1
|
Xiao C, Peng G, Conneely KN, Zhao H, Felger JC, Wommack EC, Higgins KA, Shin DM, Saba NF, Bruner DW, Miller AH. DNA methylation profiles of cancer-related fatigue associated with markers of inflammation and immunometabolism. Mol Psychiatry 2025; 30:76-83. [PMID: 38977918 DOI: 10.1038/s41380-024-02652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Cancer patients are commonly affected by fatigue. Herein, we sought to examine epigenetic modifications (i.e., DNA methylation) related to fatigue in peripheral blood among patients during and after treatment for head and neck cancer (HNC). Further, we determined whether these modifications were associated with gene expression and inflammatory protein markers, which we have previously linked to fatigue in HNC. This prospective, longitudinal study enrolled eligible patients with data collected at pre-radiotherapy, end of radiotherapy, and six months and one-year post-radiotherapy. Fatigue data were reported by patients using the Multidimensional Fatigue Inventory (MFI)-20. DNA methylation (Illumina MethylationEPIC) and gene expression (Applied Biosystems Clariom S) arrays and assays for seven inflammatory markers (R&D Systems multiplex) were performed. Mixed models and enrichment analyses were applied to establish the associations. A total of 386 methylation loci were associated with fatigue among 145 patients (False Discovery Rate [FDR] < 0.05). Enrichment analyses showed the involvement of genes related to immune and inflammatory responses, insulin and lipid metabolism, neuropsychological disorders, and tumors. We further identified 16 methylation-gene expression pairs (FDR < 0.05), which were linked to immune and inflammatory responses and lipid metabolism. Ninety-one percent (351) of the 386 methylation loci were also significantly associated with inflammatory markers (e.g., interleukin 6, c-reactive protein; FDR < 0.05), which further mediated the association between methylation and fatigue (FDR < 0.05). These data suggest that epigenetic modifications associated with inflammation and immunometabolism, in conjunction with relevant gene expression and protein markers, are potential targets for treating fatigue in HNC patients. The findings also merit future prospective studies in other cancer populations as well as interventional investigations.
Collapse
Affiliation(s)
- Canhua Xiao
- Emory University School of Nursing, Atlanta, GA, USA.
| | - Gang Peng
- Indianan University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, IN, USA
| | - Karen N Conneely
- Emory University School of Medicine, Department of Human Genetics, Atlanta, GA, USA
| | - Hongyu Zhao
- Yale University School of Medicine, Department of Genetics, New Haven, CT, USA
| | - Jennifer C Felger
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Evanthia C Wommack
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Kristin A Higgins
- Emory University School of Medicine, Department of Radiation Oncology, Atlanta, GA, USA
| | - Dong M Shin
- Emory University School of Medicine, Department of Hematology and Medical Oncology, Atlanta, GA, USA
| | - Nabil F Saba
- Emory University School of Medicine, Department of Hematology and Medical Oncology, Atlanta, GA, USA
| | | | - Andrew H Miller
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| |
Collapse
|
2
|
Guha S, Jagadeesan Y, Pandey MM, Mittal A, Chitkara D. Targeting the epigenome with advanced delivery strategies for epigenetic modulators. Bioeng Transl Med 2025; 10:e10710. [PMID: 39801754 PMCID: PMC11711227 DOI: 10.1002/btm2.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth. Currently, a considerable amount of research is focused on discovering new drug molecules to combat the existing research gap in epigenetic drug therapy. A novel and efficient delivery system can be established as a promising approach to overcome the drawbacks associated with the current epigenetic modulators. Therefore, formulating the existing epigenetic drugs with distinct encapsulation strategies in nanocarriers, including solid lipid nanoparticles, nanogels, bio-engineered nanocarriers, liposomes, surface modified nanoparticles, and polymer-drug conjugates have been examined for therapeutic efficacy. Nonetheless, several epigenetic modulators are untouched for their therapeutic potential through different delivery strategies. This review provides a comprehensive up to date discussion on the research findings of various epigenetics mechanism, epigenetic modulators, and delivery strategies utilized to improve their therapeutic outcome. Furthermore, this review also highlights the recently emerged CRISPR tool for epigenome editing.
Collapse
Affiliation(s)
- Sonia Guha
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Yogeswaran Jagadeesan
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Murali Monohar Pandey
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Anupama Mittal
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| | - Deepak Chitkara
- Department of PharmacyBirla Institute of Technology and Science Pilani (BITS Pilani)JhunjhunuRajasthanIndia
| |
Collapse
|
3
|
He J, Dong C, Zhang H, Jiang Y, Liu T, Man X. The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell Signal 2023; 102:110527. [PMID: 36410635 DOI: 10.1016/j.cellsig.2022.110527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Overexpression of TFAP2A has been linked to increased lymph node metastasis in basal-squamous bladder cancer. However, its downstream targets in bladder urothelial carcinoma (BLCA), the most malignant cancer of the urinary tract, remain unclear. In the current study, we aim to explore the function and mechanism of TFAP2A in BLCA. METHODS TFAP2A expression and the prognostic significance in BLCA was analyzed using TCGA and GTEX projects. TFAP2A was knocked-down in BLCA cells to study its impact on glucose uptake, lactate and ATP production, expression of HK2, and the number of vascular meshes formed by HUVEC. The target long noncoding RNAs (lncRNAs) of TFAP2A were predicted by bioinformatics tools, followed by ChIP-qPCR and luciferase assays. The downstream targets of TPRG1-AS1 were analyzed by microarray analysis. Rescue experiments were conducted for validation. RESULTS TFAP2A upregulation in BLCA predicted dismal survival of patients. Loss of TFAP2A inhibited glycolysis (as evidenced by reduced glucose uptake, lactate, ATP production, and the expression of HK2) and angiogenesis (decreased number of vascular meshes formed by HUVEC). TFAP2A promoted the transcription of TPRG1-AS1. TPRG1-AS1 reversed the inhibitory effect of TFAP2A knockdown on glycolysis and angiogenesis in BLCA cells. TPRG1-AS1 inhibited the transcription of CRTAC1 by recruiting a DNA methyltransferase to the promoter of CRTAC1 and increasing the DNA methylation of its promoter. CRTAC1 inhibited glycolysis and angiogenesis in BLCA cells. TFAP2A silencing curbed tumor growth in vivo via the TPRG1-AS1/CRTAC1 axis. CONCLUSION TFAP2A reduces CRTAC1 expression by promoting TPRG1-AS1 transcription, thereby expediting BLCA glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Jiani He
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China
| | - Changming Dong
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Hao Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China; Institute of Urology, China Medical University, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
4
|
Bhootra S, Jill N, Shanmugam G, Rakshit S, Sarkar K. DNA methylation and cancer: transcriptional regulation, prognostic, and therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:71. [PMID: 36602616 DOI: 10.1007/s12032-022-01943-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
DNA methylation is one among the major grounds of cancer progression which is characterized by the addition of a methyl group to the promoter region of the gene thereby causing gene silencing or increasing the probability of mutations; however, in bacteria, methylation is used as a defense mechanism where DNA protection is by addition of methyl groups making restriction enzymes unable to cleave. Hypermethylation and hypomethylation both pose as leading causes of oncogenesis; the former being more frequent which occurs at the CpG islands present in the promoter region of the genes, whereas the latter occurs globally in various genomic sequences. Reviewing methylation profiles would help in the detection and treatment of cancers. Demethylation is defined as preventing methyl group addition to the cytosine DNA base which could cause cancers in case of global hypomethylation, however, upon further investigation; it could be used as a therapeutic tool as well as for drug design in cancer treatment. In this review, we have studied the molecules that induce and enzymes (DNMTs) that bring about methylation as well as comprehend the correlation between methylation with transcription factors and various signaling pathways. DNA methylation has also been reviewed in terms of how it could serve as a prognostic marker and the various therapeutic drugs that have come into the market for reversing methylation opening an avenue toward curing cancers.
