1
|
Journet A, Barette C, Aubry L, Soleilhac E, Fauvarque MO. Identification of chemicals breaking the USP8 interaction with its endocytic substrate CHMP1B. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:395-404. [PMID: 35995394 DOI: 10.1016/j.slasd.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitin-specific protease USP8 plays a major role in controlling the stability and intracellular trafficking of numerous cell surface proteins among which the EGF receptor that regulates cell growth and proliferation in many physio-pathological processes. The function of USP8 at the endocytic pathway level partly relies on binding to and deubiquitination of the Endosomal Sorting Complex Required for Transport (ESCRT) protein CHMP1B. In the aim of finding chemical inhibitors of the USP8::CHMP1B interaction, we performed a high-throughput screening campaign using an HTRF® assay to monitor the interaction directly in lysates of cells co-expressing both partners. The assay was carried out in an automated format to screen the academic Fr-PPIChem library (Bosc N et al., 2020), which includes 10,314 compounds dedicated to the targeting of protein-protein interactions (PPIs). Eleven confirmed hits inhibited the USP8::CHMP1B interaction within a range of 30% to 70% inhibition at 50 µM, while they were inactive on a set of other PPI interfaces demonstrating the feasibility of specifically disrupting this particular interface. In parallel, we adapted this HTRF® assay to compare the USP8 interacting capacity of CHMP1B variants. As anticipated from earlier studies, a deletion of the MIM (Microtubule Interacting and Trafficking domain Interacting Motif) domain or mutation of two conserved leucine residues, L192 and L195, in this domain respectively abolished or strongly impeded the USP8::CHMP1B interaction. By contrast, a CHMP1B mutant that displays a highly decreased ubiquitination level following mutation of four lysine residues in arginine interacted at a similar level as the wild-type form with USP8. Therefore, conserved leucine residues within the MIT domain rather than its ubiquitinated status triggers CHMP1B substrate recognition by USP8.
Collapse
Affiliation(s)
- Agnès Journet
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, F-38000 Grenoble, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, F-38000 Grenoble, France
| | - Laurence Aubry
- Univ. Grenoble Alpes, CNRS, CEA, Inserm, IRIG, BGE, F-38000 Grenoble, France
| | | | | |
Collapse
|
2
|
Caffeic acid phenethyl ester targets ubiquitin-specific protease 8 and synergizes with cisplatin in endometrioid ovarian carcinoma cells. Biochem Pharmacol 2022; 197:114900. [PMID: 34995485 DOI: 10.1016/j.bcp.2021.114900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023]
Abstract
Deubiquitinases (DUBs) mediate the removal of ubiquitin from diverse proteins that participate in the regulation of cell survival, DNA damage repair, apoptosis and drug resistance. Previous studies have shown an association between activation of cell survival pathways and platinum-drug resistance in ovarian carcinoma cell lines. Among the strategies available to inhibit DUBs, curcumin derivatives appear promising, thus we hypothesized their use to enhance the efficacy of cisplatin in ovarian carcinoma preclinical models. The caffeic acid phenethyl ester (CAPE), inhibited ubiquitin-specific protease 8 (USP8), but not proteasomal DUBs in cell-free assays. When CAPE was combined with cisplatin in nine cell lines representative of various histotypes a synergistic effect was observed in TOV112D cells and in the cisplatin-resistant IGROV-1/Pt1 variant, both of endometrioid type and carrying mutant TP53. In the latter cells, persistent G1 accumulation upon combined treatment associated with p27kip1 protein levels was observed. The synergy was not dependent on apoptosis induction, and appeared to occur in cells with higher USP8 levels. In vivo antitumor activity studies supported the advantage of the combination of CAPE and cisplatin in the subcutaneous model of cisplatin-resistant IGROV-1/Pt1 ovarian carcinoma as well as CAPE activity on intraperitoneal disease. This study reveals the therapeutic potential of CAPE in cisplatin-resistant ovarian tumors as well as in tumors expressing USP8.
