1
|
Ma Z, Zhang Y, Tian X, Lu W, Peng H. EIF4E1B interacts with HSPA1A and PPP2CA and is involved in mouse oocyte maturation and early embryonic development. Theriogenology 2025; 240:117398. [PMID: 40139147 DOI: 10.1016/j.theriogenology.2025.117398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The protein translation process is an important part of mammalian ovogenesis and early embryonic development. The eukaryotic translation initiation factors 4E family (eIF4E) initiates the eukaryotic mRNA translation process and plays an important role in protein synthesis. The aim of this research was to analyze the expression and localization of eIF4E family members and the role of EIF4E1B in mouse oocyte maturation and early embryonic development. Here, we report the expression and localization of EIF4E1, EIF4E2, and EIF4E3 in multiple tissues, during oocyte maturation and early embryonic development in mice. However, EIF4E1B was expressed only in ovarian and testicular tissues, and this protein was detected only at the one-to two-cell embryonic stage of early embryos. Moreover, knockdown of eIF4E1b in GV-stage oocytes and zygotes resulted in significant reductions in the rates of oocyte maturation and blastocyst formation, respectively. Further investigation revealed that EIF4E1B interacted with the PPP2CA and HSPA1A proteins and might be involved in the mouse oocyte maturation process. These results provide the first evidence for a novel function of EIF4E1B in oocyte maturation and early embryonic development in mice.
Collapse
Affiliation(s)
- Zengyou Ma
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China; College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Inner Mongolia, Hohhot, 010070, China
| | - Yanyan Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China
| | - Xueqi Tian
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China
| | - Wenjie Lu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, Haikou, 570228, China.
| |
Collapse
|
2
|
Attaie Y, Storey KB. MicroRNA-mediated regulation in anoxic Lithobates sylvaticus liver. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101487. [PMID: 40106882 DOI: 10.1016/j.cbd.2025.101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The wood frog, Lithobates sylvaticus (formerly Rana sylvatica), endures various physiological stressors including freezing, anoxia, dehydration, and hyperglycemia during winter, relying on metabolic stress response to survive. microRNA (miRNA)-mediated gene regulation is a well-documented stress response, however, its role during anoxia in L. sylvaticus liver remains underexplored. This research identifies seven miRNAs with significant differential expression during anoxia. Bioinformatic analyses predicted downregulation of monounsaturated fatty acid biosynthesis and membrane fluidity pathways, alongside upregulation of insulin signalling pathways (PI3K/Akt, mTOR). These results suggest that miRNAs contribute to gene regulation in L. sylvaticus during anoxia.
Collapse
Affiliation(s)
- Yasser Attaie
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
3
|
Kubota N, Kubota T, Kadowaki T. Physiological and pathophysiological actions of insulin in the liver. Endocr J 2025; 72:149-159. [PMID: 39231651 PMCID: PMC11850106 DOI: 10.1507/endocrj.ej24-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024] Open
Abstract
The liver plays an important role in the control of glucose homeostasis. When insulin levels are low, such as in the fasting state, gluconeogenesis and glycogenolysis are stimulated to maintain the blood glucose levels. Conversely, in the presence of increased insulin levels, such as after a meal, synthesis of glycogen and lipid occurs to maintain the blood glucose levels within normal range. Insulin receptor signaling regulates glycogenesis, gluconeogenesis and lipogenesis through downstream pathways such as the insulin receptor substrate (IRS)-phosphoinositide 3 (PI3) kinase-Akt pathway. IRS-1 and IRS-2 are abundantly expressed in the liver and are thought to be responsible for transmitting the insulin signal from the insulin receptor to the intracellular effectors involved in the regulation of glucose and lipid homeostasis. Impaired insulin receptor signaling can cause hepatic insulin resistance and lead to type 2 diabetes. In the present study, we focus on a concept called "selective insulin resistance," which has received increasing attention recently: the frequent coexistence of hyperglycemia and hepatic steatosis in people with type 2 diabetes and obesity suggests that it is possible for the insulin signaling regulating gluconeogenesis to be impaired even while that regulating lipogenesis is preserved, suggestive of selective insulin resistance. In this review, we review the progress in research on the insulin actions and insulin signaling in the liver.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tetsuya Kubota
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo 103-0002, Japan
| | | |
Collapse
|
4
|
Farkas SA, Qvick A, Helenius G, Lillsunde-Larsson G. Pathological variants in HPV-independent vulvar tumours. Sci Rep 2025; 15:1486. [PMID: 39789097 PMCID: PMC11718117 DOI: 10.1038/s41598-024-84688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Vulvar cancer is a rare gynaecological disease that can be caused by infection with human papillomavirus (HPV). The mutational frequencies and landscape for HPV-associated and HPV-independent vulvar tumor development are supposedly two distinctly different pathways and more detailed knowledge on target biological mechanisms for individualized future treatments is needed. The study included formalin-fixed paraffin-embedded (FFPE) samples from 32 cancer patients (16 HPV-negative and 16 HPV-associated), treated in Örebro, Sweden from 1988 to 2008. The Oncomine™ Comprehensive Assay v3 was used to detect variants across 161 different tumor relevant genes. Data analysis included quality assessment followed by variant analysis of DNA with the Oncomine Comprehensive v3 workflow and with a custom filter using the VarSome Clinical software. The RNA-analysis was performed with the Oncomine Comprehensive v3 workflow. Totally, 94% of DNA libraries and 81% of RNA libraries were of adequate quality for further downstream analysis. With the Oncomine™ filter chain there was an increased number of variants in the HPV-negative group (2.5 variants) compared to the HPV-associated group (1.5 variants). Using custom filter and the Varsome Clinical software; additional single nucleotide variants (SNV) were detected where the vast majority were classified as likely benign/benign. HPV-negative tumors had a larger fraction of variants of unknown significance (VUS), and likely pathogenic/pathogenic compared to the HPV-associated tumours. The top 10 frequently mutated genes in HPV-indepentent tumors were TP53, POLE, PTCH1, BRCA2, CREBBP, NOTCH2, ARID1A, CDKN2A, MSH2, and NOTCH1. Three fusion genes were detected; TBL1XR1(1)::PIK3CA(2) (n = 2) and NF1(5)::PSMD11(2) (n = 1). Copy number variations (CNV) were more common in HPV-associated tumors (n = 13/16, 81%) compared to HPV-negative tumors (n = 9/14, 64%). The most frequent CNV was found in the cMYC gene, followed by CDK2 (n = 5) and CDK4 (n = 4). The main outcome of this study show that vulvar cancer harbour genetic variations of different types and specifically, HPV-independent tumours are molecularly very heterogeneous and harboured more SNVs while HPV-associated tumors more frequently presented with gene amplifications. The PI3K/AKT/mTOR1 pathway was affected in both the groups as well as the cell cycle regulation pathway. Similarly, the DNA repair gene POLE was found mutated in both vulvar cancer groups.
Collapse
Affiliation(s)
- Sanja A Farkas
- Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Alvida Qvick
- Clinical Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Gabriella Lillsunde-Larsson
- Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
5
|
Loggers ET, Chugh R, Federman N, Hartner L, Riedel RF, Cho S, Hyslop D, Lim A, Oton AB, Oktay KH. Onset and resolution of ovarian toxicity with nirogacestat treatment in females with desmoid tumors: Updated safety analyses from the DeFi phase 3 study. Cancer 2024; 130:2812-2821. [PMID: 38703010 DOI: 10.1002/cncr.35324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Nirogacestat is a targeted gamma secretase inhibitor approved in the United States for adults with progressing desmoid tumors. In the phase 3 DeFi study (NCT03785964) of nirogacestat, ovarian toxicity (OT) was identified as a safety signal among females of reproductive potential (FORP). This analysis further describes the incidence, presentation, and resolution of OT. METHODS Patients were randomized to twice-daily oral nirogacestat (150 mg) or placebo, taken in continuous 28-day cycles. Investigator-identified OT in FORP was based on abnormal reproductive hormone values or perimenopausal symptoms (or both). Adverse event follow-up was conducted to assess OT resolution. Post hoc analyses included return of menstruation and return of follicle-stimulating hormone (FSH) to within normal limits (WNL) (≤20.4 mIU/mL). RESULTS Of 92 randomized females, 73 in the safety population were FORP (n = 36 nirogacestat, n = 37 placebo). OT was identified in 75% (27 of 36) receiving nirogacestat and 0% (0 of 37) receiving placebo. As of October 24, 2022, investigators reported OT resolution in 78% (21 of 27) of patients, with median OT duration of 19.1 weeks. Off-treatment resolution was reported in all 11 patients (100%) who stopped nirogacestat treatment; of these, all nine with available menstruation information experienced return of menstruation and eight had FSH WNL at last reported assessment. Resolution was reported in 10 of 14 (71%) while on nirogacestat; of these, all 10 experienced return of menstruation and seven had FSH WNL. Two patients were lost to follow-up. CONCLUSION Most FORP treated with nirogacestat experienced OT, with the majority resolving, including all who stopped treatment, suggesting that OT is transient.
Collapse
Affiliation(s)
- Elizabeth T Loggers
- Clinical Research Division, Fred Hutchinson Cancer Center/Division of Hematology and Oncology, University of Washington, Seattle, Washington, USA
| | - Rashmi Chugh
- University of Michigan, Rogel Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Noah Federman
- Departments of Pediatrics and Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Lee Hartner
- University of Pennsylvania, Abramson Cancer Center, Pennsylvania Hospital, Philadelphia, Pennsylvania, USA
| | - Richard F Riedel
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sunny Cho
- SpringWorks Therapeutics, Inc, Stamford, Connecticut, USA
| | - David Hyslop
- SpringWorks Therapeutics, Inc, Stamford, Connecticut, USA
| | - Allison Lim
- SpringWorks Therapeutics, Inc, Stamford, Connecticut, USA
| | - Ana B Oton
- SpringWorks Therapeutics, Inc, Stamford, Connecticut, USA
| | - Kutluk H Oktay
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Chomczyk M, Gazzola L, Dash S, Firmanty P, George BS, Mohanty V, Abbas HA, Baran N. Impact of p53-associated acute myeloid leukemia hallmarks on metabolism and the immune environment. Front Pharmacol 2024; 15:1409210. [PMID: 39161899 PMCID: PMC11330794 DOI: 10.3389/fphar.2024.1409210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Acute myeloid leukemia (AML), an aggressive malignancy of hematopoietic stem cells, is characterized by the blockade of cell differentiation, uncontrolled proliferation, and cell expansion that impairs healthy hematopoiesis and results in pancytopenia and susceptibility to infections. Several genetic and chromosomal aberrations play a role in AML and influence patient outcomes. TP53 is a key tumor suppressor gene involved in a variety of cell features, such as cell-cycle regulation, genome stability, proliferation, differentiation, stem-cell homeostasis, apoptosis, metabolism, senescence, and the repair of DNA damage in response to cellular stress. In AML, TP53 alterations occur in 5%-12% of de novo AML cases. These mutations form an important molecular subgroup, and patients with these mutations have the worst prognosis and shortest overall survival among patients with AML, even when treated with aggressive chemotherapy and allogeneic stem cell transplant. The frequency of TP53-mutations increases in relapsed and recurrent AML and is associated with chemoresistance. Progress in AML genetics and biology has brought the novel therapies, however, the clinical benefit of these agents for patients whose disease is driven by TP53 mutations remains largely unexplored. This review focuses on the molecular characteristics of TP53-mutated disease; the impact of TP53 on selected hallmarks of leukemia, particularly metabolic rewiring and immune evasion, the clinical importance of TP53 mutations; and the current progress in the development of preclinical and clinical therapeutic strategies to treat TP53-mutated disease.
