1
|
Sim J, Lanka S, Jo JW, Chaudhary CL, Vishwanath M, Jung CH, Lee YH, Kim EY, Kim YS, Hyun SS, Lee HS, Lee K, Seo SY, Viji M, Jung JK. Inhibitory Effect of Chlorogenic Acid Analogues Comprising Pyridine and Pyrimidine on α-MSH-Stimulated Melanogenesis and Stability of Acyl Analogues in Methanol. Pharmaceuticals (Basel) 2021; 14:1176. [PMID: 34832958 PMCID: PMC8622415 DOI: 10.3390/ph14111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
In continuation of studies for α-MSH stimulated melanogenesis inhibitors, we have evaluated the design, synthesis, and activity of a new series of chlorogenic acid (CGA) analogues comprising pyridine, pyrimidine, and diacyl derivatives. Among nineteen synthesized compounds, most of them (fifteen) exhibited better inhibitions of melanin formation in B16 melanoma cells. The results illustrated that a pyridine analogue 6f and a diacyl derivative 13a of CGA showed superior inhibition profiles (IC50: 2.5 ± 0.7 μM and 1.1 ± 0.1 μM, respectively) of α-MSH activities than positive controls, kojic acid and arbutin (IC50: 54 ± 1.5 μM and 380 ± 9.5 μM, respectively). The SAR studies showed that both -CF3 and -Cl groups exhibited better inhibition at the meta position on benzylamine than their ortho and para positions. In addition, the stability of diacyl analogues of CGA in methanol monitored by HPLC for 28 days indicated the steric bulkiness of acyl substituents as a key factor in their stability.
Collapse
Affiliation(s)
- Jaeuk Sim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Srinu Lanka
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Jeong-Woong Jo
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Manjunatha Vishwanath
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Chan-Hyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Young-Hee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
- Samjin Central Research Institute, Samjin Pharma Co., Ltd., Cheongju 28158, Korea
| | - Eun-Yeong Kim
- College of Pharmacy, Korea University, Sejong 30019, Korea; (E.-Y.K.); (K.L.)
| | - Young-Soo Kim
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Soon-Sil Hyun
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Hee-Soon Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong 30019, Korea; (E.-Y.K.); (K.L.)
| | - Seung-Yong Seo
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Korea; (J.S.); (S.L.); (J.-W.J.); (C.L.C.); (M.V.); (C.-H.J.); (Y.-H.L.); (Y.-S.K.); (S.-S.H.); (H.-S.L.)
| |
Collapse
|
2
|
Identification of Key miRNAs in the Treatment of Dabrafenib-Resistant Melanoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5524486. [PMID: 33880366 PMCID: PMC8046546 DOI: 10.1155/2021/5524486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022]
Abstract
Dabrafenib resistance is a significant problem in melanoma, and its underlying molecular mechanism is still unclear. The purpose of this study is to research the molecular mechanism of drug resistance of dabrafenib and to explore the key genes and pathways that mediate drug resistance in melanoma. GSE117666 was downloaded from the Gene Expression Omnibus (GEO) database and 492 melanoma statistics were also downloaded from The Cancer Genome Atlas (TCGA) database. Besides, differentially expressed miRNAs (DEMs) were identified by taking advantage of the R software and GEO2R. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and FunRich was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to identify potential pathways and functional annotations linked with melanoma chemoresistance. 9 DEMs and 872 mRNAs were selected after filtering. Then, target genes were uploaded to Metascape to construct protein-protein interaction (PPI) network. Also, 6 hub mRNAs were screened after performing the PPI network. Furthermore, a total of 4 out of 9 miRNAs had an obvious association with the survival rate (P < 0.05) and showed a good power of risk prediction model of over survival. The present research may provide a deeper understanding of regulatory genes of dabrafenib resistance in melanoma.