Collapse
|
3
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
4
|
Vasilev V, Daly AF, Zacharieva S, Beckers A. Clinical and Molecular Update on Genetic Causes of Pituitary Adenomas. Horm Metab Res 2020; 52:553-561. [PMID: 32299111 DOI: 10.1055/a-1143-5930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pituitary adenomas are benign tumors with variable functional characteristics that can have a significant impact on patients. The majority arise sporadically, but an inherited genetic susceptibility is increasingly being recognized. Recent advances in genetics have widened the scope of our understanding of pituitary tumorigenesis. The clinical and genetic characteristics of pituitary adenomas that develop in the setting of germline-mosaic and somatic GNAS mutations (McCune-Albright syndrome and sporadic acromegaly), germline MEN1 mutations (multiple endocrine neoplasia type 1), and germline PRKAR1A mutations (Carney complex) have been well described. Non-syndromic familial cases of isolated pituitary tumors can occur as familial isolated pituitary adenomas (FIPA); mutations/deletions of the AIP gene have been found in a minority of these. Genetic alterations in GPR101 have been identified recently as causing X-linked acro-gigantism (X-LAG) leading to very early-onset pediatric gigantism. Associations of pituitary adenomas with other tumors have been described in syndromes like multiple endocrine neoplasia type 4, pheochromocytoma-paraganglioma with pituitary adenoma association (3PAs) syndrome and some of their genetic causes have been elucidated. The genetic etiologies of a significant proportions of sporadic corticotropinomas have recently been identified with the discovery of USP8 and USP48 mutations. The elucidation of genetic and molecular pathophysiology in pituitary adenomas is a key factor for better patient management and effective follow-up.
Collapse
Affiliation(s)
- Vladimir Vasilev
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
- Department of Endocrinology, Medical University, Sofia, Bulgaria
| | - Adrian F Daly
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
| | | | - Albert Beckers
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
5
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
6
|
Bland T, Sahin GS, Zhu M, Dillon C, Impey S, Appleyard SM, Wayman GA. USP8 Deubiquitinates the Leptin Receptor and Is Necessary for Leptin-Mediated Synapse Formation. Endocrinology 2019; 160:1982-1998. [PMID: 31199479 PMCID: PMC6660906 DOI: 10.1210/en.2019-00107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/08/2019] [Indexed: 11/19/2022]
Abstract
Leptin has neurotrophic actions in the hippocampus to increase synapse formation and stimulate neuronal plasticity. Leptin also enhances cognition and has antidepressive and anxiolytic-like effects, two hippocampal-dependent behaviors. In contrast, mice lacking leptin or the long form of the leptin receptor (LepRb) have lower cortical volume and decreased memory and exhibit depressive-like behaviors. A number of the signaling pathways regulated by LepRb are known, but how membrane LepRb levels are regulated in the central nervous system is not well understood. Here, we show that the lysosomal inhibitor chloroquine increases LepRb expression in hippocampal cultures, suggesting that LepRb is degraded in the lysosome. Furthermore, we show that leptin increases surface expression of its own receptor by decreasing the level of ubiquitinated LepRbs. This decrease is mediated by the deubiquitinase ubiquitin-specific protease 8 (USP8), which we show is in complex with LepRb. Acute leptin stimulation increases USP8 activity. Moreover, leptin stimulates USP8 gene expression through cAMP response element-binding protein (CREB)-dependent transcription, an effect blocked by expression of a dominant-negative CREB or with short hairpin RNA knockdown of CREB. Increased expression of USP8 causes increased surface localization of LepRb, which in turn enhances leptin-mediated activation of the MAPK kinase/extracellular signal-regulated kinase pathway and CREB activation. Lastly, increased USP8 expression increases glutamatergic synapse formation in hippocampal cultures, an effect dependent on expression of LepRbs. Leptin-stimulated synapse formation also requires USP8. In conclusion, we show that USP8 deubiquitinates LepRb, thus inhibiting lysosomal degradation and enhancing surface localization of LepRb, which are essential for leptin-stimulated synaptogenesis in the hippocampus.