Collapse
Affiliation(s)
- Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
DNA methylation-induced ablation of miR-133a accelerates cancer aggressiveness in glioma through upregulating peroxisome proliferator-activated receptor γ. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:19-28. [PMID: 36067936 DOI: 10.1016/j.slasd.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/31/2023]
Abstract
Emerging evidences suggest that miRNAs can be used as theranostic biomarkers for multiple cancers, including glioma. Thus, identification of novel miRNAs for glioma treatment and prognosis becomes necessary and urgent. Here, by analyzing miRNA expression profiles in the glioma and para-cancer tissues by miRNA microarray and verified by RT-PCR, we found that miR-133a was significantly downregulated in the cancerous tissues, and patients with low-expressed miR-133a levels predicted an unfavorable prognosis. The following functional experiments confirmed that overexpression of miR-133a restrained cell proliferation and colony formation abilities, and induced cell cycle arrest to restrain cancer progression in glioma cells. Then, the underlying mechanisms were uncovered, and the peroxisome proliferator-activated receptor γ (PPARγ, PPARG) was verified as the downstream target of miR-133a. Mechanistically, miR-133a negatively regulated PPARG expressions by binding to its 3' untranslated regions (3'UTR). The following rescuing experiments evidenced that miR-133a overexpression-induced anti-cancer effects in glioma cells were abrogated by upregulating PPARγ. Interestingly, we noticed that the promoter region of miR-133a was hypermethylated, and removal of DNA methylation by 5-Azacytidine (AZA) significantly increased the expression levels of miR-133a in glioma cells. Taken together, we concluded that DNA-methylation-induced miR-133a silence contributed to cancer progression in glioma through upregulating PPARγ, and firstly identified the DNA-methylation-regulated miR-133a/PPARG axis as the novel indicators for glioma treatment and prognosis.
Collapse
|
6
|
Investigation of the effects of the royal jelly on genomic demethylation and tumor suppressor genes in human cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:59. [PMID: 36564533 DOI: 10.1007/s12032-022-01927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Royal jelly is a gelatinous nutrient secretion produced by the mandibular glands of young worker honey bees and has a critical role in honey bee life. In the honey bee colonies, queen and worker honey bees have very different morphologies and behaviors due to their diet in the larval period, despite having the same genome. In comparison, queen bees formed from larvae that feed royal jelly exclusively, and worker bees formed from larvae that feed on much less royal jelly. DNA methylation has been shown to play a critical role in the development of queen and worker honeybees. Alterations in DNA methylation, one of the epigenetic mechanisms defined as hereditable nucleotide modifications that occur in gene expression without changes in the DNA sequence, are closely related to many diseases, especially cancer. Hypermethylation of CpG islands located in the promoter regions of genes causes gene silencing and tumor suppressor genes epigenetically have silenced in cancer. The inactivation of tumor suppressor genes disrupts nearly all cellular pathways in cancer. In contrast to genetic alterations, gene silencing by epigenetic modifications may potentially be reversed and used in cancer treatment. Royal jelly, which causes epigenetic changes in bee colonies, has the potential to cause a change in cancer cells. In our study, royal jelly's effects on DNA methyltransferase enzyme and gene methylation of RASSF1A tumor suppressor were investigated in human cancer cell lines (HeLa, HT29, and A549), and modifications in the gene expression profile of royal jelly were determined by next generation sequencing.
Collapse
|
7
|
Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 2021; 13:877-919. [PMID: 34050894 PMCID: PMC9243210 DOI: 10.1007/s13238-021-00846-7] [Citation(s) in RCA: 341] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolism- and epigenetic modification-based therapeutic prospects in cancer.
Collapse
Affiliation(s)
- Linchong Sun
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Huafeng Zhang
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China. .,CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- Guangzhou First People's Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China. .,School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
8
|
Li Y, Wang Y. Obstructive Sleep Apnea-hypopnea Syndrome as a Novel Potential Risk for Aging. Aging Dis 2021; 12:586-596. [PMID: 33815884 PMCID: PMC7990365 DOI: 10.14336/ad.2020.0723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder, negatively influencing individuals' quality of life and socioeconomic burden. In recent years, OSAHS has been reported in not only constituting an aging-associated disease, but also in accelerating and/or potentiating aging mechanisms. However, the negative impacts of OSAHS on aging are underestimated because of low level of public awareness about this disease and high rates of undiagnosed cases, which are more critical in developing countries or economically disadvantaged regions. Hence, reviewing previously reported observations may assist scholars to better indicate that OSAHS is likely a novel potential risk for aging. Further understanding of the pathophysiological mechanism of OSAHS and its role in procession of aging may markedly highlight the importance of this common sleep disorder.
Collapse
Affiliation(s)
- Yayong Li
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
9
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Kozako T, Itoh Y, Honda SI, Suzuki T. Epigenetic Control Using Small Molecules in Cancer. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-32857-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Upadhyaya P, Di Serafino A, Sorino L, Ballerini P, Marchisio M, Pierdomenico L, Stuppia L, Antonucci I. Genetic and epigenetic modifications induced by chemotherapeutic drugs: human amniotic fluid stem cells as an in-vitro model. BMC Med Genomics 2019; 12:146. [PMID: 31660974 PMCID: PMC6816179 DOI: 10.1186/s12920-019-0595-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bleomycin, etoposide and cisplatin (BEP) are three chemotherapeutic agents widely used individually or in combination with each other or other chemotherapeutic agents in the treatment of various cancers. These chemotherapeutic agents are cytotoxic; hence, along with killing cancerous cells, they also damage stem cell pools in the body, which causes various negative effects on patients. The epigenetic changes due to the individual action of BEP on stem cells are largely unknown. METHODS Human amniotic fluid stem cells (hAFSCs) were treated with our in-vitro standardized dosages of BEP individually, for seven days. The cells were harvested after the treatment and extraction of DNA and RNA were performed. Real-time PCR and flow cytometry were conducted for cell markers analysis. The global DNA methylation was quantified using 5mC specific kit and promoter and CpG methylation % through bisulfite conversion and pyrosequencing. Micro- RNAs (miRNAs) were quantified with real-time qPCR. RESULTS The cytotoxic nature of BEP was observed even at low dosages throughout the experiment. We also investigated the change in the expression of various pluripotent and germline markers and found a significant change in the properties of the cells after the treatments. The methylation of DNA at global, promoter and individual CpG levels largely get fluctuated due to the BEP treatment. Several tested miRNAs showed differential expression. No positive correlation between mRNA and protein expression was observed for some markers. CONCLUSION Cytotoxic chemotherapeutic agents such as BEP were found to alter stem cell properties of hAFSCs. Different methylation profiles change dynamically, which may explain such changes in cellular properties. Data also suggests that the fate of hAFSCs after treatment may depend upon the interplay between the miRNAs. Finally, our results demonstrate that hAFSCs might prove to be a suitable in-vitro model of stem cells to predict genetic and epigenetic modification due to the action of various drugs.
Collapse
Affiliation(s)
- Prabin Upadhyaya
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Alessandra Di Serafino
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Luca Sorino
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Patrizia Ballerini
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Marco Marchisio
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Laura Pierdomenico
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy
| | - Ivana Antonucci
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy.
- Centre of Aging Science and Translational Medicine (Ce.S.I.-Me.T.), G. d'Annunzio University, Chieti-Pescara, Italy.
| |
Collapse
|
12
|
Cheon H, Yang HJ, Choi M, Son JH. Effective demethylation of melanoma cells using terahertz radiation. BIOMEDICAL OPTICS EXPRESS 2019; 10:4931-4941. [PMID: 31646020 PMCID: PMC6788585 DOI: 10.1364/boe.10.004931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 05/05/2023]
Abstract
Terahertz (THz) demethylation is a photomedical technique applied to dissociate methyl-DNA bonds and reduce global DNA methylation using resonant THz radiation. We evaluated the performance of THz demethylation and investigated the DNA damage caused by THz irradiation. The demethylation rate in M-293T DNA increased linearly with the irradiation power up to 48%. The degree of demethylation increased with exposure to THz radiation, saturating after 10 min. Although THz demethylation occurred globally, most of the demethylation occurred within the partial genes in the CpG islands. Subsequently, we performed THz demethylation of melanoma cells. The degree of methylation in the melanoma cell pellets decreased by approximately 10-15%, inducing ∼5-8 abasic sites per 105 bp; this was considerably less than the damaged DNA irradiated by the high-power infrared laser beam used for generating THz pulses. These results provide initial data for THz demethylation and demonstrate the applicability of this technique in advanced cancer cell research. THz demethylation has the potential to develop into a therapeutic procedure for cancer, similar to that involving chemical demethylating agents.
Collapse
Affiliation(s)
- Hwayeong Cheon
- Department of Physics, University of Seoul, Seoul 130-743, South Korea
| | - Hee-Jin Yang
- Department of Neurosurgery, SNU-Borame Hospital, Seoul 130-743, South Korea
| | - Moran Choi
- Department of Neurosurgery, SNU-Borame Hospital, Seoul 130-743, South Korea
| | - Joo-Hiuk Son
- Department of Physics, University of Seoul, Seoul 130-743, South Korea
| |
Collapse
|
13
|
Neurotrophins and their involvement in digestive cancers. Cell Death Dis 2019; 10:123. [PMID: 30741921 PMCID: PMC6370832 DOI: 10.1038/s41419-019-1385-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Cancers of the digestive system, including esophageal, gastric, pancreatic, hepatic, and colorectal cancers, have a high incidence and mortality worldwide. Efficient therapies have improved patient care; however, many challenges remain including late diagnosis, disease recurrence, and resistance to therapies. Mechanisms responsible for these aforementioned challenges are numerous. This review focuses on neurotrophins, including NGF, BDNF, and NT3, and their specific tyrosine kinase receptors called tropomyosin receptor kinase (Trk A, B, C, respectively), associated with sortilin and the p75 neurotrophin receptor (p75NTR), and their implication in digestive cancers. Globally, p75NTR is a frequently downregulated tumor suppressor. On the contrary, Trk and their ligands are considered oncogenic factors. New therapies which target NT and/or their receptors, or use them as diagnosis biomarkers could help us to combat digestive cancers.