Collapse
|
3
|
Liu Y, Xie Y, Lin Y, Xu Q, Huang Y, Peng M, Lai W, Zheng Y. Cepharanthine as a Potential Novel Tumor-Regional Therapy in Treating Cutaneous Melanoma: Altering the Expression of Cathepsin B, Tumor Suppressor Genes and Autophagy-Related Proteins. Front Bioeng Biotechnol 2020; 8:601969. [PMID: 33335896 PMCID: PMC7736638 DOI: 10.3389/fbioe.2020.601969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The incidence of primary cutaneous melanoma continues to increase annually and is one of the most aggressive malignancies in humans and need to develop more novel non-surgical therapies. Autophagy and cathepsin B targeted therapy was reported to improve melanoma treatment. Cepharanthine (CEP), a natural alkaloid extracted from the genus Cephalophyllum has been reported to have the function of inhibiting cancers. We found that CEP inhibited human primary cutaneous melanoma cells viability and proliferation in 24 h in vitro, and topical application or intra-tumoral injection of CEP decreased the growth of cutaneous melanoma in mice within 4 weeks. CEP preparations below 50% concentration did not induce skin irritation and allergy reaction on human skin in vivo. Primary cutaneous melanoma cells incubated with CEP, the expression of cathepsin B was decreased and the LC3-I and LC3-II expression changed in a dose-dependent manner, while p53, p21Cip1p, and p16Inka gene expression was up-regulated. We demonstrated the effects of CEP as a novel tumor-regional therapy for cutaneous melanoma and provided a preliminary research basis for future clinical treatment researches and the exploration of integrated treatments with systemic therapy, radiotherapy, and surgery for human primary cutaneous melanoma.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Lin
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfen Huang
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengran Peng
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Zheng
- Department of Dermatology and Venereology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Palušová V, Renzová T, Verlande A, Vaclová T, Medková M, Cetlová L, Sedláčková M, Hříbková H, Slaninová I, Krutá M, Rotrekl V, Uhlířová H, Křížová A, Chmelík R, Veselý P, Krafčíková M, Trantírek L, Schink KO, Uldrijan S. Dual Targeting of BRAF and mTOR Signaling in Melanoma Cells with Pyridinyl Imidazole Compounds. Cancers (Basel) 2020; 12:cancers12061516. [PMID: 32531927 PMCID: PMC7352453 DOI: 10.3390/cancers12061516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
BRAF inhibitors can delay the progression of metastatic melanoma, but resistance usually emerges, leading to relapse. Drugs simultaneously targeting two or more pathways essential for cancer growth could slow or prevent the development of resistant clones. Here, we identified pyridinyl imidazole compounds SB202190, SB203580, and SB590885 as dual inhibitors of critical proliferative pathways in human melanoma cells bearing the V600E activating mutation of BRAF kinase. We found that the drugs simultaneously disrupt the BRAF V600E-driven extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in melanoma cells. Pyridinyl imidazole compounds directly inhibit BRAF V600E kinase. Moreover, they interfere with the endolysosomal compartment, promoting the accumulation of large acidic vacuole-like vesicles and dynamic changes in mTOR signaling. A transient increase in mTORC1 activity is followed by the enrichment of the Ragulator complex protein p18/LAMTOR1 at contact sites of large vesicles and delocalization of mTOR from the lysosomes. The induced disruption of the endolysosomal pathway not only disrupts mTORC1 signaling, but also renders melanoma cells sensitive to endoplasmic reticulum (ER) stress. Our findings identify new activities of pharmacologically relevant small molecule compounds and provide a biological rationale for the development of anti-melanoma therapeutics based on the pyridinyl imidazole core.
Collapse
Affiliation(s)
- Veronika Palušová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Tereza Renzová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Amandine Verlande
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Tereza Vaclová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Michaela Medková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Linda Cetlová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Miroslava Sedláčková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Hana Hříbková
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Iva Slaninová
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Miriama Krutá
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
| | - Vladimír Rotrekl
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Hana Uhlířová
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (H.U.); (R.C.)
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Aneta Křížová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Radim Chmelík
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic; (H.U.); (R.C.)
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Pavel Veselý
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (A.K.); (P.V.)
| | - Michaela Krafčíková
- National Centre for Biomolecular Research, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Lukáš Trantírek
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic;
| | - Kay Oliver Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Stjepan Uldrijan
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (V.P.); (T.R.); (A.V.); (T.V.); (M.M.); (L.C.); (M.S.); (H.H.); (I.S.); (M.K.); (V.R.)