Collapse
Affiliation(s)
- Tyler Bland
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gulcan Semra Sahin
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Mingyan Zhu
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Crystal Dillon
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Sciences University, Portland, Oregon
| | - Suzanne M Appleyard
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Gary A Wayman
- Department of Integrated Physiology and Neuroscience, Washington State University, Pullman, Washington
- Correspondence: Gary A. Wayman, PhD, Department of Integrative Physiology and Neuroscience, Program in Neuroscience, Washington State University, Pullman, Washington 99164. E-mail:
| |
Collapse
|
7
|
Stankovic-Valentin N, Melchior F. Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Mol Aspects Med 2018; 63:3-17. [PMID: 30059710 DOI: 10.1016/j.mam.2018.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023]
Abstract
Reversible post-translational modifications (PTMs) ensure rapid signal transmission from sensors to effectors. Reversible modification of proteins by the small proteins Ubiquitin and SUMO are involved in virtually all cellular processes and can modify thousands of proteins. Ubiquitination or SUMOylation is the reversible attachment of these modifiers to lysine residues of a target via isopeptide bond formation. These modifications require ATP and an enzymatic cascade composed of three classes of proteins: E1 activating enzymes, E2 conjugating enzymes and E3 ligases. The reversibility of the modification is ensured by specific isopeptidases. E1 and E2 enzymes, some E3 ligases and most isopeptidases have catalytic cysteine residues, which make them potentially susceptible for oxidation. Indeed, an increasing number of examples reveal regulation of ubiquitination and SUMOylation by reactive oxygen species, both in the context of redox signaling and in severe oxidative stress. Importantly, ubiquitination and SUMOylation play essential roles in the regulation of ROS homeostasis, participating in the control of ROS production and clearance. In this review, we will discuss the interplay between ROS homeostasis, Ubiquitin and SUMO pathways and the implications for the oxidative stress response and cell signaling.
Collapse
Affiliation(s)
- Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
8
|
Stratifin regulates stabilization of receptor tyrosine kinases via interaction with ubiquitin-specific protease 8 in lung adenocarcinoma. Oncogene 2018; 37:5387-5402. [PMID: 29880877 DOI: 10.1038/s41388-018-0342-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Previously we have reported that stratifin (SFN, 14-3-3 sigma) acts as a novel oncogene, accelerating the tumor initiation and progression of lung adenocarcinoma. Here, pull-down assay and LC-MS/MS analysis revealed that ubiquitin-specific protease 8 (USP8) specifically bound to SFN in lung adenocarcinoma cells. Both USP8 and SFN showed higher expression in human lung adenocarcinoma than in normal lung tissue, and USP8 expression was significantly correlated with SFN expression. Expression of SFN, but not of USP8, was associated with histological subtype, pathological stage, and poor prognosis. USP8 stabilizes receptor tyrosine kinases (RTKs) such as EGFR and MET by deubiquitination, contributing to the proliferative activity of many human cancers including non-small cell lung cancer. In vitro, USP8 binds to SFN and they co-localize at the early endosomes in lung adenocarcinoma cells. Moreover, USP8 or SFN knockdown leads to downregulation of tumor cellular proliferation and upregulation of apoptosis, p-EGFR or p-MET, which are related to the degradation pathway, and accumulation of ubiquitinated RTKs, leading to lysosomal degradation. Additionally, mutant USP8, which is unable to bind to SFN, reduces the expression of RTKs and p-STAT3. We also found that interaction with SFN is critical for USP8 to exert its autodeubiquitination function and avoid dephosphorylation by PP1. Our findings demonstrate that SFN enhances RTK stabilization through abnormal USP8 regulation in lung adenocarcinoma, suggesting that SFN could be a more suitable therapeutic target for lung adenocarcinoma than USP8.
Collapse
|
9
|
Centorrino F, Ballone A, Wolter M, Ottmann C. Biophysical and structural insight into the USP8/14‐3‐3 interaction. FEBS Lett 2018; 592:1211-1220. [DOI: 10.1002/1873-3468.13017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Federica Centorrino
- Laboratory of Chemical Biology Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology The Netherlands
| | - Alice Ballone
- Laboratory of Chemical Biology Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology The Netherlands
| | - Madita Wolter
- Laboratory of Chemical Biology Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology The Netherlands
- Department of Chemistry University of Duisburg‐Essen Germany
| |
Collapse
|
10
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
11
|
Faucz FR, Tirosh A, Tatsi C, Berthon A, Hernández-Ramírez LC, Settas N, Angelousi A, Correa R, Papadakis GZ, Chittiboina P, Quezado M, Pankratz N, Lane J, Dimopoulos A, Mills JL, Lodish M, Stratakis CA. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease. J Clin Endocrinol Metab 2017; 102:2836-2843. [PMID: 28505279 PMCID: PMC5546857 DOI: 10.1210/jc.2017-00161] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
CONTEXT Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. OBJECTIVE We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. DESIGN AND METHODS The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. RESULTS Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). CONCLUSION Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options.