Collapse
|
14
|
Wei HY, Feng R, Shao H, Feng B, Liu HQ, Men JL, Zou W. Serum glycine dehydrogenase is associated with increased risk of lung cancer and promotes malignant transformation by regulating DNA methyltransferases expression. Mol Med Rep 2018; 18:2293-2299. [PMID: 29956770 DOI: 10.3892/mmr.2018.9214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
Identification of novel risk factors that are critical to the initiation of lung cancer will be key for its prevention. Recently, it has been reported that glycine dehydrogenase (GLDC) can drive the formation of lung cancer initiating cells. However, there have been no perspective studies on the association between circulating GLDC and lung cancer until now. To identify whether serum GLDC is a risk factor for lung cancer, the present study conducted a nested case‑control study within a Chinese cohort. Using ELISAs, serum GLDC was measured in 300 case subjects, who were subsequently diagnosed with lung cancer during follow‑up, and in 600 matched healthy controls. The results revealed that serum GLDC was associated with increased lung cancer risk [odds ratio=1.48; 95% confidence intervals (1.01‑2.04)]. Spearman correlation was employed to analyze the associations between age, body mass index, years of smoking and the serum concentration of GLDC. It was demonstrated that years of smoking was associated with serum GLDC (spearman's correlation, ρ=0.81) in patients with lung cancer. However, the association was attenuated in the serum of matched controls (ρ=0.48). In addition, overexpression of GLDC protein contributed to malignant transformation and inhibited microRNA (miR)‑29 family expression in normal human bronchial epithelial (NHBE) cells. Aberrant methylation of tumor suppressive gene (TSG) is an early event in the development of lung cancer, which is controlled by DNA methyltransferases (DNMTs). The present study demonstrated that GLDC promoted the expression of DNMT proteins; however, the miR‑29 family inhibited their expression in NHBE cells. Thus, it was concluded that elevated serum GLDC may increase lung cancer risk, and that smoking, GLDC, the miR‑29 family and DNMT signaling pathways may serve an important role in early malignant transformation during the development of lung cancer.
Collapse
Affiliation(s)
- Hai-Yan Wei
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Rui Feng
- Radiotherapy Department, Shandong Cancer Hospital and Institute, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Bin Feng
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Hong-Qiang Liu
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Jin-Long Men
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| | - Wei Zou
- The Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
15
|
DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:619. [PMID: 29795311 PMCID: PMC5966399 DOI: 10.1038/s41419-018-0662-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
Cancer cells frequently adapt fundamentally altered metabolism to support tumorigenicity and malignancy. Epigenetic and metabolic networks are closely interactive, in which DNA methyltransferases (DNMTs) play important roles. Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (EBV-LMP1) is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis because it can trigger multiple cell signaling pathways that promote cell transformation, proliferation, immune escape, invasiveness, epigenetic modification, and metabolic reprogramming. Our current findings reveal for the first time that LMP1 not only upregulates DNMT1 expression and activity, but also promotes its mitochondrial translocation. This induces epigenetic silencing of pten and activation of AKT signaling as well as hypermethylation of the mtDNA D-loop region and downregulation of oxidative phosphorylation (OXPHOS) complexes, consequently, leading to metabolic reprogramming in NPC. Furthermore, we demonstrate that grifolin, a natural farnesyl phenolic compound originated from higher fungi, is able to attenuate glycolytic flux and recover mitochondrial OXPHOS function by inhibiting DNMT1 expression and activity as well as its mitochondrial retention in NPC cells. Therefore, our work establishes a mechanistic connection between epigenetics and metabolism in EBV-positive NPC and provides further evidence for pathological classification based on CpG island methylator phenotype (CIMP) in EBV-associated malignancies. In addition, grifolin might be a promising lead compound in the intervention of high-CIMP tumor types. The availability of this natural product could hamper tumor cell metabolic reprogramming by targeting DNMT1.
Collapse
|
16
|
Zhang M, Saad C, Le L, Halfter K, Bauer B, Mansmann UR, Li J. Computational modeling of methionine cycle-based metabolism and DNA methylation and the implications for anti-cancer drug response prediction. Oncotarget 2018; 9:22546-22558. [PMID: 29875994 PMCID: PMC5989406 DOI: 10.18632/oncotarget.24547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022] Open
Abstract
The relationship between metabolism and methylation is considered to be an important aspect of cancer development and drug efficacy. However, it remains poorly defined how to apply this aspect to improve preclinical disease characterization and clinical treatment outcome. Using available molecular information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and literature, we constructed a large-scale knowledge-based metabolic in silico model. For the purpose of model validation, we applied data from the Cancer Cell Line Encyclopedia (CCLE) to investigate computationally the impact of metabolism on chemotherapy efficacy. In our model, different metabolic components such as MAT2A, ATP6V0E1, NNMT involved in methionine cycle correlate with biologically measured chemotherapy outcome (IC50) that are in agreement with findings of independent studies. These proteins are potentially also involved in cellular methylation processes. In addition, several components such as 3,4-dihydoxymandelate, PAPSS2, UPP1 from metabolic pathways involved in the production of purine and pyrimidine correlate with IC50. This study clearly demonstrates that complex computational approaches can reflect findings of biological experiments. This demonstrates their high potential to grasp complex issues within systems medicine such as response prediction, biomarker identification using available data resources.
Collapse
Affiliation(s)
- Mengying Zhang
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany
| | - Christian Saad
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Lien Le
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany
| | - Kathrin Halfter
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany
| | - Bernhard Bauer
- Department of Computational Science, University of Augsburg, Augsburg, Germany
| | - Ulrich R Mansmann
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jian Li
- Institute for Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians University of München, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Perikleous E, Steiropoulos P, Tzouvelekis A, Nena E, Koffa M, Paraskakis E. DNA Methylation in Pediatric Obstructive Sleep Apnea: An Overview of Preliminary Findings. Front Pediatr 2018; 6:154. [PMID: 29896466 PMCID: PMC5986940 DOI: 10.3389/fped.2018.00154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by phenotypic variations, which can be partly attributed to specific gene polymorphisms. Recent studies have focused on the role of epigenetic mechanisms in order to permit a more precise perception about clinical phenotyping and targeted therapies. The aim of this review was to synthesize the current state of knowledge on the relation between DNA methylation patterns and the development of pediatric OSA, in light of the apparent limited literature in the field. We performed an electronic search in PubMed, EMBASE, and Google Scholar databases, including all types of articles written in English until January 2017. Literature was apparently scarce; only 2 studies on pediatric populations and 3 animal studies were identified. Forkhead Box P3 (FOXP3) DNA methylation levels were associated with inflammatory biomarkers and serum lipids. Hypermethylation of the core promoter region of endothelial Nitric Oxide Synthase (eNOS) gene in OSA children were related with decreased eNOS expression. Additionally, increased expression of genes encoding pro-oxidant enzymes and decreased expression of genes encoding anti-oxidant enzymes suggested that disturbances in oxygen homeostasis throughout neonatal period predetermined increased hypoxic sensing in adulthood. In conclusion, epigenetic modifications may be crucial in pediatric sleep disorders to enable in-depth understanding of genotype-phenotype interactions and lead to risk assessment. Epigenome-wide association studies are urgently needed to validate certain epigenetic alterations as reliable, novel biomarkers for the molecular prognosis and diagnosis of OSA patients with high risk of end-organ morbidity.
Collapse
Affiliation(s)
- Evanthia Perikleous
- MSc Program in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Paschalis Steiropoulos
- MSc Program in Sleep Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Argyris Tzouvelekis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Emmanouil Paraskakis
- Department of Pediatrics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
18
|
Rezk NA, Mohamed RH, Alnemr AA, Harira M. Promoter Methylation of RASSF1A Gene in Egyptian Patients with Ovarian Cancer. Appl Biochem Biotechnol 2017; 185:153-162. [PMID: 29098560 DOI: 10.1007/s12010-017-2648-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
Ovarian malignancy is diagnosed in nearly a fourth of a million women internationally every year. Methylation of RASSF1A tumor suppressor gene prompts its inactivation in diseases. In this study, the RASSF1A promoter methylation was detected by methylated-specific PCR and investigated serum RASSF1A protein level through enzyme-linked immunosorbant assay in 160 Egyptian patients with ovarian cancer and 160 healthy controls. The present work proved that there was a higher frequency of RASSF1A methylation and a decrease in its serum level in patients with ovarian cancer compared to controls as well as in the high-grade tumor patients compared to low grade ones and also in advanced ovarian tumor stage compared to early stages. Our study exhibited that RASSF1A promoter hypermethylation and its protein levels may be a reliable and sensitive tool for diagnosing and monitoring of ovarian malignancy patients.