Collapse
Affiliation(s)
- Monika Chomczyk
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Luca Gazzola
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Shubhankar Dash
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Firmanty
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Binsah S. George
- Department of Hematology-oncology, The University of Texas Health Sciences, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Metodiev D, Parvanov D, Ruseva M, Ganeva R, Handzhiyska M, Vidolova N, Chavoushian A, Hadjidekova S, Stamenov G. NOTCH1- and CD117-Positive Stem Cells in Human Endometriosis and Adenomyosis Lesions. Diagnostics (Basel) 2024; 14:1642. [PMID: 39125516 PMCID: PMC11311773 DOI: 10.3390/diagnostics14151642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Adenomyosis and endometriosis are distinct gynecological disorders characterized by ectopic growth of endometrial tissue. Their etiology remains unclear, but stem cells have been implicated in both. The aim of this study was to investigate and compare the quantity of NOTCH1+ and CD117+ stem cells in endometriosis and adenomyosis lesions. Immunohistochemical staining of ectopic endometrium biopsies using antibodies against NOTCH1 and CD117 was performed. The quantity and spatial distribution of endometrial stromal cells positive for these markers were determined and compared between endometriosis and adenomyosis lesions. Additionally, their quantities were compared between endometriosis lesion types. Mann-Whitney U test showed that the median percentages of both NOTCH1+ and CD117+ cells in the endometriosis lesions were significantly higher than those in the adenomyosis lesions (2.26% vs. 0.13%, p = 0.002 and 0.44% vs. 0.26%, p = 0.016, respectively). Spearman's test showed a positive correlation between NOTCH1+ and CD117+ cells in endometriosis lesions (R = 0.45, p = 0.027) but no significant correlation in adenomyosis lesions (R = -0.11, p = 0.69). The quantity of both stem cell types was highest in extragenital endometriotic lesions. Unlike adenomyosis, endometriosis lesions are associated with higher quantities of NOTCH1+ and CD117+ stem cells and a coordinated increase in their number. These findings support the distinct origin of the two conditions.
Collapse
Affiliation(s)
- Dimitar Metodiev
- Department of Clinical Pathology, Nadezhda Women’s Health Hospital, 1373 Sofia, Bulgaria
| | - Dimitar Parvanov
- Department of Research, Nadezhda Women’s Health Hospital, 1373 Sofia, Bulgaria; (D.P.); (R.G.); (M.H.); (N.V.)
| | - Margarita Ruseva
- Department of Research, Nadezhda Women’s Health Hospital, 1373 Sofia, Bulgaria; (D.P.); (R.G.); (M.H.); (N.V.)
| | - Rumiana Ganeva
- Department of Research, Nadezhda Women’s Health Hospital, 1373 Sofia, Bulgaria; (D.P.); (R.G.); (M.H.); (N.V.)
| | - Maria Handzhiyska
- Department of Research, Nadezhda Women’s Health Hospital, 1373 Sofia, Bulgaria; (D.P.); (R.G.); (M.H.); (N.V.)
| | - Nina Vidolova
- Department of Research, Nadezhda Women’s Health Hospital, 1373 Sofia, Bulgaria; (D.P.); (R.G.); (M.H.); (N.V.)
| | - Ani Chavoushian
- Department of Gastroenterology, Acibadem City Clinic UMBAL Mladost, 1784 Sofia, Bulgaria
| | - Savina Hadjidekova
- Department of Medical Genetics, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Georgi Stamenov
- Department of Obstetrics and Gynecology, Nadezhda Women’s Health Hospital, 1373 Sofia, Bulgaria
| |
Collapse
|
8
|
Choi JK, Xiao W, Chen X, Loghavi S, Elenitoba-Johnson KS, Naresh KN, Medeiros LJ, Czader M. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Acute Lymphoblastic Leukemias, Mixed-Phenotype Acute Leukemias, Myeloid/Lymphoid Neoplasms With Eosinophilia, Dendritic/Histiocytic Neoplasms, and Genetic Tumor Syndromes. Mod Pathol 2024; 37:100466. [PMID: 38460674 DOI: 10.1016/j.modpat.2024.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
This manuscript represents a review of lymphoblastic leukemia/lymphoma (acute lymphoblastic leukemia/lymphoblastic lymphoma), acute leukemias of ambiguous lineage, mixed-phenotype acute leukemias, myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangements, histiocytic and dendritic neoplasms, and genetic tumor syndromes of the 5th edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues. The diagnostic, clinicopathologic, cytogenetic, and molecular genetic features are discussed. The differences in comparison to the 4th revised edition of the World Health Organization classification of hematolymphoid neoplasms are highlighted.
Collapse
Affiliation(s)
- John K Choi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Kojo S Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - L Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
9
|
Cuéllar Mendoza ME, Chávez Sánchez FR, Dorantes Acosta EM, Niembro Zúñiga AM, Pelayo R, Zapata Tarrés M. Not only a therapeutic target; mTOR in Hodgkin lymphoma and acute lymphoblastic leukemia. Front Oncol 2024; 14:1304605. [PMID: 38444670 PMCID: PMC10912149 DOI: 10.3389/fonc.2024.1304605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The mechanistic/mammalian target of rapamycin (mTOR) is a serine/threonine kinase, which is downregulated or upregulated and is implicated in different types of cancer including hematologic neoplasms, skin prostate, and head and neck cancer. Aim The aim of this study was to explore the current knowledge of mTOR signaling in acute lymphoblastic leukemia and Hodgkin lymphoma. Methods A systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching PubMed, Discovery Service for National Autonomous University of Mexico, Registro Nacional de Instituciones y Empresas Científicas y Tecnológicas (RENIECYT), and Scientific Electronic Library Online (SciELO) from 1994 to 2023. A total of 269 papers were identified for acute lymphoblastic leukemia, but based on specific criteria, 15 were included; for Hodgkin lymphoma, 110 papers were identified, but 5 were included after manual searching. Results A total of 20 papers were evaluated, where mTOR activity is increased in patients with Hodgkin lymphoma and acute lymphoblastic leukemia by different molecular mechanisms. Conclusions mTOR activity is increased in patients with both hematologic neoplasms and NOTCH; interleukin 4, 7, and 9, and nuclear proteins have been studied for their role in the activation of mTOR signaling.
Collapse
Affiliation(s)
- Miguel Enrique Cuéllar Mendoza
- Department of Biochemistry, Medicine Faculty, National Autonomous University of Mexico, Mexico City, Mexico
- Research Coordination, IMSS Foundation, Mexico City, Mexico
| | | | | | | | - Rosana Pelayo
- Education and Research Unit, Mexican Institute of Social Security, Mexico City, Mexico
| | | |
Collapse
|
10
|
Abdel-Mohsen MA, Badawy AM, Abu-Youssef MA, Yehia MA, Abou Shamaa LD, Mohamed SA. Influence of copper(I) nicotinate complex on the Notch1 signaling pathway in triple negative breast cancer cell lines. Sci Rep 2024; 14:2522. [PMID: 38291201 PMCID: PMC10827744 DOI: 10.1038/s41598-024-52952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer which is characterized by its aggressiveness, poor and short overall survival. In this concept, there is a growing demand for metal-based compounds in TNBC therapy as copper complex that have a less toxic effect on normal cells and could stimulate apoptotic cell death. Additionally, Notch1 signaling pathway has received great attention as one of the most important potential targets for developing a novel therapeutic strategy. The present study is an attempt to assess the promising chemotherapeutic activities of copper(I) nicotinate (CNC) through its impact on the expression of downstream genes of Notch1 signaling pathway and the cell fate of TNBC. The co-treatment of TNBC cells with doxorubicin (Doxo) and CNC was also investigated. To approach the objective of the present study, TNBC cell lines; HCC1806 and MDAMB231, were utilized. MTT assay was used to determine the IC50 values of CNC and Doxo. After treatment, microtubule-associated protein light chain3 (LC3) were determined by flow cytometry. Additionally, qRT-PCR technique was used to detect the changes in genes levels that are involved Notch1 signaling pathway. Moreover, autophagosomes were monitored and imaged by Transmission electron microscopy. Treatment of TNBC cells with CNC modulated Notch1 signaling pathway in different manners with respect to the type of cells and the applied dose of CNC. The observed effects of CNC may reflect the possible anti-cancer activities of CNC in both types of TNBC. However, cell type and CNC dose should be considered.
