1
|
Damiescu R, Elbadawi M, Dawood M, Klauck SM, Bringmann G, Efferth T. Aniquinazoline B, a Fungal Natural Product, Activates the μ-Opioid Receptor. ChemMedChem 2024; 19:e202400213. [PMID: 38781501 DOI: 10.1002/cmdc.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The development of new μ-opioid receptor (MOR) agonists without the undesirable side effects, such as addiction or respiratory depression, has been a difficult challenge over the years. In the search for new compounds, we screened our chemical database of over 40.000 substances and further assessed the best 100 through molecular docking. We selected the top 10 compounds and evaluated them for their biological activity and potential to influence cyclic adenosine monophosphate (cAMP) levels. From the tested compounds, compound 7, called aniquinazoline B, belonging to the quinazolinone alkaloids class and isolated from the marine fungus Aspergillus nidulans, showed promising results, by inhibiting cAMP levels and in vitro binding to MOR, verified through microscale thermophoresis. Transcriptomic data investigation profiled the genes affected by compound 7 and discovered activation of different pathways compared to opioids. The western blot analysis revealed compound 7 as a balanced ligand, activating both p-ERK1/2 and β-arrestin1/2 pathways, showing this is a favorable candidate to be further tested.
Collapse
Affiliation(s)
- Roxana Damiescu
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Mohamed Elbadawi
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Mona Dawood
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ, University Hospital Heidelberg, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Thomas Efferth
- Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| |
Collapse
|
2
|
Patocka J, Wu W, Oleksak P, Jelinkova R, Nepovimova E, Spicanova L, Springerova P, Alomar S, Long M, Kuca K. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon 2024; 10:e28795. [PMID: 38644874 PMCID: PMC11031787 DOI: 10.1016/j.heliyon.2024.e28795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Fentanyl is a synthetic μ-opioid receptor agonist approved to treat severe to moderate pain with faster onset of action and about 100 times more potent than morphine. Over last two decades, abuse of fentanyl and its derivatives has an increased trend, globally. Currently, the United States (US) faces the most serious situation related to fentanyl overdose, commonly referred to as the opioid epidemic. Nowadays, fentanyl is considered as the number one cause of death for adults aged 18-45 in the US. Synthesis and derivatization of fentanyl is inexpensive to manufacture and easily achievable. Indeed, more than 1400 fentanyl derivatives have been described in the scientific literature and patents. In addition, accessibility and efficacy of fentanyl and its derivatives can play a potential role in misuse of these compounds as a chemical weapon. In this review, the properties, general pharmacology, and overdose death cases associated with fentanyl and selected derivatives are presented. Moreover, current opioid epidemic in the US, Moscow theatre hostage crisis, and potential misuse of fentanyl and its derivatives as a chemical weapon are disclosed.
Collapse
Affiliation(s)
- Jiri Patocka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Romana Jelinkova
- NBC Defence Institute, University of Defence, 68201 Vyskov, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Lenka Spicanova
- Philosophical Faculty, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Pavlina Springerova
- Philosophical Faculty, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Vanalken N, Boon K, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic Assessment of Human CCR7 Signalling Using NanoBRET Biosensors Points towards the Importance of the Cellular Context. BIOSENSORS 2024; 14:142. [PMID: 38534251 DOI: 10.3390/bios14030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited β-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.
Collapse
Affiliation(s)
- Nathan Vanalken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Katrijn Boon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Straszak D, Woźniak S, Siwek A, Głuch-Lutwin M, Kołaczkowski M, Pietrzak A, Drop B, Matosiuk D. Novel 1-(1-Arylimiazolin-2-Yl)-3-Arylalkilurea Derivatives with Modulatory Activity on Opioid MOP Receptors. Molecules 2024; 29:571. [PMID: 38338317 PMCID: PMC10856196 DOI: 10.3390/molecules29030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
μ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and β-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited β-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.