Collapse
Affiliation(s)
- Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Rasha H Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amr AbdAlmohsen Alnemr
- Obstetrics and Gynecology Departments, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mervat Harira
- Obstetrics and Gynecology Departments, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Impact of Natural Compounds on DNA Methylation Levels of the Tumor Suppressor Gene RASSF1A in Cancer. Int J Mol Sci 2017; 18:ijms18102160. [PMID: 29039788 PMCID: PMC5666841 DOI: 10.3390/ijms18102160] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023] Open
Abstract
Epigenetic inactivation of tumor suppressor genes (TSG) is a fundamental event in the pathogenesis of human cancer. This silencing is accomplished by aberrant chromatin modifications including DNA hypermethylation of the gene promoter. One of the most frequently hypermethylated TSG in human cancer is the Ras Association Domain Family 1A (RASSF1A) gene. Aberrant methylation of RASSF1A has been reported in melanoma, sarcoma and carcinoma of different tissues. RASSF1A hypermethylation has been correlated with tumor progression and poor prognosis. Reactivation of epigenetically silenced TSG has been suggested as a therapy in cancer treatment. In particular, natural compounds isolated from herbal extracts have been tested for their capacity to induce RASSF1A in cancer cells, through demethylation. Here, we review the treatment of cancer cells with natural supplements (e.g., methyl donors, vitamins and polyphenols) that have been utilized to revert or prevent the epigenetic silencing of RASSF1A. Moreover, we specify pathways that were involved in RASSF1A reactivation. Several of these compounds (e.g., reseveratol and curcumin) act by inhibiting the activity or expression of DNA methyltransferases and reactive RASSF1A in cancer. Thus natural compounds could serve as important agents in tumor prevention or cancer therapy. However, the exact epigenetic reactivation mechanism is still under investigation.
Collapse
|
20
|
Wang XX, Xiao FH, Li QG, Liu J, He YH, Kong QP. Large-scale DNA methylation expression analysis across 12 solid cancers reveals hypermethylation in the calcium-signaling pathway. Oncotarget 2017; 8:11868-11876. [PMID: 28060724 PMCID: PMC5355310 DOI: 10.18632/oncotarget.14417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022] Open
Abstract
Tumorigenesis is linked to the role of DNA methylation in gene expression regulation. Yet, cancer is a highly heterogeneous disease in which the global pattern of DNA methylation and gene expression, especially across diverse cancers, is not well understood. We investigated DNA methylation status and its association with gene expressions across 12 solid cancer types obtained from The Cancer Genome Atlas. Results showed that global hypermethylation was an important characteristic across all 12 cancer types. Moreover, there were more epigenetically silenced than epigenetically activated genes across the cancers. Further analysis identified epigenetically silenced genes shared in the calcium-signaling pathway across the different cancer types. Reversing the aberrant DNA methylation of genes involved in the calcium-signaling pathway could be an effective strategy for suppressing cancers and developing anti-cancer drugs.
Collapse
Affiliation(s)
- Xiao-Xiong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Qi-Gang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jia Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Han He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
21
|
Wang HC, Chen CW, Yang CL, Tsai IM, Hou YC, Chen CJ, Shan YS. Tumor-Associated Macrophages Promote Epigenetic Silencing of Gelsolin through DNA Methyltransferase 1 in Gastric Cancer Cells. Cancer Immunol Res 2017; 5:885-897. [DOI: 10.1158/2326-6066.cir-16-0295] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/07/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
|
22
|
Sufaru IG, Beikircher G, Weinhaeusel A, Gruber R. Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts. J Periodontal Implant Sci 2017; 47:66-76. [PMID: 28462005 PMCID: PMC5410554 DOI: 10.5051/jpis.2017.47.2.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/07/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-β1 (TGF-β1). METHODS Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-β1. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. RESULTS We found that 5-aza enhanced TGF-β1-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-β type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-β signaling. 5-aza moderately increased the expression of TGF-β type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-β1. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. CONCLUSIONS These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-β-induced IL11 expression in gingival fibroblasts.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania
| | - Gabriel Beikircher
- AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Andreas Weinhaeusel
- AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, University of Bern, Bern, Switzerland.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
23
|
Naz A, Cui Y, Collins CJ, Thompson DH, Irudayaraj J. PLGA-PEG nano-delivery system for epigenetic therapy. Biomed Pharmacother 2017; 90:586-597. [PMID: 28407579 DOI: 10.1016/j.biopha.2017.03.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Efficient delivery of cytidine analogues such as Azacitidine (AZA) into solid tumors constitutes a primary challenge in epigenetic therapies. We developed a di-block nano-vector based on poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) for stabilization of the conjugated AZA under physiological conditions. With equimolar drug content, our nano-conjugate could elicit a better anti-proliferative effect over free drug in breast cancer both in vitro and in vivo, through reactivation of p21 and BRCA1 to restrict cell proliferation. In addition, we applied single-molecule fluorescence tools to characterize the intracellular behavior of the AZA-PLGE-PEG nano-micelles at a finer spatiotemporal resolution. Our results suggest that the nano-micelles could effectively enrich in cancer cells and may not be limited by nucleoside transporters. Afterwards, the internalized nano-micelles exhibit pH-dependent release and resistance to active efflux. Altogether, our work describes a delivery strategy for DNA demethylating agents with nanoscale tunability, providing a cost-effective option for pharmaceutics.
Collapse
Affiliation(s)
- Asia Naz
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Pharmaceutical Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Yi Cui
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
25
|
Abstract
Activation of oncogenes or the deactivation of tumor suppressor genes has long been established as the fundamental mechanism leading towards carcinogenesis. Although this age old axiom is vastly accurate, thorough study over the last 15years has given us unprecedented information on the involvement of epigenetic in cancer. Various biochemical pathways that are essential towards tumorigenesis are regulated by the epigenetic phenomenons like remodeling of nucleosome by histone modifications, DNA methylation and miRNA mediated targeting of various genes. Moreover the presence of mutations in the genes controlling the epigenetic players has further strengthened the association of epigenetics in cancer. This merger has opened up newer avenues for targeted anti-cancer drug therapy with numerous pharmaceutical industries focusing on expanding their research and development pipeline with epigenetic drugs. The information provided here elaborates the elementary phenomena of the various epigenetic regulators and discusses their alteration associated with the development of cancer. We also highlight the recent developments in epigenetic drugs combining preclinical and clinical data to signify this evolving field in cancer research.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
26
|
Pechalrieu D, Etievant C, Arimondo PB. DNA methyltransferase inhibitors in cancer: From pharmacology to translational studies. Biochem Pharmacol 2016; 129:1-13. [PMID: 27956110 DOI: 10.1016/j.bcp.2016.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
DNA methylation is a mammalian epigenetic mark that participates to define where and when genes are expressed, both in normal cells and in the context of diseases. Like other epigenetic marks, it is reversible and can be modulated by chemical agents. Because it plays an important role in cancer by silencing certain genes, such as tumour suppressor genes, it is a promising therapeutic target. Two compounds are already approved to treat haematological cancers, and many efforts have been carried out to discover new molecules that inhibit DNA methyltransferases, the enzymes responsible for DNA methylation. Here, we analyse the molecular mechanisms and cellular pharmacology of these inhibitors, pointing out the necessity for new pharmacological models and paradigms. The parameters of pharmacological responses need to be redefined: the aim is cellular reprogramming rather than general cytotoxicity. Thus, "epigenetic" rather than cytotoxic dosages are defined. Another issue is the delay of the response: cellular reprogramming can take several generations to produce observable phenotypes. Is this compatible with laboratory scale experiments? Finally, it is important to consider the specificity for cancer cells compared to normal cells and the appearance of resistance. We also discuss different techniques that are used and the selection of pharmacological models.