Collapse
Affiliation(s)
- Mohamed A Abdel-Mohsen
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Asmaa M Badawy
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Morsy A Abu-Youssef
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona A Yehia
- Histochemistry and Cell Biology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna D Abou Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Shymaa Abdullah Mohamed
- Molecular Biology Unit, Medical Technology Center and Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Zhang M, Yue X, Zhao X, Lu Y, Liu H, Zhang Z, Ma H, Wang X, Xing H. Macrophage-specific deletion of Notch-1 induced M2 anti-inflammatory effect in atherosclerosis via activation of the PI3K-oxidative stress axis. Aging (Albany NY) 2023; 15:15196-15212. [PMID: 38149979 PMCID: PMC10781475 DOI: 10.18632/aging.205342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE Notch-1 signaling is significantly associated with the occurrence and development of atherosclerosis (AS). However, the molecular mechanisms underlying the specific deletion of Notch-1 in AS-associated macrophages are not fully understood. This study aimed to investigate the effects of Notch-1 in AS. METHODS AND RESULTS Tissue samples were obtained from atherosclerotic segments of human carotid arteries. Immunofluorescence staining showed that Notch-1 was significantly colocalized with macrophages (CD68+), and Notch-1 staining was increased in human vulnerable plaques. Notch-1MAC-KO/ApoE-/- mice were generated in which Notch-1 was selectively inactivated in macrophages, and WT for littermate control mice (ApoE-/-/Notch-1WT). A control group was then established. All mice fed with a high-fat and Oil Red O, Movat, a-SMA, CD68, and Sirius red staining were used to evaluate the morphology. Specific deletion of Notch-1 in macrophages repressed the pathophysiology of AS. Immunofluorescent staining and Western blotting revealed that Notch-1MAC-KO repressed M1 and M2 responses in AS. Here, GSEA revealed that Notch-1 activation and PI3K signaling were statistically significantly correlated with each other, and Notch-1 was involved in the regulation of the PI3K signaling pathway. In the in vitro experiments, the secretion of Arg-1 and exosomes was classified by peritoneal macrophages of Notch-1MAC-KO/ApoE-/- and Notch-1WT/ApoE-/- mice. Immunohistochemistry staining and Western blotting were used to measure the expression levels of Notch1, PI3K, p-PI3K, AKT, p-AKT, Arg-1, IL-6, CD36, SREBP-1, CD206, iNOS, cleaved-caspase-3/-9, Bax, CD9, Alix and TSG101 in the peritoneal macrophages and exosomes, respectively. CONCLUSIONS The specific deletion of Notch-1 in macrophage represses the formation and development of AS via the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xiangyong Yue
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xueping Zhao
- Department of Nursing, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Yonggang Lu
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Hongtao Liu
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Zhe Zhang
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Huan Ma
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Xing Wang
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Hanying Xing
- Clinical Medicine Research Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
12
|
Arjmand F, Shojaei S, Khalili M, Dinmohammadi H, Poopak B, Mohammadi-Yeganeh S, Mortazavi Y. Integrating rapamycin with novel PI3K/Akt/mTOR inhibitor microRNAs on NOTCH1-driven T-cell acute lymphoblastic leukemia (T-ALL). BIOIMPACTS : BI 2023; 14:28870. [PMID: 39104620 PMCID: PMC11298021 DOI: 10.34172/bi.2023.28870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 08/07/2024]
Abstract
Introduction The PI3K/AKT/mTOR signaling pathway plays a significant role in the development of T-cell acute lymphoblastic leukemia (T-ALL). Rapamycin is a potential therapeutic strategy for hematological malignancies due to its ability to suppress mTOR activity. Additionally, microRNAs (miRNAs) have emerged as key regulators in T-ALL pathophysiology and treatment. This study aimed to investigate the combined effects of rapamycin and miRNAs in inhibiting the PI3K/AKT/mTOR pathway in T-ALL cells. Methods Bioinformatic algorithms were used to find miRNAs that inhibit the PI3K/AKT/mTOR pathway. Twenty-five bone marrow samples were collected from T-ALL patients, alongside five control bone marrow samples from non-leukemia patients. The Jurkat cell line was chosen as a representative model for T-ALL. Gene and miRNA expression levels were assessed using quantitative real-time PCR (qRT-PCR). Two miRNAs exhibiting down-regulation in both clinical samples and Jurkat cells were transfected to the Jurkat cell line to investigate their impact on target gene expression. Furthermore, in order to evaluate the potential of combination therapy involving miRNAs and rapamycin, apoptosis and cell cycle assays were carried out. Results Six miRNAs (miR-3143, miR-3182, miR-99a/100, miR-155, miR-576-5p, and miR-501- 3p) were predicted as inhibitors of PI3K/AKT/mTOR pathway. The expression analysis of both clinical samples and the Jurkat cell line revealed a simultaneous downregulation of miR-3143 and miR-3182. Transfection investigation demonstrated that the exogenous overexpression of miR-3143 and miR-3182 can effectively inhibit PI3K/AKT/mTOR signaling in the Jurkat cell line. Moreover, when used as a dual inhibitor along with rapamycin, miR-3143 and miR-3182 significantly increased apoptosis and caused cell cycle arrest in the Jurkat cell line. Conclusion These preliminary results highlight the potential for improving T-ALL treatment through multi-targeted therapeutic strategies involving rapamycin and miR-3143/miR-3182.
Collapse
Affiliation(s)
- Fateme Arjmand
- Department of Medical Genetics and Molecular medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Shojaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Khalili
- Department of Medical Genetics and Molecular medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Dinmohammadi
- Department of Medical Genetics and Molecular medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behzad Poopak
- DCLS PhD. Associate Professor of Hematology Owner & Lab. Director Payvand Clinical & Specialty Laboratory, CEO Amir Payvand Research & Development Co
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Mortazavi
- Cancer Gene Therapy Research center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
13
|
Wang W, Jiang K, Liu X, Li J, Zhou W, Wang C, Cui J, Liang T. FBXW7 and human tumors: mechanisms of drug resistance and potential therapeutic strategies. Front Pharmacol 2023; 14:1278056. [PMID: 38027013 PMCID: PMC10680170 DOI: 10.3389/fphar.2023.1278056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Drug therapy, including chemotherapy, targeted therapy, immunotherapy, and endocrine therapy, stands as the foremost therapeutic approach for contemporary human malignancies. However, increasing drug resistance during antineoplastic therapy has become a substantial barrier to favorable outcomes in cancer patients. To enhance the effectiveness of different cancer therapies, an in-depth understanding of the unique mechanisms underlying tumor drug resistance and the subsequent surmounting of antitumor drug resistance is required. Recently, F-box and WD Repeat Domain-containing-7 (FBXW7), a recognized tumor suppressor, has been found to be highly associated with tumor therapy resistance. This review provides a comprehensive summary of the underlying mechanisms through which FBXW7 facilitates the development of drug resistance in cancer. Additionally, this review elucidates the role of FBXW7 in therapeutic resistance of various types of human tumors. The strategies and challenges implicated in overcoming tumor therapy resistance by targeting FBXW7 are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Baldenius M, Kautzmann S, Nanda S, Klämbt C. Signaling Pathways Controlling Axonal Wrapping in Drosophila. Cells 2023; 12:2553. [PMID: 37947631 PMCID: PMC10647682 DOI: 10.3390/cells12212553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The rapid transmission of action potentials is an important ability that enables efficient communication within the nervous system. Glial cells influence conduction velocity along axons by regulating the radial axonal diameter, providing electrical insulation as well as affecting the distribution of voltage-gated ion channels. Differentiation of these wrapping glial cells requires a complex set of neuron-glia interactions involving three basic mechanistic features. The glia must recognize the axon, grow around it, and eventually arrest its growth to form single or multiple axon wraps. This likely depends on the integration of numerous evolutionary conserved signaling and adhesion systems. Here, we summarize the mechanisms and underlying signaling pathways that control glial wrapping in Drosophila and compare those to the mechanisms that control glial differentiation in mammals. This analysis shows that Drosophila is a beneficial model to study the development of even complex structures like myelin.
Collapse
Affiliation(s)
| | | | | | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, Faculty of Biology, University of Münster, Röntgenstraße 16, D-48149 Münster, Germany; (M.B.)
| |
Collapse
|
15
|
Sun X, Liu X, Li Y, Shi X, Li Y, Tan R, Jiang Y, Sui X, Ge X, Xu H, Wang X, Fang X. Characteristics of Molecular Genetic Mutations and Their Correlation with Prognosis in Adolescent and Adult Patients with Acute Lymphoblastic Leukemia. Oncology 2023; 102:85-98. [PMID: 37437551 DOI: 10.1159/000531522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION The prognosis of acute lymphoblastic leukemia (ALL) in adolescents and adults is poor, and recurrence is an important cause of their death. Changes of genetic information play a vital role in the pathogenesis and recurrence of ALL; however, the impact of molecular genetic mutations on disease diagnosis and prognosis remains unexplored. This study aimed to explore the frequency spectrum of gene mutations and their prognostic significance, along with the minimal residual disease (MRD) level and hematopoietic stem cell transplantation (HSCT), in adolescent and adult patients aged ≥15 years with ALL. METHODS The basic characteristics, cytogenetics, molecular genetics, MRD level, treatment regimen, and survival outcome of patients with untreated ALL (≥15 years) were collected, and the correlation and survival analysis were performed using the SPSS 25.0 and R software. RESULTS This study included 404 patients, of which 147 were selected for next-generation sequencing (NGS). NGS results revealed that 91.2% of the patients had at least one mutation, and 67.35% had multiple (≥2) mutations. NOTCH1, PHF6, RUNX1, PTEN, JAK3, TET2, and JAK1 were the most common mutations in T-ALL, whereas FAT1, TET2, NARS, KMT2D, FLT3, and RELN were the most common mutations in B-ALL. Correlation analysis revealed the mutation patterns, which were significantly different between T-ALL and B-ALL. In the prognostic analysis of 107 patients with B-ALL, multivariate analysis showed that the number of mutations ≥5 was an independent risk factor for overall survival and the RELN mutation was an independent poor prognostic factor for event-free survival. DISCUSSION The distribution of gene mutations and the co-occurrence and repulsion of mutant genes in patients with ALL were closely related to the immunophenotype of the patients. The number of mutations ≥5 and the RELN mutation were significantly associated with poor prognosis in adolescent and adult patients with ALL.
Collapse
Affiliation(s)
- Xue Sun
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China,
| | - Xiaoqian Liu
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ying Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Shi
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yahan Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Lin Y, Zhu X, Li Y, Dou Y, Wang J, Qi R, Ma L. LY294002 ameliorates psoriatic skin inflammation in mice via blocking the Notch1/Hes1-PTEN/AKT/IL-17A feedback loop. Clin Exp Immunol 2023; 213:114-124. [PMID: 36840628 PMCID: PMC10324552 DOI: 10.1093/cei/uxad025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023] Open
Abstract
(IL)-17A, the effective factor of Th17 cells, acts an important pathological role in the pathogenesis of psoriasis. Notch1/hairy and split 1 (Hes1) and PI3K/AKT signaling pathways are interpenetrated and involved in Th17 cell differentiation and IL-17A production. In this present study, we used imiquimod (IMQ)-induced mouse psoriatic skin inflammation to explore the possible mechanism of Notch1/Hes1-PTEN/AKT/IL-17A feedback loop in psoriasis by employing AKT inhibitor LY294002 as an intervention with the methods of flow cytometry analysis, reverse transcription-quantitative polymerase chain reaction, western blot, co-immunoprecipitation, and immunofluorescence. First, LY294002 inhibition can obviously alleviate the mouse psoriatic skin inflammation both in skin structural and histopathological characteristics, which is similar to the changes found in IL-17A antibody-treated mice. Additionally, the interaction between Notch1 intracellular domain (NICD1) and nuclear factor kappa B (NF-κB) activator 1 (Act1) was demonstrated. LY294002 interruption resulted in consistent changes in expression levels of key signaling molecules both in Notch1/Hes1 and PI3K/AKT signaling pathways in a time-dependent manner. Moreover, chloroquine (CQ) can partly reverse the inhibitory effects of LY294002 on the Notch1/Hes1-PTEN/AKT/IL-17A feedback loop by affecting Notch1 ubiquitination and lysosomal degradation. The present study showed that LY294002 can exert the inhibitory effect on Notch1/Hes1-PTEN/AKT/IL-17A feedback loop to regulate Th17 cell differentiation and IL-17A function in the process of psoriasis, which provides a new possible therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Yawen Lin
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Xiaofeng Zhu
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Yiwen Li
- Department of Endocrinology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Yue Dou
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Jing Wang
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| | - Ruiqun Qi
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lei Ma
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong, PR China
| |
Collapse
|
17
|
Gao Y, Lu LJ, Zhang ZZ, Yang X, Du J, Wen K, Huang H, Wang XP, Sun XL. Xue-jie-San prevents the early development of colitis-associated intestinal fibrosis by blocking Notch1 and FGL1 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116678. [PMID: 37263315 DOI: 10.1016/j.jep.2023.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xue-Jie-San (XJS), as a traditional Chinese herb prescription, has satisfactory effects on improving clinical symptoms and facilitating the healing of intestinal ulcers in patients with Crohn's disease (CD). This motivates the application of XJS on CD-associated complications. AIM OF THE STUDY Intestinal fibrosis is a debilitating complication of CD. Currently, there is no effective medication available for preventing or reversing CD-related intestinal fibrosis. This study aimed to assess the efficacy and underlying mechanisms of XJS in the treatment of colitis-associated intestinal fibrosis. MATERIALS AND METHODS A rat model of CD-related intestinal fibrosis was induced by 2,4,6-trinitrobenzene sulfonic acid administration and treated with XJS. The pathological changes of intestinal fibrosis were evaluated using Masson staining. Collagen deposition and epithelial-to-mesenchymal transition (EMT) were verified by immunohistochemical staining and western blot analysis. Endothelial-to-mesenchymal transition (EndoMT) was assessed with immunofluorescence and immunohistochemical staining as well as western blot analysis. Transmission electron microscopy was utilized to observe autophagosomes. The levels of autophagy-related proteins were detected via immunofluorescence staining and western blot. Finally, the mTOR/ULK1 signaling pathway regulated by Notch1 or FGL1 was analyzed by western blot. RESULTS The results found that XJS ameliorated intestinal fibrosis through reducing the deposition of collagens such as Collagen 1 and Collagen 3. XJS inhibited the EMT process by increasing E-cadherin levels and decreasing the expressions of N-cadherin, Vimentin and Snail, which played a crucial role in collagen secretion and intestinal fibrosis. In addition, XJS also repressed the EndoMT process as reflected by the upregulation of CD31 and VE-cadherin levels and the downregulation of FSP1 and α-SMA expressions. Autophagy was activated following XJS treatment via suppression of the mTOR/ULK1 signaling pathway. Furthermore, XJS acted as an inhibitor of Notch1 and FGL1 signals, both of which regulated the mTOR signaling. CONCLUSIONS Our findings validated that XJS prevented the early development of CD-related intestinal fibrosis by blocking the Notch1 and FGL1 signaling pathways to activate autophagy and thereby inhibit EMT and EndoMT.
