1
|
Alonso-Marañón J, Solé L, Álvarez-Villanueva D, Maqueda M, Lobo-Jarne T, Montoto Á, Yélamos J, Borràs E, Uraga L, Hooper C, Sabidó E, Miyamoto S, Bigas A, Espinosa L. NEMO is essential for directing the kinases IKKα and ATM to the sites of DNA damage. Sci Signal 2025; 18:eadr0128. [PMID: 40067909 PMCID: PMC12070652 DOI: 10.1126/scisignal.adr0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025]
Abstract
The DNA damage repair kinase ATM is phosphorylated by the NF-κB pathway kinase IKKα, resulting in enhanced DNA damage repair through the nonhomologous end-joining pathway. Thus, inhibition of IKKα enhances the efficacy of cancer therapy based on inducing DNA damage. Here, we found a role for the IKK regulatory subunit NEMO in DNA damage repair mediated by ATM and IKKα. Exposure to damaging agents induced the interaction of NEMO with a preformed ATM-IKKα complex, which was required to target active ATM and IKKα to chromatin for efficient DNA damage repair but not for activating ATM. Recognition of damaged DNA by the IKKα-NEMO-ATM complex was facilitated by the interaction between NEMO and histones and depended on the ADP ribosylation of histones by the enzyme PARP1. NEMO-deficient cells showed increased activity of the kinase ATR, and inhibition of ATR potentiated the effect of chemotherapy in cells lacking NEMO or IKKα. Bioinformatic analysis of colorectal cancer datasets demonstrated that the expression of genes encoding IKKα, NEMO, and ATM correlated with poor patient prognosis, suggesting that the mechanism linking these three elements may be clinically relevant.
Collapse
Affiliation(s)
- Josune Alonso-Marañón
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Laura Solé
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Daniel Álvarez-Villanueva
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - María Maqueda
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Teresa Lobo-Jarne
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Ángela Montoto
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Jose Yélamos
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
- Immunology Unit, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Leire Uraga
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Christopher Hooper
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, WI 53705, USA
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, WI 53705, USA
| | - Anna Bigas
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
- Josep Carreras Leukemia Research Institute, Barcelona 08916, Spain
| | - Lluís Espinosa
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
2
|
Perkins ND. The NEMO/ATM/IKKα complex: A key player in colorectal cancer progression and treatment. Sci Signal 2025; 18:eadv1265. [PMID: 40067906 DOI: 10.1126/scisignal.adv1265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
The kinase IKKα phosphorylates the kinase ATM, enhancing its ability to promote DNA repair. In this issue of Science Signaling, Alonso-Marañón et al. demonstrate that in colorectal cancer cells, the IKK regulatory subunit NEMO targets the ATM/IKKα complex to sites of DNA damage, thus enhancing DNA repair and chemotherapy resistance.
Collapse
Affiliation(s)
- Neil D Perkins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Wang J, Zhao R, Xu S, Zhou XY, Cai K, Chen YL, Zhou ZY, Sun X, Shi Y, Wang F, Gui YH, Tao H, Zhao JY. NOTCH1 mitochondria localization during heart development promotes mitochondrial metabolism and the endothelial-to-mesenchymal transition in mice. Nat Commun 2024; 15:9945. [PMID: 39550366 PMCID: PMC11569218 DOI: 10.1038/s41467-024-54407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Notch signaling activation drives an endothelial-to-mesenchymal transition (EndMT) critical for heart development, although evidence suggests that the reprogramming of endothelial cell metabolism can regulate endothelial function independent of canonical cell signaling. Herein, we investigated the crosstalk between Notch signaling and metabolic reprogramming in the EndMT process. Biochemically, we find that the NOTCH1 intracellular domain (NICD1) localizes to endothelial cell mitochondria, where it interacts with and activates the complex to enhance mitochondrial metabolism. Targeting NICD1 to mitochondria induces more EndMT compared with wild-type NICD1, and small molecule activation of PDH during pregnancy improves the phenotype in a mouse model of congenital heart defect. A NOTCH1 mutation observed in non-syndromic tetralogy of Fallot patients decreases NICD1 mitochondrial localization and subsequent PDH activity in heart tissues. Altogether, our findings demonstrate NICD1 enrichment in mitochondria of the developing mouse heart, which induces EndMT by activating PDH and subsequently improving mitochondrial metabolism.
Collapse
Affiliation(s)
- Jie Wang
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases (Fudan University), Children's Hospital of Fudan University, Shanghai, China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sha Xu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiang-Yu Zhou
- Obstetrics & Gynecology Hospital of Fudan University, Fudan University, Shanghai, China
| | - Ke Cai
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ling Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yu Zhou
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Sun
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases (Fudan University), Children's Hospital of Fudan University, Shanghai, China.
| | - Yong-Hao Gui
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China.
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases (Fudan University), Children's Hospital of Fudan University, Shanghai, China.
| | - Hui Tao
- Department of Cardiothoracic Surgery, Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- International Human Phenome Institutes (Shanghai), Shanghai, China.
| |
Collapse
|
4
|
Riley C, Ammar U, Alsfouk A, Anthony NG, Baiget J, Berretta G, Breen D, Huggan J, Lawson C, McIntosh K, Plevin R, Suckling CJ, Young LC, Paul A, Mackay SP. Design and Synthesis of Novel Aminoindazole-pyrrolo[2,3- b]pyridine Inhibitors of IKKα That Selectively Perturb Cellular Non-Canonical NF-κB Signalling. Molecules 2024; 29:3515. [PMID: 39124921 PMCID: PMC11314561 DOI: 10.3390/molecules29153515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The inhibitory-kappaB kinases (IKKs) IKKα and IKKβ play central roles in regulating the non-canonical and canonical NF-κB signalling pathways. Whilst the proteins that transduce the signals of each pathway have been extensively characterised, the clear dissection of the functional roles of IKKα-mediated non-canonical NF-κB signalling versus IKKβ-driven canonical signalling remains to be fully elucidated. Progress has relied upon complementary molecular and pharmacological tools; however, the lack of highly potent and selective IKKα inhibitors has limited advances. Herein, we report the development of an aminoindazole-pyrrolo[2,3-b]pyridine scaffold into a novel series of IKKα inhibitors. We demonstrate high potency and selectivity against IKKα over IKKβ in vitro and explain the structure-activity relationships using structure-based molecular modelling. We show selective target engagement with IKKα in the non-canonical NF-κB pathway for both U2OS osteosarcoma and PC-3M prostate cancer cells by employing isoform-related pharmacodynamic markers from both pathways. Two compounds (SU1261 [IKKα Ki = 10 nM; IKKβ Ki = 680 nM] and SU1349 [IKKα Ki = 16 nM; IKKβ Ki = 3352 nM]) represent the first selective and potent pharmacological tools that can be used to interrogate the different signalling functions of IKKα and IKKβ in cells. Our understanding of the regulatory role of IKKα in various inflammatory-based conditions will be advanced using these pharmacological agents.