Collapse
Affiliation(s)
- Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Amit Tirosh
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Christina Tatsi
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Annabel Berthon
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Laura C. Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Anna Angelousi
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Ricardo Correa
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Georgios Z. Papadakis
- Department of Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20814
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20824
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Aggeliki Dimopoulos
- Epidemiology Branch, Division of Intramural Population Health Research, National Institutes of Health, Rockville, Maryland 20852
| | - James L. Mills
- Epidemiology Branch, Division of Intramural Population Health Research, National Institutes of Health, Rockville, Maryland 20852
| | - Maya Lodish
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
12
|
Kim Y, Shiba-Ishii A, Nakagawa T, Husni RE, Sakashita S, Takeuchi T, Noguchi M. Ubiquitin-specific protease 8 is a novel prognostic marker in early-stage lung adenocarcinoma. Pathol Int 2017; 67:292-301. [DOI: 10.1111/pin.12546] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yunjung Kim
- Doctoral Program in Biomedical Sciences; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Aya Shiba-Ishii
- Department of Pathology, Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Tomoki Nakagawa
- Doctoral Program in Biomedical Sciences; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Ryan Edbert Husni
- Doctoral Program in Biomedical Sciences; Graduate School of Comprehensive Human Sciences; University of Tsukuba; Tsukuba Japan
| | - Shingo Sakashita
- Department of Pathology, Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Tomoyo Takeuchi
- Department of Pathology, Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine; University of Tsukuba; Tsukuba Japan
| |
Collapse
|
13
|
Jian F, Cao Y, Bian L, Sun Q. USP8: a novel therapeutic target for Cushing's disease. Endocrine 2015; 50:292-6. [PMID: 26162929 DOI: 10.1007/s12020-015-0682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/03/2015] [Indexed: 01/10/2023]
Abstract
Cushing's disease (CD), caused by an adrenocorticotropin-secreting pituitary adenoma, leads to hypercortisolemia and causes serious morbidity and increased mortality when suboptimally treated. Currently, the genetic events have rarely been reported in this disease. Recently, the recurrent activating mutations in the gene encoding ubiquitin-specific protease 8 (USP8) in CD have been independently reported by two teams. These hotspot mutations sustain epidermal growth factor receptor (EGFR) signaling and expand the pathogenic role of USP8 in corticotroph adenoma. This review summarizes current knowledge of USP8 and its substrate EGFR in cancer therapy and possible application of them in CD.
Collapse
Affiliation(s)
- Fangfang Jian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China.
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Er Road, Shanghai, 200025, China.
- Department of Neurosurgery, Ruijin Hospital, Luwan Branch, Shanghai Jiao Tong University School of Medicine, No. 149, South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
14
|
Sbiera S, Deutschbein T, Weigand I, Reincke M, Fassnacht M, Allolio B. The New Molecular Landscape of Cushing's Disease. Trends Endocrinol Metab 2015; 26:573-583. [PMID: 26412158 DOI: 10.1016/j.tem.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 11/21/2022]
Abstract
Cushing's disease (CD) is caused by corticotropin-secreting pituitary adenomas and results in substantial morbidity and mortality. Its molecular basis has remained poorly understood until the past few years, when several proteins and genes [such as testicular orphan nuclear receptor 4 (TR4) and heat shock protein 90 (HSP90)] were found to play key roles in the disease. Most recently, mutations in the gene of ubiquitin-specific peptidase 8 (USP8) increasing its deubiquination activity were discovered in a high percentage of corticotroph adenomas. Here, we will discuss emerging insights in the molecular alterations that finally result in CD. The therapeutic potential of these findings needs to be carefully evaluated in the near future, hopefully resulting in new treatment options for this devastating disorder.