Collapse
Affiliation(s)
- Ying Gao
- Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| | - Li-Juan Lu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| | - Zhao-Zheng Zhang
- Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| | - Xiao Yang
- Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| | - Jun Du
- Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| | - Ke Wen
- Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China.
| | - Xiao-Peng Wang
- Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| | - Xue-Liang Sun
- Department of Colorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, China.
| |
Collapse
|
18
|
Chen Z, Xin Q, Wei W, Wu Y. The pathogenesis and development of targeted drugs in acute T lymphoblastic leukaemia. Br J Pharmacol 2023; 180:1017-1037. [PMID: 36623836 DOI: 10.1111/bph.16029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is mainly classified into acute T- and B-lymphoblastic leukaemia according to the source of its lymphocytes, thymus and bone. Among them, the incidence of adult T-cell accounts for about 25% of adult acute lymphoblastic leukaemia, but the degree of malignancy is high and the treatment rate and prognosis are poor. At this stage, there are few targeted drugs and the commonly used broad-spectrum chemotherapeutic drugs have poor efficacy and many adverse drug reactions. Understanding and investigating the pathogenesis of T-acute lymphoblastic leukaemia is very important for further developing new targeting drugs and improving existing drugs. Dysregulated signalling pathways are the main aetiological factors of T-acute lymphoblastic leukaemia. They play crucial roles in promoting tumour initiation, progression, drug design and therapy responses. This is primarily because signalling pathways are indispensable for many cellular biological processes, including tumour growth, migration, invasion, metastasis and others. As a result, small molecule inhibitors targeting the major kinase components of the signalling pathway have received a lot of attention and have been developed and evaluated in preclinical models and clinical trials. Already marketed drugs are also being repurposed in combination therapies to further improve efficacy and overcome tumour cell resistance. In this review, we have aimed to examine the latest and most classical signalling pathways in the aetiology of T-acute lymphoblastic leukaemia and shed light on potential targets for novel therapeutic agents to act on.
Collapse
Affiliation(s)
- Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
19
|
Liu S, Dou L, Miao M, Man X, Wei B, Jiang Z, Ouyang Y, Ozaki T, Yu M, Zhu Y. HES1-mediated down-regulation of miR-138 sustains NOTCH1 activation and promotes proliferation and invasion in renal cell carcinoma. J Exp Clin Cancer Res 2023; 42:72. [PMID: 36973704 PMCID: PMC10045948 DOI: 10.1186/s13046-023-02625-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Although the aberrant activation of NOTCH1 pathway causes a malignant progression of renal cell carcinoma (RCC), the precise molecular mechanisms behind the potential action of pro-oncogenic NOTCH1/HES1 axis remain elusive. Here, we examined the role of tumor suppressive miR-138-2 in the regulation of NOTCH1-HES1-mediated promotion of RCC. METHODS This study employed bioinformatics, xenotransplant mouse models, ChIP assay, luciferase reporter assay, functional experiments, real-time PCR and Western blot analysis to explore the mechanisms of miR-138-2 in the regulation of NOTCH1-HES1-mediated promotion of RCC, and further explored miR-138-2-containing combination treatment strategies. RESULTS There existed a positive correlation between down-regulation of miR-138 and the aberrant augmentation of NOTCH1/HES1 regulatory axis. Mechanistically, HES1 directly bound to miR-138-2 promoter region and thereby attenuated the transcription of miR-138-5p as well as miR-138-2-3p. Further analysis revealed that miR-138-5p as well as miR-138-2-3p synergistically impairs pro-oncogenic NOTCH1 pathway through the direct targeting of APH1A, MAML1 and NOTCH1. CONCLUSIONS Collectively, our current study strongly suggests that miR-138-2 acts as a novel epigenetic regulator of pro-oncogenic NOTCH1 pathway, and that the potential feedback regulatory loop composed of HES1, miR-138-2 and NOTCH1 contributes to the malignant development of RCC. From the clinical point of view, this feedback regulatory loop might be a promising therapeutic target to treat the patients with RCC.
Collapse
Affiliation(s)
- Shuangjie Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lei Dou
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Miao Miao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaojun Man
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Baojun Wei
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhaowei Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yongze Ouyang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meng Yu
- Department of Laboratory Animal Science, Key Laboratory of Transgenetic Animal Research. No, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
20
|
Hypocretin-1 suppresses malignant progression of glioblastoma cells through Notch1 signaling pathway. Brain Res Bull 2023; 196:46-58. [PMID: 36925051 DOI: 10.1016/j.brainresbull.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Hypocretin-1 is a multifunctional neuropeptide that has been identified as a potential antitumor agent for its role in inhibiting tumor growth, including in colon cancer, neuroendocrine tumor, and prostate cancer. However, the role and mechanism of hypocretin-1 in the occurrence and development of malignant glioma have not been well studied. Therefore, we investigated the effect of hypocretin-1 on glioblastoma proliferation, apoptosis, migration and invasion and its mechanism. We found that the hypocretin-1 receptor was expressed in both glioma cell lines and glioma tissues. Hypocretin-1 treatment can inhibit glioblastoma cell proliferation, migration and invasion, and induce cell apoptosis. Meanwhile, hypocretin-1 treatment significantly reduces tumor growth rate and tumor weight. In addition, mechanistic studies have found that hypocretin-1 exerts antitumor effects by inhibiting NOTCH signaling pathway. Overexpression of NICD significantly reversed the antitumor effect of hypocretin on glioblastoma. Taken together, these findings suggest that hypocretin-1 inhibits glioblastoma proliferation, migration and invasion and induces apoptosis in vitro and in vivo through NOTCH signaling pathway.
Collapse
|
21
|
Liao Y, Xiong S, Ur Rehman Z, He X, Peng H, Liu J, Sun S. The Research Advances of Aptamers in Hematologic Malignancies. Cancers (Basel) 2023; 15:300. [PMID: 36612296 PMCID: PMC9818631 DOI: 10.3390/cancers15010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuming Sun
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
22
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
23
|
Yu G, Chen Y, Hu Y, Zhou Y, Ding X, Zhou X. Roles of transducin-like enhancer of split (TLE) family proteins in tumorigenesis and immune regulation. Front Cell Dev Biol 2022; 10:1010639. [PMID: 36438567 PMCID: PMC9692235 DOI: 10.3389/fcell.2022.1010639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Mammalian transducin-like enhancer of split family proteins (TLEs) are homologous to Drosophila Groucho (Gro) and are essential transcriptional repressors. Seven TLE family members, TLE1-7, have been identified to date. These proteins do not bind DNA directly; instead, they bind a set of transcription factors and thereby inhibit target gene expression. Loss of TLEs in mice usually leads to defective early development; however, TLE functions in developmentally mature cells are unclear. Recent studies have revealed that TLEs are dysregulated in certain human cancer types and may function as oncogenes or tumor suppressors in different contexts. TLE levels also affect the efficacy of cancer treatments and the development of drug resistance. In addition, TLEs play critical roles in the development and function of immune cells, including macrophages and lymphocytes. In this review, we provide updates on the expression, function, and mechanism of TLEs; discuss the roles played by TLEs in tumorigenesis and the inflammatory response; and elaborate on several TLE-associated signaling pathways, including the Notch, Wnt, and MAPK pathways. Finally, we discuss potential strategies for targeting TLEs in cancer therapy.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, China
| | - Yiqi Chen
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yuwen Hu
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| | - Yan Zhou
- Department of Periodontology, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Nantong University, School of Medicine, Nantong, China
| |
Collapse
|
24
|
Zhan Q, Zhang H, Wu B, Zhang N, Zhang L. E3 ubiquitin ligases in the acute leukemic signaling pathways. Front Physiol 2022; 13:1004330. [PMID: 36439256 PMCID: PMC9691902 DOI: 10.3389/fphys.2022.1004330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Acute leukemia is a common hematologic tumor with highly genetic heterogeneity, and many factors are involved in the pathogenesis and drug-resistance mechanism. Emerging evidence proves that E3 ubiquitin ligases participate in the acute leukemic signaling pathways via regulating substrates. This review summarized the E3 ligases which can affect the leukemic signal. It is worth noting that the abnormal signal is often caused by a deficiency or a mutation of the E3 ligases. In view of this phenomenon, we envisioned perspectives associated with targeted agonists of E3 ligases and proteolysis-targeting chimera technology. Moreover, we emphasized the significance of research into the upstream factors regulating the expression of E3 ubiquitin ligases. It is expected that the understanding of the mechanism of leukemic signaling pathways with which that E3 ligases are involved will be beneficial to accelerating the process of therapeutic strategy improvement for acute leukemia.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lijun Zhang, ; Naijin Zhang,
| |
Collapse
|
25
|
Relationship Between the MicroRNAs and PI3K/AKT/mTOR Axis: Focus on Non-Small Cell Lung Cancer. Pathol Res Pract 2022; 239:154093. [DOI: 10.1016/j.prp.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
26
|
Lin YW, Li XX, Fu FH, Liu B, Xing X, Qi R, Ma L. Notch1/Hes1‑PTEN/AKT/IL‑17A feedback loop regulates Th17 cell differentiation in mouse psoriasis‑like skin inflammation. Mol Med Rep 2022; 26:223. [PMID: 35582997 PMCID: PMC9175275 DOI: 10.3892/mmr.2022.12739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 11/06/2022] Open
Abstract
IL‑17A, the effector cytokine of T helper (Th) 17 cells, plays a crucial role in the pathogenesis of psoriasis. The Notch1 and PI3K/AKT signaling pathways are implicated in Th17 cell differentiation and IL‑17A production. The present study aimed to evaluate the regulatory effect of the Notch1/hairy and enhancer of split 1 (Hes1)‑PTEN/AKT/IL‑17A feedback loop on Th17 cell differentiation via the PI3K/AKT inhibitor LY294002 in a mouse model of psoriasis. Mice were randomly divided into 3 groups: a control group, a model group [5% imiquimod (IMQ)‑induced group] and an intervention group (5% IMQ‑induced plus LY294002‑treated group). Skin structural characteristics were recorded and evaluated by hematoxylin and eosin staining. The weights of the spleens and inguinal lymph nodes were measured. Th17 cell percentage, as well as the mRNA and protein expression levels of Notch1, Notch1 intracellular domain (NICD1), Hes1, PTEN, AKT, phosphorylated (p)‑AKT, mTOR complex 1 (mTORC1), p‑mTORC1, S6 kinase (S6K)1, S6K2 and IL‑17A were detected in skin samples of the three experimental groups. Additionally, splenic mononuclear cells from model mice were treated by 10 and 50 µM LY294002 to further evaluate its regulatory effect on Notch1/Hes1‑PTEN/AKT/IL‑17A feedback loop. Increased Th17 cell percentage, increased expression of Notch1, NICD1, Hes1, AKT, p‑AKT, mTORC1, p‑mTORC1, S6K1, S6K2 and IL‑17A, and decreased PTEN levels were observed in model mice alongside marked psoriasis‑like skin inflammation, splenomegaly and lymphadenopathy. LY294002 treatment significantly alleviated the severity of psoriasis‑like skin inflammation in the intervention mice, attenuated the degree of epidermal hyperplasia and dermal inflammatory cell infiltration, and mitigated splenomegaly and lymphadenopathy. In addition, LY294002 treatment reversed the increased Th17 cell percentage, as well as the increased expression of Notch1, NICD1, Hes1, AKT, p‑AKT, mTORC1, p‑mTORC1, S6K1, S6K2 and IL‑17A, and the decreased expression of PTEN. In vitro study from 5% IMQ‑induced mouse splenic mononuclear cells presented that high dose of LY294002 exerted more obviously regulatory effect on Notch1/Hes1‑PTEN/AKT/IL‑17A feedback loop. The current findings suggested that the Notch1/Hes1‑PTEN/AKT/IL‑17A feedback loop regulates Th17 cell differentiation within the disease environment of psoriasis. Blocking the Notch1/Hes1‑PTEN/AKT/IL‑17A feedback loop may thus be a potential therapeutic method for management of psoriatic inflammation.