Collapse
Affiliation(s)
- Dominik Straszak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Sylwia Woźniak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (M.G.-L.); (M.K.)
| | - Aldona Pietrzak
- Department of Dermatology, Venereology, and Paediatric Dermatology, Faculty of Medicine, Medical University, Staszica 11, 20-080 Lublin, Poland;
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (D.S.); (S.W.)
| |
Collapse
|
5
|
Hill R, Sanchez J, Lemel L, Antonijevic M, Hosking Y, Mistry SN, Kruegel AC, Javitch JA, Lane JR, Canals M. Assessment of the potential of novel and classical opioids to induce respiratory depression in mice. Br J Pharmacol 2023; 180:3160-3174. [PMID: 37489013 PMCID: PMC10952895 DOI: 10.1111/bph.16199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/08/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Opioid-induced respiratory depression limits the use of μ-opioid receptor agonists in clinical settings and is the main cause of opioid overdose fatalities. The relative potential of different opioid agonists to induce respiratory depression at doses exceeding those producing analgesia is understudied despite its relevance to assessments of opioid safety. Here we evaluated the respiratory depressant and anti-nociceptive effects of three novel opioids and relate these measurements to their in vitro efficacy. EXPERIMENTAL APPROACH Respiration was measured in awake, freely moving male CD-1 mice using whole body plethysmography. Anti-nociception was measured using the hot plate test. Morphine, oliceridine and tianeptine were administered intraperitoneally, whereas methadone, oxycodone and SR-17018 were administered orally. Receptor activation and arrestin-3 recruitment were measured in HEK293 cells using BRET assays. KEY RESULTS Across the dose ranges examined, all opioids studied depressed respiration in a dose-dependent manner, with similar effects at the highest doses, and with tianeptine and oliceridine showing reduced duration of effect, when compared with morphine, oxycodone, methadone and SR-17018. When administered at doses that induced similar respiratory depression, all opioids induced similar anti-nociception, with tianeptine and oliceridine again showing reduced duration of effect. These data were consistent with the in vitro agonist activity of the tested compounds. CONCLUSION AND IMPLICATIONS In addition to providing effective anti-nociception, the novel opioids, oliceridine, tianeptine and SR-17018 depress respiration in male mice. However, the different potencies and kinetics of effect between these novel opioids may be relevant to their therapeutic application in different clinical settings.
Collapse
Affiliation(s)
- Rob Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Mirjana Antonijevic
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery InstituteUniversity ParkNottinghamUK
| | - Yselkla Hosking
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery InstituteUniversity ParkNottinghamUK
| | - Shailesh N. Mistry
- Division of Biomolecular Science and Medicinal Chemistry, School of Pharmacy, University of Nottingham Biodiscovery InstituteUniversity ParkNottinghamUK
| | | | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and TherapeuticsColumbia University Vagelos College of Physicians & SurgeonsNew YorkNew YorkUSA
- Division of Molecular TherapeuticsNew York State Psychiatric InstituteNew YorkNew YorkUSA
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical CentreUniversity of NottinghamNottinghamUK
- Centre of Membrane Proteins and Receptors, Universities of Nottingham and BirminghamMidlandsUK
| |
Collapse
|
6
|
Salinsky LM, Merritt CR, Zamora JC, Giacomini JL, Anastasio NC, Cunningham KA. μ-opioid receptor agonists and psychedelics: pharmacological opportunities and challenges. Front Pharmacol 2023; 14:1239159. [PMID: 37886127 PMCID: PMC10598667 DOI: 10.3389/fphar.2023.1239159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Opioid misuse and opioid-involved overdose deaths are a massive public health problem involving the intertwined misuse of prescription opioids for pain management with the emergence of extremely potent fentanyl derivatives, sold as standalone products or adulterants in counterfeit prescription opioids or heroin. The incidence of repeated opioid overdose events indicates a problematic use pattern consistent with the development of the medical condition of opioid use disorder (OUD). Prescription and illicit opioids reduce pain perception by activating µ-opioid receptors (MOR) localized to the central nervous system (CNS). Dysregulation of meso-corticolimbic circuitry that subserves reward and adaptive behaviors is fundamentally involved in the progressive behavioral changes that promote and are consequent to OUD. Although opioid-induced analgesia and the rewarding effects of abused opioids are primarily mediated through MOR activation, serotonin (5-HT) is an important contributor to the pharmacology of opioid abused drugs (including heroin and prescription opioids) and OUD. There is a recent resurgence of interest into psychedelic compounds that act primarily through the 5-HT2A receptor (5-HT 2A R) as a new frontier in combatting such diseases (e.g., depression, anxiety, and substance use disorders). Emerging data suggest that the MOR and 5-HT2AR crosstalk at the cellular level and within key nodes of OUD circuitry, highlighting a major opportunity for novel pharmacological intervention for OUD. There is an important gap in the preclinical profiling of psychedelic 5-HT2AR agonists in OUD models. Further, as these molecules carry risks, additional analyses of the profiles of non-hallucinogenic 5-HT2AR agonists and/or 5-HT2AR positive allosteric modulators may provide a new pathway for 5-HT2AR therapeutics. In this review, we discuss the opportunities and challenges associated with utilizing 5-HT2AR agonists as therapeutics for OUD.
