1
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|
2
|
Levay MK, Throm L, Bahrami N, Wieland T. The Muscarinic Acetylcholine M 2 Receptor-Induced Nitration of p190A by eNOS Increases RhoA Activity in Cardiac Myocytes. Cells 2023; 12:2432. [PMID: 37887276 PMCID: PMC10605742 DOI: 10.3390/cells12202432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
p190RhoGAP, which exists in two paralogs, p190RhoGAP-A (p190A) and p190RhoGAP-B (p190B), is a GTPase activating protein (GAP) contributing to the regulation of the cellular activity of RhoGTPases. Recent data showed that M2 muscarinic acetylcholine receptor (M2R) stimulation in neonatal rat cardiac myocytes (NRCM) induces the binding of p190RhoGAP to the long isoform of the regulator of G protein signaling 3 (RGS3L). This complex formation alters the substrate preference of p190RhoGAP from RhoA to Rac1. By analyzing carbachol-stimulated GAP activity, we show herein that p190A, but not p190B, alters its substrate preference in NRCM. Based on data that the RhoGAP activity of p190A in endothelial cells is diminished upon nitration by endothelial nitric oxide synthase (eNOS)-derived peroxynitrite, we studied whether carbachol-induced NO/peroxynitrite formation contributes to the carbachol-induced RhoA activation in NRCM. Interestingly, the carbachol-induced RhoA activation in NRCM was suppressed by the eNOS-preferring inhibitor L-NIO as well as the non-selective NOS inhibitor L-NAME. Using L-NIO, we firstly verified the carbachol-induced NO production concurrent with eNOS activation and, secondly, the carbachol-induced nitration of p190A in NRCM. By co-immunoprecipitation, the carbachol-induced complex formation of eNOS, p190A, RGS3L and caveolin-3 was detected. We thus conclude that the NO production by M2R-induced eNOS activation in caveolae in NRCM is required for the nitration of p190A, leading to the binding to RGS3L and the change in substrate preference from RhoA to Rac1. In line with this interpretation, the disruption of caveolae in NRCM by methyl-β-cyclodextrin suppressed carbachol-induced RhoA activation in NRCM to a similar extent as the inhibition of NO production.
Collapse
Affiliation(s)
- Magdolna K. Levay
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Lena Throm
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
| | - Nabil Bahrami
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (M.K.L.); (L.T.); (N.B.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
3
|
Reis LM, Chassaing N, Bardakjian T, Thompson S, Schneider A, Semina EV. ARHGAP35 is a novel factor disrupted in human developmental eye phenotypes. Eur J Hum Genet 2023; 31:363-367. [PMID: 36450800 PMCID: PMC9995503 DOI: 10.1038/s41431-022-01246-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
ARHGAP35 has known roles in cell migration, invasion and division, neuronal morphogenesis, and gene/mRNA regulation; prior studies indicate a role in cancer in humans and in the developing eyes, neural tissue, and renal structures in mice. We identified damaging variants in ARHGAP35 in five individuals from four families affected with anophthalmia, microphthalmia, coloboma and/or anterior segment dysgenesis disorders, together with variable non-ocular phenotypes in some families including renal, neurological, or cardiac anomalies. Three variants affected the extreme C-terminus of the protein, with two resulting in a frameshift and C-terminal extension and the other a missense change in the Rho-GAP domain; the fourth (nonsense) variant affected the middle of the gene and is the only allele predicted to undergo nonsense-mediated decay. This study implicates ARHGAP35 in human developmental eye phenotypes. C-terminal clustering of the identified alleles indicates a possible common mechanism for ocular disease but requires further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France
- Platerforme AURAGEN, Lyon, France
| | | | - Samuel Thompson
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | | | - Elena V Semina
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA.