Collapse
Affiliation(s)
- Ya-Wen Lin
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xin-Xin Li
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Fang-Hui Fu
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Xiaoyun Xing
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Ruiqun Qi
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Ma
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
27
|
Citrus unshiu Peel Attenuates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice due to Modulation of the PI3K/Akt Signaling Pathway and MAPK and NF-κB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4041402. [PMID: 35620406 PMCID: PMC9129974 DOI: 10.1155/2022/4041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022]
Abstract
Aim Citrus unshiu peel has been used to treat various diseases in traditional East Asian medicine including Korea, and many studies have been reported regarding inflammatory diseases including ulcerative colitis (UC). However, the underlying mechanism by which Citrus unshiu peel modulates inflammation in UC remains unclear. Therefore, this study aimed to evaluate the therapeutic effect and underlying mechanism of Citrus unshiu peel water extract (CUP) for UC. Methods The experiment for UC was conducted with 8-week-old male Balb/c mice. After 1 week of adaptation, acute colitis was induced in all groups except the normal group by 5% DSS dissolved in drinking water for 1 week. Balb/c mice were divided into 5 groups (n = 8/group): control group (Control), distilled water-treated group (DSS), 100 mg/kg sulfasalazine-treated group (SASP), 100 mg/kg CUP-treated group (CUPL), and 200 mg/kg CUP-treated group (CUPH). The efficacy of CUP on UC was evaluated by biochemical analyses such as ROS and MPO in serum and MDA in tissues, and expression of proteins related to inflammation and apoptosis was evaluated through Western blot. Results As a result of confirming the macroscopic changes and H&E staining in colon tissues to confirm the preventive and therapeutic effects of CU, decrease in colon length and inflammatory lesions were inhibited in the CUP-treated group compared to the DSS group. In addition, as a result of serum ROS and tissue MDA analysis and oxidative stress-related protein analysis, it was significantly decreased in the CUP-administered group compared to the control group. In addition, treatment with CUP not only inactivated MAPK, p-IκBα, and NF-κBp65 by blocking the PI3K/Akt pathway but also significantly reduced the expression of inflammatory cytokines. Conclusion These results show that CUP not only suppresses oxidative stress in UC but also regulates inflammation-related proteins and apoptotic proteins by regulating the PI3K/Akt signaling pathway, suggesting that it has the potential as a material for developing new natural therapeutic agents for UC.
Collapse
|
28
|
N-((1-(4-Fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-methylene-3-oxo-olean-12-en-28-amide Induces Apoptosis in Human Breast Cancer Cells by Stimulating Oxidative Stress and Inhibiting the Notch-Akt Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8123120. [PMID: 35528507 PMCID: PMC9068303 DOI: 10.1155/2022/8123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
Breast cancer is of the leading causes of cancer-related deaths and the most frequently diagnosed cancer among females worldwide. Despite advancements in breast cancer therapy, the disease eventually progresses in most patients because of de novo or secondary resistance. Thus, discovering novel drugs with high effectiveness and low toxicity for systemic therapy is essential. In this study, we investigated whether a new oleanolic derivative N-((1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-2-methylene-3-oxo-olean-12-en-28-amide (ZQL-4c) exhibits potential anticancer effects against breast cancer. We determined that ZQL-4c strongly inhibited cell proliferation and invasion and induced G2/M phase arrest and apoptosis in breast cancer cells. We then found that ZQL-4c induced the production of reactive oxygen species (ROS). We then found that ZQL-4c significantly inhibited Notch-AKT signaling pathways that are related to oxidative stress. Taken together, this study is the first to show that ZQL-4c can significantly suppress the growth and invasion of breast cancer by blocking Notch-Akt signaling pathways, which are mainly regulated by ROS-mediated oxidative stress. Thus, ZQL-4c might be considered a novel and potential anticancer drug for breast cancer treatment.
Collapse
|
29
|
Li J, Yu M, Zong R, Fan C, Ren F, Wu W, Li C. Deacetylation of Notch1 by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization. Am J Physiol Gastrointest Liver Physiol 2022; 322:G459-G471. [PMID: 35234049 DOI: 10.1152/ajpgi.00338.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic macrophages are involved in both pathogen clearance and immunopathogenesis. Emerging evidence demonstrates that macrophage polarization plays a critical role in hepatitis B virus (HBV)-induced immune impairment and liver pathology. However, it remains largely unknown as to how HBV infection facilitates M2 macrophage polarization. Here, a mouse HBV infection model was established by hydrodynamic injection with a vector containing 1.3-fold overlength HBV genome via the tail vein. Coculture experiments with HBV-producing HepG2.2.15 cells and macrophages were established in vitro. We found that HBV-inhibited M1 while enhancing M2 markers, which was accompanied by decreased proinflammatory tumor necrosis factor-α (TNF-α) and augmented anti-inflammatory IL-10 expression. Furthermore, both hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) secretion contributed to HBV-triggered macrophage polarization from M1 toward M2 phenotype. Mechanistically, HBsAg and HBeAg could upregulate the sirtuins 1 (SIRT1) deacetylase expression, which in turn promote deacetylation of the Notch1 intracellular domain (NICD), leading to increased Akt phosphorylation and decreased NF-κB nuclear translocation in macrophages. Our findings suggest that NICD deacetylation by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization, raising the possibility of targeting SIRT1/Notch1 pathway in macrophages to treat HBV immune evasion and chronic HBV infection.NEW & NOTEWORTHY This study identified a previously unrecognized molecular mechanism of HBV-mediated suppression of innate immune responses. We demonstrate that deacetylation of NICD by SIRT1 contributes to HBsAg- and HBeAg-mediated M2 macrophage polarization, which may aid in the development of new macrophage-based immunotherapy for chronic HBV infection and related diseases.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Anatomy and Histology Embryology, Jinzhou Medical University, Jinzhou, People's Republic of China.,Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China.,Department of Anatomy, Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Ruobin Zong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chengpeng Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, People's Republic of China
| | - Wei Wu
- Institute of Humanities and Social Sciences, Shenyang University, Shenyang, People's Republic of China
| | - Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
30
|
Zhang L, Zhou S, Zhou T, Li X, Tang J. Targeting the lncRNA DUXAP8/miR-29a/ PIK3CA Network Restores Doxorubicin Chemosensitivity via PI3K-AKT-mTOR Signaling and Synergizes With Inotuzumab Ozogamicin in Chemotherapy-Resistant B-Cell Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:773601. [PMID: 35311115 PMCID: PMC8924619 DOI: 10.3389/fonc.2022.773601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to determine the expression profiles of long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in chemotherapy-resistant B-cell acute lymphoblastic leukemia (B-ALL). Methods LncRNA, miRNA, and mRNA profiles were assessed by RNA-seq in diagnostic bone marrow samples from 6 chemotherapy-resistant and 6 chemotherapy-sensitive B-ALL patients. The lncRNA DUXAP8/miR-29a/PIK3CA signaling network was identified as the most dysregulated in chemoresistant patient samples, and its effect on cellular phenotypes, PI3K-AKT-mTOR signaling, and chemosensitivity of doxorubicin (Dox)-resistant Nalm-6 (N6/ADR), and Dox-resistant 697 (697/ADR) cells were assessed. Furthermore, its synergy with inotuzumab ozogamicin treatment was investigated. Results 1,338 lncRNAs, 75 miRNAs, and 1620 mRNAs were found to be dysregulated in chemotherapy-resistant B-ALL in comparison to chemotherapy-sensitive B-ALL patient samples. Through bioinformatics analyses and RT-qPCR validation, the lncRNA DUXAP8/miR-29a/PIK3CA network and PI3K-AKT-mTOR signaling were identified as significantly associated with B-ALL chemotherapy resistance. In N6/ADR and 697/ADR cells, LncRNA DUXAP8 overexpression and PIK3CA overexpression induced proliferation and inhibited apoptosis, and their respective knockdowns inhibited proliferation, facilitated apoptosis, and restored Dox chemosensitivity. MiR-29a was shown to affect the lncRNA DUXAP8/PIK3CA network, and luciferase reporter gene assay showed direct binding between lncRNA DUXAP8 and miR-29a, as well as between miR-29a and PIK3CA. Targeting lncRNA DUXAP8/miR-29a/PIK3CA network synergized with inotuzumab ozogamicin's effect on N6/ADR and 697/ADR cells. Conclusion Targeting the lncRNA DUXAP8/miR-29a/PIK3CA network not only induced an apoptotic effect on Dox-resistant B-ALL and restored Dox chemosensitivity via PI3K-AKT-mTOR signaling but also showed synergism with inotuzumab ozogamicin treatment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Microencapsulated islet transplantation alleviates podocyte injury in diabetic nephropathy via inhibiting Notch-1 signaling. Transpl Immunol 2022; 72:101579. [PMID: 35278650 DOI: 10.1016/j.trim.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Podocyte injury has a critical role in the pathogenesis of diabetic nephropathy (DN). Microencapsulated islet transplantation (MIT) is identified as an effective method for improving the clinical condition of DN. This study aimed to explore the role and mechanism of MIT in alleviating podocyte injury in DN. METHODS A mouse model of DN was constructed using streptozotocin (STZ). Mice were divided into 3 groups: the untreated diabetic nephropathy group (DN group), the microencapsulated islet transplantation-treated group (MIT group) and the control group. The mice were raised for 6 weeks posterior to islet transplantation to identify the role of MIT. Renal function and structure of glomerular filtration barrier were assessed by urine analysis, histopathological examination, and transmission electron microscopy. The expression levels of several proteins including Caspase-3, Bcl2/Bax, β-galactosidase, Ki-67, synaptopodin, WT-1, Jagged-1, Notch-1, and Hes-1 in renal tissues were identified via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting techniques. RESULTS Compared with the DN group, the MIT group presented decreased levels of blood glucose, urinary albumin/creatinine, urea nitrogen, and serum creatinine while their body weight gradually increased. Glomerular injury in the MIT group was significantly better than that in the DN group. The MIT group indicated significantly decreased expression of Caspase-3, β-galactosidase, Bax/Bcl-2, and Ki-67 when compared with DN group, while the proportion of synaptopodin- and WT-1-positive cells was significantly increased (P < 0.05). The protein expression of Jagged-1, Notch-1, and Hes-1 in the glomerulus of the MIT group was significantly lower than that in the DN group (P < 0.05). CONCLUSION MIT alleviates podocyte injury induced by DN by inhibiting Notch-1 signaling. The identification of signaling pathways influencing podocyte restoration can help evaluate personalized medicine efficacy for patients treated with islet transplantation.
