ando.2011.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The thyroid-stimulating hormone (TSH) receptor (TSHR) belongs to the large family of G-protein-coupled receptors (GPCRs) and is predominantly coupled to G(s). Thus, the effects of TSH are largely mediated by the stimulation of adenylyl cyclase and the ensuing rise of intracellular cyclic AMP (cAMP) concentrations. Like for other GPCRs, a prolonged stimulation of the TSHR leads to its internalization into endosomes followed by its recycling to the cell surface. Until recently, GPCRs were believed to activate "classical" G-protein-dependent pathways only when located on the cell surface and to cease doing so upon agonist-induced internalization. However, our recent findings on the TSHR and similar ones on the parathyroid hormone and sphingosine receptors suggest that internalized GPCRs can continue to signal through G(s)-cAMP in an intracellular compartment. Interestingly, this type of intracellular cAMP signaling differs from that occurring on the cell surface, as it is persistent and apparently leads to specific signaling outcomes. Although further studies are needed to investigate the possible physiological and pathophysiological consequences of GPCR-cAMP signaling in the endocytic compartment, endosomes should no longer be viewed as passive carriers for receptors en route to degradation but rather as specialized intracellular platforms for GPCR signaling.
Collapse
Affiliation(s)
- D Calebiro
- Institute of Pharmacology and Toxicology and Rudolf-Virchow Center, DFG-Research center for experimental biomedicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 2011; 6:427-38. [PMID: 21412271 DOI: 10.1038/nprot.2010.198] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Real-time measurements of second messengers in living cells, such as cAMP, are usually performed by ratiometric fluorescence resonance energy transfer (FRET) imaging. However, correct calibration of FRET ratios, accurate calculations of absolute cAMP levels and actual permeabilities of different cAMP analogs have been challenging. Here we present a protocol that allows precise measurements of cAMP concentrations and kinetics by expressing FRET-based cAMP sensors in cells and modulating them with an inhibitor of adenylyl cyclase activity and a cell-permeable cAMP analog that fully inhibits and activates the sensors, respectively. Using this protocol, we observed different basal cAMP levels in primary mouse cardiomyocytes, thyroid cells and in 293A cells. The protocol can be generally applied for calibration of second messenger or metabolite concentrations measured by FRET, and for studying kinetics and pharmacological properties of their membrane-permeable analogs. The complete procedure, including cell preparation and FRET measurements, takes 3-6 d.
Collapse
|
17
|
Hudry B, Viala S, Graba Y, Merabet S. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay. BMC Biol 2011; 9:5. [PMID: 21276241 PMCID: PMC3041725 DOI: 10.1186/1741-7007-9-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/28/2011] [Indexed: 01/06/2023] Open
Abstract
Background Protein interactions control the regulatory networks underlying developmental processes. The understanding of developmental complexity will, therefore, require the characterization of protein interactions within their proper environment. The bimolecular fluorescence complementation (BiFC) technology offers this possibility as it enables the direct visualization of protein interactions in living cells. However, its potential has rarely been applied in embryos of animal model organisms and was only performed under transient protein expression levels. Results Using a Hox protein partnership as a test case, we investigated the suitability of BiFC for the study of protein interactions in the living Drosophila embryo. Importantly, all BiFC parameters were established with constructs that were stably expressed under the control of endogenous promoters. Under these physiological conditions, we showed that BiFC is specific and sensitive enough to analyse dynamic protein interactions. We next used BiFC in a candidate interaction screen, which led to the identification of several Hox protein partners. Conclusion Our results establish the general suitability of BiFC for revealing and studying protein interactions in their physiological context during the rapid course of Drosophila embryonic development.