Collapse
Affiliation(s)
| | | | | | | | - Noelle C. Anastasio
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Kathryn A. Cunningham
- Center for Addiction Sciences and Therapeutics and Department of Pharmacology and Toxicology, John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Bonifazi A, Saab E, Sanchez J, Nazarova AL, Zaidi SA, Jahan K, Katritch V, Canals M, Lane JR, Newman AH. Pharmacological and Physicochemical Properties Optimization for Dual-Target Dopamine D 3 (D 3R) and μ-Opioid (MOR) Receptor Ligands as Potentially Safer Analgesics. J Med Chem 2023; 66:10304-10341. [PMID: 37467430 PMCID: PMC11091828 DOI: 10.1021/acs.jmedchem.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A new generation of dual-target μ opioid receptor (MOR) agonist/dopamine D3 receptor (D3R) antagonist/partial agonists with optimized physicochemical properties was designed and synthesized. Combining in vitro cell-based on-target/off-target affinity screening, in silico computer-aided drug design, and BRET functional assays, we identified new structural scaffolds that achieved high affinity and agonist/antagonist potencies for MOR and D3R, respectively, improving the dopamine receptor subtype selectivity (e.g., D3R over D2R) and significantly enhancing central nervous system multiparameter optimization scores for predicted blood-brain barrier permeability. We identified the substituted trans-(2S,4R)-pyrrolidine and trans-phenylcyclopropyl amine as key dopaminergic moieties and tethered these to different opioid scaffolds, derived from the MOR agonists TRV130 (3) or loperamide (6). The lead compounds 46, 84, 114, and 121 have the potential of producing analgesic effects through MOR partial agonism with reduced opioid-misuse liability via D3R antagonism. Moreover, the peripherally limited derivatives could have therapeutic indications for inflammation and neuropathic pain.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Elizabeth Saab
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Julie Sanchez
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Antonina L. Nazarova
- Department of Quantitative and Computational Biology, Department of Chemistry, Dornsife Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California 90089, United States
| | - Saheem A. Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Dornsife Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California 90089, United States
| | - Khorshada Jahan
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Dornsife Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California 90089, United States
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - J. Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands NG2 7AG, United Kingdom
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
8
|
Kongsamut S, Eishingdrelo H. Modulating GPCR and 14-3-3 protein interactions: Prospects for CNS drug discovery. Drug Discov Today 2023; 28:103641. [PMID: 37236523 PMCID: PMC10524340 DOI: 10.1016/j.drudis.2023.103641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The activation of G-protein-coupled receptors (GPCRs) triggers a series of protein-protein interaction events that subsequently induce a chain of reactions, including alteration of receptor structures, phosphorylation, recruitment of associated proteins, protein trafficking and gene expression. Multiple GPCR signaling transduction pathways are evident - two well-studied pathways are the GPCR-mediated G-protein and β-arrestin pathways. Recently, ligand-induced interactions between GPCRs and 14-3-3 proteins have been demonstrated. This linking of GPCRs to 14-3-3 protein signal hubs opens up a whole new realm of signal transduction possibilities. 14-3-3 proteins play a key part in GPCR trafficking and signal transduction. GPCR-mediated 14-3-3 protein signaling can be harnessed for the study of GPCR function and therapeutics.