Collapse
|
32
|
Zhou Y, Guan L, Li W, Jia R, Jia L, Zhang Y, Wen X, Meng S, Ma D, Zhang N, Ji M, Liu Y, Ji C. DT7 peptide-modified lecithin nanoparticles co-loaded with γ-secretase inhibitor and dexamethasone efficiently inhibit T-cell acute lymphoblastic leukemia and reduce gastrointestinal toxicity. Cancer Lett 2022; 533:215608. [PMID: 35240234 DOI: 10.1016/j.canlet.2022.215608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematologic malignancy and glucocorticoid resistance is the main recurrent cause for a high relapsed and death rate. Here, we proposed an effective therapeutic regimen of combining gamma-secretase inhibitors (GSIs) with dexamethasone (DEX) to overcome glucocorticoid resistance. Moreover, the bone marrow targeting DT7 peptide-modified lecithin nanoparticles co-loaded with DEX and GSI (TLnp/D&G) were developed to enhance T-ALL cells recognition and endocytosis. In vitro cytotoxicity studies showed that TLnp/D&G significantly inhibited cell survival and promoted apoptosis of T-ALL cells. Mechanically, we found that GSIs promoted DEX-induced cell apoptosis by two main synergetic mechanisms: 1) GSIs significantly upregulated glucocorticoid receptor (GR) expression in T-ALL and restored the glucocorticoid-induced pro-apoptotic response. 2) Both DEX and GSI synergistically inhibited BCL2 and suppressed the survival of T-ALL cells. Furthermore, in vivo studies demonstrated that TLnp/D&G showed high bone marrow accumulation and better antileukemic efficacy both in leukemia bearing models and in systemic Notch1-induced T-ALL models, with excellent biosafety and reduced gastrointestinal toxicity. Overall, our study provides new strategies for the treatment of T-ALL and promising bone marrow targeting systems with high transformation potential.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Li Guan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruinan Jia
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lejiao Jia
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuanyuan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin Wen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sibo Meng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
33
|
Jiang W, Sun M, Wang Y, Zheng M, Yuan Z, Mai S, Zhang X, Tang L, Liu X, Wang C, Wen Z. Critical Role of Notch-1 in Mechanistic Target of Rapamycin Hyperactivity and Vascular Inflammation in Patients With Takayasu Arteritis. Arthritis Rheumatol 2022; 74:1235-1244. [PMID: 35212196 DOI: 10.1002/art.42103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Takayasu arteritis (TA) is a major type of large vessel vasculitis characterized by progressive inflammation in vascular layers. In our recent study we identified a central role of mechanistic target of rapamycin (mTOR) hyperactivity in proinflammatory T cell differentiation in TA. This study was undertaken to explore potential mechanisms underpinning T cell-intrinsic mTOR hyperactivity and vascular inflammation in TA, with a focus on Notch-1. METHODS Notch-1 expression and activity was determined according to Notch-1, activated Notch-1, and HES-1 levels. We detected mTOR activity with intracellular expression of phosphorylated ribosomal protein S6. Differentiation of proinflammatory T cells was analyzed by detecting Th1 and Th17 lineage-determining transcription factors. The function of Notch-1 was evaluated using γ-secretase inhibitor DAPT and gene knockdown using a short hairpin RNA (shRNA) strategy. We performed our translational study using humanized NSG mouse chimeras in which human vasculitis was induced using immune cells from TA patients. RESULTS CD4+ T cells from TA patients exerted Notch-1high , leading to mTOR hyperactivity and spontaneous maldifferentiation of Th1 cells and Th17 cells. Blockade of Notch-1 using DAPT and Notch-1 shRNA efficiently abrogated mTOR complex 1 (mTORC1) activation and proinflammatory T cell differentiation. Mechanistically, Notch-1 promoted mTOR expression, interacted with mTOR, and was associated with lysosomal localization of mTOR. Accordingly, systemic administration of DAPT and CD4+ T cell-specific gene knockdown of Notch-1 could alleviate vascular inflammation in humanized TA chimeras. CONCLUSION Expression of Notch-1 is elevated in CD4+ T cells from TA patients, resulting in mTORC1 hyperactivity and proinflammatory T cell differentiation. Targeting Notch-1 is a promising therapeutic strategy for the clinical management of TA.
Collapse
Affiliation(s)
| | - Mengyao Sun
- First Hospital of Jilin University, Changchun, China
| | | | | | | | - Shixiong Mai
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | | | - Xiyu Liu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | | | | |
Collapse
|
34
|
Liu Y, Fang B, Feng X, Jiang Y, Zeng Y, Jiang J. Mechanism of IDH1-R132H mutation in T cell acute lymphoblastic leukemia mouse model via the Notch1 pathway. Tissue Cell 2022; 74:101674. [PMID: 34814054 DOI: 10.1016/j.tice.2021.101674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a clonal malignant disease. Isocitrate Dehydrogenase 1-R123 (IDH1-R132 H) is related to T-ALL progression. This study explored the role of IDH1-R132H in T-ALL. Molt-4 cells with IDH1-R132H mutation were constructed by retroviral transfection of IDH1-R132H and T-ALL xenotransplantation mouse model was established by injection of Molt-4 cells through the tail vein. Infiltration of the liver, spleen, and bone marrow and the percentage of CD45-positive T-ALL cells in them were detected. Cell proliferation, apoptosis, and invasion were evaluated after the intervention of Notch1, PTEN, or PI3K expression. The leukocyte number was increased, the spleen was enlarged, infiltration in bone marrow, spleen, and liver tissue was worsened and the percentage of hCD45-positive T-ALL cells was increased by IDH1-R132H mutation, which promoted T-ALL deterioration. IDH1-R132H mutation promoted proliferation, invasion, and inhibited apoptosis of T-ALL cells, which were reversed by inhibition of Notch1. IDH1-R132H mutation upregulated HES1 expression and downregulated PTEN expression by activating the Notch1 pathway, while inhibition of Notch1 reversed these changes. PTEN inhibited the PI3K/AKT pathway activation. PTEN overexpression reversed IDH1-R132H mutation effect on promoting malignant behaviors of T-ALL cells. IDH1-R132H mutation inhibited PTEN expression by activating the Notch1/HES1 pathway, activated the PI3K/AKT pathway, thus promoting malignant behaviors of T-ALL cells.
Collapse
Affiliation(s)
- Yonghua Liu
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Bingmu Fang
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Xiaoning Feng
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Yu Jiang
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Yuxiao Zeng
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China
| | - Jinhong Jiang
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, No. 15, Dazhong Road, Liandu District, Lishui, Zhejiang 323000, China.
| |
Collapse
|
35
|
Means-Powell JA, Mayer IA, Ismail-Khan R, Del Valle L, Tonetti D, Abramson VG, Sanders MS, Lush RM, Sorrentino C, Majumder S, Miele L. A Phase Ib Dose Escalation Trial of RO4929097 (a γ-secretase inhibitor) in Combination with Exemestane in Patients with ER + Metastatic Breast Cancer (MBC). Clin Breast Cancer 2022; 22:103-114. [PMID: 34903452 PMCID: PMC8821119 DOI: 10.1016/j.clbc.2021.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
PRECLINICAL STUDIES: have demonstrated a complex cross-talk between Notch and estrogen signaling in ERα-positive breast cancer. Gamma-secretase inhibitors (GSIs) are investigational agents that block the cleavage and activation of Notch receptors. In animal models of endocrine-resistant breast cancer, combinations of tamoxifen and GSIs produce additive or synergistic efficacy, while decreasing the intestinal toxicity of GSIs. However, results of a clinical trial of a GSI-endocrine therapy combination in the metastatic setting have not been published to date, nor had the safety of such combinations been investigated with longer term treatment. We conducted a phase 1b dose escalation trial (NCT01149356) of GSI RO4929097 with exemestane in patients with ERα+, metastatic breast cancer (MBC) STUDY OBJECTIVES: To determine the safety, tolerability and maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D) of RO4929097 when administered in combination with exemestane in patients with estrogen receptor positive metastatic breast cancer RESULTS: We enrolled 15 patients with MBC. Of 14 evaluable patients, one had a partial response, 6 had stable disease and 7 progressive disease. Twenty % of patients had stable disease for ≥ 6 months. Common toxicities included nausea (73.3%), anorexia (60%), hyperglycemia (53.3%), hypophosphatemia (46.7%), fatigue (66.7%) and cough (33.0%). Grade 3 toxicities were uncommon, and included hypophosphatemia (13%) and rash (6.3%). Rash was the only DLT observed at 140 mg/d. Results suggest a possible recommended phase 2 dose of 90 mg/d. Ten patients with evaluable archival tissue showed expression of PKCα, which correlated with expression of Notch4. Mammospheres from a PKCα-expressing, endocrine-resistant T47D cell line were inhibited by a GSI-fulvestrant combination CONCLUSIONS: Our data indicate that combinations including endocrine therapy and Notch inhibitors deserve further investigation in endocrine-resistant ERα-positive breast cancer.