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
5
|
Rogerson C, O'Shaughnessy RFL. Protein kinases involved in epidermal barrier formation: The AKT family and other animals. Exp Dermatol 2019; 27:892-900. [PMID: 29845670 DOI: 10.1111/exd.13696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Formation of a stratified epidermis is required for the performance of the essential functions of the skin; to act as an outside-in barrier against the access of microorganisms and other external factors, to prevent loss of water and solutes via inside-out barrier functions and to withstand mechanical stresses. Epidermal barrier function is initiated during embryonic development and is then maintained throughout life and restored after injury. A variety of interrelated processes are required for the formation of a stratified epidermis, and how these processes are both temporally and spatially regulated has long been an aspect of dermatological research. In this review, we describe the roles of multiple protein kinases in the regulation of processes required for epidermal barrier formation.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Asquith CRM, Laitinen T, Bennett JM, Godoi PH, East MP, Tizzard GJ, Graves LM, Johnson GL, Dornsife RE, Wells CI, Elkins JM, Willson TM, Zuercher WJ. Identification and Optimization of 4-Anilinoquinolines as Inhibitors of Cyclin G Associated Kinase. ChemMedChem 2018; 13:48-66. [PMID: 29072804 PMCID: PMC5914168 DOI: 10.1002/cmdc.201700663] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 11/09/2022]
Abstract
4-Anilinoquinolines were identified as potent and narrow-spectrum inhibitors of the cyclin G associated kinase (GAK), an important regulator of viral and bacterial entry into host cells. Optimization of the 4-anilino group and the 6,7-quinoline substituents produced GAK inhibitors with nanomolar activity, over 50 000-fold selectivity relative to other members of the numb-associated kinase (NAK) subfamily, and a compound (6,7-dimethoxy-N-(3,4,5-trimethoxyphenyl)quinolin-4-amine; 49) with a narrow-spectrum kinome profile. These compounds may be useful tools to explore the therapeutic potential of GAK in prevention of a broad range of infectious and systemic diseases.
Collapse
Affiliation(s)
- Christopher R. M. Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - James M. Bennett
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Paulo H. Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, 13083-886, Brazil
| | - Michael P. East
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Graham J. Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Gary L. Johnson
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ronna E. Dornsife
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M. Elkins
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, 13083-886, Brazil
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Anelli V, Mione M. Melanoma niche formation: it is all about melanosomes making CAFs. Pigment Cell Melanoma Res 2017; 30:8-10. [DOI: 10.1111/pcmr.12545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Dror S, Sander L, Schwartz H, Sheinboim D, Barzilai A, Dishon Y, Apcher S, Golan T, Greenberger S, Barshack I, Malcov H, Zilberberg A, Levin L, Nessling M, Friedmann Y, Igras V, Barzilay O, Vaknine H, Brenner R, Zinger A, Schroeder A, Gonen P, Khaled M, Erez N, Hoheisel JD, Levy C. Melanoma miRNA trafficking controls tumour primary niche formation. Nat Cell Biol 2016; 18:1006-17. [DOI: 10.1038/ncb3399] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/18/2016] [Indexed: 12/14/2022]
|
9
|
Kovackova S, Chang L, Bekerman E, Neveu G, Barouch-Bentov R, Chaikuad A, Heroven C, Šála M, De Jonghe S, Knapp S, Einav S, Herdewijn P. Selective Inhibitors of Cyclin G Associated Kinase (GAK) as Anti-Hepatitis C Agents. J Med Chem 2015; 58:3393-410. [PMID: 25822739 PMCID: PMC4431592 DOI: 10.1021/jm501759m] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyclin G associated kinase (GAK) emerged as a promising drug target for the treatment of viral infections. However, no potent and selective GAK inhibitors have been reported in the literature to date. This paper describes the discovery of isothiazolo[5,4-b]pyridines as selective GAK inhibitors, with the most potent congeners displaying low nanomolar binding affinity for GAK. Cocrystallization experiments revealed that these compounds behaved as classic type I ATP-competitive kinase inhibitors. In addition, we have demonstrated that these compounds exhibit a potent activity against hepatitis C virus (HCV) by inhibiting two temporally distinct steps in the HCV life cycle (i.e., viral entry and assembly). Hence, these GAK inhibitors represent chemical probes to study GAK function in different disease areas where GAK has been implicated (including viral infection, cancer, and Parkinson's disease).
Collapse
Affiliation(s)
- Sona Kovackova
- †Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
- ‡Interface Valorisation Platform, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Lei Chang
- †Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
- ‡Interface Valorisation Platform, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Elena Bekerman
- §Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Gregory Neveu
- §Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Rina Barouch-Bentov
- §Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Apirat Chaikuad
- ∥Target Discovery Institute (TDI), and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Christina Heroven
- ∥Target Discovery Institute (TDI), and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Michal Šála
- †Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
- ‡Interface Valorisation Platform, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Steven De Jonghe
- †Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
- ‡Interface Valorisation Platform, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Stefan Knapp
- ∥Target Discovery Institute (TDI), and Structural Genomics Consortium (SGC), University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Shirit Einav
- §Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Piet Herdewijn
- †Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
- ‡Interface Valorisation Platform, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| |
Collapse
|