Collapse
Affiliation(s)
- Sathapana Kongsamut
- Research Institute for Scientists Emeriti, Drew University, 36 Madison Avenue, Madison, NJ 07940, USA
| | | |
Collapse
|
9
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
10
|
Lewis TH, May WJ, Young AP, Bates JN, Baby SM, Getsy PM, Ryan RM, Hsieh YH, Seckler JM, Lewis SJ. The ventilatory depressant actions but not the antinociceptive effects of morphine are blunted in rats receiving intravenous infusion of L-cysteine ethyl ester. Biomed Pharmacother 2022; 156:113939. [DOI: 10.1016/j.biopha.2022.113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
|
11
|
Marwari S, Kowalski C, Martemyanov KA. Exploring pharmacological inhibition of G q/11 as an analgesic strategy. Br J Pharmacol 2022; 179:5196-5208. [PMID: 35900909 PMCID: PMC9633401 DOI: 10.1111/bph.15935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Misuse of opioids has greatly affected our society. One potential solution is to develop analgesics that act at targets other than opioid receptors. These can be used either as stand-alone therapeutics or to improve the safety profile of opioid drugs. Previous research showed that activation of Gq/11 proteins by G-protein coupled receptors has pro-nociceptive properties, suggesting that blockade of Gq/11 signalling could be beneficial for pain control. The aim of this study was to test this hypothesis pharmacologically by using potent and selective Gq/11 inhibitor YM-254890. EXPERIMENTAL APPROACH We used a series of behavioural assays to evaluate the acute responses of mice to painful thermal stimulation while administering YM-254890 alone and in combination with morphine. We then used electrophysiological recordings to evaluate the effects of YM-254890 on the excitability of dorsal root ganglion (DRG) nociceptor neurons. KEY RESULTS We found that systemic administration of YM-254890 produced anti-nociceptive effects and also augmented morphine analgesia in both hotplate and tail flick paradigms. However, it also caused substantial inhibition of locomotion, which may limit its therapeutic utility. To circumvent these issues, we explored the local administration of YM-254890. Intrathecal injections of YM-254890 produced lasting analgesia in a tail flick test and greatly augmented the anti-nociceptive effects of morphine without any significant effects on locomotor behaviour. Electrophysiological studies showed that YM-254890 reduced the excitability of DRG nociceptors and augmented their opioid-induced inhibition. CONCLUSION AND IMPLICATIONS These findings indicate that pharmacological inhibition of Gq/11 could be explored as an analgesic strategy.
Collapse
Affiliation(s)
- Subhi Marwari
- Department of NeuroscienceThe Scripps Research InstituteJupiterFloridaUSA
| | - Cody Kowalski
- Department of NeuroscienceThe Scripps Research InstituteJupiterFloridaUSA
| | | |
Collapse
|
12
|
Hoare SRJ, Tewson PH, Sachdev S, Connor M, Hughes TE, Quinn AM. Quantifying the Kinetics of Signaling and Arrestin Recruitment by Nervous System G-Protein Coupled Receptors. Front Cell Neurosci 2022; 15:814547. [PMID: 35110998 PMCID: PMC8801586 DOI: 10.3389/fncel.2021.814547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Neurons integrate inputs over different time and space scales. Fast excitatory synapses at boutons (ms and μm), and slow modulation over entire dendritic arbors (seconds and mm) are all ultimately combined to produce behavior. Understanding the timing of signaling events mediated by G-protein-coupled receptors is necessary to elucidate the mechanism of action of therapeutics targeting the nervous system. Measuring signaling kinetics in live cells has been transformed by the adoption of fluorescent biosensors and dyes that convert biological signals into optical signals that are conveniently recorded by microscopic imaging or by fluorescence plate readers. Quantifying the timing of signaling has now become routine with the application of equations in familiar curve fitting software to estimate the rates of signaling from the waveform. Here we describe examples of the application of these methods, including (1) Kinetic analysis of opioid signaling dynamics and partial agonism measured using cAMP and arrestin biosensors; (2) Quantifying the signaling activity of illicit synthetic cannabinoid receptor agonists measured using a fluorescent membrane potential dye; (3) Demonstration of multiplicity of arrestin functions from analysis of biosensor waveforms and quantification of the rates of these processes. These examples show how temporal analysis provides additional dimensions to enhance the understanding of GPCR signaling and therapeutic mechanisms in the nervous system.
Collapse
Affiliation(s)
- Sam R. J. Hoare
- Pharmechanics LLC, Owego, NY, United States
- *Correspondence: Sam R. J. Hoare
| | | | - Shivani Sachdev
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
13
|
Abstract
Opiates, such as morphine, and synthetic opioids, such as fentanyl, constitute a class of drugs acting on opioid receptors which have been used therapeutically and recreationally for centuries. Opioid drugs have strong analgesic properties and are used to treat moderate to severe pain, but also present side effects including opioid dependence, tolerance, addiction, and respiratory depression, which can lead to lethal overdose if not treated. This chapter explores the pathophysiology, the neural circuits, and the cellular mechanisms underlying opioid-induced respiratory depression and provides a translational perspective of the most recent research. The pathophysiology discussed includes the effects of opioid drugs on the respiratory system in patients, as well as the animal models used to identify underlying mechanisms. Using a combination of gene editing and pharmacology, the neural circuits and molecular pathways mediating neuronal inhibition by opioids are examined. By using pharmacology and neuroscience approaches, new therapies to prevent or reverse respiratory depression by opioid drugs have been identified and are currently being developed. Considering the health and economic burden associated with the current opioid epidemic, innovative research is needed to better understand the side effects of opioid drugs and to discover new therapeutic solutions to reduce the incidence of lethal overdoses.