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Wong DCP, Pan CQ, Er SY, Thivakar T, Rachel TZY, Seah SH, Chua PJ, Jiang T, Chew TW, Chaudhuri PK, Mukherjee S, Salim A, Aye TA, Koh CG, Lim CT, Tan PH, Bay BH, Ridley AJ, Low BC. The scaffold RhoGAP protein ARHGAP8/BPGAP1 synchronizes Rac and Rho signaling to facilitate cell migration. Mol Biol Cell 2023; 34:ar13. [PMID: 36598812 PMCID: PMC10011724 DOI: 10.1091/mbc.e21-03-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Rho GTPases regulate cell morphogenesis and motility under the tight control of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the underlying mechanism(s) that coordinate their spatiotemporal activities, whether separately or together, remain unclear. We show that a prometastatic RhoGAP, ARHGAP8/BPGAP1, binds to inactive Rac1 and localizes to lamellipodia. BPGAP1 recruits the RacGEF Vav1 under epidermal growth factor (EGF) stimulation and activates Rac1, leading to polarized cell motility, spreading, invadopodium formation, and cell extravasation and promotes cancer cell migration. Importantly, BPGAP1 down-regulates local RhoA activity, which influences Rac1 binding to BPGAP1 and its subsequent activation by Vav1. Our results highlight the importance of BPGAP1 in recruiting Vav1 and Rac1 to promote Rac1 activation for cell motility. BPGAP1 also serves to control the timing of Rac1 activation with RhoA inactivation via its RhoGAP activity. BPGAP1, therefore, acts as a dual-function scaffold that recruits Vav1 to activate Rac1 while inactivating RhoA to synchronize both Rho and Rac signaling in cell motility. As epidermal growth factor receptor (EGFR), Vav1, RhoA, Rac1, and BPGAP1 are all associated with cancer metastasis, BPGAP1 could provide a crucial checkpoint for the EGFR-BPGAP1-Vav1-Rac1-RhoA signaling axis for cancer intervention.
Collapse
Affiliation(s)
| | | | - Shi Yin Er
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - T. Thivakar
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Tan Zi Yi Rachel
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Sock Hong Seah
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Pei Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, Singapore 117594
| | - Tingting Jiang
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Ti Weng Chew
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | - Somsubhro Mukherjee
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Agus Salim
- Melbourne School of Population and Global Health and School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Thike Aye Aye
- Department of Pathology, Singapore General Hospital, Singapore 169856
| | - Cheng Gee Koh
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Puay Hoon Tan
- Department of Pathology, Singapore General Hospital, Singapore 169856
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, Singapore 117594
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558
- NUS College, National University of Singapore, Singapore 138593
| |
Collapse
|
5
|
Héraud C, Pinault M, Neaud V, Saltel F, Lagrée V, Moreau V. Identification of an inhibitory domain in GTPase-activating protein p190RhoGAP responsible for masking its functional GAP domain. J Biol Chem 2022; 299:102792. [PMID: 36516886 PMCID: PMC9840978 DOI: 10.1016/j.jbc.2022.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The GTPase-activating protein (GAP) p190RhoGAP (p190A) is encoded by ARHGAP35 which is found mutated in cancers. p190A is a negative regulator of the GTPase RhoA in cells and must be targeted to RhoA-dependent actin-based structures to fulfill its roles. We previously identified a functional region of p190A called the PLS (protrusion localization sequence) required for localization of p190A to lamellipodia but also for regulating the GAP activity of p190A. Additional effects of the PLS region on p190A localization and activity need further characterization. Here, we demonstrated that the PLS is required to target p190A to invadosomes. Cellular expression of a p190A construct devoid of the PLS (p190AΔPLS) favored RhoA inactivation in a stronger manner than WT p190A, suggesting that the PLS is an autoinhibitory domain of p190A GAP activity. To decipher this mechanism, we searched for PLS-interacting proteins using a two-hybrid screen. We found that the PLS can interact with p190A itself. Coimmunoprecipitation experiments demonstrated that the PLS interacts with a region in close proximity to the GAP domain. Furthermore, we demonstrated that this interaction is abolished if the PLS harbors cancer-associated mutations: the S866F point mutation and the Δ865-870 deletion. Our results are in favor of defining PLS as an inhibitory domain responsible for masking the p190A functional GAP domain. Thus, p190A could exist in cells under two forms: an inactive closed conformation with a masked GAP domain and an open conformation allowing p190A GAP function. Altogether, our data unveil a new mechanism of p190A regulation.
