1
|
Mishra HK, Wei H, Rohr KE, Ko I, Nievergelt CM, Maihofer AX, Shilling PD, Alda M, Berrettini WH, Brennand KJ, Calabrese JR, Coryell WH, Frye M, Gage F, Gershon E, McInnis MG, Nurnberger J, Oedegaard KJ, Zandi PP, Kelsoe JR, McCarthy MJ. Contributions of circadian clock genes to cell survival in fibroblast models of lithium-responsive bipolar disorder. Eur Neuropsychopharmacol 2023; 74:1-14. [PMID: 37126998 PMCID: PMC11801370 DOI: 10.1016/j.euroneuro.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Bipolar disorder (BD) is characterized by mood episodes, disrupted circadian rhythms and gray matter reduction in the brain. Lithium is an effective pharmacotherapy for BD, but not all patients respond to treatment. Lithium has neuroprotective properties and beneficial effects on circadian rhythms that may distinguish lithium responders (Li-R) from non-responders (Li-NR). The circadian clock regulates molecular pathways involved in apoptosis and cell survival, but how this overlap impacts BD and/or lithium responsiveness is unknown. In primary fibroblasts from Li-R/Li-NR BD patients and controls, we found patterns of co-expression among circadian clock and cell survival genes that distinguished BD vs. control, and Li-R vs. Li-NR cells. In cellular models of apoptosis using staurosporine (STS), lithium preferentially protected fibroblasts against apoptosis in BD vs. control samples, regardless of Li-R/Li-NR status. When examining the effects of lithium treatment of cells in vitro, caspase activation by lithium correlated with period alteration, but the relationship differed in control, Li-R and Li-NR samples. Knockdown of Per1 and Per3 in mouse fibroblasts altered caspase activity, cell death and circadian rhythms in an opposite manner. In BD cells, genetic variation in PER1 and PER3 predicted sensitivity to apoptosis in a manner consistent with knockdown studies. We conclude that distinct patterns of coordination between circadian clock and cell survival genes in BD may help predict lithium response.
Collapse
Affiliation(s)
- Himanshu K Mishra
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Heather Wei
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Kayla E Rohr
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Insu Ko
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Paul D Shilling
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University Halifax, Canada
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen J Brennand
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mt Sinai, USA
| | - Joseph R Calabrese
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Mark Frye
- Department of Psychiatry, Mayo Clinic Rochester, MN, USA
| | - Fred Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elliot Gershon
- Department of Psychiatry, University of Chicago, Chicago, IL, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - John Nurnberger
- Department of Psychiatry, Indiana University, Indianapolis, IN, USA
| | - Ketil J Oedegaard
- Section for Psychiatry, University of Bergen and Norment and KG Jebsen Centre for Neuropsychiatry, Division of Psychiatry Haukeland University Hospital, Bergen, Norway
| | - Peter P Zandi
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Michael J McCarthy
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Wozniak J, Farrell A, DiSalvo M, Ceranoglu A, Uchida M, Vaudreuil C, Joshi G, Faraone SV, Cook E, Biederman J. A Randomized, Double-Blind, Controlled Clinical Trial of Omega-3 Fatty Acids and Inositol as Monotherapies and in Combination for the Treatment of Pediatric Bipolar Spectrum Disorder in Children Age 5-12. PSYCHOPHARMACOLOGY BULLETIN 2022; 52:31-51. [PMID: 36339275 PMCID: PMC9611796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objectives The aim of this study was to assess the efficacy and tolerability of omega-3 fatty acids (FAs) and inositol alone and in combination for the treatment of pediatric bipolar (BP) spectrum disorder in young children. Methods Participants were male and female children ages 5-12 meeting DSM-IV diagnostic criteria for a BP spectrum disorder and displaying mixed, manic, or hypomanic symptoms without psychotic features at the time of evaluation. Results Participants concomitantly taking psychotropic medication were excluded from efficacy analyses. There were significant reductions in YMRS and HDRS mean scores in the inositol and combination treatment groups (all p < 0.05) and in CDRS mean scores in the combination treatment group (p < 0.001), with the largest changes seen in the combination group. Those receiving the combination treatment had the highest rates of antimanic and antidepressant response. The odds ratios for the combination group compared to the omega-3 FAs and inositol groups were clinically meaningful (ORs ≥2) for 50% improvement on the YMRS, normalization of the YMRS (score <12) (vs. inositol group only), 50% improvement on the HDRS, 50% improvement on CDRS (vs. omega-3 FAs group only), and CGI-I Mania, CGI-I MDD, and CGI-I Anxiety scores <2. Conclusion The antimanic and antidepressant effects of the combination treatment of omega-3 FAs and inositol were consistently superior to either treatment used alone. This combination may offer a safe and effective alternative or augmenting treatment for youth with BP spectrum disorder, but more work is needed to confirm the statistical significance of this finding.