Collapse
Affiliation(s)
- Dany Pechalrieu
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Chantal Etievant
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Paola B Arimondo
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France.
| |
Collapse
|
27
|
Kurdi LAF, Aljeddani FA. Reduction of Dacarbazine cytogenetic effects on somatic cells in male mice using bee glue (Propolis) to manifest the scientific miracles in the Quran. Electron Physician 2016; 8:3015-3023. [PMID: 27790359 PMCID: PMC5074765 DOI: 10.19082/3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022] Open
Abstract
Objective This study was carried out to investigate the ability of Propolis to ameliorate the adverse cytogenetic effects of Dacarbazine on bone marrow cells Methods In this experimental in vivo study, 18 mice were used, divided into four groups: control group; Propolis-treated group (treated with 50mg/kg Propolis); and Dacarbazine-treated group (treated with 3.5mg/kg Dacarbazine). The fourth, fifth, and sixth were treated with Dacarbazine and Propolis as pre 2h, post 2h, and concomitant treatment. After five days, the Bone Marrow (BM) samples were obtained for cytogenetic investigation. Results The in vivo studies revealed that Dacarbazine induced an abnormalities in polychromatic erythrocytes cells (PECs) as increase of cell with micronuclei, while the dual treatment accompanied with improvement of this abnormalities. Conclusions It could be concluded that there are protective effects of Propolis against the adverse effects of Dacarbazine. It could be recommended to use Propolis as an adjuvant with chemotherapeutic agents.
Collapse
Affiliation(s)
- Lina Abdul-Fattah Kurdi
- Faculty of Sciences, Department of Biology "Zoology", Al Faisaliah Campus, King Abdul Aziz University, Kingdom of Saudi Arabia
| | - Fatimah Aliyan Aljeddani
- Faculty of Sciences, Department of Biology "Zoology", Al Faisaliah Campus, King Abdul Aziz University, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Procaine Induces Epigenetic Changes in HCT116 Colon Cancer Cells. GENETICS RESEARCH INTERNATIONAL 2016; 2016:8348450. [PMID: 27843649 PMCID: PMC5098101 DOI: 10.1155/2016/8348450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/25/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Colon cancer is the third most commonly diagnosed cancer in the world, and it is the major cause of morbidity and mortality throughout the world. The present study aimed at treating colon cancer cell line (HCT116) with different chemotherapeutic drug/drug combinations (procaine, vorinostat “SAHA,” sodium phenylbutyrate, erlotinib, and carboplatin). Two different final concentrations were applied: 3 μM and 5 μM. Trypan blue test was performed to assess the viability of the cell before and after being treated with the drugs. The data obtained showed that there was a significant decrease in the viability of cells after applying the chemotherapeutic drugs/drug combinations. Also, DNA fragmentation assay was carried out to study the effect of these drugs on the activation of apoptosis-mediated DNA degradation process. The results indicated that all the drugs/drug combinations had a severe effect on inducing DNA fragmentation. Global DNA methylation quantification was performed to identify the role of these drugs individually or in combination in hypo- or hypermethylating the CpG dinucleotide all over the genome of the HCT116 colon cancer cell line. Data obtained indicated that different combinations had different effects in reducing or increasing the level of methylation, which might indicate the effectiveness of combining drugs in treating colon cancer cells.
Collapse
|
29
|
Moulin L, Cenizo V, Antu AN, André V, Pain S, Sommer P, Debret R. Methylation of LOXL1 Promoter by DNMT3A in Aged Human Skin Fibroblasts. Rejuvenation Res 2016; 20:103-110. [PMID: 27396912 DOI: 10.1089/rej.2016.1832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysyl oxidase-like 1 (LOXL1) is an amino-oxidase involved in maturation of elastic fibers. Its downregulation has been associated with elastic fibers repair loss in aging aorta, lung, ligament, and skin. Several evidences of LOXL1 epigenetic silencing by promoter methylation were reported in cancer and cutis laxa syndrome. We hypothesized that this mechanism could be implicated in skin aging process, as far as elastic fibers are also concerned. Anti-DNMT3A chromatin immunoprecipitation was conducted with nuclear extracts from skin fibroblasts isolated from young and elderly individuals, and showed a higher level of DNMT3A protein binding to the LOXL1 promoter in older cells concomitantly to the decrease of LOXL1 mRNA expression and the increase of LOXL1 promoter methylation. Using luciferase reporter assay driven by LOXL1 promoter in HEK293 cells, we demonstrated that LOXL1 transcriptional activity was dramatically reduced when a recombinant DNMT3A was concomitantly overexpressed. LOXL1 promoter transcriptional activity was restored in the presence of a broad-spectrum inhibitor of DNMT activity, 5-aza-2'-deoxycytidine. Finally, to assess whether the interplay between DNMT3A and LOXL1 promoter could be targeted to increase LOXL1 mRNA expression level, an Origanum majorana extract was selected among 43 plant extracts as a new inhibitor of human DNMT3A activity to restore LOXL1 secretion without cytotoxicity in aged skin fibroblasts.
Collapse
Affiliation(s)
- Léa Moulin
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | | | - Alengo Nyamay Antu
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | - Valérie André
- 2 BASF-Beauty Care Solutions France SAS , Lyon, France
| | - Sabine Pain
- 2 BASF-Beauty Care Solutions France SAS , Lyon, France
| | - Pascal Sommer
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | - Romain Debret
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| |
Collapse
|
30
|
Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016; 8:57. [PMID: 27222667 PMCID: PMC4877953 DOI: 10.1186/s13148-016-0223-4] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs. In this review, we describe those enzymes and their inhibitors that have already reached the first stages of clinical trials in cancer therapy, namely the histone methyltransferases DOT1L and EZH2 as well as the demethylase LSD1.
Collapse
Affiliation(s)
- Ludovica Morera
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology and Oncology, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
31
|
Xiao FH, Kong QP, Perry B, He YH. Progress on the role of DNA methylation in aging and longevity. Brief Funct Genomics 2016; 15:454-459. [PMID: 27032421 DOI: 10.1093/bfgp/elw009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aging is a major risk factor for individuals' health problems. Moreover, environmental signals have a widespread influence on the aging process. Epigenetic modification, e.g. DNA methylation, represents a link between genetic and environmental signals via the regulation of gene transcription. An abundance of literature indicates that aberrant epigenetic change occurs throughout the aging process at both the cellular and the organismal level. In particular, DNA methylation presents globally decreasing and site-specific increasing in aging. In this review, we focus on the crucial roles of DNA methylation in aging and age-related disease and highlight the great potential of DNA methylation as a therapeutic target in preventing age-related diseases and promoting healthy longevity.
Collapse
|
32
|
Zahnow C, Topper M, Stone M, Murray-Stewart T, Li H, Baylin S, Casero R. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy. Adv Cancer Res 2016; 130:55-111. [PMID: 27037751 DOI: 10.1016/bs.acr.2016.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.
Collapse
|
33
|
Wu JC, Wang FZ, Tsai ML, Lo CY, Badmaev V, Ho CT, Wang YJ, Pan MH. Se-Allylselenocysteine induces autophagy by modulating the AMPK/mTOR signaling pathway and epigenetic regulation of PCDH17 in human colorectal adenocarcinoma cells. Mol Nutr Food Res 2015; 59:2511-22. [DOI: 10.1002/mnfr.201500373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/04/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Jia-Ching Wu
- Department of Environmental and Occupational Health; National Cheng Kung University Medical College; Tainan Taiwan
| | - Fang-Zong Wang
- Department of Seafood Science; National Kaohsiung Marine University; Kaohsiung Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science; National Kaohsiung Marine University; Kaohsiung Taiwan
| | - Chih-Yu Lo
- Department of Food Science; National Chiayi University; Chiayi Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science; Rutgers University; New Brunswick NJ USA
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health; National Cheng Kung University Medical College; Tainan Taiwan
- Department of Biomedical Informatics; Asia University; Taichung Taiwan
- Department of Medical Research, China Medical University Hospital; China Medical University; Taichung Taiwan
| | - Min-Hsiung Pan
- Department of Medical Research, China Medical University Hospital; China Medical University; Taichung Taiwan
- Department of Health and Nutrition Biotechnology; Asia University; Taichung Taiwan
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| |
Collapse
|
34
|
An improved fluorescence polarization assay in 5'-nuclease reaction for gene promoter methylation detection. J Biotechnol 2015. [PMID: 26197420 DOI: 10.1016/j.jbiotec.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The detection of gene promoter methylation plays increasing roles in personalized medicine. In this study, an improved gene promoter methylation assay based on fluorescence polarization in 5'-nuclease reaction was developed. The novel assay offered a homogeneous annealing and cleavage reaction fully integrated with PCR which used a probe labeled with fluorescence without quencher to obtain the decreased fluorescence polarization values. In this platform, gene promoter methylated and unmethylated alleles were detected simultaneously in a tube. O(6)-methylguanine-DNA methyltransferase gene promoter methylation in 103 glioma tissue samples and epidermal growth factor receptor gene promoter methylation in 116 primary non-small-cell lung carcinoma tissue samples were detected by the novel assay and sequencing, absolute quantitative analysis of methylated allele in parallel. The accuracy of the results measured by the improved fluorescence polarization assay was evaluated using the paired-samples t test. No significant difference was found ( P>0.05). Therefore, the improved fluorescence polarization assay in 5'-nuclease reaction demonstrated a homogeneous, reliable and cost-effective method for gene promoter methylation analysis in clinic. That would provide a scientific basis for applying a reasonable therapeutic regimen in future treatment.
