1
|
Liu J, Wei B, Zhang Y, You Y, Zhi Y. Association between PRKG1 gene and gene-environment interactions with pediatric asthma. J Asthma 2024; 61:754-761. [PMID: 38193459 DOI: 10.1080/02770903.2024.2303763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
OBJECTIVE To investigate the relationship between single nucleotide polymorphisms (SNPs) of cGMP-dependent protein kinase I (PRKG1) gene and gene-environment interactions with bronchial asthma in children. METHODS 109 asthma patients and 158 healthy controls from the General Hospital of Northern Theater Command were enrolled, based case-control study. The iMLDR® multiple SNP typing technique was applied to detect the genotypes of rs7903366, rs7081864, rs7070958 and rs7897633 in PRKG1 gene. The percentage of eosinophils (EOS%) in peripheral blood and serum immunoglobulin E (IgE) in the case group were also measured. Gene-environment interactions were examined using the generalized multi-factor dimensionality reduction (GMDR) method. RESULTS There were polymorphisms in four SNPs of PRKG1 gene in the case and control groups. The genotype and allele frequencies distribution of rs7897633 demonstrated statistical significance (p < 0.05). There were no statistically significant differences in EOS% and IgE among genotypes at the four SNPs of PRKG1 gene (p > 0.05). The haplotypes CAGA and TGAC presented significant association with asthma risk (p < 0.05). The four-factor model indicated a potential gene-environment interaction in rs7897633, allergen exposure, residence, and environmental tobacco smoke (ETS) exposure (p < 0.05). CONCLUSIONS The rs7897633 in PRKG1 gene was associated with susceptibility to childhood asthma, and C allele is a protective factor. The haplotype CAGA had a protective effect against asthma risk and TGAC was linked to the high risk of developing asthma. Moreover, the interaction of rs7897633, allergen exposure, residence, and ETS exposure conferred susceptibility to childhood asthma.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, P.R. China
- Post-graduate College, China Medical University, Shenyang, P.R. China
| | - Bing Wei
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Yuxuan Zhang
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Yuan You
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Yanjie Zhi
- Department of Neonatology, General Hospital of Northern Theater Command, Shenyang, P.R. China
| |
Collapse
|
2
|
Hassabo AA, Abdelraof M, Allam RM. L-arginase from Streptomyces diastaticus MAM5 as a potential therapeutic agent in breast cancer: Purification, characterization, G1 phase arrest and autophagy induction. Int J Biol Macromol 2022; 224:634-645. [DOI: 10.1016/j.ijbiomac.2022.10.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
3
|
Osokin VS, Dereven’kov IA, Makarov SV, Gaina-Gardiuta A, Silaghi-Dumitrescu R. Effect of trans-ligand on properties of nitric oxide motif in nitrosylcobinamide. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2079409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vladimir S. Osokin
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | - Ilia A. Dereven’kov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | - Sergei V. Makarov
- Department of Food Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | | | | |
Collapse
|
4
|
Effect of complexation between cobinamides and bovine serum albumin on their reactivity toward cyanide. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bayarri MA, Milara J, Estornut C, Cortijo J. Nitric Oxide System and Bronchial Epithelium: More Than a Barrier. Front Physiol 2021; 12:687381. [PMID: 34276407 PMCID: PMC8279772 DOI: 10.3389/fphys.2021.687381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Airway epithelium forms a physical barrier that protects the lung from the entrance of inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble mediators or proteins between apical and basolateral cell surfaces. This apical junctional complex also participates in several signaling pathways involved in gene expression, cell proliferation and cell differentiation. In addition, the airway epithelium can produce chemokines and cytokines that trigger the activation of the immune response. Disruption of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial infection, but also alters the normal function of epithelial cells provoking several lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been linked with endothelial function, less is known about the role of the NO system on the bronchial epithelium and airway epithelial cells function in physiological and different pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide (FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer among others, and that reactive oxygen species mediate uncoupling NO to promote the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction. Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies which represents an attractive drug molecular target. In this review we describe in detail current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and disruption in bronchial epithelial cells barrier integrity and its contribution in different lung diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation, migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular pathways involved.