Collapse
Affiliation(s)
- Janet Wozniak
- Janet Wozniak, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Abigail Farrell
- Abigail Farrell, BS, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Maura DiSalvo
- Maura DiSalvo, MPH, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Atilla Ceranoglu
- Atilla Ceranoglu, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mai Uchida
- Mai Uchida, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carrie Vaudreuil
- Carrie Vaudreuil, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Gagan Joshi
- Gagan Joshi, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen V Faraone
- Stephen V. Faraone, PhD, Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Emmaline Cook
- Emmaline Cook, BA, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Biederman
- Joseph Biederman, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Rohr KE, McCarthy MJ. The impact of lithium on circadian rhythms and implications for bipolar disorder pharmacotherapy. Neurosci Lett 2022; 786:136772. [PMID: 35798199 PMCID: PMC11801369 DOI: 10.1016/j.neulet.2022.136772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Bipolar disorder (BD) is characterized by disrupted circadian rhythms affecting sleep, arousal, and mood. Lithium is among the most effective mood stabilizer treatments for BD, and in addition to improving mood symptoms, stabilizes sleep and activity rhythms in treatment responsive patients. Across a variety of experimental models, lithium has effects on circadian rhythms. However, uncertainty exists as to whether these actions directly pertain to lithium's therapeutic effects. Here, we consider evidence from mechanistic studies in animals and cells and clinical trials in BD patients that identify associations between circadian rhythms and the therapeutic effects of lithium. Most evidence indicates that lithium has effects on cellular circadian rhythms and increases morningness behaviors in BD patients, changes that may contribute to the therapeutic effects of lithium. However, much of this evidence is limited by cross-sectional analyses and/or imprecise proxy markers of clinical outcomes and circadian rhythms in BD patients, while mechanistic studies rely on inference from animals or small numbers of patients . Further study may clarify the essential mechanisms underlying lithium responsive BD, better characterize the longitudinal changes in circadian rhythms in BD patients, and inform the development of therapeutic interventions targeting circadian rhythms.
Collapse
Affiliation(s)
- Kayla E Rohr
- Department of Psychiatry and Center For Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Michael J McCarthy
- Department of Psychiatry and Center For Circadian Biology, University of California San Diego, La Jolla, CA, USA; Mental Health Service, VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
4
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
5
|
McCarthy MJ, Gottlieb JF, Gonzalez R, McClung CA, Alloy LB, Cain S, Dulcis D, Etain B, Frey BN, Garbazza C, Ketchesin KD, Landgraf D, Lee H, Marie‐Claire C, Nusslock R, Porcu A, Porter R, Ritter P, Scott J, Smith D, Swartz HA, Murray G. Neurobiological and behavioral mechanisms of circadian rhythm disruption in bipolar disorder: A critical multi-disciplinary literature review and agenda for future research from the ISBD task force on chronobiology. Bipolar Disord 2022; 24:232-263. [PMID: 34850507 PMCID: PMC9149148 DOI: 10.1111/bdi.13165] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.