Collapse
Affiliation(s)
- Christopher Riley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Usama Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Aisha Alsfouk
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nahoum G. Anthony
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Jessica Baiget
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Giacomo Berretta
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - David Breen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Judith Huggan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christopher Lawson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kathryn McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Louise C. Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
5
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
6
|
Wei P, Kou W, Fu J, Chen Z, Pan F. Pparα knockout in mice increases the Th17 development by facilitating the IKKα/RORγt and IKKα/Foxp3 complexes. Commun Biol 2023; 6:721. [PMID: 37452099 PMCID: PMC10349144 DOI: 10.1038/s42003-023-05104-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The helper CD4+ T cell-type 17 (Th17) cells and regulatory CD4+ T cells (Tregs) are balanced through numerous molecular regulators, particularly metabolic factors, and their alteration causes immune dysregulation. Herein, we report that peroxisome proliferator of activated receptor-alpha (Pparα), a lipid metabolism regulator, suppresses Th17 differentiation. We demonstrated that Pparα ablation improves Th17 and pro-Th17 factor HIF-1α by enhancing the expression and nuclear localization of NFκB-activator IκB kinase-alpha (IKKα). Unexpectedly, we found that IKKα directly interacts with RORγt and enhances the expression of Il17a gene. Meanwhile, IKKα also interacts with Foxp3, leading to the post-translational regulation of Foxp3 by elevating its proteasomal degradation, and influencing Th17 development. Pparα deficiency leads to enhanced Th17 development in vivo and is associated with enhanced pathology in a murine experimental autoimmune encephalomyelitis (EAE) model. Overall, our data indicate that Pparα may serve as a potential therapeutic target for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Kou
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen, 518055, PR China
| | - Juan Fu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen, 518055, PR China.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Gao J, Zhu L. IKKα kinase silencing increases doxorubicin-induced apoptosis through regulation of oxidative DNA damage response in colon cancer cells. Chem Biol Drug Des 2022; 101:1089-1095. [PMID: 36515432 DOI: 10.1111/cbdd.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The inhibitor of kappa B kinase alpha (IKKα) is demonstrated to be involved in the various aspects of cancer biology, from its initiation, to progression, metastasis, and drug resistance. The aim of this study was to investigate the role of IKKα in doxorubicin (DOX)-mediated induction in apoptosis in SW-480 colon cancer cells. Cells were transfected with siRNA against IKKα and treated with DOX. MTT assay was applied to measure SW-480 cell proliferation. The mRNA levels of γ-H2AX within cells were assessed by qRT-PCR. 8-Hydroxy-2'-deoxyguanosine was measured by ELISA. The formation of intracellular reactive oxygen species (ROS) was detected by fluorometry. The antioxidant activities of some enzymes were also determined. For evaluation of apoptosis, ELISA assay was applied. IKKα silencing dramatically increased the doxorubicin cytotoxic effects. In addition, IKKα silencing substantially overexpressed γ-H2AX in SW-480 cells. Furthermore, upon IKKα silencing, the levels of ROS were elevated and the antioxidant defense system was significantly weakened. In addition, IKKα silencing led to the enhancement of apoptotic cells in doxorubicin-treated SW-480 cells. Co-treatment of IKKα and doxorubicin led to the enhanced cellular cytotoxicity via robosting ROS formation, inducing oxidative DNA damage, and decreasing cellular antioxidant defense, and finally potent apoptosis induction in cancer cell lines.
Collapse
Affiliation(s)
- Jianen Gao
- Department of Proctology, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Lei Zhu
- Department of Pharmacy, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First people's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
8
|
Patel M, Pennel KAF, Quinn JA, Hood H, Chang DK, Biankin AV, Rebus S, Roseweir AK, Park JH, Horgan PG, McMillan DC, Edwards J. Spatial expression of IKK-alpha is associated with a differential mutational landscape and survival in primary colorectal cancer. Br J Cancer 2022; 126:1704-1714. [PMID: 35173303 PMCID: PMC9174220 DOI: 10.1038/s41416-022-01729-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To understand the relationship between key non-canonical NF-κB kinase IKK-alpha(α), tumour mutational profile and survival in primary colorectal cancer. METHODS Immunohistochemical expression of IKKα was assessed in a cohort of 1030 patients who had undergone surgery for colorectal cancer using immunohistochemistry. Mutational tumour profile was examined using a customised gene panel. Immunofluorescence was used to identify the cellular location of punctate IKKα expression. RESULTS Two patterns of IKKα expression were observed; firstly, in the tumour cell cytoplasm and secondly as discrete 'punctate' areas in a juxtanuclear position. Although cytoplasmic expression of IKKα was not associated with survival, high 'punctate' IKKα expression was associated with significantly reduced cancer-specific survival on multivariate analysis. High punctate expression of IKKα was associated with mutations in KRAS and PDGFRA. Dual immunofluorescence suggested punctate IKKα expression was co-located with the Golgi apparatus. CONCLUSIONS These results suggest the spatial expression of IKKα is a potential biomarker in colorectal cancer. This is associated with a differential mutational profile highlighting possible distinct signalling roles for IKKα in the context of colorectal cancer as well as potential implications for future treatment strategies using IKKα inhibitors.