Collapse
Affiliation(s)
- Julie A Means-Powell
- Vanderbilt-Ingram Cancer Center, Nashville, TN; Present address: Tennessee Oncology, Springfield, TN
| | | | | | - Luis Del Valle
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA; Department of Pathology, Louisiana State university Health, New Orleans, LA
| | - Debra Tonetti
- Department of Pharmaceutical Sciences, University of Illinois at Chicago School of Pharmacy, Chicago, IL
| | | | | | - Richard M Lush
- Vanderbilt-Ingram Cancer Center, Nashville, TN; Section of Hematology/Oncology, Present address: George Washington University Cancer Center, Washington D.C, USA
| | - Claudia Sorrentino
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans
| | - Lucio Miele
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Center, New Orleans, LA; Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, New Orleans.
| |
Collapse
|
36
|
The effect of AMP kinase activation on differentiation and maturation of osteoblast cultured on titanium plate. J Dent Sci 2021; 17:1225-1231. [PMID: 35784162 PMCID: PMC9236888 DOI: 10.1016/j.jds.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/02/2021] [Indexed: 12/01/2022] Open
Abstract
Background/purpose 5′ Adenosine monophosphate-activated protein kinase (AMPK) is known as an enzyme that maintains intracellular homeostasis and has various biological activity. The purpose of this study is evaluation effect of AMPK activation on implant prognosis. Materials & methods MC3T3-E1 osteoblast-like cells were cultured on titanium using a 24-well plate. The experimental group was divided into the following 3 groups: (1) the normal culture group (control group), (2) the osteogenic induction group, and (3) the osteogenic induction + AMPK activation group. The cell counts were measured; real-time PCR was used to assess the expression of ALP and Osterix as osteogenic related genes at Day 0,7,14 and 21 after experiments. Additionally, ALP activity and calcification were assessed. Results The results of the real-time PCR assessments revealed that the expression of ALP, which is a marker for the initial stages of calcification, was significantly increased by AMPK activation compared to the normal culture or osteogenic induction. A significant increase was also observed in the expression of Osterix, which is a marker for the later stages of calcification. Because significant increases were observed in ALP activity and calcification potential, this suggested that AMPK activation could elicit an increase in osteoblast calcification potential. Conclusion AMPK activation promotes implant peripheral osteoblast differentiation and maturation and enhances calcification. Our results suggest that AMPK activation may help to maintain implant stability.
Collapse
|
37
|
Feng H, Li F, Tang P. Circ_0000745 regulates NOTCH1-mediated cell proliferation and apoptosis in pediatric T-cell acute lymphoblastic leukemia through adsorbing miR-193b-3p. Hematology 2021; 26:885-895. [PMID: 34753401 DOI: 10.1080/16078454.2021.1997197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is a highly proliferative hematologic malignancy. Circular RNA hsa_circ_0000745 (circ_0000745) has been reported as an oncogene in acute lymphoblastic leukemia (ALL). However, whether circ_0000745 can drive T-ALL progression by controlling notch receptor 1 (NOTCH1) expression is unclear. METHODS Relative expression of circ_0000745 and NOTCH1 in bone marrow (BM) samples and T-ALL cells was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Loss- and gain-of-function experiments were executed to evaluate the effects of circ_0000745 and NOTCH1 on T-ALL cell proliferation and apoptosis. The microRNAs (miRs) that might jointly interact with circ_0000745 and NOTCH1 were predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Circ_0000745 and NOTCH1 were overexpressed in T-ALL BM and T-ALL cells. Functionally, both circ_0000745 and NOTCH1 overexpression promoted T-ALL cell proliferation and curbed T-ALL cell apoptosis. In contrast, both circ_0000745 and NOTCH1 silencing restrained T-ALL cell proliferation and induced T-ALL cell apoptosis. Furthermore, circ_0000745 could control T-ALL cell proliferation and apoptosis through regulating NOTCH1 expression. Importantly, circ_0000745 regulated NOTCH1 expression by sponging miR-193b-3p. CONCLUSION Our findings proposed a novel model in which circ_0000745 promoted cell proliferation and curbed cell apoptosis via upregulating NOTCH1 through serving as a miR-193b-3p sponge in T-ALL.
Collapse
Affiliation(s)
- Huanhuan Feng
- Department of Neonatology, Xi'an Gaoxi Hospital, Xi'an, People's Republic of China
| | - Fei Li
- Department of Neonatology, Xi'an Gaoxi Hospital, Xi'an, People's Republic of China
| | - Ping Tang
- Department of Neonatology, Xi'an Gaoxi Hospital, Xi'an, People's Republic of China
| |
Collapse
|
38
|
Yan Z, Zhang K, Ji M, Xu H, Chen X. A Dual PI3K/HDAC Inhibitor Downregulates Oncogenic Pathways in Hematologic Tumors In Vitro and In Vivo. Front Pharmacol 2021; 12:741697. [PMID: 34658878 PMCID: PMC8519310 DOI: 10.3389/fphar.2021.741697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/12/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose: To investigate the efficacy and mechanism of compound 23, a PI3K/HDAC dual-target inhibitor, on hematologic tumor cells in vitro and in vivo. Methods: The MTS Kit was used to study the antiproliferative effects in vitro. Western blot was used to analyze the involved signaling pathways. Flow cytometry was used to analyze apoptosis and the cell cycle. The antiproliferative effects were evaluated in vivo using EL4 and A20 xenograft models. The CCLE database was used to analyze gene expression. Results: Compound 23 significantly inhibited the proliferation of hematologic tumors; it simultaneously regulated PI3K/HDAC pathways and induced apoptosis and G1-phase arrest in EL4, NB4, and A20 cells in vitro. When tested in vivo, compound 23 significantly inhibited the proliferation of EL4 and A20. The expression levels of ErbB2 and ErbB3 decreased in hematologic tumors compared with it in solid tumors. Conclusion: Compound 23 modulates the PI3K/HDAC pathway, which results in significant inhibition of hematologic tumor proliferation in vivo and in vitro. The differential levels of ERBB2 and ERBB3 might be related to the difference in the effect of compound 23 on hematologic tumors and solid tumors.
Collapse
Affiliation(s)
- Zheng Yan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kehui Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Xu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoguang Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
40
|
Guo SS, Mi JQ, Wang J. [The role and research progress of NOTCH1 in T-cell acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:165-170. [PMID: 33858050 PMCID: PMC8071660 DOI: 10.3760/cma.j.issn.0253-2727.2021.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- S S Guo
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - J Q Mi
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - J Wang
- Department of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
41
|
Zhang YQ, Liang YK, Wu Y, Chen M, Chen WL, Li RH, Zeng YZ, Huang WH, Wu JD, Zeng D, Gao WL, Chen CF, Lin HY, Yang RQ, Zhu JW, Liu WL, Bai JW, Wei M, Wei XL, Zhang GJ. Notch3 inhibits cell proliferation and tumorigenesis and predicts better prognosis in breast cancer through transactivating PTEN. Cell Death Dis 2021; 12:502. [PMID: 34006834 PMCID: PMC8131382 DOI: 10.1038/s41419-021-03735-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
Notch receptors (Notch1-4) play critical roles in tumorigenesis and metastasis of malignant tumors, including breast cancer. Although abnormal Notch activation is related to various tumors, the importance of single receptors and their mechanism of activation in distinct breast cancer subtypes are still unclear. Previous studies by our group demonstrated that Notch3 may inhibit the emergence and progression of breast cancer. PTEN is a potent tumor suppressor, and its loss of function is sufficient to promote the occurrence and progression of tumors. Intriguingly, numerous studies have revealed that Notch1 is involved in the regulation of PTEN through its binding to CBF-1, a Notch transcription factor, and the PTEN promoter. In this study, we found that Notch3 and PTEN levels correlated with the luminal phenotype in breast cancer cell lines. Furthermore, we demonstrated that Notch3 transactivated PTEN by binding CSL-binding elements in the PTEN promoter and, at least in part, inhibiting the PTEN downstream AKT-mTOR pathway. Notably, Notch3 knockdown downregulated PTEN and promoted cell proliferation and tumorigenesis. In contrast, overexpression of the Notch3 intracellular domain upregulated PTEN and inhibited cell proliferation and tumorigenesis in vitro and in vivo. Moreover, inhibition or overexpression of PTEN partially reversed the promotion or inhibition of cell proliferation induced by Notch3 alterations. In general, Notch3 expression positively correlated with elevated expression of PTEN, ER, lower Ki-67 index, and incidence of involved node status and predicted better recurrence-free survival in breast cancer patients. Therefore, our findings demonstrate that Notch3 inhibits breast cancer proliferation and suppresses tumorigenesis by transactivating PTEN expression.
Collapse
Affiliation(s)
- Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Yuan-Ke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Yang Wu
- Klinikum rechts der Isar der Technischen Universität München Institut für Allgemeine Pathologie und Pathologische Anatomie, Ismaninger Str. 22, 81675, München, Germany
| | - Min Chen
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Rong-Hui Li
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Yun-Zhu Zeng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Wen-He Huang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jun-Dong Wu
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Wen-Liang Gao
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Chun-Fa Chen
- Department of Breast Center, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou, China
| | - Rui-Qin Yang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jiang-Wen Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Jing-Wen Bai
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Min Wei
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, China.
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China.
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen, China.
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China.
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
42
|
Redox Control in Acute Lymphoblastic Leukemia: From Physiology to Pathology and Therapeutic Opportunities. Cells 2021; 10:cells10051218. [PMID: 34067520 PMCID: PMC8155968 DOI: 10.3390/cells10051218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy originating from B- or T-lymphoid progenitor cells. Recent studies have shown that redox dysregulation caused by overproduction of reactive oxygen species (ROS) has an important role in the development and progression of leukemia. The application of pro-oxidant therapy, which targets redox dysregulation, has achieved satisfactory results in alleviating the conditions of and improving the survival rate for patients with ALL. However, drug resistance and side effects are two major challenges that must be addressed in pro-oxidant therapy. Oxidative stress can activate a variety of antioxidant mechanisms to help leukemia cells escape the damage caused by pro-oxidant drugs and develop drug resistance. Hematopoietic stem cells (HSCs) are extremely sensitive to oxidative stress due to their low levels of differentiation, and the use of pro-oxidant drugs inevitably causes damage to HSCs and may even cause severe bone marrow suppression. In this article, we reviewed research progress regarding the generation and regulation of ROS in normal HSCs and ALL cells as well as the impact of ROS on the biological behavior and fate of cells. An in-depth understanding of the regulatory mechanisms of redox homeostasis in normal and malignant HSCs is conducive to the formulation of rational targeted treatment plans to effectively reduce oxidative damage to normal HSCs while eradicating ALL cells.