Collapse
Affiliation(s)
- Michael J. McCarthy
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
- VA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - John F. Gottlieb
- Department of PsychiatryFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Robert Gonzalez
- Department of Psychiatry and Behavioral HealthPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Colleen A. McClung
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lauren B. Alloy
- Department of PsychologyTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sean Cain
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneVictoriaAustralia
| | - Davide Dulcis
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | - Bruno Etain
- Université de ParisINSERM UMR‐S 1144ParisFrance
| | - Benicio N. Frey
- Department Psychiatry and Behavioral NeuroscienceMcMaster UniversityHamiltonOntarioCanada
| | - Corrado Garbazza
- Centre for ChronobiologyPsychiatric Hospital of the University of Basel and Transfaculty Research Platform Molecular and Cognitive NeurosciencesUniversity of BaselBaselSwitzerland
| | - Kyle D. Ketchesin
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dominic Landgraf
- Circadian Biology GroupDepartment of Molecular NeurobiologyClinic of Psychiatry and PsychotherapyUniversity HospitalLudwig Maximilian UniversityMunichGermany
| | - Heon‐Jeong Lee
- Department of Psychiatry and Chronobiology InstituteKorea UniversitySeoulSouth Korea
| | | | - Robin Nusslock
- Department of Psychology and Institute for Policy ResearchNorthwestern UniversityChicagoIllinoisUSA
| | - Alessandra Porcu
- UC San Diego Department of Psychiatry & Center for Circadian BiologyLa JollaCaliforniaUSA
| | | | - Philipp Ritter
- Clinic for Psychiatry and PsychotherapyCarl Gustav Carus University Hospital and Technical University of DresdenDresdenGermany
| | - Jan Scott
- Institute of NeuroscienceNewcastle UniversityNewcastleUK
| | - Daniel Smith
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Greg Murray
- Centre for Mental HealthSwinburne University of TechnologyMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Xue X, Zong W, Glausier JR, Kim SM, Shelton MA, Phan BN, Srinivasan C, Pfenning AR, Tseng GC, Lewis DA, Seney ML, Logan RW. Molecular rhythm alterations in prefrontal cortex and nucleus accumbens associated with opioid use disorder. Transl Psychiatry 2022; 12:123. [PMID: 35347109 PMCID: PMC8960783 DOI: 10.1038/s41398-022-01894-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.
Collapse
Affiliation(s)
- Xiangning Xue
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Wei Zong
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Jill R. Glausier
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - Sam-Moon Kim
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA ,grid.21925.3d0000 0004 1936 9000Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Micah A. Shelton
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - BaDoi N. Phan
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Chaitanya Srinivasan
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Andreas R. Pfenning
- grid.147455.60000 0001 2097 0344Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213 USA ,grid.147455.60000 0001 2097 0344Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - George C. Tseng
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - David A. Lewis
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA
| | - Marianne L. Seney
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 USA ,grid.21925.3d0000 0004 1936 9000Center for Adolescent Reward, Rhythms, and Sleep, University of Pittsburgh, Pittsburgh, PA 15219 USA
| | - Ryan W. Logan
- grid.189504.10000 0004 1936 7558Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Center for Systems Neuroscience, Boston University, Boston, MA 02118 USA
| |
Collapse
|
7
|
Shilovsky GA, Putyatina TS, Morgunova GV, Seliverstov AV, Ashapkin VV, Sorokina EV, Markov AV, Skulachev VP. A Crosstalk between the Biorhythms and Gatekeepers of Longevity: Dual Role of Glycogen Synthase Kinase-3. BIOCHEMISTRY (MOSCOW) 2021; 86:433-448. [PMID: 33941065 PMCID: PMC8033555 DOI: 10.1134/s0006297921040052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a “regulating valve” that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Seliverstov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