Collapse
|
14
|
Palmer CB, Meyrath M, Canals M, Kostenis E, Chevigné A, Szpakowska M. Atypical opioid receptors: unconventional biology and therapeutic opportunities. Pharmacol Ther 2021; 233:108014. [PMID: 34624426 DOI: 10.1016/j.pharmthera.2021.108014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.
Collapse
Affiliation(s)
- Christie B Palmer
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
15
|
Gulezian E, Crivello C, Bednenko J, Zafra C, Zhang Y, Colussi P, Hussain S. Membrane protein production and formulation for drug discovery. Trends Pharmacol Sci 2021; 42:657-674. [PMID: 34270922 DOI: 10.1016/j.tips.2021.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Integral membrane proteins (MPs) are important drug targets across most fields of medicine, but historically have posed a major challenge for drug discovery due to difficulties in producing them in functional forms. We review the state of the art in drug discovery strategies using recombinant multipass MPs, and outline methods to successfully express, stabilize, and formulate them for small-molecule and monoclonal antibody therapeutics development. Advances in structure-based drug design and high-throughput screening are allowing access to previously intractable targets such as ion channels and transporters, propelling the field towards the development of highly specific therapies targeting desired conformations.
Collapse
Affiliation(s)
- Ellen Gulezian
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | | | - Janna Bednenko
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Claudia Zafra
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Yihui Zhang
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Paul Colussi
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Sunyia Hussain
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA.
| |
Collapse
|
16
|
Hill R, Canals M. Experimental considerations for the assessment of in vivo and in vitro opioid pharmacology. Pharmacol Ther 2021; 230:107961. [PMID: 34256067 DOI: 10.1016/j.pharmthera.2021.107961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Morphine and other mu-opioid receptor (MOR) agonists remain the mainstay treatment of acute and prolonged pain states worldwide. The major limiting factor for continued use of these current opioids is the high incidence of side effects that result in loss of life and loss of quality of life. The development of novel opioids bereft, or much less potent, at inducing these side effects remains an intensive area of research, with multiple pharmacological strategies being explored. However, as with many G protein-coupled receptors (GPCRs), translation of promising candidates from in vitro characterisation to successful clinical candidates still represents a major challenge and attrition point. This review summarises the preclinical animal models used to evaluate the key opioid-induced behaviours of antinociception, respiratory depression, constipation and opioid-induced hyperalgesia and tolerance. We highlight the influence of distinct variables in the experimental protocols, as well as the potential implications for differences in receptor reserve in each system. Finally, we discuss how methods to assess opioid action in vivo and in vitro relate to each other in the context of bridging the translational gap in opioid drug discovery.
Collapse
Affiliation(s)
- Rob Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom.
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom; Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Midlands, United Kingdom.
| |
Collapse
|
17
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
18
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of approved therapeutic targets. Ligands stimulating these receptors specifically activate multiple signalling pathways that induce not only the desired therapeutic response, but sometimes untolerated side effects that limit their clinical use. The diversity in signalling induced by each ligand could be considered a viable path for improving this situation. Biased agonism, which offers the promise of identifying pathway-selective drugs has been proposed as a means to exploit this opportunity. However, identifying biased agonists is not an easy process and quantifying ligand bias for a given signalling pathway requires careful consideration and control of several confounding factors. To date, the molecular mechanisms of biased signalling remain unclear and known theories that constitute our understanding of the mechanisms underlying therapeutic and side effects are still being challenged, making the strategy of selecting promising potential drugs more difficult. This special issue summarizes the latest advances in the discovery and optimization of biased ligands for different GPCRs. It also focuses on identifying novel insights into the field of biased agonism, while at the same time, highlighting the conceptual and experimental limitations of that concept for drug discovery. This aims to broaden our understanding of the signalling induced by the various identified biased agonists and provide perspectives that could straighten our path towards the development of more effective and tolerable therapeutics.
Collapse
Affiliation(s)
- Karim Nagi
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar.
| | - H Ongun Onaran
- Ankara University, Faculty of Medicine, Department of Pharmacology, Molecular Biology and Technology Development Unit, Ankara, Turkey
| |
Collapse
|