Collapse
|
43
|
Huang T, Zhao C, Zhao Y, Zhou Y, Wang L, Hang D. RO4929097 regulates RANKL-induced osteoclast formation and LPS-mediated bone resorption. Aging (Albany NY) 2021; 13:12526-12536. [PMID: 33934091 PMCID: PMC8148457 DOI: 10.18632/aging.202926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/14/2021] [Indexed: 11/30/2022]
Abstract
To investigate the suppressive function of RO4929097, a potent -secretase inhibitor, on RANKL-induced osteoclastogenesis. The cytotoxicity of RO4929097 was evaluated. The suppressive effect and possible molecular mechanism of RO4929097 on RANKL-induced osteoclastogenesis was evaluated both in vitro and in vivo. The IC50 of RO4929097 was 2.93 μM. Treatment with different doses of RO4929097 (100 nM, 200 nM, and 400 nM) effectively reduced osteoclast formation (number and resorption area) in a dose-dependent manner. The qPCR results revealed that RO4929097 attenuates RANKL-induced osteoclast formation and NFATc1 protein expression. The in vivo experiments demonstrated that RO4929097 had an inhibitory effect on LPS-induced bone resorption. Our in vitro experiments showed that RO4929097 can potently inhibit osteoclastogenesis and bone resorption by down-regulating the Notch/MAPK/JNK/Akt-mediated reduction of NFATc1. In accordance with these in vitro observations, RO4929097 attenuated LPS-induced osteolysis in mice. In conclusion, our findings indicate that Notch may represent a potential therapeutic target for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Tao Huang
- Department of Orthopaedics, Baoshan Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congyun Zhao
- Department of Orthopaedics, Mang Shi People's Hospital, Yunnan Province, China
| | - Yi Zhao
- Department of Orthopaedics, Baoshan Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zhou
- Department of Orthopaedics, Baoshan Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghua Hang
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
45
|
Zhang G, Gao X, Zhao X, Wu H, Yan M, Li Y, Zeng H, Ji Z, Guo X. Decitabine inhibits the proliferation of human T-cell acute lymphoblastic leukemia molt4 cells and promotes apoptosis partly by regulating the PI3K/AKT/mTOR pathway. Oncol Lett 2021; 21:340. [PMID: 33747197 PMCID: PMC7967925 DOI: 10.3892/ol.2021.12601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematological cancer; however, there is a lack of effective chemotherapeutic or targeted drugs for the treatment of T-ALL. Decitabine is a DNA demethylation agent but it has not been used for T-ALL treatment. Therefore, the present study aimed to assess the inhibitory effect of decitabine on T-ALL molt4 cells and determine its regulatory role in the PI3K/AKT/mTOR pathway. Molt4 cells were stimulated with decitabine in vitro, after which cell proliferation, apoptosis and cell cycle analyses were performed to assess cell viability. Subcellular morphology was observed using transmission electron microscopy. Expression levels of phosphate and tension homology (PTEN), genes involved in the PI3K/AKT/mTOR pathway and the corresponding downstream genes were analyzed using reverse transcription-quantitative PCR and western blotting. The results showed that decitabine induced apoptosis, inhibited proliferation and arrested molt4 cells in the G2 phase. Following decitabine intervention, an increase in the number of lipid droplets, autophagosomes and mitochondrial damage was observed. At concentrations of 1 and 10 µM, decitabine downregulated the expression of PI3K, AKT, mTOR, P70S6 and eukaryotic initiating factor 4E-binding protein 1, which in turn upregulated PTEN expression; however, 50 µM decitabine downregulated PTEN levels. Overall, these results demonstrated that decitabine reduced the viability of molt4 cells partly by inhibiting the PI3K/AKT/mTOR pathway via PTEN, especially at low decitabine concentrations.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaohui Gao
- Department of Pediatrics, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoyan Zhao
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Haibing Wu
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Minchao Yan
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yuan Li
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Hui Zeng
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhaoning Ji
- Department of Medical Oncology, The Cancer Center, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaojun Guo
- Department of Hematology, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
46
|
Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: A remarkable oncogenic promoter in human cancer metastasis. Oncol Lett 2021; 21:302. [PMID: 33732378 PMCID: PMC7905531 DOI: 10.3892/ol.2021.12563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor β, Wnt/β-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.
Collapse
Affiliation(s)
- Lili Chen
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
47
|
Huan Y, Wei J, Zhou J, Liu M, Yang J, Gao Y. Label-Free Liquid Chromatography-Mass Spectrometry Proteomic Analysis of the Urinary Proteome for Measuring the Escitalopram Treatment Response From Major Depressive Disorder. Front Psychiatry 2021; 12:700149. [PMID: 34658947 PMCID: PMC8514635 DOI: 10.3389/fpsyt.2021.700149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental disorder that can cause substantial impairments in quality of life. Clinical treatment is usually built on a trial-and-error method, which lasts ~12 weeks to evaluate whether the treatment is efficient, thereby leading to some inefficient treatment measures. Therefore, we intended to identify early candidate urine biomarkers to predict efficient treatment response in MDD patients. In this study, urine samples were collected twice from 19 respondent and 10 non-respondent MDD patients receiving 0-, 2-, and 12-week treatments with escitalopram. Differential urinary proteins were subsequently analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Our two pilot tests suggested that the urine proteome reflects changes associated with major depressive disorder at the early stage of treatment measures. On week 2, 20 differential proteins were identified in the response group compared with week 0, with 14 of these proteins being associated with the mechanisms of MDD. In the non-response group, 60 differential proteins were identified at week 2, with 28 of these proteins being associated with the mechanisms of MDD. In addition, differential urinary proteins at week 2 between the response and non-response groups can be clearly distinguished by using orthogonal projection on latent structure-discriminant analysis (OPLS-DA). Our small pilot tests indicated that the urine proteome can reflect early effects of escitalopram therapy between the response and non-response groups since at week 2, which may provide potential early candidate urine biomarkers to predict efficient treatment measures in MDD patients.
Collapse
Affiliation(s)
- Yuhang Huan
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jing Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| |
Collapse
|
48
|
Xing D, Fadare O. Molecular events in the pathogenesis of vulvar squamous cell carcinoma. Semin Diagn Pathol 2021; 38:50-61. [PMID: 33032902 PMCID: PMC7749059 DOI: 10.1053/j.semdp.2020.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Vulvar squamous cell carcinomas (VSCC), which constitute over 90% of vulvar malignancies in adults, are classifiable into 2 subgroups that are mostly clinicopathologically distinct, a classification that is fundamentally based whether or not the tumors are HPV-mediated. In this review, we aim to summarize the recent advances in the understanding of molecular events in the pathogenesis of VSCC, including common and targetable mutations, copy number alterations, epigenetics, noncoding RNAs, and tumor immune microenvironment, which may provide insight into the future management of the disease. These events show substantial differences between the 2 subgroups, although significant areas of overlap exist. Recurrent, driver mutations appear to be substantially more prevalent in HPV(-) VSCC. TP53 mutations are the most common somatic mutations in VSCC overall, and are notably predominant in the HPV(-) VSCC, where 30-88% show a mutation. TP53 mutations are associated with worse patient outcomes, and co-mutations between TP53 and either HRAS, PIK3CA or CDKN2A appear to define subsets with even worse outcomes. A wide variety of other somatic mutations have been identified, including a subset with different mutational frequencies between HPV(+) and HPV(-) VSCC. CDKN2A mutations are common, and have been identified in 21 to 55% of HPV(-) VSCC, and in 2 to 25% of HPV(+) VSCC. Hypermethylation of CDKN2A is the most frequently reported epigenetic alteration in VSCC and the expression of some microRNAs may be associated with patient outcomes. The PTEN/PI3K/AKT/mTOR pathway is commonly altered in HPV(+) VSCC, and is accordingly potentially targetable. HPV-positivity/p16 block expression by immunohistochemistry has been found to be an independent prognostic marker for improved survival in VSCC, and may have some predictive value in VSCC patients treated with definitive radiotherapy. 22-39.3% and 68% of VSCC show EGFR amplification and protein overexpression respectively, although the prognostic and predictive value of an EGFR alteration requires additional study. Recurrent chromosomal gains in VSCCs have been found at 1q, 2q, 3q, 4p, 5p, 7p, 8p, 8q, and 12q, and there may be differential patterns of alterations depending on HPV-status. At least one-third of VSCC patients may potentially benefit from immune checkpoint inhibition therapy, based on a high frequency of PD-L1 expression or amplification, or a high tumor mutational burden. Additional studies are ultimately required to better understand the global landscape of genetic and epigenetic alterations in VSCC, and to identify and test potential targets for clinical application.
Collapse
Affiliation(s)
- Deyin Xing
- Departments of Pathology, Oncology, Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego Health, La Jolla, CA, United States
| |
Collapse
|
49
|
Huang J, Qi Z. MiR-21 mediates the protection of kaempferol against hypoxia/reoxygenation-induced cardiomyocyte injury via promoting Notch1/PTEN/AKT signaling pathway. PLoS One 2020; 15:e0241007. [PMID: 33151961 PMCID: PMC7644004 DOI: 10.1371/journal.pone.0241007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Kaempferol, a natural flavonoid compound, possesses potent myocardial protective property in ischemia/reperfusion (I/R), but the underlying mechanism is not well understood. The present study was aimed to explore whether miR-21 contributes to the cardioprotective effect of kaempferol on hypoxia/reoxygenation (H/R)-induced H9c2 cell injury via regulating Notch/phosphatase and tensin homologue (PTEN)/Akt signaling pathway. Results revealed that kaempferol obviously attenuates H/R-induced the damages of H9c2 cells as evidence by the up-regulation of cell viability, the down-regulation of lactate dehydrogenase (LDH) activity, the reduction of apoptosis rate and pro-apoptotic protein (Bax) expression, and the increases of anti-apoptotic protein (Bcl-2) expression. In addition, kaempferol enhanced miR-21 level in H9c2 cells exposed to H/R, and inhibition of miR-21 induced by transfection with miR-21 inhibitor significantly blocked the protection of kaempferol against H/R-induced H9c2 cell injury. Furthermore, kaempferol eliminated H/R-induced oxidative stress and inflammatory response as illustrated by the decreases in reactive oxygen species generation and malondialdehyde content, the increases in antioxidant enzyme superoxide dismutase and glutathione peroxidase activities, the decreases in pro-inflammatory cytokines interleukin (IL)-1β, IL-8 and tumor necrosis factor-alpha levels, and an increase in anti-inflammatory cytokine IL-10 level, while these effects of kaempferol were all reversed by miR-21 inhibitor. Moreover, results elicited that kaempferol remarkably blocks H/R-induced the down-regulation of Notch1 expression, the up-regulation of PTEN expression, and the reduction of P-Akt/Akt, indicating that kaempferol promotes Notch1/PTEN/AKT signaling pathway, and knockdown of Notch1/PTEN/AKT signaling pathway induced by Notch1 siRNA also abolished the protection of kaempferol against H/R-induced the damage of H9c2 cells. Notably, miR-21 inhibitor alleviated the promotion of kaempferol on Notch/PTEN/Akt signaling pathways in H9c2 cells exposed to H/R. Taken together, these above findings suggested thatmiR-21 mediates the protection of kaempferol against H/R-induced H9c2 cell injuryvia promoting Notch/PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Jinxi Huang
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, P.R. China
- * E-mail:
| | - Zhenhui Qi
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
50
|
Zhang D, An X, Li Q, Man X, Chu M, Li H, Zhang N, Dai X, Yu H, Li Z. Thioguanine Induces Apoptosis in Triple-Negative Breast Cancer by Regulating PI3K-AKT Pathway. Front Oncol 2020; 10:524922. [PMID: 33194583 PMCID: PMC7662440 DOI: 10.3389/fonc.2020.524922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is notoriously difficult to treat due to the lack of biological targets and poor sensitivity to conventional therapies. Chemotherapy is the main clinical therapy, but the effective screening strategy for chemotherapy drugs is poorly investigated. Drug repositioning has been the center of attention in recent years attracting numerous studies. Here, we firstly found multiple common features between leukemia and TNBC by analyzing the global transcriptome profiles based on the transformed comparison data from NCI60. Therefore, we investigated the role of the classic leukemia drug thioguanine (6-TG) in TNBC cancer cells. Our results indicated that 6-TG inhibited cell proliferation and tumor cell progression by suppressing PI3K–AKT pathway via downregulating the DNA methylation level of PTEN. Moreover, apoptosis was induced via the activation of PI3K-AKT downstream TSC1 and the downregulation of methylation levels of DAXX, TNF, FADD and CASP8etc. These findings indicated 6-TG exerts its anti-tumor effects in vitro and in vivo through regulating the DNA methylation levels of genes involved in PI3K–AKT and apoptosis pathway. Meanwhile, our study suggested that transcriptome-based drug screening has potential implications for breast cancer therapy and drug selection.
Collapse
Affiliation(s)
- Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiaxia Man
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Meiran Chu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| |
Collapse
|