Collapse
Affiliation(s)
- Meera Patel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Kathryn A F Pennel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hannah Hood
- School of Medicine, Wolfson Medical School Building, University of Glasgow, Glasgow, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Antonia K Roseweir
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - James H Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
IKKα plays a major role in canonical NF-kB signalling in colorectal cells. Biochem J 2022; 479:305-325. [PMID: 35029639 PMCID: PMC8883499 DOI: 10.1042/bcj20210783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
Inhibitor of kappa B (IκB) kinase β (IKKβ) has long been viewed as the dominant IKK in the canonical nuclear factor-κB (NF-κB) signalling pathway, with IKKα being more important in non-canonical NF-κB activation. Here we have investigated the role of IKKα and IKKβ in canonical NF-κB activation in colorectal cells using CRISPR–Cas9 knock-out cell lines, siRNA and selective IKKβ inhibitors. IKKα and IKKβ were redundant for IκBα phosphorylation and turnover since loss of IKKα or IKKβ alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKKα was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-κB-dependent transcriptional response to both TNFα and IL-1α. In these cells, IKKβ was far less efficient at compensating for the loss of IKKα than IKKα was able to compensate for the loss of IKKβ. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKKβ inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKKα loss strongly inhibited TNFα-dependent p65 nuclear translocation, IKKα and IKKβ contributed equally to c-Rel nuclear translocation indicating that different NF-κB subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKKα in canonical NF-κB signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKKβ to date.
Collapse
|
10
|
Espinosa L, Marruecos L. NF-κB-Dependent and -Independent (Moonlighting) IκBα Functions in Differentiation and Cancer. Biomedicines 2021; 9:1278. [PMID: 34572464 PMCID: PMC8468488 DOI: 10.3390/biomedicines9091278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
IκBα is considered to play an almost exclusive role as inhibitor of the NF-κB signaling pathway. However, previous results have demonstrated that SUMOylation imposes a distinct subcellular distribution, regulation, NF-κB-binding affinity and function to the IκBα protein. In this review we discuss the main alterations of IκBα found in cancer and whether they are (most likely) associated with NF-κB-dependent or NF-κB-independent (moonlighting) activities of the protein.
Collapse
Affiliation(s)
- Lluís Espinosa
- Cancer Research Program, Institut Mar d’Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, 08003 Barcelona, Spain;
| | | |
Collapse
|
11
|
Combination of chemotherapy with BRAF inhibitors results in effective eradication of malignant melanoma by preventing ATM-dependent DNA repair. Oncogene 2021; 40:5042-5048. [PMID: 34140639 DOI: 10.1038/s41388-021-01879-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023]
Abstract
Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy in advanced stages. Chemotherapy has not demonstrated its efficacy in MM and current treatment for tumors carrying the most frequent BRAFV600E mutation consists of BRAF inhibitors alone or in combination with MAPK pathway inhibitors. We previously found that BRAF inhibition prevents activation of the DNA-damage repair (DDR) pathway in colorectal cancer thus potentiating the effect of chemotherapy. We now show that different chemotherapy agents inflict DNA damage in MM cells, which is efficiently repaired, associated with activation of the ATM-dependent DDR machinery. Pharmacologic inhibition of BRAF impairs ATM and DDR activation in these cells, leading to sustained DNA damage. Combination treatments involving DNA-damaging agents and BRAF inhibitors increase tumor cell death in vitro and in vivo, and impede MM regrowth after treatment cessation. We propose to reconsider the use of chemotherapy in combination with BRAF inhibitors for MM treatment.
Collapse
|
12
|
Zhou P, Zeng Y, Rao Z, Li Y, Zheng H, Luo R. Molecular characterization and functional analysis of duck IKKα. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103880. [PMID: 33022353 DOI: 10.1016/j.dci.2020.103880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
IκB kinase α (IKKα) is a vital component of the IKK complex, which is involved in innate immune response, inflammation, cell death and proliferation. Although the functional characteristics of IKKα have been extensively studied in mammals and fish, the roles of IKKα in avian remain largely unknown. In this study, we cloned and characterized the duck IKKα (duIKKα) gene for the first time. DuIKKα encoded a protein of 757 amino acid residues and showed high sequence identities with the goose IKKα. The duIKKα was expressed in all tested tissues, and a relatively high expression of duIKKα mRNA was detected in liver and heart. Overexpression of duIKKα dramatically increased NF-κB activity and induced the expression of duck cytokines IFN-β, IL-1β, IL-6, IL-8 and RANTES in DEFs. Knockdown of duIKKα by small interfering RNA significantly decreased LPS-, poly(I:C)-, poly(dA:dT)-, duck enteritis virus (DEV)-, or duck Tembusu virus (DTMUV)-induced NF-κB activation. Moreover, duIKKα exhibited antiviral activity against DTMUV infection. These findings provide important insights into the roles of duIKKα in avian innate immunity.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yue Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zaixiao Rao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huijun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
13
|
Moser B, Hochreiter B, Basílio J, Gleitsmann V, Panhuber A, Pardo-Garcia A, Hoesel B, Salzmann M, Resch U, Noreen M, Schmid JA. The inflammatory kinase IKKα phosphorylates and stabilizes c-Myc and enhances its activity. Mol Cancer 2021; 20:16. [PMID: 33461590 PMCID: PMC7812655 DOI: 10.1186/s12943-021-01308-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The IκB kinase (IKK) complex, comprising the two enzymes IKKα and IKKβ, is the main activator of the inflammatory transcription factor NF-κB, which is constitutively active in many cancers. While several connections between NF-κB signaling and the oncogene c-Myc have been shown, functional links between the signaling molecules are still poorly studied. METHODS Molecular interactions were shown by co-immunoprecipitation and FRET microscopy. Phosphorylation of c-Myc was shown by kinases assays and its activity by improved reporter gene systems. CRISPR/Cas9-mediated gene knockout and chemical inhibition were used to block IKK activity. The turnover of c-Myc variants was determined by degradation in presence of cycloheximide and by optical pulse-chase experiments.. Immunofluorescence of mouse prostate tissue and bioinformatics of human datasets were applied to correlate IKKα- and c-Myc levels. Cell proliferation was assessed by EdU incorporation and apoptosis by flow cytometry. RESULTS We show that IKKα and IKKβ bind to c-Myc and phosphorylate it at serines 67/71 within a sequence that is highly conserved. Knockout of IKKα decreased c-Myc-activity and increased its T58-phosphorylation, the target site for GSK3β, triggering polyubiquitination and degradation. c-Myc-mutants mimicking IKK-mediated S67/S71-phosphorylation exhibited slower turnover, higher cell proliferation and lower apoptosis, while the opposite was observed for non-phosphorylatable A67/A71-mutants. A significant positive correlation of c-Myc and IKKα levels was noticed in the prostate epithelium of mice and in a variety of human cancers. CONCLUSIONS Our data imply that IKKα phosphorylates c-Myc on serines-67/71, thereby stabilizing it, leading to increased transcriptional activity, higher proliferation and decreased apoptosis.