The Host Cell Metabolite Inositol Hexakisphosphate Promotes Efficient Endogenous HIV-1 Reverse Transcription by Stabilizing the Viral Capsid. mBio 2020; 11:mBio.02820-20. [PMID: 33262260 PMCID: PMC7733946 DOI: 10.1128/mbio.02820-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HIV-1 infection requires reverse transcription of the viral genome. While much is known about the biochemistry of reverse transcription from simplified biochemical reactions, reverse transcription during infection takes place within a viral core. However, endogenous reverse transcription reactions using permeabilized HIV-1 virions or purified viral cores have been inefficient. Using viral cores purified from infectious HIV-1 particles, we show that efficient reverse transcription is achieved in vitro by addition of the capsid-stabilizing metabolite inositol hexakisphosphate. The enhancement of reverse transcription was linked to the capsid-stabilizing effect of the compound, consistent with the known requirement for an intact or semi-intact viral capsid for HIV-1 infection. Our results establish a biologically relevant system for dissecting the function of the viral capsid and its disassembly during reverse transcription. The system should also prove useful for mechanistic studies of capsid-targeting antiviral drugs. A defining activity of retroviruses is reverse transcription, the process by which the viral genomic RNA is converted into the double-stranded DNA required for virus replication. Reverse transcriptase (RT), the viral enzyme responsible for this process, was identified in 1970 by assaying permeabilized retrovirus particles for DNA synthesis in vitro. Such reactions are inefficient, with only a small fraction of viral genomes being converted to full-length double-stranded DNA molecules, possibly owing to disruption of the structure of the viral core. Here, we show that reverse transcription in purified HIV-1 cores is enhanced by the addition of the capsid-binding host cell metabolite inositol hexakisphosphate (IP6). IP6 potently enhanced full-length minus-strand synthesis, as did hexacarboxybenzene (HCB), which also stabilizes the HIV-1 capsid. Both IP6 and HCB stabilized the association of the viral CA and RT proteins with HIV-1 cores. In contrast to the wild type, cores isolated from mutant HIV-1 particles containing intrinsically hyperstable capsids exhibited relatively efficient reverse transcription in the absence of IP6, further indicating that the compound promotes reverse transcription by stabilizing the viral capsid. We also observed that the capsid-destabilizing antiviral compound PF74 inhibited endogenous reverse transcription with a potency that mirrors its ability to inhibit reverse transcription during infection. Our results show that the stabilization of the HIV-1 capsid permits efficient reverse transcription in HIV-1 cores, providing a sensitive experimental system for analyzing the functions of viral and host cell molecules and the role of capsid disassembly (uncoating) in the process.
Collapse
|
9
|
Murru A, Manchia M, Hajek T, Nielsen RE, Rybakowski JK, Sani G, Schulze TG, Tondo L, Bauer M. Lithium's antiviral effects: a potential drug for CoViD-19 disease? Int J Bipolar Disord 2020; 8:21. [PMID: 32435920 PMCID: PMC7239605 DOI: 10.1186/s40345-020-00191-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since its introduction in modern medicine, naturalistic observations emerged about possible uses of lithium treatment for conditions different from recurring affective disorders, for which it is still a first-line treatment option. Some evidence about the antiviral properties of lithium began in the early 1970s, when some reports found a reduction of labial-herpetic recurrences. The present review aims to present most of the pre-clinical and clinical evidence about lithium's ability to inhibit DNA and RNA viruses, including Coronaviridae, as well as the possible pathways and mechanisms involved in such antiviral activity. MAIN BODY Despite a broad number of in vitro studies, the rationale for the antiviral activity of lithium failed to translate into methodologically sound clinical studies demonstrating its antiviral efficacy. In addition, the tolerability of lithium as an antiviral agent should be addressed. In fact, treatment with lithium requires continuous monitoring of its serum levels in order to prevent acute toxicity and long-term side effects, most notably affecting the kidney and thyroid. Yet lithium reaches heterogeneous but bioequivalent concentrations in different tissues, and the anatomical compartment of the viral infection might underpin a different, lower need for tolerability concerns which need to be addressed. CONCLUSIONS Lithium presents a clear antiviral activity demonstrated at preclinical level, but that remains to be confirmed in clinical settings. In addition, the pleiotropic mechanisms of action of lithium may provide an insight for its possible use as antiviral agent targeting specific pathways.