Collapse
|
6
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
7
|
RGS3L allows for an M 2 muscarinic receptor-mediated RhoA-dependent inotropy in cardiomyocytes. Basic Res Cardiol 2022; 117:8. [PMID: 35230541 PMCID: PMC8888479 DOI: 10.1007/s00395-022-00915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/31/2023]
Abstract
The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.
Collapse
|
8
|
Héraud C, Pinault M, Lagrée V, Moreau V. p190RhoGAPs, the ARHGAP35- and ARHGAP5-Encoded Proteins, in Health and Disease. Cells 2019; 8:cells8040351. [PMID: 31013840 PMCID: PMC6523970 DOI: 10.3390/cells8040351] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) gathered in the Rat sarcoma (Ras) superfamily represent a large family of proteins involved in several key cellular mechanisms. Within the Ras superfamily, the Ras homolog (Rho) family is specialized in the regulation of actin cytoskeleton-based mechanisms. These proteins switch between an active and an inactive state, resulting in subsequent inhibiting or activating downstream signals, leading finally to regulation of actin-based processes. The On/Off status of Rho GTPases implicates two subsets of regulators: GEFs (guanine nucleotide exchange factors), which favor the active GTP (guanosine triphosphate) status of the GTPase and GAPs (GTPase activating proteins), which inhibit the GTPase by enhancing the GTP hydrolysis. In humans, the 20 identified Rho GTPases are regulated by over 70 GAP proteins suggesting a complex, but well-defined, spatio-temporal implication of these GAPs. Among the quite large number of RhoGAPs, we focus on p190RhoGAP, which is known as the main negative regulator of RhoA, but not exclusively. Two isoforms, p190A and p190B, are encoded by ARHGAP35 and ARHGAP5 genes, respectively. We describe here the function of each of these isoforms in physiological processes and sum up findings on their role in pathological conditions such as neurological disorders and cancers.
Collapse
Affiliation(s)
- Capucine Héraud
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Mathilde Pinault
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Valérie Lagrée
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| | - Violaine Moreau
- INSERM, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.
- University of Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, Bordeaux F-33000, France.
- Equipe Labellisée Fondation pour la Recherche Médicale (FRM) 2018, 75007 Paris, France.
| |
Collapse
|
9
|
Csépányi-Kömi R, Pásztor M, Bartos B, Ligeti E. The neglected terminators: Rho family GAPs in neutrophils. Eur J Clin Invest 2018; 48 Suppl 2:e12993. [PMID: 29972685 DOI: 10.1111/eci.12993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND GTPase-activating proteins (GAPs) accelerate the rate of hydrolysis of GTP bound to small GTPases, thereby limiting the prevalence and concentration of the active, GTP-bound form of these proteins. The large number of potential GAPs acting on members of the Rho family of small GTPases raises the question of specificity or redundancy. RESULTS In this review, we summarize experimental data obtained on the role of Rho family GAPs in neutrophils, highlight cases where more than one GAP is involved in a physiological function and show examples that GAPs can be involved not only in termination but also in initiation of cellular processes. We demonstrate that the expression-level regulation of GAPs may also occur in short-living cells such as neutrophils. Finally, we provide insight into the existence and structure of molecular complexes in which Rho family GAPs are involved. CONCLUSION GAPs play more complex and varied roles than being simple terminators of cellular processes.