Collapse
Affiliation(s)
- Bernhard Moser
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Viola Gleitsmann
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Anja Panhuber
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Alan Pardo-Garcia
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Ulrike Resch
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Mamoona Noreen
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| |
Collapse
|
14
|
Montes M, MacKenzie L, McAllister MJ, Roseweir A, McCall P, Hatziieremia S, Underwood MA, Boyd M, Paul A, Plevin R, MacKay SP, Edwards J. Determining the prognostic significance of IKKα in prostate cancer. Prostate 2020; 80:1188-1202. [PMID: 33258506 DOI: 10.1002/pros.24045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/02/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND As the survival of castration-resistant prostate cancer (CRPC) remains poor, and the nuclear factor-κB (NF-κB) pathways play key roles in prostate cancer (PC) progression, several studies have focused on inhibiting the NF-κB pathway through generating inhibitory κB kinase subunit α (IKKα) small molecule inhibitors. However, the identification of prognostic markers able to discriminate which patients could benefit from IKKα inhibitors is urgently required. The present study investigated the prognostic value of IKKα, IKKα phosphorylated at serine 180 (p-IKKα S180) and threonine 23 (p-IKKα T23), and their relationship with the androgen receptor (AR) and Ki67 proliferation index to predict patient outcome. METHODS A cohort of 115 patients with hormone-naïve PC (HNPC) and CRPC specimens available were used to assess tumor cell expression of proteins within both the cytoplasm and the nucleus by immunohistochemistry. The expression levels were dichotomized (low vs high) to determine the associations between IKKα, AR, Ki67, and patients'Isurvival. In addition, an analysis was performed to assess potential IKKα associations with clinicopathological and inflammatory features, and potential IKKα correlations with other cancer pathways essential for CRPC growth. RESULTS High levels of cytoplasmic IKKα were associated with a higher cancer-specific survival in HNPC patients with low AR expression (hazards ratio [HR], 0.33; 95% confidence interval [CI] log-rank, 0.11-0.98; P = .04). Furthermore, nuclear IKKα (HR, 2.60; 95% CI, 1.27-5.33; P = .01) and cytoplasmic p-IKKα S180 (HR, 2.10; 95% CI, 1.17-3.76; P = .01) were associated with a lower time to death from recurrence in patients with CRPC. In addition, high IKKα expression was associated with high levels of T-cells (CD3+ P = .01 and CD8+ P = .03) in HNPC; however, under castration conditions, high IKKα expression was associated with high levels of CD68+ macrophages (P = .04), higher Gleason score (P = .01) and more prostate-specific antigen concentration (P = .03). Finally, we identified crosstalk between IKKα and members of the canonical NF-κB pathway in the nucleus of HNPC. Otherwise, IKKα phosphorylated by noncanonical NF-κB and Akt pathways correlated with members of the canonical NF-κB pathway in CRPC. CONCLUSION The present study reports that patients with CRPC expressing high levels of nuclear IKKα or cytoplasmic p-IKKα S180, which associated with a lower time to death from recurrence, may benefit from IKKα inhibitors.
Collapse
Affiliation(s)
- Melania Montes
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Lewis MacKenzie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Milly J McAllister
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Antonia Roseweir
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow, UK
| | - Pamela McCall
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Sophia Hatziieremia
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| | - Mark A Underwood
- Department of Urology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Marie Boyd
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Simon P MacKay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Joanne Edwards
- Unit of Gastrointestinal and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Institute of Cancer Science, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Chavdoula E, Habiel DM, Roupakia E, Markopoulos GS, Vasilaki E, Kokkalis A, Polyzos AP, Boleti H, Thanos D, Klinakis A, Kolettas E, Marcu KB. CHUK/IKK-α loss in lung epithelial cells enhances NSCLC growth associated with HIF up-regulation. Life Sci Alliance 2019; 2:2/6/e201900460. [PMID: 31792060 PMCID: PMC6892436 DOI: 10.26508/lsa.201900460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
IKKα is an NSCLC suppressor and its loss in mouse AT-II lung epithelial cells or in human NSCLC lines increased urethane-induced adenoma growth and xenograft burdens, respectively. IKKα loss can up-regulate HIF-1α, enhancing tumor growth under hypoxia. Through the progressive accumulation of genetic and epigenetic alterations in cellular physiology, non–small-cell lung cancer (NSCLC) evolves in distinct steps involving mutually exclusive oncogenic mutations in K-Ras or EGFR along with inactivating mutations in the p53 tumor suppressor. Herein, we show two independent in vivo lung cancer models in which CHUK/IKK-α acts as a major NSCLC tumor suppressor. In a novel transgenic mouse strain, wherein IKKα ablation is induced by tamoxifen (Tmx) solely in alveolar type II (AT-II) lung epithelial cells, IKKα loss increases the number and size of lung adenomas in response to the chemical carcinogen urethane, whereas IKK-β instead acts as a tumor promoter in this same context. IKKα knockdown in three independent human NSCLC lines (independent of K-Ras or p53 status) enhances their growth as tumor xenografts in immune-compromised mice. Bioinformatics analysis of whole transcriptome profiling followed by quantitative protein and targeted gene expression validation experiments reveals that IKKα loss can result in the up-regulation of activated HIF-1-α protein to enhance NSCLC tumor growth under hypoxic conditions in vivo.