Collapse
Affiliation(s)
- Andrea Murru
- Bipolar and Depressive Disorders Unit, IDIBAPS CIBERSAM, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - René E Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Psychiatry-Aalborg University Hospital, Aalborg, Denmark
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
- Department of Psychiatric Nursing, Poznan University of Medical Sciences, Poznan, Poland
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August University Göttingen, Göttingen, Germany
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Genetic Epidemiology, Central Institute of Mental Health, Mannheim, Germany
| | - Leonardo Tondo
- International Consortium for Research on Mood & Psychotic Disorders, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Lucio Bini Mood Disorders Centers, Cagliari and Rome, Italy
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
10
|
Herwig E, Classen HL, Walk CL, Bedford M, Schwean-Lardner K. Dietary Inositol Reduces Fearfulness and Avoidance in Laying Hens. Animals (Basel) 2019; 9:ani9110938. [PMID: 31717398 PMCID: PMC6912787 DOI: 10.3390/ani9110938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Brain inositol is known to affect memory, and the incidence of depression, anxiety, and obsessive-compulsive disorder in mammals. Phytate, a naturally occurring inositol ester in plants, binds other nutrients, making them unavailable for digestion. The addition of phytase, the enzyme capable of hydrolyzing phytate, to diets increases the release of both inositol and nutrients for absorption in the chicken digestive tract. In this study, we assessed how dietary phytase or pure inositol affected laying hen behaviour, fearfulness, aggression, and stress levels. To increase the probability of seeing effects, hens were not beak treated and were fed two balanced protein levels differing in digestible amino acid sufficiency. Inositol did not affect stress levels, as measured by heterophil-to-lymphocyte ratio, or the number of hen comb or skin lesions. However, regardless of the source, pure inositol or phytase derived inositol reduced the number of feathers in the vent area, suggesting an increase in feather pecking. Pure inositol reduced fearfulness in laying hens, but phytase-derived inositol did not. Abstract Myo-inositol (inositol) affects memory, and the incidence of depression and anxiety in mammals. An experiment was designed to determine if pure inositol (0.16%), or high levels of phytase (3000 FTU/kg) affect the behaviour of fully beaked Lohmann LSL lite hens fed amino acid sufficient (19% crude protein (CP)) and deficient diets (16% CP), from 19 to 59 weeks of age. The data collected included live-scan behaviour observations and novel object (NO) tests (both at 1, 10 and 40 weeks of the trial); heterophil-to-lymphocyte (H/L) ratios (week 1 and week 40 of the trial); end of trial feather cover, and comb and skin lesions; and daily mortality. Reducing CP increased sitting by 2.5%. Inositol, but not phytase, reduced the latency to peck at the NO by 300 sec. Inositol reduced vent feather cover by 12% and tended to increase mortality by 13%. No effects on H/L ratio, and comb or skin lesions were found. In conclusion, regardless of the source, inositol reduced vent feather cover, while it tended to increase mortality. Only pure inositol reduced fearfulness in laying hens.
Collapse
Affiliation(s)
- Eugenia Herwig
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
- Correspondence:
| | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | | | | - Karen Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
11
|
Porcu A, Gonzalez R, McCarthy MJ. Pharmacological Manipulation of the Circadian Clock: A Possible Approach to the Management of Bipolar Disorder. CNS Drugs 2019; 33:981-999. [PMID: 31625128 DOI: 10.1007/s40263-019-00673-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bipolar disorder (BD) is a mood disorder with genetic and neurobiological underpinnings, characterized primarily by recurrent episodes of mania and depression, with notable disruptions in rhythmic behaviors such as sleep, energy, appetite and attention. The chronobiological links to BD are further supported by the effectiveness of various treatment modalities such as bright light, circadian phase advance, and mood-stabilizing drugs such as lithium that have effects on the circadian clock. Over the past 30 years, the neurobiology of the circadian clock has been exquisitely described and there now exists a detailed knowledge of key signaling pathways, neurotransmitters and signaling mechanisms that regulate various dimensions of circadian clock function. With this new wealth of information, it is becoming increasingly plausible that new drugs for BD could be made by targeting molecular elements of the circadian clock. However, circadian rhythms are multidimensional and complex, involving unique, time-dependent factors that are not typically considered in drug development. We review the organization of the circadian clock in the central nervous system and briefly summarize data implicating the circadian clock in BD. We then consider some of the unique aspects of the circadian clock as a drug target in BD, discuss key methodological considerations and evaluate some of the candidate clock pathways and systems that could serve as potential targets for novel mood stabilizers. We expect this work will serve as a roadmap to facilitate the development of compounds acting on the circadian clock for the treatment of BD.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert Gonzalez
- Department of Psychiatry, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0850, USA
| | - Michael J McCarthy
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, 92093, USA. .,Psychiatry Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr MC116A, San Diego, CA, 92161, USA.