Collapse
Affiliation(s)
| | - Máté Pásztor
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Balázs Bartos
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Bidaud-Meynard A, Binamé F, Lagrée V, Moreau V. Regulation of Rho GTPase activity at the leading edge of migrating cells by p190RhoGAP. Small GTPases 2017; 10:99-110. [PMID: 28287334 DOI: 10.1080/21541248.2017.1280584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell migration, a key feature of embryonic development, immunity, angiogenesis, and tumor metastasis, is based on the coordinated regulation of actin dynamics and integrin-mediated adhesion. Rho GTPases play a major role in this phenomenon by regulating the onset and maintenance of actin-based protruding structures at cell leading edges (i.e. lamellipodia and filopodia) and contractile structures (i.e., stress fibers) at their trailing edge. While spatio-temporal analysis demonstrated the tight regulation of Rho GTPases at the migration front during cell locomotion, little is known about how the main regulators of Rho GTPase activity, such as GAPs, GEFs and GDIs, play a role in this process. In this review, we focus on a major negative regulator of RhoA, p190RhoGAP-A and its close isoform p190RhoGAP-B, which are necessary for efficient cell migration. Recent studies, including our, demonstrated that p190RhoGAP-A localization and activity undergo a complex regulatory mechanism, accounting for the tight regulation of RhoA, but also other members of the Rho GTPase family, at the cell periphery.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Fabien Binamé
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Valérie Lagrée
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| | - Violaine Moreau
- a Institut National de la Santé et de la Recherche Médicale , Bordeaux , France.,b Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology , Bordeaux , France
| |
Collapse
|
11
|
Parasuraman P, Mulligan P, Walker JA, Li B, Boukhali M, Haas W, Bernards A. Interaction of p190A RhoGAP with eIF3A and Other Translation Preinitiation Factors Suggests a Role in Protein Biosynthesis. J Biol Chem 2016; 292:2679-2689. [PMID: 28007963 DOI: 10.1074/jbc.m116.769216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
The negative regulator of Rho family GTPases, p190A RhoGAP, is one of six mammalian proteins harboring so-called FF motifs. To explore the function of these and other p190A segments, we identified interacting proteins by tandem mass spectrometry. Here we report that endogenous human p190A, but not its 50% identical p190B paralog, associates with all 13 eIF3 subunits and several other translational preinitiation factors. The interaction involves the first FF motif of p190A and the winged helix/PCI domain of eIF3A, is enhanced by serum stimulation and reduced by phosphatase treatment. The p190A/eIF3A interaction is unaffected by mutating phosphorylated p190A-Tyr308, but disrupted by a S296A mutation, targeting the only other known phosphorylated residue in the first FF domain. The p190A-eIF3 complex is distinct from eIF3 complexes containing S6K1 or mammalian target of rapamycin (mTOR), and appears to represent an incomplete preinitiation complex lacking several subunits. Based on these findings we propose that p190A may affect protein translation by controlling the assembly of functional preinitiation complexes. Whether such a role helps to explain why, unique among the large family of RhoGAPs, p190A exhibits a significantly increased mutation rate in cancer remains to be determined.
Collapse
Affiliation(s)
- Prasanna Parasuraman
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Peter Mulligan
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - James A Walker
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bihua Li
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Myriam Boukhali
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Wilhelm Haas
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Andre Bernards
- From the Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
12
|
Binamé F, Bidaud-Meynard A, Magnan L, Piquet L, Montibus B, Chabadel A, Saltel F, Lagrée V, Moreau V. Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. J Cell Biol 2016; 214:859-73. [PMID: 27646271 PMCID: PMC5037408 DOI: 10.1083/jcb.201601063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023] Open
Abstract
p190RhoGAP (p190A) is a negative regulator of RhoA and localizes to membrane protrusions, where its GAP activity is required for directional migration. Here, Binamé et al. identify the protrusion-localization sequence in p190A and show that cancer-associated mutations in this region affect p190A localization and function as well as tumor cell migration. Spatiotemporal regulation of RhoGTPases such as RhoA is required at the cell leading edge to achieve cell migration. p190RhoGAP (p190A) is the main negative regulator of RhoA and localizes to membrane protrusions, where its GTPase-activating protein (GAP) activity is required for directional migration. In this study, we investigated the molecular processes responsible for p190A targeting to actin protrusions. By analyzing the subcellular localization of truncated versions of p190A in hepatocellular carcinoma cells, we identified a novel functional p190A domain: the protrusion localization sequence (PLS) necessary and sufficient for p190A targeting to leading edges. Interestingly, the PLS is also required for the negative regulation of p190A RhoGAP activity. Further, we show that the F-actin binding protein cortactin binds the PLS and is required for p190A targeting to protrusions. Lastly, we demonstrate that cancer-associated mutations in PLS affect p190A localization and function, as well as tumor cell migration. Altogether, our data unveil a new mechanism of regulation of p190A in migrating tumor cells.