Collapse
Affiliation(s)
- María Amparo Bayarri
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Cristina Estornut
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Al-Koussa H, El Mais N, Maalouf H, Abi-Habib R, El-Sibai M. Arginine deprivation: a potential therapeutic for cancer cell metastasis? A review. Cancer Cell Int 2020; 20:150. [PMID: 32390765 PMCID: PMC7201942 DOI: 10.1186/s12935-020-01232-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023] Open
Abstract
Arginine is a semi essential amino acid that is used in protein biosynthesis. It can be obtained from daily food intake or synthesized in the body through the urea cycle using l-citrulline as a substrate. Arginine has a versatile role in the body because it helps in cell division, wound healing, ammonia disposal, immune system, and hormone biosynthesis. It is noteworthy that l-arginine is the precursor for the biosynthesis of nitric oxide (NO) and polyamines. In the case of cancer cells, arginine de novo synthesis is not enough to compensate for their high nutritional needs, forcing them to rely on extracellular supply of arginine. In this review, we will go through the importance of arginine deprivation as a novel targeting therapy by discussing the different arginine deprivation agents and their mechanism of action. We will also focus on the factors that affect cell migration and on the influence of arginine on metastases through polyamine and NO.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Nour El Mais
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Ralph Abi-Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran, 1102 2801 Beirut, Lebanon
| |
Collapse
|
7
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part II - Modulation of angiogenesis. Clin Hemorheol Microcirc 2020; 73:409-438. [PMID: 31177206 DOI: 10.3233/ch-199103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
8
|
Abstract
Background The study of the mechanisms controlling wound healing is an attractive area within the field of biology, with it having a potentially significant impact on the health sector given the current medical burden associated with healing in the elderly population. Healing is a complex process and includes many steps that are regulated by coding and noncoding RNAs, proteins and other molecules. Nitric oxide (NO) is one of these small molecule regulators and its function has already been associated with inflammation and angiogenesis during adult healing. Results Our results showed that NO is also an essential component during embryonic scarless healing and acts via a previously unknown mechanism. NO is mainly produced during the early phase of healing and it is crucial for the expression of genes associated with healing. However, we also observed a late phase of healing, which occurs for several hours after wound closure and takes place under the epidermis and includes tissue remodelling that is dependent on NO. We also found that the NO is associated with multiple cellular metabolic pathways, in particularly the glucose metabolism pathway. This is particular noteworthy as the use of NO donors have already been found to be beneficial for the treatment of chronic healing defects (including those associated with diabetes) and it is possible that its mechanism of action follows those observed during embryonic wound healing. Conclusions Our study describes a new role of NO during healing, which may potentially translate to improved therapeutic treatments, especially for individual suffering with problematic healing.
Collapse
|
9
|
Dereven'kov IA, Makarov SV, Bui Thi TT, Makarova AS, Koifman OI. Studies on the Reduction of Dehydroascorbic Acid by Glutathione in the Presence of Aquahydroxocobinamide. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ilia A. Dereven'kov
- Ivanovo State University of Chemistry and Technology; Sheremetevskiy str. 7 153000 Ivanovo Russia
| | - Sergei V. Makarov
- Ivanovo State University of Chemistry and Technology; Sheremetevskiy str. 7 153000 Ivanovo Russia
| | - Thu Thuy Bui Thi
- Faculty of Chemical Engineering; Industrial University of Ho Chi Minh city; 12 Nguyen Van Bao, ward 4, Go Vap district 727010 Ho Chi Minh City Vietnam
| | - Anna S. Makarova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences; Academicheskaya str. 1 153045 Ivanovo Russian Federation
| | - Oskar I. Koifman
- Ivanovo State University of Chemistry and Technology; Sheremetevskiy str. 7 153000 Ivanovo Russia
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences; Academicheskaya str. 1 153045 Ivanovo Russian Federation
| |
Collapse
|
10
|