Collapse
|
35
|
Abstract
Cancer genome sequencing has created an opportunity for precision medicine. Thus far, genetic alterations can only be used to guide treatment for small subsets of certain cancer types with these key alterations. Similar to mutations, epigenetic events are equally suitable for personalized medicine. DNA methylation alterations have been used to identify tumor-specific drug responsive markers. Methylation of MGMT sensitizes gliomas to alkylating agents is an example of epigenetic personalized medicine. Recent studies have revealed that 5-azacytidine and decitabine show activity in myelodysplasia, lung and other cancers. There are currently at least 20 kinds of histone deacetylase inhibitors in clinical testing. Inhibitors targeting other epigenetic regulators are being clinically tested, such as EZH2 inhibitor EPZ-6438.
Collapse
Affiliation(s)
- Wenji Yan
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213, USA
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing 100853, China
| |
Collapse
|
36
|
Zielske SP. Epigenetic DNA methylation in radiation biology: on the field or on the sidelines? J Cell Biochem 2015; 116:212-7. [PMID: 25186310 DOI: 10.1002/jcb.24959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023]
Abstract
DNA methylation has been studied with regard to chemotherapeutics for a number of years. The radiation field has just begun to look at this in the context of radiotherapy or radiation exposure. So far, the data suggest that radiation induces epigenetic reprogramming which indicates a purposeful response that influences the cell fate or alters the response to future exposure. Further studies may result in discovery of biomarkers for radiotherapy outcome or prediction of the degree of radiation resistance. Past and ongoing development of DNMT1 inhibitors that lead to DNA hypomethylation appear to sensitize many tumor types to radiation and may be an area with long term clinical implications.
Collapse
Affiliation(s)
- Steven P Zielske
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan 48201
| |
Collapse
|
37
|
Singh BN, Singh HB, Singh A, Naqvi AH, Singh BR. Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade: phytoblockers of metastasis cascade. Cancer Metastasis Rev 2015; 33:41-85. [PMID: 24390421 DOI: 10.1007/s10555-013-9457-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer metastasis is a multistep process in which a cancer cell spreads from the site of the primary lesion, passes through the circulatory system, and establishes a secondary tumor at a new nonadjacent organ or part. Inhibition of cancer progression by dietary phytochemicals (DPs) offers significant promise for reducing the incidence and mortality of cancer. Consumption of DPs in the diet has been linked to a decrease in the rate of metastatic cancer in a number of preclinical animal models and human epidemiological studies. DPs have been reported to modulate the numerous biological events including epigenetic events (noncoding micro-RNAs, histone modification, and DNA methylation) and multiple signaling transduction pathways (Wnt/β-catenin, Notch, Sonic hedgehog, COX-2, EGFR, MAPK-ERK, JAK-STAT, Akt/PI3K/mTOR, NF-κB, AP-1, etc.), which can play a key role in regulation of metastasis cascade. Extensive studies have also been performed to determine the molecular mechanisms underlying antimetastatic activity of DPs, with results indicating that these DPs have significant inhibitory activity at nearly every step of the metastatic cascade. DPs have anticancer effects by inducing apoptosis and by inhibiting cell growth, migration, invasion, and angiogenesis. Growing evidence has also shown that these natural agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways. In this review, we discuss the variety of molecular mechanisms by which DPs regulate metastatic cascade and highlight the potentials of these DPs as promising therapeutic inhibitors of cancer.
Collapse
Affiliation(s)
- B N Singh
- Research and Development Division, Sowbhagya Biotech Private Limited, Cherlapally, Hyderabad, 500051, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
38
|
Computational fishing of new DNA methyltransferase inhibitors from natural products. J Mol Graph Model 2015; 60:43-54. [PMID: 26099696 DOI: 10.1016/j.jmgm.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/28/2015] [Accepted: 04/22/2015] [Indexed: 12/31/2022]
Abstract
DNA methyltransferase inhibitors (DNMTis) have become an alternative for cancer therapies. However, only two DNMTis have been approved as anticancer drugs, although with some restrictions. Natural products (NPs) are a promising source of drugs. In order to find NPs with novel chemotypes as DNMTis, 47 compounds with known activity against these enzymes were used to build a LDA-based QSAR model for active/inactive molecules (93% accuracy) based on molecular descriptors. This classifier was employed to identify potential DNMTis on 800 NPs from NatProd Collection. 447 selected compounds were docked on two human DNA methyltransferase (DNMT) structures (PDB codes: 3SWR and 2QRV) using AutoDock Vina and Surflex-Dock, prioritizing according to their score values, contact patterns at 4 Å and molecular diversity. Six consensus NPs were identified as virtual hits against DNMTs, including 9,10-dihydro-12-hydroxygambogic, phloridzin, 2',4'-dihydroxychalcone 4'-glucoside, daunorubicin, pyrromycin and centaurein. This method is an innovative computational strategy for identifying DNMTis, useful in the identification of potent and selective anticancer drugs.
Collapse
|
39
|
Potential use of histone deacetylase inhibitors in cancer therapy. Contemp Oncol (Pozn) 2015; 19:436-40. [PMID: 26843838 PMCID: PMC4731444 DOI: 10.5114/wo.2015.51824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/09/2014] [Indexed: 11/20/2022] Open
Abstract
Epigenetics is a branch of science that focuses on mechanisms related to control and modification of expression of genetic material without any changes to its sequences. Such mechanisms include post-translational modifications of histones. It is widely known that carcinogenesis is related to hypoacetylation of genes that influence apoptosis, the cell cycle, cell signaling, the immunologic response, angiogenesis and occurrence of metastasis. Currently conducted research focuses on several strategies related to epigenetic therapy. One such strategy is based on the use of histone deacetylase inhibitors. This paper presents mechanisms through which these compounds work and a summary of their characteristics. It also includes a review of clinical tests related to histone deacetylase inhibitors, as well as their relationship with other chemotherapeutic methods. A better understanding of the involved mechanisms will provide a rational basis to improve the therapeutic outcome of available antitumor agents.
Collapse
|
40
|
Zhang D, Tang B, Xie X, Xiao YF, Yang SM, Zhang JW. The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther 2015; 16:1005-13. [PMID: 25985143 DOI: 10.1080/15384047.2015.1046022] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA is the prime target of anticancer treatments. DNA damage triggers a series of signaling cascades promoting cellular survival, including DNA repair, cell cycle arrest, and autophagy. The elevated basal and/or stressful levels of both DNA repair and autophagy observed in tumor cells, in contrast to normal cells, have been identified as the most important drug-responsive programs that impact the outcome of anticancer therapy. The exact relationship between DNA repair and autophagy in cancer cells remains unclear. On one hand, autophagy has been shown to regulate some of the DNA repair proteins after DNA damage by maintaining the balance between their synthesis, stabilization, and degradation. One the other hand, some evidence has demonstrated that some DNA repair molecular have a crucial role in the initiation of autophagy. In this review, we mainly discuss the interplay between DNA repair and autophagy in anticancer therapy and expect to enlighten some effective strategies for cancer treatment.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- ATG5, autophagy-related gene 5
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BER, base excision repair
- Chk1, check-point kinase 1
- Chk2, check-point kinase 2
- DDR, DNA damage response
- DNA damage
- DNA damage response
- DNA repair
- DNA-PKcs, DNA-dependent protein kinase catalytic subunit
- DSBs, double-strand breaks
- HDAC, histone deacetylases
- HR, homologous recombination
- IR, ionizing radiation
- MGMT, O6 methylguanine –DNA methyltransferase
- MMR, mismatch repair
- MRN, Mre11-Rad50-Nbs1
- NER, nucleotide excision recombination
- NHEJ, non-homologous end joining
- OGG1, 8-oxoguannine DNA glycosidase
- PARP-1, poly (ADP-ribose) polymerase 1
- PI3K, phosphoinositide 3-kinase
- PML, promyelocytic leukemia
- SSBs, single-strand break
- TMZ, temozolomide
- TSC2, tuberous sclerosis complex 2
- anticancer therapy
- apoptosis
- autophagy
- cell cycle arrest
- mTOR, mammalian target of rapamycin
- γ-H2AX, phosphorylated histone
Collapse
Affiliation(s)
- Dan Zhang
- a Department of Gastroenterology; Xinqiao Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | |
Collapse
|
41
|
Hamm CA, Costa FF. Epigenomes as therapeutic targets. Pharmacol Ther 2015; 151:72-86. [PMID: 25797698 DOI: 10.1016/j.pharmthera.2015.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/19/2022]
Abstract
Epigenetics is a molecular phenomenon that pertains to heritable changes in gene expression that do not involve changes in the DNA sequence. Epigenetic modifications in a whole genome, known as the epigenome, play an essential role in the regulation of gene expression in both normal development and disease. Traditional epigenetic changes include DNA methylation and histone modifications. Recent evidence reveals that other players, such as non-coding RNAs, may have an epigenetic regulatory role. Aberrant epigenetic signaling is becoming to be known as a central component of human disease, and the reversible nature of the epigenetic modifications provides an exciting opportunity for the development of clinically relevant therapeutics. Current epigenetic therapies provide a clinical benefit through disrupting DNA methyltransferases or histone deacetylases. However, the emergence of next-generation epigenetic therapies provides an opportunity to more effectively disrupt epigenetic disease states. Novel epigenetic therapies may improve drug targeting and drug delivery, optimize dosing schedules, and improve the efficacy of preexisting treatment modalities (chemotherapy, radiation, and immunotherapy). This review discusses the epigenetic mechanisms that contribute to the disease, available epigenetic therapies, epigenetic therapies currently in development, and the potential future use of epigenetic therapeutics in a clinical setting.