Collapse
Affiliation(s)
- Fabien Binamé
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Aurélien Bidaud-Meynard
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Laure Magnan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Léo Piquet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Bertille Montibus
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Anne Chabadel
- Institut National de la Santé et de la Recherche Médicale, Unité 441, F-33600 Pessac, France
| | - Frédéric Saltel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Valérie Lagrée
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| | - Violaine Moreau
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France Université de Bordeaux, Unité Mixte de Recherche 1053 Bordeaux Research In Translational Oncology, F-33000 Bordeaux, France
| |
Collapse
|
13
|
Csépányi-Kömi R, Wisniewski É, Bartos B, Lévai P, Németh T, Balázs B, Kurz ARM, Bierschenk S, Sperandio M, Ligeti E. Rac GTPase Activating Protein ARHGAP25 Regulates Leukocyte Transendothelial Migration in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:2807-15. [PMID: 27566826 DOI: 10.4049/jimmunol.1502342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/21/2016] [Indexed: 12/31/2022]
Abstract
ARHGAP25 is a Rac-specific GTPase-activating protein that is expressed primarily in hematopoietic cells. The involvement of ARHGAP25 in regulating the recruitment of leukocytes to inflammatory sites was investigated in genetically modified mice. Using intravital microscopy, we show that Arhgap25 deficiency affects all steps of leukocyte recruitment with a predominant enhancement of transendothelial migration of neutrophilic granulocytes. Increased transmigration of Arhgap25-deficient leukocytes is demonstrated in inflamed cremaster muscle venules, in a peritonitis model, and in an in vitro chemotaxis assay. Using bone marrow chimeric mice lacking ARHGAP25 in the hematopoietic compartment, we show that enhanced migration in the absence of ARHGAP25 is due to defective leukocyte function. In search for potential mechanisms of ARHGAP25-regulated migration of neutrophils, we detected an increase in the amount of active, GTP-bound Rac and Rac-dependent cytoskeletal changes in the absence of ARHGAP25, suggesting a critical role of ARHGAP25 in counterbalancing the Rac-activating effect of nucleotide exchange factors. Taken together, using Arhgap25-deficient mice, we identified ARHGAP25 as a relevant negative regulator of leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Roland Csépányi-Kömi
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; and Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians Universität, 80539 Munich, Germany
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; and
| | - Balázs Bartos
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; and
| | - Petra Lévai
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; and
| | - Tamás Németh
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; and
| | - Bernadett Balázs
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; and
| | - Angela R M Kurz
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians Universität, 80539 Munich, Germany
| | - Susanne Bierschenk
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians Universität, 80539 Munich, Germany
| | - Markus Sperandio
- Walter-Brendel-Zentrum für Experimentelle Medizin, Ludwig-Maximilians Universität, 80539 Munich, Germany
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; and
| |
Collapse
|
14
|
Bai X, Dee R, Mangum KD, Mack CP, Taylor JM. RhoA signaling and blood pressure: The consequence of failing to “Tone it Down”. World J Hypertens 2016; 6:18-35. [DOI: 10.5494/wjh.v6.i1.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled high blood pressure is a major risk factor for heart attack, stroke, and kidney failure and contributes to an estimated 25% of deaths worldwide. Despite numerous treatment options, estimates project that reasonable blood pressure (BP) control is achieved in only about half of hypertensive patients. Improvements in the detection and management of hypertension will undoubtedly be accomplished through a better understanding of the complex etiology of this disease and a more comprehensive inventory of the genes and genetic variants that influence BP regulation. Recent studies (primarily in pre-clinical models) indicate that the small GTPase RhoA and its downstream target, Rho kinase, play an important role in regulating BP homeostasis. Herein, we summarize the underlying mechanisms and highlight signaling pathways and regulators that impart tight spatial-temporal control of RhoA activity. We also discuss known allelic variations in the RhoA pathway and consider how these polymorphisms may affect genetic risk for hypertension and its clinical manifestations. Finally, we summarize the current (albeit limited) clinical data on the efficacy of targeting the RhoA pathway in hypertensive patients.