Zhan R, Wang F, Wu Y, Wang Y, Qian W, Liu M, Liu T, He W, Ren H, Luo G. Nitric oxide induces epidermal stem cell de-adhesion by targeting integrin β1 and Talin via the cGMP signalling pathway. Nitric Oxide 2018; 78:1-10. [PMID: 29698689 DOI: 10.1016/j.niox.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/24/2018] [Accepted: 04/01/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Nitric oxide (NO) has emerged as a critical molecule in wound healing, but the mechanism underlying its activity is not well defined. Here, we explored the effect of NO on the de-adhesion of epidermal stem cells (ESCs) and the mechanism involved in this process. METHODS The effects of NO on isolated human and mouse ESCs cultured in the presence of different concentrations of the NO donor S-nitroso-N-acetyl penicillamine (SNAP) were evaluated in cell de-adhesion assays mediated by integrin β and collagen IV. Subsequently, changes in the expression of integrin β1 and the phosphorylation of Talin in response to different doses of SNAP were detected by Western blot analysis and real-time PCR in vitro. Furthermore, the roles of various soluble guanylyl cyclase (sGC)- and protein kinase G (PKG)-specific inhibitors and agonists in the effects of NO on ESC de-adhesion, integrin β1 expression and Talin phosphorylation were analysed. Moreover, the effects of NO on integrin β1 expression and sGC/cGMP/PKG signalling-mediated wound healing were detected in vivo using 5-bromo-2-deoxyuridine (BrdU) label-retaining cells (LRCs) in a scald model and an excision wound healing model, respectively. RESULTS SNAP promoted primary human and mouse ESC de-adhesion in a concentration-dependent manner in the integrin β1-and collagen IV-mediated adhesion assay, and this effect was suppressed by the sGC and PKG inhibitors. Additionally, integrin β1 expression and Talin phosphorylation at serine 425 (S425) were negatively correlated with SNAP levels, and this effect was blocked by the sGC and PKG inhibitors. Moreover, the roles of NO in integrin β1 expression and cGMP signalling pathway-mediated wound healing were confirmed in vivo. CONCLUSION Our data indicate that the stimulatory effects of NO on ESC de-adhesion related to integrin β1 expression and Talin phosphorylation were mediated by the cGMP signalling pathway, which is likely involved in wound healing.
Collapse
Affiliation(s)
- Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Nursing, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fan Wang
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Ying Wu
- The Institute of Hepatobiliary Surgery, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, China.
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Menglong Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Tengfei Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Hui Ren
- School of Nursing, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Proteomics of Chongqing, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
11
|
Kalyanaraman H, Ramdani G, Joshua J, Schall N, Boss GR, Cory E, Sah RL, Casteel DE, Pilz RB. A Novel, Direct NO Donor Regulates Osteoblast and Osteoclast Functions and Increases Bone Mass in Ovariectomized Mice. J Bone Miner Res 2017; 32:46-59. [PMID: 27391172 PMCID: PMC5199609 DOI: 10.1002/jbmr.2909] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023]
Abstract
Most US Food and Drug Administration (FDA)-approved treatments for osteoporosis target osteoclastic bone resorption. Only PTH derivatives improve bone formation, but they have drawbacks, and novel bone-anabolic agents are needed. Nitrates, which generate NO, improved BMD in estrogen-deficient rats and may improve bone formation markers and BMD in postmenopausal women. However, nitrates are limited by induction of oxidative stress and development of tolerance, and may increase cardiovascular mortality after long-term use. Here we studied nitrosyl-cobinamide (NO-Cbi), a novel, direct NO-releasing agent, in a mouse model of estrogen deficiency-induced osteoporosis. In murine primary osteoblasts, NO-Cbi increased intracellular cGMP, Wnt/β-catenin signaling, proliferation, and osteoblastic gene expression, and protected cells from apoptosis. Correspondingly, in intact and ovariectomized (OVX) female C57Bl/6 mice, NO-Cbi increased serum cGMP concentrations, bone formation, and osteoblastic gene expression, and in OVX mice, it prevented osteocyte apoptosis. NO-Cbi reduced osteoclasts in intact mice and prevented the known increase in osteoclasts in OVX mice, partially through a reduction in the RANKL/osteoprotegerin gene expression ratio, which regulates osteoclast differentiation, and partially through direct inhibition of osteoclast differentiation, observed in vitro in the presence of excess RANKL. The positive NO effects in osteoblasts were mediated by cGMP/protein kinase G (PKG), but some of the osteoclast-inhibitory effects appeared to be cGMP-independent. NO-Cbi increased trabecular bone mass in both intact and OVX mice, consistent with its in vitro effects on osteoblasts and osteoclasts. NO-Cbi is a novel direct NO-releasing agent that, in contrast to nitrates, does not generate oxygen radicals, and combines anabolic and antiresorptive effects in bone, making it an excellent candidate for treating osteoporosis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Ghania Ramdani