| |
Collapse
|
12
|
McCarthy MJ, Wei H, Nievergelt CM, Stautland A, Maihofer AX, Welsh DK, Shilling P, Alda M, Alliey-Rodriguez N, Anand A, Andreasson OA, Balaraman Y, Berrettini WH, Bertram H, Brennand KJ, Calabrese JR, Calkin CV, Claasen A, Conroy C, Coryell WH, Craig DW, D’Arcangelo N, Demodena A, Djurovic S, Feeder S, Fisher C, Frazier N, Frye MA, Gage FH, Gao K, Garnham J, Gershon ES, Glazer K, Goes F, Goto T, Harrington G, Jakobsen P, Kamali M, Karberg E, Kelly M, Leckband SG, Lohoff F, McInnis MG, Mondimore F, Morken G, Nurnberger JI, Obral S, Oedegaard KJ, Ortiz A, Ritchey M, Ryan K, Schinagle M, Schoeyen H, Schwebel C, Shaw M, Shekhtman T, Slaney C, Stapp E, Szelinger S, Tarwater B, Zandi PP, Kelsoe JR. Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder. Neuropsychopharmacology 2019; 44:620-628. [PMID: 30487653 PMCID: PMC6333516 DOI: 10.1038/s41386-018-0273-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a serious mood disorder associated with circadian rhythm abnormalities. Risk for BD is genetically encoded and overlaps with systems that maintain circadian rhythms. Lithium is an effective mood stabilizer treatment for BD, but only a minority of patients fully respond to monotherapy. Presently, we hypothesized that lithium-responsive BD patients (Li-R) would show characteristic differences in chronotype and cellular circadian rhythms compared to lithium non-responders (Li-NR). Selecting patients from a prospective, multi-center, clinical trial of lithium monotherapy, we examined morning vs. evening preference (chronotype) as a dimension of circadian rhythm function in 193 Li-R and Li-NR BD patients. From a subset of 59 patient donors, we measured circadian rhythms in skin fibroblasts longitudinally over 5 days using a bioluminescent reporter (Per2-luc). We then estimated circadian rhythm parameters (amplitude, period, phase) and the pharmacological effects of lithium on rhythms in cells from Li-R and Li-NR donors. Compared to Li-NRs, Li-Rs showed a difference in chronotype, with higher levels of morningness. Evening chronotype was associated with increased mood symptoms at baseline, including depression, mania, and insomnia. Cells from Li-Rs were more likely to exhibit a short circadian period, a linear relationship between period and phase, and period shortening effects of lithium. Common genetic variation in the IP3 signaling pathway may account for some of the individual differences in the effects of lithium on cellular rhythms. We conclude that circadian rhythms may influence response to lithium in maintenance treatment of BD.
Collapse
Affiliation(s)
- Michael J. McCarthy
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 3350 La Jolla Village Dr. MC 116A, San Diego, CA 92161 USA ,0000 0004 0419 2708grid.410371.0Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA
| | - Heather Wei
- 0000 0004 0419 2708grid.410371.0Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA
| | - Caroline M. Nievergelt
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 3350 La Jolla Village Dr. MC 116A, San Diego, CA 92161 USA
| | - Andrea Stautland
- 0000 0004 1936 7443grid.7914.bDepartment of Clinical Medicine, Section for Psychiatry, University of Bergen, Bergen, Norway
| | - Adam X. Maihofer
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 3350 La Jolla Village Dr. MC 116A, San Diego, CA 92161 USA
| | - David K. Welsh
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 3350 La Jolla Village Dr. MC 116A, San Diego, CA 92161 USA ,0000 0004 0419 2708grid.410371.0Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA
| | - Paul Shilling
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 3350 La Jolla Village Dr. MC 116A, San Diego, CA 92161 USA
| | - Martin Alda
- 0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Ney Alliey-Rodriguez
- 0000 0004 1936 7822grid.170205.1Department of Psychiatry, University of Chicago, Chicago, USA
| | - Amit Anand
- 0000 0001 0790 959Xgrid.411377.7Department of Psychiatry, Indiana University, Bloomington, USA
| | - Ole A. Andreasson
- 0000 0004 1936 8921grid.5510.1Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
| | - Yokesh Balaraman
- 0000 0001 0790 959Xgrid.411377.7Department of Psychiatry, Indiana University, Bloomington, USA
| | - Wade H. Berrettini
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Holli Bertram
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Kristen J. Brennand
- 0000 0001 0670 2351grid.59734.3cDepartments of Neuroscience and Psychiatry, Icahn School of Medicine at Mt Sinai, New York, USA
| | - Joseph R. Calabrese
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - Cynthia V. Calkin
- 0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Ana Claasen
- 0000 0004 0507 3225grid.250942.8Neurogenomics Division, Translational Genomics Research Institute, Phoenix, USA
| | - Clara Conroy
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - William H. Coryell