Collapse
|
15
|
Kshitiz, Afzal J, Kim DH, Levchenko A. Concise review: Mechanotransduction via p190RhoGAP regulates a switch between cardiomyogenic and endothelial lineages in adult cardiac progenitors. Stem Cells 2015; 32:1999-2007. [PMID: 24710857 DOI: 10.1002/stem.1700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/18/2014] [Indexed: 01/01/2023]
Abstract
Mechanical cues can have pleiotropic influence on stem cell shape, proliferation, differentiation, and morphogenesis, and are increasingly realized to play an instructive role in regeneration and maintenance of tissue structure and functions. To explore the putative effects of mechanical cues in regeneration of the cardiac tissue, we investigated therapeutically important cardiosphere-derived cells (CDCs), a heterogeneous patient- or animal-specific cell population containing c-Kit(+) multipotent stem cells. We showed that mechanical cues can instruct c-Kit(+) cell differentiation along two lineages with corresponding morphogenic changes, while also serving to amplify the initial c-Kit(+) subpopulation. In particular, mechanical cues mimicking the structure of myocardial extracellular matrix specify cardiomyogenic fate, while cues mimicking myocardium rigidity specify endothelial fates. Furthermore, we found that these cues dynamically regulate the same molecular species, p190RhoGAP, which then acts through both RhoA-dependent and independent mechanisms. Thus, differential regulation of p190RhoGAP molecule by either mechanical inputs or genetic manipulation can determine lineage type specification. Since human CDCs are already in phase II clinical trials, the potential therapeutic use of mechanical or genetic manipulation of the cell fate could enhance effectiveness of these progenitor cells in cardiac repair, and shed new light on differentiation mechanisms in cardiac and other tissues.
Collapse
Affiliation(s)
- Kshitiz
- Department of Bioengineering, Institute of Stem Cells and Regenerative Medicine and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA; Institute of Stem Cells and Regenerative Medicine and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.
Collapse
Key Words
- AJ, adherens junction
- AMOT, angiomotin
- AMPK, Adenosine Monophosphate-Activated Protein Kinase
- APC, adenomatous poliposis coli
- CD2AP, CD2-associated protein
- CGN, cingulin
- CGNL1, paracingulin
- Cdc42
- Cdc42, cell division cycle 42
- DLC, deleted in liver cancer
- Dbl, diffuse B-cell lymphoma
- EPLIN, epithelial protein lost in neoplasm
- ERK, extracellular regulated kinase
- FERM, four.point.one, ezrin, radixin, moesin
- FGD5, FYVE, RhoGEF and PH domain containing 5
- GAP, GTPase activating protein
- GEF, guanine nucleotide exchange factor
- GST, glutathione -S- transferase; JAM = junctional adhesion molecule
- MCF-7, Michigan Cancer Foundation - 7
- MDCK, Madin Darby Canine Kidney
- MKLP1, mitotic kinesin-like protein-1
- MRCK, myotonic dystrophy-related Cdc42-binding kinase
- MgcRacGAP, male germ cell racGAP
- PA, puncta adhaerentia
- PAK, p21-activated kinase; PATJ, Pals1 associated tight junction protein
- PCNA, proliferating cell nuclear antigen
- PDZ, Post synaptic density protein (PSD95), Drosophila, disc large tumour suppressor (DlgA), and zonula occludens-1
- PLEKHA7, pleckstrin homology domain containing, family A member 7
- RICH-1, RhoGAP interacting with CIP4 homologues
- ROCK, Rho-associated protein kinase
- Rac
- Rho
- SH3BP1, (SH3 domain 490 binding protein-1)
- TJ, tight junction
- Tbx-3, T-box-3
- Tiam, Tumor invasion and metastasis
- WASP, Wiskott-Aldrich Syndrome Protein
- WAVE, WASP family Verprolin-homologous protein
- ZA, zonula adhaerens
- ZO, zonula occludens
- ZONAB, (ZO-1)–associated nucleic acid binding protein.