Collapse
Affiliation(s)
- Christopher A Hamm
- Cancer Biology and Epigenomics Program, Ann & Robert H Lurie Children's Hospital of Chicago Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Avenue, Box 220, Chicago, IL 60611-2605, USA.
| | - Fabricio F Costa
- Cancer Biology and Epigenomics Program, Ann & Robert H Lurie Children's Hospital of Chicago Research Center and Department of Pediatrics, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Avenue, Box 220, Chicago, IL 60611-2605, USA; StartUp Health Academy, 2000 Broadway St, 18th Floor, New York, NY 10.023, USA; Genomic Enterprise, 2405 N. Sheffield Av., # 14088, Chicago, IL 60.614, USA; Genomic Sciences and Biotechnology Program, UCB - Brasilia, SGAN 916 Modulo B, Bloco C, 70.790-160 Brasilia, Brazil.
| |
Collapse
|
42
|
Melton D, Lewis CD, Price NE, Gates KS. Covalent adduct formation between the antihypertensive drug hydralazine and abasic sites in double- and single-stranded DNA. Chem Res Toxicol 2014; 27:2113-8. [PMID: 25405892 PMCID: PMC4269403 DOI: 10.1021/tx5003657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Hydralazine
(4) is an antihypertensive agent that
displays both mutagenic and epigenetic properties. Here, gel electrophoretic,
mass spectroscopic, and chemical kinetics methods were used to provide
evidence that medicinally relevant concentrations of 4 rapidly form covalent adducts with abasic sites in double- and single-stranded
DNA under physiological conditions. These findings raise the intriguing
possibility that the genotoxic properties of this clinically used
drug arise via reactions with an endogenous DNA lesion rather than
with the canonical structure of DNA.
Collapse
Affiliation(s)
- Douglas Melton
- Department of Chemistry, ‡Department of Biochemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | | | | | | |
Collapse
|
43
|
Liu H, Gong M, French BA, Li J, Tillman B, French SW. Mallory-Denk Body (MDB) formation modulates Ufmylation expression epigenetically in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH). Exp Mol Pathol 2014; 97:477-83. [PMID: 25290169 DOI: 10.1016/j.yexmp.2014.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/15/2022]
Abstract
Promoter CpG island hypermethylation is an important mechanism for inactivating key cellular enzymes that mediate epigenetic processes in hepatitis-related hepatocellular carcinoma (HCC). The ubiquitin-fold modifier 1 (Ufm1) conjugation pathway (Ufmylation) plays an essential role in protein degradation, protein quality control and signal transduction. Previous studies showed that the Ufmylation pathway was downregulated in alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and in mice fed DDC, resulting in the formation of Mallory-Denk Bodies (MDBs). In this study, we further discovered that betaine, a methyl donor, fed together with DDC significantly prevents the increased expression of Ufmylation in drug-primed mice fed DDC. Betaine significantly prevented transcript silencing of Ufm1, Uba5 and UfSP1 where MDBs developed and also prevented the increased expression of FAT10 and LMP7 caused by DDC re-fed mice. Similar downregulation of Ufmylation was observed in multiple AH and NASH biopsies which had formed MDBs. The DNA methylation levels of Ufm1, Ufc1 and UfSP1 in the promoter CpG region were significantly increased both in AH and NASH patients compared to normal subjects. DNA (cytosine-5-)-methyltransferase 1 (DNMT1) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) mRNA levels were markedly upregulated in AH and NASH patients, implying that the maintenance of Ufmylation methylation might be mediated by DNMT1 and DNMT3B together. These data show that MDB formation results from Ufmylation expression epigenetically in AH and NASH patients. Promoter CpG methylation may be a major mechanism silencing Ufmylation expression.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Ming Gong
- Department of Pediatrics, LABioMed at Harbor UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Barbara A French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Jun Li
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Brittany Tillman
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Samuel W French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA.
| |
Collapse
|
44
|
Combination of lenalidomide with vitamin D3 induces apoptosis in mantle cell lymphoma via demethylation of BIK. Cell Death Dis 2014; 5:e1389. [PMID: 25165875 PMCID: PMC4454319 DOI: 10.1038/cddis.2014.346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 02/07/2023]
Abstract
Mantle cell lymphoma (MCL) is a currently incurable B-cell malignancy.
Lenalidomide (Len) has been demonstrated to be one of the most efficient new
treatment options. Because Len and 1α,25-dihydroxyvitamin (VD3) synergize
to kill breast cancer cells, we investigated whether VD3 could increase the
ability of Len to induce MCL cell death. While MCL cells were weakly sensitive
to Len (1 μM), the addition of VD3 at physiological dose
(100 nM) strongly increased cell death, accompanied by slowdown in cell
cycle progression in MCL cell lines (n=4 out of 6) and primary
samples (n=5 out of 7). The Len/VD3 treatment markedly
increased the expression of the BH3-only BCL2-interacting killer (Bik) without
affecting the expression of other Bcl-2 molecules. Immunoprecipitation assays
demonstrated that Bik was free from anti-apoptotic partners, Bcl-2 and
Bcl-xL, in treated cells. Moreover, silencing of BIK
prevented apoptosis induced by Len/VD3, confirming the direct involvement of
Bik in cell death. Bik accumulation induced by Len/VD3 was related to an
increase in BIK mRNA levels, which resulted from a demethylation of
BIK CpG islands. The sensitivity of MCL cells to Len/VD3 was
similar to the response to 5-azacytidine, which also induced demethylation of
BIK CpG islands. These preclinical data provide the rationale to
investigate the role of VD3 in vivo in the response to Len.
Collapse
|
45
|
Morin A, Letouzé E, Gimenez-Roqueplo AP, Favier J. Oncometabolites-driven tumorigenesis: From genetics to targeted therapy. Int J Cancer 2014; 135:2237-48. [DOI: 10.1002/ijc.29080] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Aurélie Morin
- INSERM; UMR970, Paris-Cardiovascular Research Center at HEGP; Paris France
- Faculté de Médecine; Université Paris Descartes; Paris France
| | - Eric Letouzé
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer; Paris France
| | - Anne-Paule Gimenez-Roqueplo
- INSERM; UMR970, Paris-Cardiovascular Research Center at HEGP; Paris France
- Faculté de Médecine; Université Paris Descartes; Paris France
- Assistance Publique-Hôpitaux de Paris; Hôpital Européen Georges Pompidou, Service de Génétique; Paris France
| | - Judith Favier
- INSERM; UMR970, Paris-Cardiovascular Research Center at HEGP; Paris France
- Faculté de Médecine; Université Paris Descartes; Paris France
| |
Collapse
|
46
|
Benton CB, Thomas DA, Yang H, Ravandi F, Rytting M, O'Brien S, Franklin AR, Borthakur G, Dara S, Kwari M, Pierce SR, Jabbour E, Kantarjian H, Garcia-Manero G. Safety and clinical activity of 5-aza-2'-deoxycytidine (decitabine) with or without Hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 2014; 167:356-65. [PMID: 25066676 DOI: 10.1111/bjh.13050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/23/2014] [Indexed: 12/31/2022]
Abstract
To test the safety and activity of 5-aza-2'-deoxycytidine (decitabine) in patients with relapsed/refractory acute lymphocytic leukaemia (ALL), we conducted a phase 1 study with two parts: administering decitabine alone or in combination with Hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone alternating with high-dose methotrexate and cytarabine). Patients participated in either part of the study or in both parts sequentially. In the initial part, decitabine was administered intravenously at doses of 10-120 mg/m(2) per d for 5 d every other week in cycles of 28 d. In the combination part, patients were treated on the first 5 d of Hyper-CVAD with intravenous decitabine at 5-60 mg/m(2) per d. A total of 39 patients received treatment in the study: 14 in the first part only, 16 sequentially in both parts and 9 in the second part only. Decitabine was tolerated at all doses administered, and grade 3 or 4 toxic effects included non-life-threatening hepatotoxicity and hyperglycaemia. Induction of DNA hypomethylation was observed at doses of decitabine up to 80 mg/m(2) . Some patients who had previously progressed on Hyper-CVAD alone achieved a complete response when decitabine was added. Decitabine alone or given with Hyper-CVAD is safe and has clinical activity in patients with advanced ALL.