Collapse
Affiliation(s)
- Evangelia Chavdoula
- Biomedical Research Foundation Academy of Athens, Athens, Greece.,Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | | | - Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | - Eleni Vasilaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonis Kokkalis
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Haralabia Boleti
- Intracellular Parasitism Laboratory, Department of Microbiology and Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece .,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece
| | - Kenneth B Marcu
- Biomedical Research Foundation Academy of Athens, Athens, Greece .,Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, University Campus, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, Greece.,Departments of Biochemistry and Cell Biology and Pathology, Stony Brook University, Stony Brook, NY, USA.,Department of Biological Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
16
|
Quinn JA, Bennett L, Patel M, Frixou M, Park JH, Roseweir A, Horgan PG, McMillan DC, Edwards J. The relationship between members of the canonical NF-kB pathway, tumour microenvironment and cancer specific survival in colorectal cancer patients. Histol Histopathol 2019; 35:569-578. [PMID: 31592535 DOI: 10.14670/hh-18-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to investigate the role of the upstream kinase TAK1 and the canonical NF-κB pathway colorectal in cancer (CRC). Immunohistochemistry was used to assess the expression of TAK1/pTAK1 and canonical NF-κB pathway members in a tissue microarray of 242 patients. The relationship between expression, the tumour microenvironment and cancer-specific survival were examined. RESULTS All the investigated members of the pathway were expressed in CRC tissue. In addition, cytoplasmic pTAK1 was associated with the tumour microenvironment (P=0.045) and cancer-specific survival (CSS) (P=0.032). When cytoplasmic pTAK1 was stratified by BRAF status, cytoplasmic pTAK1 expression association with CSS was strengthened (P=0.014). Cytoplasmic IKKβ was significantly associated with the inflammatory cell infiltrate (P=0.015) as graded by Klintrup Makinen grade, systemic inflammation as assessed by neutrophil-lymphocyte ratio (P=0.03) and CSS (P=0.046). On multivariate analysis cytoplasmic IKKβ was independently associated with CSS (HR 1.75,95%CI 1.05-2.91, P=0.033). CONCLUSION Cytoplasmic pTAK1 was significantly associated with CSS and this was enhanced in patients with tumours that expressed wild type BRAF. High expression of cytoplasmic IKKβ was significantly associated with decreased CSS and with markers of the tumour microenvironment. These results support the hypothesis that NF-κB pathway members are poor prognostic markers in patients with CRC, but this requires to be validated in a large independent cohort.
Collapse
Affiliation(s)
- Jean A Quinn
- School of Medicine, University of Glasgow, Glasgow, United Kingdom. .,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lindsay Bennett
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Meera Patel
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Mikaela Frixou
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James H Park
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Antonia Roseweir
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul G Horgan
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Yan P, Wang Y, Meng X, Yang H, Liu Z, Qian J, Zhou W, Li J. Whole Exome Sequencing of Ulcerative Colitis-associated Colorectal Cancer Based on Novel Somatic Mutations Identified in Chinese Patients. Inflamm Bowel Dis 2019; 25:1293-1301. [PMID: 30794281 DOI: 10.1093/ibd/izz020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carcinogenesis is a severe consequence of chronic ulcerative colitis. We investigated the somatic mutations and pathway alterations in ulcerative colitis-associated colorectal cancer (CRC) in Chinese patients compared with sporadic CRCs to reveal potential therapeutic targets in ulcerative colitis-associated CRC. METHODS Whole exome sequencing was performed on archival tumor tissues and paired adjacent nondysplastic mucosa from 10 ulcerative colitis-associated CRC patients at a high risk of carcinogenesis. Genomic alteration profiles from 223 primary CRCs from The Cancer Genome Atlas served as sporadic CRC controls. A meta-analysis was performed to investigate differences in major genetic mutations between ulcerative colitis-associated and Crohn's disease-associated CRCs. RESULTS We identified 44 nonsilent recurrent somatic mutations via whole exome sequencing, including 25 deleterious mutations involved in apoptosis and the PI3K-Akt pathway (COL6A3, FN1), autophagy (ULK1), cell adhesion (PODXL, PTPRT, ZFHX4), and epigenetic regulation (ARID1A, NCOR2, KMT2D, NCOA6, MECP2, SUPT6H). In total, 11 of the 25 mutated genes significantly differed between ulcerative colitis-associated CRC and sporadic CRC (APC, APOB, MECP2, NCOR2, NTRK2, PODXL, RABGAP1, SIK3, SUPT6H, ULK1, USP48). Somatic TP53 mutations occurred in 33% of ulcerative colitis-associated CRCs. Subsequent meta-analysis revealed distinct mutation profiles for Crohn's disease- and ulcerative colitis-associated CRCs. Mutations involving the NF-kB pathway and epigenetic regulation were more common in ulcerative colitis-associated CRCs than in sporadic CRCs. CONCLUSION Distinct genomic alteration profiles of deleterious somatic mutations were found in ulcerative colitis-associated and sporadic CRCs. Mutations of epigenetic regulators, such as KMT2D and NCOA6, were common, suggesting an epigenetic pathomechanism for colitis-associated carcinoma in Chinese patients.
Collapse
Affiliation(s)
- Pengguang Yan
- Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China.,Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Yanan Wang
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Xiangchen Meng
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jiaming Qian
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Weixun Zhou
- Department of pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No. 1 Shuaifuyuan, Beijing, China
| |
Collapse
|
18
|
Colomer C, Margalef P, Villanueva A, Vert A, Pecharroman I, Solé L, González-Farré M, Alonso J, Montagut C, Martinez-Iniesta M, Bertran J, Borràs E, Iglesias M, Sabidó E, Bigas A, Boulton SJ, Espinosa L. IKKα Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Mol Cell 2019; 75:669-682.e5. [PMID: 31302002 PMCID: PMC6715775 DOI: 10.1016/j.molcel.2019.05.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/13/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.