- 0000 0004 1936 8294grid.214572.7Department of Psychiatry, University of Iowa, Iowa City, USA
| | - David W. Craig
- 0000 0004 0507 3225grid.250942.8Neurogenomics Division, Translational Genomics Research Institute, Phoenix, USA
| | - Nicole D’Arcangelo
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - Anna Demodena
- 0000 0004 0419 2708grid.410371.0Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA
| | - Srdjan Djurovic
- 0000 0004 1936 8921grid.5510.1Jebsen Centre for Psychosis Research, University of Oslo, Oslo, Norway
| | - Scott Feeder
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry, The Mayo Clinic, Rochester, USA
| | - Carrie Fisher
- 0000 0001 0790 959Xgrid.411377.7Department of Psychiatry, Indiana University, Bloomington, USA
| | - Nicole Frazier
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Mark A. Frye
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry, The Mayo Clinic, Rochester, USA
| | - Fred H. Gage
- 0000 0001 0662 7144grid.250671.7Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, USA
| | - Keming Gao
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - Julie Garnham
- 0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Elliot S. Gershon
- 0000 0004 1936 7822grid.170205.1Department of Psychiatry, University of Chicago, Chicago, USA
| | - Kara Glazer
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry, Johns Hopkins University, Baltimore, USA
| | - Fernando Goes
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry, Johns Hopkins University, Baltimore, USA
| | - Toyomi Goto
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - Gloria Harrington
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Petter Jakobsen
- 0000 0000 9753 1393grid.412008.fNorment and KG Jebsen Centre for Neuropsychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Masoud Kamali
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Elizabeth Karberg
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - Marisa Kelly
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Susan G. Leckband
- 0000 0004 0419 2708grid.410371.0Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA
| | - Falk Lohoff
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Melvin G. McInnis
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Francis Mondimore
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry, Johns Hopkins University, Baltimore, USA
| | - Gunnar Morken
- 0000 0001 1516 2393grid.5947.fDivision of Psychiatry, St. Olav University Hospital of Trondheim and Department of Mental Health Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - John I. Nurnberger
- 0000 0001 0790 959Xgrid.411377.7Department of Psychiatry, Indiana University, Bloomington, USA
| | - Sarah Obral
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - Ketil J. Oedegaard
- 0000 0004 1936 7443grid.7914.bDepartment of Clinical Medicine, Section for Psychiatry, University of Bergen, Bergen, Norway ,0000 0000 9753 1393grid.412008.fNorment and KG Jebsen Centre for Neuropsychiatry, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Abigail Ortiz
- 0000 0001 2182 2255grid.28046.38Department of Psychiatry, University of Ottawa, Ottawa, ON Canada
| | - Megan Ritchey
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry, Johns Hopkins University, Baltimore, USA
| | - Kelly Ryan
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Martha Schinagle
- 0000 0001 2164 3847grid.67105.35Department of Psychiatry, Case Western Reserve University, Cleveland, OH USA
| | - Helle Schoeyen
- 0000 0004 1936 7443grid.7914.bDepartment of Clinical Medicine, Section for Psychiatry, University of Bergen, Bergen, Norway
| | - Candice Schwebel
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Martha Shaw
- 0000 0004 1936 7822grid.170205.1Department of Psychiatry, University of Chicago, Chicago, USA
| | - Tatyana Shekhtman
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 3350 La Jolla Village Dr. MC 116A, San Diego, CA 92161 USA ,0000 0004 0419 2708grid.410371.0Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA
| | - Claire Slaney
- 0000 0004 1936 8200grid.55602.34Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Emma Stapp
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry, Johns Hopkins University, Baltimore, USA
| | - Szabolcs Szelinger
- 0000 0004 0507 3225grid.250942.8Neurogenomics Division, Translational Genomics Research Institute, Phoenix, USA
| | - Bruce Tarwater
- 0000 0004 0507 3225grid.250942.8Neurogenomics Division, Translational Genomics Research Institute, Phoenix, USA
| | - Peter P. Zandi
- 0000 0001 2171 9311grid.21107.35Department of Psychiatry, Johns Hopkins University, Baltimore, USA
| | - John R. Kelsoe
- 0000 0001 2107 4242grid.266100.3Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 3350 La Jolla Village Dr. MC 116A, San Diego, CA 92161 USA ,0000 0004 0419 2708grid.410371.0Psychiatry Service, VA San Diego Healthcare, San Diego, CA 92161 USA