Collapse
Affiliation(s)
- Christopher B Benton
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang G, Zhu Y, Dong X, Duan Z, Niu X, Wei J. TLR2-ICAM1-Gadd45α axis mediates the epigenetic effect of selenium on DNA methylation and gene expression in Keshan disease. Biol Trace Elem Res 2014; 159:69-80. [PMID: 24811888 DOI: 10.1007/s12011-014-9985-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/15/2014] [Indexed: 11/26/2022]
Abstract
Keshan disease (KD) is a fatal dilated cardiomyopathy with unknown etiology, and selenium deficiency is considered the main cause of KD. Several observations implicate a role for altered DNA methylation in selenium deficiency-related diseases. The aim of the present study was to investigate the epigenetic effects of selenium (Se) on DNA methylation and gene expression in Keshan disease. Using methylated DNA immunoprecipitation chip (MeDIP-Chip) and quantitative RT-PCR, we identified two inflammatory-related genes (TLR2 and ICAM1) that were differentially methylated and expressed between normal individuals and KD patients. Results from DNA methylation profile between KD patients and normal individuals showed that selenium deficiency decreased methylation of CpG islands in promoter regions of TLR2 and ICAM1 and upregulated messenger RNA (mRNA) and protein levels of TLR2 and ICAM1. In rat animal model of Keshan disease, selenite treatment could increase TLR2 and ICAM1 promoter methylation, suppress these genes expression, and reduce infiltration of myocardial inflammatory cells. In cell culture model of Keshan disease, we found 5-Aza-dC (DNMT1 inhibitor) treatment in the presence of selenium-reduced mRNA and protein levels of DNMT1 regardless of TLR2 and ICAM1 promoter methylation status and expression levels of these genes. Selenite treatment suppressed the expression of the Gadd45α, TLR2, and ICAM1 in a concentration-dependent manner, while selenium deficiency increased the expression of the Gadd45α, TLR2, and ICAM1 and decreased TLR2 and ICAM1 promoter methylation level in a time-dependent manner. Our results revealed that TLR2-ICAM1-Gadd45α axis might play an important role in gene-specific active DNA demethylation during inflammatory response in myocardium.
Collapse
Affiliation(s)
- Guang Yang
- Department of Cardiology, The Second Affiliated Hospital, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, 710004, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
He ZM, Li J, Hwa YL, Brost B, Fang Q, Jiang SW. Transition of LINE-1 DNA methylation status and altered expression in first and third trimester placentas. PLoS One 2014; 9:e96994. [PMID: 24821186 PMCID: PMC4018393 DOI: 10.1371/journal.pone.0096994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/14/2014] [Indexed: 12/30/2022] Open
Abstract
DNA methylation plays a critical role in the regulation of gene expression, genomic DNA stability, cell proliferation, and malignant transformation. Common cellular features including fast tissue expansion, invasive growth, and active angiogenesis, have been noticed between placental development and tumorigenesis by many investigators. While the DNA hypomethylation and transcriptional activation of LINE-1 has been found to be a feature of tumorigenesis, it is not clear if similar changes could be involved in placental development. In this study, we assessed LINE-1 methylation in human placentas from different gestational ages and observed a significant decrease of LINE-1 methylation levels in third trimester placentas compared to first trimester placentas. Accompanying with this change is the significantly increased LINE-1 mRNA levels in third trimester placentas. Since no global DNA methylation change was detected between first and third trimesters, LINE-1 methylation changes appeared to be a specific epigenetic entity contributing to placental development. Indeed, further analyses showed that LINE-1 upregulation was correlated with higher levels of PCNA, suggesting a link between LINE-1 activation and fast proliferation of certain cellular components in third trimester placentas. Measurement of the DNMT1, DNMT3A, and DNMT3B expression found a significant reduction of DNMT3B between third and first trimesters, pointing to the possible involvement of this enzyme in the regulation of LINE-1 methylation. Taken together these results provided evidence for a dynamic temporal regulation of LINE-1 methylation and activation during placental development. These studies have laid a foundation for future investigation on the function of LINE-1 expression in human placenta under different patho-physiological conditions.
Collapse
Affiliation(s)
- Zhi-ming He
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Biological Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
| | - Jinping Li
- Department of Biological Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo College of Medicine, Rochester, Minnesota, United States of America
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, Georgia, United States of America
| | - Yi Lisa Hwa
- Department of Medicine, Mayo Clinic and Mayo College of Medicine, Rochester, Minnesota, United States of America
| | - Brian Brost
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo College of Medicine, Rochester, Minnesota, United States of America
| | - Qun Fang
- Fetal Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (S-WJ); (QF)
| | - Shi-Wen Jiang
- Department of Biological Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo College of Medicine, Rochester, Minnesota, United States of America
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, Savannah, Georgia, United States of America
- * E-mail: (S-WJ); (QF)
| |
Collapse
|
49
|
Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 2014; 4:80. [PMID: 24822169 PMCID: PMC4013461 DOI: 10.3389/fonc.2014.00080] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of death in US. Despite the emergence of new, targeted agents, and the use of various therapeutic combinations, none of the available treatment options are curative in patients with advanced cancer. Epigenetic alterations are increasingly recognized as valuable targets for the development of cancer therapies. DNA methylation at the 5-position of cytosine, catalyzed by DNA methyltransferases (DNMTs), is the predominant epigenetic modification in mammals. DNMT1, the major enzyme responsible for maintenance of the DNA methylation pattern is located at the replication fork and methylates newly biosynthesized DNA. DNMT2 or TRDMT1, the smallest mammalian DNMT is believed to participate in the recognition of DNA damage, DNA recombination, and mutation repair. It is composed solely of the C-terminal domain, and does not possess the regulatory N-terminal region. The levels of DNMTs, especially those of DNMT3B, DNMT3A, and DNMT3L, are often increased in various cancer tissues and cell lines, which may partially account for the hypermethylation of promoter CpG-rich regions of tumor suppressor genes in a variety of malignancies. Moreover, it has been shown to function in self-renewal and maintenance of colon cancer stem cells and need to be studied in several cancers. Inhibition of DNMTs has demonstrated reduction in tumor formation in part through the increased expression of tumor suppressor genes. Hence, DNMTs can potentially be used as anti-cancer targets. Dietary phytochemicals also inhibit DNMTs and cancer stem cells; this represents a promising approach for the prevention and treatment of many cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA
| | - Ravi Thombre
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Animesh Dhar
- The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
50
|
Zhao X, Yang F, Li S, Liu M, Ying S, Jia X, Wang X. CpG island methylator phenotype of myelodysplastic syndrome identified through genome-wide profiling of DNA methylation and gene expression. Br J Haematol 2014; 165:649-58. [PMID: 24601943 DOI: 10.1111/bjh.12811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/10/2014] [Indexed: 12/13/2022]
Abstract
The CpG island methylator phenotype (CIMP) is an epigenetic phenomenon and plays an important role in tumourigenesis in various cancers. The identification of aberrant DNA methylation can be exploited for early diagnosis and risk assessment of patients. We identified a CIMP in myelodysplastic syndrome (MDS). Genes were screened for hypermethylation and transcription downregulation through genome-wide DNA methylation profiling and gene expression microarrays. Methylation-specific, real-time, and bisulfite-sequencing polymerase chain reaction were performed to validate selected genes. The hypermethylation of genes as a diagnostic tool for the detection of MDS was evaluated. Kaplan-Meier survival analysis and Cox regression were performed. A draft of an MDS CIMP was established and revised to 6 genes after validation in 20 patients and 20 controls. Further large-scale analysis showed that the majority of 211 MDS patients were hypermethylated in 6 genes. The area under the curve of CIMP was 0·9768 (95% confidence interval 0·9609-0·9928). A combination of 5 or more of the methylated genes showed a specificity of 95% and sensitivity of 91% for the diagnosis of MDS. We found CIMP positivity to be a significantly unfavourable prognostic factor for MDS. These results indicate that the newly established CIMP may improve diagnostic accuracy and prognosis assessment in MDS.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Haematology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|