Collapse
Affiliation(s)
- Carlota Colomer
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Pol Margalef
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain; DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alberto Villanueva
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Institut Català d'Oncologia, Hospitalet, Barcelona 08907, Spain
| | - Anna Vert
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Irene Pecharroman
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Laura Solé
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Mónica González-Farré
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONC, Universitat Autònoma de Barcelona, Barcelona 08003, Spain
| | - Josune Alonso
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Clara Montagut
- Department of Oncology, Institut Mar d'Investigacions Mèdiques, Universitat Pompeu Fabra, CIBERONC, Barcelona 08003, Spain
| | - Maria Martinez-Iniesta
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Institut Català d'Oncologia, Hospitalet, Barcelona 08907, Spain
| | - Joan Bertran
- Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic-Central University of Catalonia, Vic 08500, Spain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Mar Iglesias
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONC, Universitat Autònoma de Barcelona, Barcelona 08003, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain.
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain.
| |
Collapse
|
19
|
Hossain F, Sorrentino C, Ucar DA, Peng Y, Matossian M, Wyczechowska D, Crabtree J, Zabaleta J, Morello S, Del Valle L, Burow M, Collins-Burow B, Pannuti A, Minter LM, Golde TE, Osborne BA, Miele L. Notch Signaling Regulates Mitochondrial Metabolism and NF-κB Activity in Triple-Negative Breast Cancer Cells via IKKα-Dependent Non-canonical Pathways. Front Oncol 2018; 8:575. [PMID: 30564555 PMCID: PMC6289043 DOI: 10.3389/fonc.2018.00575] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Triple negative breast cancer (TNBC) patients have high risk of recurrence and metastasis, and current treatment options remain limited. Cancer stem-like cells (CSCs) have been linked to cancer initiation, progression and chemotherapy resistance. Notch signaling is a key pathway regulating TNBC CSC survival. Treatment of TNBC with PI3K or mTORC1/2 inhibitors results in drug-resistant, Notch-dependent CSC. However, downstream mechanisms and potentially druggable Notch effectors in TNBC CSCs are largely unknown. We studied the role of the AKT pathway and mitochondrial metabolism downstream of Notch signaling in TNBC CSC from cell lines representative of different TNBC molecular subtypes as well as a novel patient-derived model. We demonstrate that exposure of TNBC cells to recombinant Notch ligand Jagged1 leads to rapid AKT phosphorylation in a Notch1-dependent but RBP-Jκ independent fashion. This requires mTOR and IKKα. Jagged1 also stimulates mitochondrial respiration and fermentation in an AKT- and IKK-dependent fashion. Notch1 co-localizes with mitochondria in TNBC cells. Pharmacological inhibition of Notch cleavage by gamma secretase inhibitor PF-03084014 in combination with AKT inhibitor MK-2206 or IKK-targeted NF-κB inhibitor Bay11-7082 blocks secondary mammosphere formation from sorted CD90hi or CD44+CD24low (CSCs) cells. A TNBC patient-derived model gave comparable results. Besides mitochondrial oxidative metabolism, Jagged1 also triggers nuclear, NF-κB-dependent transcription of anti-apoptotic gene cIAP-2. This requires recruitment of Notch1, IKKα and NF-κB to the cIAP-2 promoter. Our observations support a model where Jagged1 triggers IKKα-dependent, mitochondrial and nuclear Notch1 signals that stimulate AKT phosphorylation, oxidative metabolism and transcription of survival genes in PTEN wild-type TNBC cells. These data suggest that combination treatments targeting the intersection of the Notch, AKT and NF-κB pathways have potential therapeutic applications against CSCs in TNBC cases with Notch1 and wild-type PTEN expression.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Claudia Sorrentino
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Deniz A Ucar
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, China
| | - Margarite Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Dorota Wyczechowska
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Judy Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jovanny Zabaleta
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Luis Del Valle
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Matthew Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bridgette Collins-Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Antonio Pannuti
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA, United States
| | - Todd E Golde
- Department of Neuroscience, McKnight Brain Institute, University of Florida at Gainesville, Gainesville, FL, United States
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA, United States
| | - Lucio Miele
- Louisiana State University Health Sciences Center, Stanley S. Scott Cancer Center, New Orleans, LA, United States.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
20
|
Hernández-Ruiz E, Toll A, García-Diez I, Andrades E, Ferrandiz-Pulido C, Masferrer E, Yébenes M, Jaka A, Gimeno J, Gimeno R, García-Patos V, Pujol RM, Hernández-Muñoz I. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma. Carcinogenesis 2018; 39:503-513. [PMID: 29394319 DOI: 10.1093/carcin/bgy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCCs) when compared with non-metastasizing cSCCs (non-MSCCs). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NF-κB signaling pathway. Accordingly, non-MSCCs display higher levels of membranous pS176-inhibitor of NF-kB kinase, and their stroma is enriched in neutrophils and eosinophils when compared with MSCCs. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb-depleted cSCC cells. Altogether, these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high-risk cSCCs could benefit from clinical therapies addressed to harness the immune response.