| |
Collapse
|
13
|
Wang XH, Yao DX, Luan XS, Wang Y, Liu HX, Liu B, Liu Y, Zhao L, Ji XM, Wang TL. MicroRNA expression in the hippocampal CA1 region under deep hypothermic circulatory arrest. Neural Regen Res 2019; 14:2003-2010. [PMID: 31290459 PMCID: PMC6676878 DOI: 10.4103/1673-5374.253174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using deep hypothermic circulatory arrest, thoracic aorta diseases and complex heart diseases can be subjected to corrective procedures. However, mechanisms underlying brain protection during deep hypothermic circulatory arrest are unclear. After piglet models underwent 60 minutes of deep hypothermic circulatory arrest at 14°C, expression of microRNAs (miRNAs) was analyzed in the hippocampus by microarray. Subsequently, TargetScan 6.2, RNA22 v2.0, miRWalk 2.0, and miRanda were used to predict potential targets, and gene ontology enrichment analysis was carried out to identify functional pathways involved. Quantitative reverse transcription-polymerase chain reaction was conducted to verify miRNA changes. Deep hypothermic circulatory arrest altered the expression of 35 miRNAs. Twenty-two miRNAs were significantly downregulated and thirteen miRNAs were significantly upregulated in the hippocampus after deep hypothermic circulatory arrest. Six out of eight targets among the differentially expressed miRNAs were enriched for neuronal projection (cyclin dependent kinase, CDK16 and SLC1A2), central nervous system development (FOXO3, TYRO3, and SLC1A2), ion transmembrane transporter activity (ATP2B2 and SLC1A2), and interleukin-6 receptor binding (IL6R) – these are the key functional pathways involved in cerebral protection during deep hypothermic circulatory arrest. Quantitative reverse transcription-polymerase chain reaction confirmed the results of microarray analysis. Our experimental results illustrate a new role for transcriptional regulation in deep hypothermic circulatory arrest, and provide significant insight for the development of miRNAs to treat brain injuries. All procedures were approved by the Animal Care Committee of Xuanwu Hospital, Capital Medical University, China on March 1, 2017 (approval No. XW-INI-AD2017-0112).
Collapse
Affiliation(s)
- Xiao-Hua Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Dong-Xu Yao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xiu-Shu Luan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yu Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Hai-Xia Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Bei Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yang Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xun-Ming Ji
- Department of Neurosurgery; Cerebrovascular Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tian-Long Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University; Institute of Geriatrics; National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
14
|
Abstract
Disruption of circadian clocks is strongly associated with mood disorders. Chronotherapies targeting circadian rhythms have been shown to be very effective treatments of mood disorders, but still are not widely used in clinical practice. The mechanisms by which circadian disruption leads to mood disorders are poorly characterized and, therefore, may not convince clinicians to apply chronotherapies. Hence, in this review, we describe specific potential mechanisms, in order to make this connection more credible to clinicians. We believe that four major features of disrupted clocks may contribute to the development of mood disorders: (1) loss of synchronization to environmental 24-h rhythms, (2) internal desynchronization among body clocks, (3) low rhythm amplitude, and (4) changes in sleep architecture. Discussing these attributes and giving plausible examples, we will discuss prospects for relatively simple chronotherapies addressing these features that are easy to implement in clinical practice. Key messages In this review, we describe specific potential mechanisms by which disrupted clocks may contribute to the development of mood disorders: (1) loss of synchronization to environmental 24-h rhythms, (2) internal desynchronization among body clocks, (3) low rhythm amplitude, and (4) changes in sleep architecture. We provide prospects for relatively simple chronotherapies addressing these features that are easy to implement in clinical practice.
Collapse
Affiliation(s)
- Anisja Hühne
- a Circadian Biology Group, Department of Psychiatry , Ludwig Maximilian University , Munich , Germany
| | - David K Welsh
- b Veterans Affairs San Diego Healthcare System , San Diego , CA , USA.,c Department of Psychiatry & Center for Circadian Biology , University of California San Diego , La Jolla , CA , USA
| | - Dominic Landgraf
- a Circadian Biology Group, Department of Psychiatry , Ludwig Maximilian University , Munich , Germany
| |
Collapse
|