- cytoseleton
- epithelium
- junctions
Collapse
Affiliation(s)
- Sandra Citi
- a Department of Cell Biology ; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
17
|
Breznau EB, Semack AC, Higashi T, Miller AL. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells. Mol Biol Cell 2015; 26:2439-55. [PMID: 25947135 PMCID: PMC4571299 DOI: 10.1091/mbc.e14-11-1553] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/30/2015] [Indexed: 12/17/2022] Open
Abstract
MgcRacGAP's role in regulating the spatiotemporal dynamics of active RhoA and Rac1 in epithelial cells is investigated. MgcRacGAP's GAP activity down-regulates RhoA at the furrow and both RhoA and Rac1 at cell–cell junctions in dividing epithelial cells and is required for successful cytokinesis and cell–cell junction structure. MgcRacGAP's ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc's GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc's function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc's role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc's GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc's GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc's GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure.
Collapse
Affiliation(s)
- Elaina B Breznau
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ansley C Semack
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109 Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Abstract
Rac and PI3Ks are intracellular signal transducers able to regulate multiple signaling pathways fundamental for cell behavior. PI3Ks are lipid kinases that produce phosphorylated lipids which, in turn, transduce extracellular cues within the cell, while Rac is a small G protein that impacts on actin organization. Compelling evidence indicates that in multiple circumstances the 2 signaling pathways appear intermingled. For instance, phosphorylated lipids produced by PI3Ks recruit and activate GEF and GAP proteins, key modulators of Rac function. Conversely, PI3Ks interact with activated Rac, leading to Rac signaling amplification. This review summarizes the molecular mechanisms underlying the cross-talk between Rac and PI3K signaling in 2 different processes, cell migration and ROS production.
Collapse
Affiliation(s)
- Carlo C Campa
- a Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino , Italy
| | | | | | | | | |
Collapse
|
19
|
Lőrincz ÁM, Szarvas G, Smith SME, Ligeti E. Role of Rac GTPase activating proteins in regulation of NADPH oxidase in human neutrophils. Free Radic Biol Med 2014; 68:65-71. [PMID: 24321316 DOI: 10.1016/j.freeradbiomed.2013.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/15/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
Abstract
Precise spatiotemporal regulation of O2(-)-generating NADPH oxidases (Nox) is a vital requirement. In the case of Nox1-3, which depend on the small GTPase Rac, acceleration of GTP hydrolysis by GTPase activating protein (GAP) could represent a feasible temporal control mechanism. Our goal was to investigate the molecular interactions between RacGAPs and phagocytic Nox2 in neutrophilic granulocytes. In structural studies we revealed that simultaneous interaction of Rac with its effector protein p67(phox) and regulatory protein RacGAP was sterically possible. The effect of RacGAPs was experimentally investigated in a cell-free O2(-)-generating system consisting of isolated membranes and recombinant p47(phox) and p67(phox) proteins. Addition of soluble RacGAPs decreased O2(-) production and there was no difference in the effect of four RacGAPs previously identified in neutrophils. Depletion of membrane-associated RacGAPs had a selective effect: a decrease in ARHGAP1 or ARHGAP25 level increased O2(-) production but a depletion of ARHGAP35 had no effect. Only membrane-localized RacGAPs seem to be able to interact with Rac when it is assembled in the Nox2 complex. Thus, in neutrophils multiple RacGAPs are involved in the control of O2(-) production by Nox2, allowing selective regulation via different signaling pathways.
Collapse
Affiliation(s)
- Ákos M Lőrincz
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Gábor Szarvas
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Susan M E Smith
- Department of Biology and Physics, Kennesaw State University, 1000 Chastain Road, Building 12, Room 308, Kennesaw, GA 30144, USA
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
20
|
The guanine nucleotide exchange factor Tiam1: A Janus-faced molecule in cellular signaling. Cell Signal 2014; 26:483-91. [DOI: 10.1016/j.cellsig.2013.11.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|