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Jisha Joshua
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Nadine Schall
- Institute of Pharmacology and Toxicology, University of Bonn, 53105 Bonn, Germany
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Esther Cory
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0652
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0652
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652
| |
Collapse
|
12
|
Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling. Sci Rep 2016; 6:30687. [PMID: 27469024 PMCID: PMC4965828 DOI: 10.1038/srep30687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 06/27/2016] [Indexed: 01/05/2023] Open
Abstract
The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging and scratch models. In addition, pull-down assays demonstrated that SNAP could activate the small GTPases RhoA and Rac1 of the Rho family, but not Cdc42. Moreover, the effects of SNAP on the migration and F-actin polymerization of ESCs could be blocked by inhibitors of cGMP, PKG, RhoA or Rac1, and by a specific siRNA of RhoA or Rac1, but not by a Cdc42 inhibitor or siRNA. Furthermore, the roles of NO in ESC migration via cGMP-Rho GTPase signalling in vivo were confirmed by tracing 5-bromo-2-deoxyuridine (BrdU)-labelled cells in a superficial, partial-thickness scald mouse model. Thus, the present study demonstrated that the NO donor SNAP could promote huESC migration in vitro. Furthermore, NO was found to induce ESC migration via cGMP-Rho GTPase RhoA and Rac1 signalling, but not Cdc42 signalling, both in vivo and in vitro.
Collapse
|
13
|
|
14
|
Park Y, Moon C, Kim SH, Lee P. Induction of HaCaT Cell Apoptosis by Sodium Nitroprusside. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2015. [DOI: 10.15324/kjcls.2015.47.3.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuri Park
- Department of Natural Medicine Resources, Semyung University, Jecheon 27136, Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Pyeongjae Lee
- Department of Natural Medicine Resources, Semyung University, Jecheon 27136, Korea
| |
Collapse
|
15
|
Spitler R, Ho H, Norpetlian F, Kong X, Jiang J, Yokomori K, Andersen B, Boss GR, Berns MW. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051022. [PMID: 25562608 PMCID: PMC4284311 DOI: 10.1117/1.jbo.20.5.051022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation.
Collapse
Affiliation(s)
- Ryan Spitler
- University of California Irvine, Irvine, California 92612 United States
| | - Hsiang Ho
- University of California Irvine, Irvine, California 92612 United States
| | | | - Xiangduo Kong
- University of California Irvine, Irvine, California 92612 United States
| | - Jingjing Jiang
- University of California San Diego, La Jolla, California 92093 United States
| | - Kyoko Yokomori
- University of California Irvine, Irvine, California 92612 United States
| | - Bogi Andersen
- University of California Irvine, Irvine, California 92612 United States
| | - Gerry R. Boss
- University of California San Diego, La Jolla, California 92093 United States
| | - Michael W. Berns
- University of California Irvine, Irvine, California 92612 United States
- University of California San Diego, La Jolla, California 92093 United States
| |
Collapse
|
16
|
Zhan R, Yang S, He W, Wang F, Tan J, Zhou J, Yang S, Yao Z, Wu J, Luo G. Nitric oxide enhances keratinocyte cell migration by regulating Rho GTPase via cGMP-PKG signalling. PLoS One 2015; 10:e0121551. [PMID: 25799230 PMCID: PMC4370851 DOI: 10.1371/journal.pone.0121551] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/02/2015] [Indexed: 01/12/2023] Open
Abstract