Collapse
Affiliation(s)
- Bruno Hudry
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR 6216, CNRS, Université de la méditerranée, Parc Scientifique de Luminy, Case 907, 13288, Marseille Cedex 09, France
| | | | | | | |
Collapse
|
18
|
Palmer AE, Qin Y, Park JG, McCombs JE. Design and application of genetically encoded biosensors. Trends Biotechnol 2011; 29:144-52. [PMID: 21251723 DOI: 10.1016/j.tibtech.2010.12.004] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/03/2010] [Accepted: 12/11/2010] [Indexed: 10/24/2022]
Abstract
In the past 5-10 years, the power of the green fluorescent protein (GFP) and its numerous derivatives has been harnessed toward the development of genetically encoded fluorescent biosensors. These sensors are incorporated into cells or organisms as plasmid DNA, which leads the transcriptional and translational machinery of the cell to express a functional sensor. To date, over 100 different genetically encoded biosensors have been developed for targets as diverse as ions, molecules and enzymes. Such sensors are instrumental in providing a window into the real-time biochemistry of living cells and whole organisms, and are providing unprecedented insight into the inner workings of a cell.
Collapse
Affiliation(s)
- Amy E Palmer
- Department of Chemistry and Biochemistry, UCB 215, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
19
|
Mehta S, Zhang J. Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu Rev Biochem 2011; 80:375-401. [PMID: 21495849 PMCID: PMC4384825 DOI: 10.1146/annurev-biochem-060409-093259] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real-time visualization of a wide range of biochemical processes in living systems is being made possible through the development and application of genetically encoded fluorescent reporters. These versatile biosensors have proven themselves tailor-made to the study of signal transduction, and in this review, we discuss some of the unique insights that they continue to provide regarding the spatial organization and dynamic regulation of intracellular signaling networks. In addition, we explore the more recent push to expand the scope of biological phenomena that can be monitored using these reporters, while also considering the potential to integrate this highly adaptable technology with a number of emerging techniques that may significantly broaden our view of how networks of biochemical processes shape larger biological phenomena.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience and Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
20
|
Wang X, Wohland T, Korzh V. Developing in vivo biophysics by fishing for single molecules. Dev Biol 2010; 347:1-8. [DOI: 10.1016/j.ydbio.2010.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 01/20/2023]
|
21
|
Gervasi N, Tchénio P, Preat T. PKA dynamics in a Drosophila learning center: coincidence detection by rutabaga adenylyl cyclase and spatial regulation by dunce phosphodiesterase. Neuron 2010; 65:516-29. [PMID: 20188656 DOI: 10.1016/j.neuron.2010.01.014] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2010] [Indexed: 11/27/2022]
Abstract
The dynamics of PKA activity in the olfactory learning and memory center, the mushroom bodies (MBs), are still poorly understood. We addressed this issue in vivo using a PKA FRET probe. Application of dopamine, the main neuromodulator involved in aversive learning, resulted in PKA activation specifically in the vertical lobe, whereas octopamine, involved in appetitive learning, stimulated PKA in all MB lobes. Strikingly, MB lobes were homogeneously activated by dopamine in the learning mutant dunce, showing that Dunce phosphodiesterase plays a major role in the spatial regulation of cAMP dynamics. Furthermore, costimulation with acetylcholine and either dopamine or octopamine led to a synergistic activation of PKA in the MBs that depends on Rutabaga adenylyl cyclase. Our results suggest that Rutabaga acts as a coincidence detector and demonstrate the existence of subcellular domains of PKA activity that could underlie the functional specialization of MB lobes in aversive and appetitive learning.
Collapse
Affiliation(s)
- Nicolas Gervasi
- Genes and Dynamics of Memory Systems, Neurobiology Unit, Ecole Supérieure de Physique et Chimie Industrielle, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | | | | |
Collapse
|
22
|
Audet M, Lagacé M, Silversides DW, Bouvier M. Protein-protein interactions monitored in cells from transgenic mice using bioluminescence resonance energy transfer. FASEB J 2010; 24:2829-38. [PMID: 20335229 DOI: 10.1096/fj.09-144816] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monitoring the dynamics of protein-protein interactions in their natural environment remains a challenge. Resonance energy transfer approaches represent a promising avenue to directly probe these interactions in real time. The present study aims at establishing a proof of principle that bioluminescence resonance energy transfer (BRET) can be used to study the regulation of protein-protein interaction in cells from transgenic animals. A transgenic mouse line coexpressing the beta(2)-adrenergic receptor fused to Renilla luciferase (beta(2)AR-Rluc) and beta arrestin-2 fused to a green fluorescent protein (GFP2-beta arr2) was generated. The fusion proteins were found to be functional in the transgenic animals and the beta(2)AR-Rluc maintained pharmacological properties, comparable to that of the native receptor. Sufficiently high luminescence signal was generated to allow detection of BRET in testis cells where the beta(2)AR-Rluc transgene was expressed at levels significantly higher than that of the endogenous receptor in this tissue but remain within physiological range when compared with other beta(2)AR-expressing tissues. Stimulation with a beta-adrenergic agonist led to a significant dose- and time-dependent increase in BRET, which reflected ligand-promoted recruitment of beta arr2 to the receptor. Our study demonstrates that BRET can be used to monitor the dynamic regulation of protein-protein interactions in cells derived from transgenic mice.