Collapse
Affiliation(s)
- Eugenia Hernández-Ruiz
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustí Toll
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carla Ferrandiz-Pulido
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emili Masferrer
- Department of Dermatology, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Mireia Yébenes
- Department of Dermatology, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Ane Jaka
- Department of Dermatology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Ramón Gimeno
- Department of Immunology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Vicenç García-Patos
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
21
|
Paul A, Edwards J, Pepper C, Mackay S. Inhibitory-κB Kinase (IKK) α and Nuclear Factor-κB (NFκB)-Inducing Kinase (NIK) as Anti-Cancer Drug Targets. Cells 2018; 7:E176. [PMID: 30347849 PMCID: PMC6210445 DOI: 10.3390/cells7100176] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular kinases inhibitory-κB kinase (IKK) α and Nuclear Factor-κB (NF-κB)-inducing kinase (NIK) are well recognised as key central regulators and drivers of the non-canonical NF-κB cascade and as such dictate the initiation and development of defined transcriptional responses associated with the liberation of p52-RelB and p52-p52 NF-κB dimer complexes. Whilst these kinases and downstream NF-κB complexes transduce pro-inflammatory and growth stimulating signals that contribute to major cellular processes, they also play a key role in the pathogenesis of a number of inflammatory-based conditions and diverse cancer types, which for the latter may be a result of background mutational status. IKKα and NIK, therefore, represent attractive targets for pharmacological intervention. Here, specifically in the cancer setting, we reflect on the potential pathophysiological role(s) of each of these kinases, their associated downstream signalling outcomes and the stimulatory and mutational mechanisms leading to their increased activation. We also consider the downstream coordination of transcriptional events and phenotypic outcomes illustrative of key cancer 'Hallmarks' that are now increasingly perceived to be due to the coordinated recruitment of both NF-κB-dependent as well as NF-κB⁻independent signalling. Furthermore, as these kinases regulate the transition from hormone-dependent to hormone-independent growth in defined tumour subsets, potential tumour reactivation and major cytokine and chemokine species that may have significant bearing upon tumour-stromal communication and tumour microenvironment it reiterates their potential to be drug targets. Therefore, with the emergence of small molecule kinase inhibitors targeting each of these kinases, we consider medicinal chemistry efforts to date and those evolving that may contribute to the development of viable pharmacological intervention strategies to target a variety of tumour types.
Collapse
Affiliation(s)
- Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK.
| | - Christopher Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK.
| | - Simon Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| |
Collapse
|
22
|
NF-κB pathways in the development and progression of colorectal cancer. Transl Res 2018; 197:43-56. [PMID: 29550444 DOI: 10.1016/j.trsl.2018.02.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Nuclear factor-κB (NF-κB) has been widely implicated in the development and progression of cancer. In colorectal cancer (CRC), NF-κB has a key role in cancer-related processes such as cell proliferation, apoptosis, angiogenesis, and metastasis. The role of NF-κB in CRC is complex, owed to the cross talk with other signaling pathways. Although there is sufficient evidence gained from cell lines and animal models that NF-κB is involved in cancer-related processes, because of a lack of studies in human tissue, the clinical evidence of its importance is limited in patients with CRC. This review summarizes evidence relating to how NF-κB is involved in the development and progression of CRC and comments on future work to be carried out.
Collapse
|
23
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
24
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
25
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
26
|
IKKα is required in the intestinal epithelial cells for tumour stemness. Br J Cancer 2018; 118:839-846. [PMID: 29438366 PMCID: PMC5877427 DOI: 10.1038/bjc.2017.459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Colorectal cancer is a common cause of death in developed countries. Progression from adenoma to invasive carcinoma requires accumulation of mutations starting with the Adenomatous Polyposis Coli (Apc) gene. NF-κB signalling is a key element in cancer, mainly related to the activity of IKKβ. IKKα kinase also participates in this process by mechanisms that are primarily unknown. Methods: We generated a compound mouse model with mutation in Apc and lacking intestinal epithelial IKKα, produced intestinal organoids and tumour spheroids with different genetic backgrounds, and performed immunohistochemistry and RNA-seq analysis. Results: Deficiency of IKKα prevents adenoma formation, with adenomas lacking IKKα showing reduced proliferation. In contrast, IKKα status did not affect normal intestinal function. The same divergent phenotype was found in the organoid–spheroid model. We also found that epithelial IKKα controls stemness, proliferation and apoptosis-related expression. Conclusions: IKKα is a potential therapeutic target for Apc mutant colorectal cancer patients.
Collapse
|
27
|
Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines 2017; 5:biomedicines5020026. [PMID: 28587092 PMCID: PMC5489812 DOI: 10.3390/biomedicines5020026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.
Collapse
Affiliation(s)
- Carlota Colomer
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Laura Marruecos
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Vert
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| |
Collapse
|
28
|
Bennett L, Quinn J, McCall P, Mallon EA, Horgan PG, McMillan DC, Paul A, Edwards J. High IKKα expression is associated with reduced time to recurrence and cancer specific survival in oestrogen receptor (ER)-positive breast cancer. Int J Cancer 2017; 140:1633-1644. [PMID: 28006839 DOI: 10.1002/ijc.30578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/11/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023]
Abstract
The aim of our study was to examine the relationship between tumour IKKα expression and breast cancer recurrence and survival. Immunohistochemistry was employed in a discovery and a validation tissue microarray to assess the association of tumour IKKα expression and clinico-pathological characteristics. After siRNA-mediated silencing of IKKα, cell viability and apoptosis were assessed in MCF7 and MDA-MB-231 breast cancer cells. In both the discovery and validation cohorts, associations observed between IKKα and clinical outcome measures were potentiated in oestrogen receptor (ER) positive Luminal A tumours. In the discovery cohort, cytoplasmic IKKα was associated with disease-free survival (p = 0.029) and recurrence-free survival on tamoxifen (p < 0.001) in Luminal A tumours. Nuclear IKKα and a combination of cytoplasmic and nuclear IKKα (total tumour cell IKKα) were associated with cancer-specific survival (p = 0.012 and p = 0.007, respectively) and recurrence-free survival on tamoxifen (p = 0.013 and p < 0.001, respectively) in Luminal A tumours. In the validation cohort, cytoplasmic IKKα was associated with cancer-specific survival (p = 0.023), disease-free survival (p = 0.002) and recurrence-free survival on tamoxifen (p = 0.009) in Luminal A tumours. Parallel experiment with breast cancer cells in vitro demonstrated the non-canonical NF-κB pathway was inducible by exposure to lymphotoxin in ER-positive MCF7 cells and not in ER-negative MDA-MB-231 cells. Reduction in IKKα expression by siRNA transfection increased levels of apoptosis and reduced cell viability in MCF7 but not in MDA-MB-231 cells. IKKα is an important determinant of poor outcome in patients with ER-positive invasive ductal breast cancer and thus may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Lindsay Bennett
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jean Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pamela McCall
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Elizabeth A Mallon
- Department of Pathology, Southern General Hospital, Glasgow, Scotland, United Kingdom
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
29
|
Espinosa L. Endosomal acidification inhibitors for the treatment of BRAF mutant tumors. Mol Cell Oncol 2016; 3:e1062073. [PMID: 27308590 PMCID: PMC4905373 DOI: 10.1080/23723556.2015.1062073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 06/06/2023]
Abstract
Mutations in KRAS and BRAF genes are commonly found in several types of cancer associated with poor prognosis and therapy resistance. We have identified phosphorylated p45-IKKα as an essential mediator of BRAF-induced tumorigenesis. Importantly, endosomal acidification inhibitors preclude phosphorylation of p45-IKKα and abolish the metastatic capacity of BRAF mutant cancer cells.