Objective Nitric oxide (NO) has been shown to improve wound healing, but the mechanism underlying this function is not well defined. Here, we explored the effect of NO on the migration of a human keratinocyte cell line (HaCaT) and its possible mechanism. Methods The effects of NO on HaCaT cells in the presence of different concentrations of the NO donor sodium nitroprusside (SNP) were evaluated in a cell migration assay. Subsequently, the cytoskeleton reorganization of cultured HaCaT cells stained with rhodamine-phalloidin was observed with a confocal laser scanning microscope. The mRNA expression and active proteins of CDC42, Rac1 and RhoA in the cultured cells were determined via RT-PCR and pull-down assays, respectively. Furthermore, the roles of various inhibitors or agonists specific to cGMP, PKG and CDC42, Rac1, RhoA in the effects of NO on HaCaT cell migration, F-actin stress fibre formation, and Rho GTPase expression were observed. Results It was also found HaCaT cell migration was increased by SNP in a dose-dependent manner, and the other two NO donors either spermine NONOate or SNAP had almost the same effects on HaCat cell migrations. The formation of F-actin stress fibres in SNP-treated HaCaT cells was increased. The mRNA expression and the active proteins of CDC42, Rac1 and RhoA were found to be upregulated after SNP treatment. Similar effects were observed after the cells were treated with a cGMP or PKG agonist. Additionally, the SNP-mediated upregulation of the mRNA expression and the active proteins of CDC42, Rac1 and RhoA were inhibited by the addition of an inhibitor of cGMP or PKG. Moreover, the SNP-mediated promoting effects of migration and cytoskeleton reorganization were inhibited by treatment with inhibitors of cGMP, PKG, CDC42, Rac1 and RhoA respectively. Conclusion Our data indicated that the stimulatory effects of NO on cell migration of HaCaT cells are mediated by the cGMP signalling pathway via the upregulation of Rho-GTPase expression, which might promote cytoskeleton reorganization.
Collapse
Affiliation(s)
- Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwei Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fan Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junyi Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sisi Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhihui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (JW); (GL)
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (JW); (GL)
| |
Collapse
|
17
|
ó Proinsias K, Karczewski M, Zieleniewska A, Gryko D. Microwave-Assisted Cobinamide Synthesis. J Org Chem 2014; 79:7752-7. [DOI: 10.1021/jo501364b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Keith ó Proinsias
- Institute
of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maksymilian Karczewski
- Institute
of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Zieleniewska
- Institute
of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Gryko
- Institute
of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Spitler R, Berns MW. Comparison of laser and diode sources for acceleration of in vitro wound healing by low-level light therapy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:38001. [PMID: 24638250 DOI: 10.1117/1.jbo.19.3.038001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
Low-level light therapy has been shown to improve in vitro wound healing. However, well-defined parameters of different light sources for this therapy are lacking. The goal of this study was (1) to determine if the wavelengths tested are effective for in vitro wound healing and (2) to compare a laser and a light-emitting diode (LED) source at similar wavelengths. We show four wavelengths, delivered by either a laser or LED array, improved in vitro wound healing in A549, U2OS, and PtK2 cells. Improved wound healing occurred through increased cell migration demonstrated through scratch wound and transwell assays. Cell proliferation was tested by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-car-boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay and was found generally not to be involved in the wound healing process. The laser and LED sources were found to be comparable when equal doses of light were applied. The biological response measured was similar in most cases. We conclude that the laser at 652 (5.57 mW/cm2, 10.02 J/cm2) and 806 nm (1.30 mW/cm2, 2.334 J/cm2) (full bandwidth 5 nm), and LED at 637 (5.57 mW/cm2, 10.02 J/cm2) and 901 nm (1.30 mW/cm2, 2.334 J/cm2) (full bandwidth 17 and 69 nm respectively) induce comparable levels of cell migration and wound closure.
Collapse
Affiliation(s)
- Ryan Spitler
- University of California Irvine, Beckman Laser Institute, Department of Developmental & Cell Biology, 1002 Health Sciences Road, Irvine, California 92612
| | - Michael W Berns
- University of California Irvine, Beckman Laser Institute, Department of Developmental & Cell Biology, 1002 Health Sciences Road, Irvine, California 92612bUniversity of California San Diego, La Jolla, California 92093
| |
Collapse
|