Collapse
Affiliation(s)
- Martin Audet
- Department of Biochemistry, Institute for Research in Immunology and Cancer, and Groupe de Recherche Universitaire sur le Médicament, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
23
|
Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 2009; 7:e1000172. [PMID: 19688034 PMCID: PMC2718703 DOI: 10.1371/journal.pbio.1000172] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/07/2009] [Indexed: 01/19/2023] Open
Abstract
Real-time monitoring of G-protein-coupled receptor (GPCR) signaling in native cells suggests that the receptor for thyroid stimulating hormone remains active after internalization, challenging the current model for GPCR signaling. G-protein–coupled receptors (GPCRs) are generally thought to signal to second messengers like cyclic AMP (cAMP) from the cell surface and to become internalized upon repeated or prolonged stimulation. Once internalized, they are supposed to stop signaling to second messengers but may trigger nonclassical signals such as mitogen-activated protein kinase (MAPK) activation. Here, we show that a GPCR continues to stimulate cAMP production in a sustained manner after internalization. We generated transgenic mice with ubiquitous expression of a fluorescent sensor for cAMP and studied cAMP responses to thyroid-stimulating hormone (TSH) in native, 3-D thyroid follicles isolated from these mice. TSH stimulation caused internalization of the TSH receptors into a pre-Golgi compartment in close association with G-protein αs-subunits and adenylyl cyclase III. Receptors internalized together with TSH and produced downstream cellular responses that were distinct from those triggered by cell surface receptors. These data suggest that classical paradigms of GPCR signaling may need revision, as they indicate that cAMP signaling by GPCRs may occur both at the cell surface and from intracellular sites, but with different consequences for the cell. Cells respond to many environmental cues through the activity of cell surface receptor proteins, which sense these cues and convey that information to signaling molecules inside the cell. G-protein–coupled receptors (GPCRs) form the largest eukaryotic family of plasma membrane receptors. They convert the information provided by extracellular stimuli into intracellular second messengers, like cyclic AMP (cAMP). After prolonged stimulation, they are internalized inside cells, an event that to date has been thought to terminate the production of second messengers. Though many of the key steps of GPCR signaling are known in detail, precisely how signaling and termination actually occur in time and space (i.e., in subcellular compartments or microdomains) is still largely unexplored. To observe GPCR signaling in living cells, we generated mice expressing a fluorescent sensor that allows monitoring the intracellular levels of cAMP with a microscope. We utilized this system to study, directly in native thyroid follicles, the signal sent by the receptor for thyroid-stimulating hormone (TSH). Our findings indicate that TSH receptors are internalized rapidly after activation but continue to stimulate cAMP production inside cells and that this sustained, cAMP production is apparently required for localized activation of downstream components. These data challenge the current model of the GPCR-cAMP pathway by suggesting the existence of previously unrecognized intracellular site(s) for cAMP generation and of differential signaling outcomes as a result of intracellular GPCR signaling. Such intracellular site(s) may provide specialized signaling platforms, thus contributing to the spatiotemporal regulation of cAMP production and to signaling specificity within the GPCR family.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Dipartimento di Scienze Mediche, Università degli Studi di Milano, Milan, Italy
- Laboratory of Experimental Endocrinology, Fondazione IRCSS Istituto Auxologico Italiano, Cusano Milanino, Italy
- * E-mail: (DC); (MJL)
| | - Viacheslav O. Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | - Tiziana de Filippis
- Laboratory of Experimental Endocrinology, Fondazione IRCSS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Christian Dees
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Carlo Tacchetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Luca Persani
- Dipartimento di Scienze Mediche, Università degli Studi di Milano, Milan, Italy
- Laboratory of Experimental Endocrinology, Fondazione IRCSS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- * E-mail: (DC); (MJL)