Collapse
Affiliation(s)
- Silviu Sbiera
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Timo Deutschbein
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Isabel Weigand
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Martin Reincke
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Martin Fassnacht
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany.
| | - Bruno Allolio
- Department of Internal Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Synaptic strength is bidirectionally controlled by opposing activity-dependent regulation of Nedd4-1 and USP8. J Neurosci 2015; 34:16637-49. [PMID: 25505317 DOI: 10.1523/jneurosci.2452-14.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The trafficking of AMPA receptors (AMPARs) to and from synapses is crucial for synaptic plasticity. Previous work has demonstrated that AMPARs undergo activity-dependent ubiquitination by the E3 ubiquitin ligase Nedd4-1, which promotes their internalization and degradation in lysosomes. Here, we define the molecular mechanisms involved in ubiquitination and deubiquitination of AMPARs. We report that Nedd4-1 is rapidly redistributed to dendritic spines in response to AMPAR activation and not in response to NMDA receptor (NMDAR) activation in cultured rat neurons. In contrast, NMDAR activation directly antagonizes Nedd4-1 function by promoting the deubiquitination of AMPARs. We show that NMDAR activation causes the rapid dephosphorylation and activation of the deubiquitinating enzyme (DUB) USP8. Surface AMPAR levels and synaptic strength are inversely regulated by Nedd4-1 and USP8. Strikingly, we show that homeostatic downscaling of synaptic strength is accompanied by an increase and decrease in Nedd4-1 and USP8 protein levels, respectively. Furthermore, we show that Nedd4-1 is required for homeostatic loss of surface AMPARs and downscaling of synaptic strength. This study provides the first mechanistic evidence for rapid and opposing activity-dependent control of a ubiquitin ligase and DUB at mammalian CNS synapses. We propose that the dynamic regulation of these opposing forces is critical in maintaining synapses and scaling them during homeostatic plasticity.
Collapse
|
16
|
When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun Signal 2013; 11:52. [PMID: 23902637 PMCID: PMC3734146 DOI: 10.1186/1478-811x-11-52] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022] Open
Abstract
Ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as a ubiquitous post-translational modification (PTM) whose function extends far beyond its original role as a tag for protein degradation identified three decades ago. Although sharing parallel properties with phosphorylation, ubiquitination distinguishes itself in important ways. Nevertheless, the interplay and crosstalk between ubiquitination and phosphorylation events have become a recurrent theme in cell signalling regulation. Understanding how these two major PTMs intersect to regulate signal transduction is an important research question. In this review, we first discuss the involvement of ubiquitination in the regulation of the EGF-mediated ERK signalling pathway via the EGF receptor, highlighting the interplay between ubiquitination and phosphorylation in this cancer-implicated system and addressing open questions. The roles of ubiquitination in pathways crosstalking to EGFR/MAPK signalling will then be discussed. In the final part of the review, we demonstrate the rich and versatile dynamics of crosstalk between ubiquitination and phosphorylation by using quantitative modelling and analysis of network motifs commonly observed in cellular processes. We argue that given the overwhelming complexity arising from inter-connected PTMs, a quantitative framework based on systems biology and mathematical modelling is needed to efficiently understand their roles in cell signalling.
Collapse
|
17
|
De Ceuninck L, Wauman J, Masschaele D, Peelman F, Tavernier J. Reciprocal cross-regulation between RNF41 and USP8 controls cytokine receptor sorting and processing. J Cell Sci 2013; 126:3770-81. [DOI: 10.1242/jcs.131250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms controlling the steady-state cytokine receptor cell surface levels, and consequently the cellular response to cytokines, remain poorly understood. The number of surface-exposed receptors is a dynamic balance of de novo synthesis, transport to the plasma membrane, internalization, recycling, degradation and ectodomain shedding. We previously reported that the E3 ubiquitin ligase Ring Finger Protein 41 (RNF41) inhibits basal lysosomal degradation and enhance ectodomain shedding of JAK2-associated cytokine receptors. Ubiquitin-specific protease 8 (USP8), an RNF41 interacting deubiquitinating enzyme (DUB) stabilizes RNF41 and is involved in trafficking of various transmembrane proteins. The present study identifies USP8 as a substrate of RNF41 and reveals that loss of USP8 explains the aforementioned RNF41 effects. RNF41 redistributes and ubiquitinates USP8, and reduces USP8 levels. In addition, USP8 knockdown functionally matches the effects of RNF41 ectopic expression on the model leptin and leukemia inhibitory factor (LIF) receptors. Moreover, RNF41 indirectly destabilizes the ESCRT-0 complex via USP8 suppression. Collectively, our findings demonstrate that RNF41 controls JAK2-associated cytokine receptor trafficking by acting as a key regulator of USP8 and ESCRT-0 stability. Balanced reciprocal cross-regulation between RNF41 and USP8 thus decides if receptors are sorted for lysosomal degradation or recycling, this way regulating basal cytokine receptor levels.
Collapse
|