| |
Collapse
|
24
|
Mironov SL, Skorova E, Taschenberger G, Hartelt N, Nikolaev VO, Lohse MJ, Kügler S. Imaging cytoplasmic cAMP in mouse brainstem neurons. BMC Neurosci 2009; 10:29. [PMID: 19327133 PMCID: PMC2674597 DOI: 10.1186/1471-2202-10-29] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 03/27/2009] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND cAMP is an ubiquitous second messenger mediating various neuronal functions, often as a consequence of increased intracellular Ca2+ levels. While imaging of calcium is commonly used in neuroscience applications, probing for cAMP levels has not yet been performed in living vertebrate neuronal tissue before. RESULTS Using a strictly neuron-restricted promoter we virally transduced neurons in the organotypic brainstem slices which contained pre-Bötzinger complex, constituting the rhythm-generating part of the respiratory network. Fluorescent cAMP sensor Epac1-camps was expressed both in neuronal cell bodies and neurites, allowing us to measure intracellular distribution of cAMP, its absolute levels and time-dependent changes in response to physiological stimuli. We recorded [cAMP]i changes in the micromolar range after modulation of adenylate cyclase, inhibition of phosphodiesterase and activation of G-protein-coupled metabotropic receptors. [cAMP]i levels increased after membrane depolarisation and release of Ca2+ from internal stores. The effects developed slowly and reached their maximum after transient [Ca2+]i elevations subsided. Ca2+-dependent [cAMP]i transients were suppressed after blockade of adenylate cyclase with 0.1 mM adenylate cyclase inhibitor 2'5'-dideoxyadenosine and potentiated after inhibiting phosphodiesterase with isobutylmethylxanthine and rolipram. During paired stimulations, the second depolarisation and Ca2+ release evoked bigger cAMP responses. These effects were abolished after inhibition of protein kinase A with H-89 pointing to the important role of phosphorylation of calcium channels in the potentiation of [cAMP]i transients. CONCLUSION We constructed and characterized a neuron-specific cAMP probe based on Epac1-camps. Using viral gene transfer we showed its efficient expression in organotypic brainstem preparations. Strong fluorescence, resistance to photobleaching and possibility of direct estimation of [cAMP] levels using dual wavelength measurements make the probe useful in studies of neurons and the mechanisms of their plasticity. Epac1-camps was applied to examine the crosstalk between Ca2+ and cAMP signalling and revealed a synergism of actions of these two second messengers.
Collapse
Affiliation(s)
- SL Mironov
- DFG-Center of Molecular Physiology of the Brain, Department of Neuro- and Sensory Physiology, Humboldtallee 23, Georg-August-University, 37073 Göttingen, Germany
| | - E Skorova
- DFG-Center of Molecular Physiology of the Brain, Department of Neuro- and Sensory Physiology, Humboldtallee 23, Georg-August-University, 37073 Göttingen, Germany
| | - G Taschenberger
- University Medical Center Göttingen, Department of Neurology, Waldweg 33, 37073 Göttingen, Germany
| | - N Hartelt
- DFG-Center of Molecular Physiology of the Brain, Department of Neuro- and Sensory Physiology, Humboldtallee 23, Georg-August-University, 37073 Göttingen, Germany
| | - VO Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - MJ Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - S Kügler
- University Medical Center Göttingen, Department of Neurology, Waldweg 33, 37073 Göttingen, Germany
| |
Collapse
|
25
|
Real-time monitoring of cyclic nucleotide signaling in neurons using genetically encoded FRET probes. ACTA ACUST UNITED AC 2008; 36:3-17. [PMID: 18941898 DOI: 10.1007/s11068-008-9035-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/04/2008] [Indexed: 01/28/2023]
Abstract
Signaling cascades involving cyclic nucleotides play key roles in signal transduction in virtually all cell types. Elucidation of the spatiotemporal regulation of cyclic nucleotide signaling requires methods for tracking the dynamics of cyclic nucleotides and the activities of their regulators and effectors in the native biological context. Here we review a series of genetically encoded FRET-based probes for real-time monitoring of cyclic nucleotide signaling with a particular focus on their implementation in neurons. Current data indicate that neurons have a very active metabolism in cyclic nucleotide signaling, which is tightly regulated through a variety of homeostatic regulations.
Collapse
|
26
|
Collins DM, Murdoch H, Dunlop AJ, Charych E, Baillie GS, Wang Q, Herberg FW, Brandon N, Prinz A, Houslay MD. Ndel1 alters its conformation by sequestering cAMP-specific phosphodiesterase-4D3 (PDE4D3) in a manner that is dynamically regulated through Protein Kinase A (PKA). Cell Signal 2008; 20:2356-69. [PMID: 18845247 DOI: 10.1016/j.cellsig.2008.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 09/26/2008] [Accepted: 09/26/2008] [Indexed: 12/18/2022]
Abstract
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1-Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1-Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA.
Collapse
Affiliation(s)
- Daniel M Collins
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow, G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
McCahill A, Campbell L, McSorley T, Sood A, Lynch MJ, Li X, Yan C, Baillie GS, Houslay MD. In cardiac myocytes, cAMP elevation triggers the down-regulation of transcripts and promoter activity for cyclic AMP phosphodiesterase-4A10 (PDE4A10). Cell Signal 2008; 20:2071-83. [PMID: 18721873 DOI: 10.1016/j.cellsig.2008.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 07/28/2008] [Indexed: 12/11/2022]
Abstract
Transcripts for the PDE4A10 cyclic AMP phosphodiesterase isoform are present in a wide variety of rat tissues including the heart. Sequence comparisons between the putative human and mouse promoters revealed a number of conserved regions including both an Sp1 and a CREB-binding site. The putative mouse PDE4A10 promoter was amplified from genomic DNA and sub-cloned into a luciferase reporter vector for investigation of activity in neonatal cardiac myocytes. Transfection with this construct identified a high level of luciferase expression in neonatal cardiac myocytes. Surprisingly, this activity was down-regulated by elevation of intracellular cAMP through a process involving PKA, but not EPAC, signalling. Such inhibition of the rodent PDE4A10 promoter activity in response to elevated cAMP levels is in contrast to the PDE4 promoters so far described. Site-directed mutagenesis revealed that the Sp1 binding site at promoter position -348 to -336 is responsible for the basal constitutive expression of murine PDE4A10. The conserved CREB-binding motif at position -370 to -363 also contributes to basal promoter activity but does not in itself confer cAMP inhibition upon the PDE4A10 promoter. EMSA analysis confirmed the authenticity of CREB and Sp1 binding sites. The transcriptional start site was identified to be an adenine residue at position -55 in the mouse PDE4A10 promoter. We present evidence that this novel down-regulation of PDE4A10 is mediated by the transcription factor ICER in a PKA dependent manner. The pool of cAMP in cardiac myocytes that down-regulates PDE4A10 is regulated by beta-adrenoceptor coupled adenylyl cyclase activity and via hydrolysis determined predominantly by the action of PDE4 (cAMP phosphodiesterase-4) and not PDE3 (cAMP phosphodiesterase-3). We suggest that increased cAMP may remodel cAMP-mediated signalling events by not only increasing the expression of specific PDE4 cAMP phosphodiesterases but also by down-regulating specific isoforms, such as is shown here for PDE4A10 in cardiac myocytes.
Collapse
Affiliation(s)
- Angela McCahill
- Neuroscience and Molecular Pharmacology, Wolfson Link and Davidson Buildings, Faculty of Biomedical & Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|