Collapse
Affiliation(s)
- Lluís Espinosa
- Institut Hospital del Mar d'Investigacions Mediques, Barcelona, Spain
| |
Collapse
|
30
|
Hollander D, Donyo M, Atias N, Mekahel K, Melamed Z, Yannai S, Lev-Maor G, Shilo A, Schwartz S, Barshack I, Sharan R, Ast G. A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1. Genome Res 2016; 26:541-53. [PMID: 26860615 PMCID: PMC4817777 DOI: 10.1101/gr.193169.115] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Splicing aberrations are prominent drivers of cancer, yet the regulatory pathways controlling them are mostly unknown. Here we develop a method that integrates physical interaction, gene expression, and alternative splicing data to construct the largest map of transcriptomic and proteomic interactions leading to cancerous splicing aberrations defined to date, and identify driver pathways therein. We apply our method to colon adenocarcinoma and non-small-cell lung carcinoma. By focusing on colon cancer, we reveal a novel tumor-favoring regulatory pathway involving the induction of the transcription factor MYC by the transcription factor ELK1, as well as the subsequent induction of the alternative splicing factor PTBP1 by both. We show that PTBP1 promotes specific RAC1,NUMB, and PKM splicing isoforms that are major triggers of colon tumorigenesis. By testing the pathway's activity in patient tumor samples, we find ELK1,MYC, and PTBP1 to be overexpressed in conjunction with oncogenic KRAS mutations, and show that these mutations increase ELK1 levels via the RAS-MAPK pathway. We thus illuminate, for the first time, a full regulatory pathway connecting prevalent cancerous mutations to functional tumor-inducing splicing aberrations. Our results demonstrate our method is applicable to different cancers to reveal regulatory pathways promoting splicing aberrations.
Collapse
Affiliation(s)
- Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Nir Atias
- Blavatnik School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Keren Mekahel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zeev Melamed
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Sivan Yannai
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Asaf Shilo
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute, Rehovot 76100, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Ramat Gan 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
31
|
Klemann C, Pannicke U, Morris-Rosendahl DJ, Vlantis K, Rizzi M, Uhlig H, Vraetz T, Speckmann C, Strahm B, Pasparakis M, Schwarz K, Ehl S, Rohr JC. Transplantation from a symptomatic carrier sister restores host defenses but does not prevent colitis in NEMO deficiency. Clin Immunol 2016; 164:52-6. [PMID: 26812624 DOI: 10.1016/j.clim.2016.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 01/10/2023]
Abstract
NF-κB essential modulator (NEMO) deficiency causes ectodermal dysplasia with immunodeficiency in males, while manifesting as incontinentia pigmenti in heterozygous females. We report a family with NEMO deficiency, in which a female carrier displayed skewed X-inactivation favoring the mutant NEMO allele associated with symptoms of Behçet's disease. Hematopoietic stem cell transplantation of an affected boy from this donor reconstituted an immune system with retained skewed X-inactivation. After transplantation no more severe infections occurred, indicating that an active wild-type NEMO allele in only 10% of immune cells restores host defense. Yet he developed inflammatory bowel disease (IBD). While gut infiltrating immune cells stained strongly for nuclear p65 indicating restored NEMO function, this was not the case in intestinal epithelial cells - in contrast to cells from conventional IBD patients. These results extend murine observations that epithelial NEMO-deficiency suffices to cause IBD. High anti-TNF doses controlled the intestinal inflammation and symptoms of Behçet's disease.
Collapse
Affiliation(s)
- Christian Klemann
- Center of Chronic Immunodeficiency, University Medical Center Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Ulm, Germany
| | - Deborah J Morris-Rosendahl
- Department of Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, Imperial College London, UK
| | - Katerina Vlantis
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marta Rizzi
- Center of Chronic Immunodeficiency, University Medical Center Freiburg, Germany
| | - Holm Uhlig
- Department of Pediatrics, and Translational Gastroenterology Unit, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Thomas Vraetz
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
| | - Carsten Speckmann
- Center of Chronic Immunodeficiency, University Medical Center Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
| | - Brigitte Strahm
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Klaus Schwarz
- Center of Chronic Immunodeficiency, University Medical Center Freiburg, Germany; Institute for Transfusion Medicine, University of Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Ulm, Germany
| | - Stephan Ehl
- Center of Chronic Immunodeficiency, University Medical Center Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany
| | - Jan C Rohr
- Center of Chronic Immunodeficiency, University Medical Center Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Germany.
| |
Collapse
|
32
|
Toll A, Margalef P, Masferrer E, Ferrándiz-Pulido C, Gimeno J, Pujol RM, Bigas A, Espinosa L. Active nuclear IKK correlates with metastatic risk in cutaneous squamous cell carcinoma. Arch Dermatol Res 2015; 307:721-9. [PMID: 26094020 DOI: 10.1007/s00403-015-1579-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/07/2015] [Accepted: 05/17/2015] [Indexed: 12/22/2022]
Abstract
About 5% of all cutaneous squamous cell carcinomas (cSCCs) metastasize, which is the principal cause of death by this type of cancer. However, to date there are no reliable biomarkers that categorize those SCC patients that will progress to metastasis. Nuclear active IKKα diminishes Maspin levels in prostate cancer facilitating its metastatic potential. In this paper, we describe the immunohistochemical analysis of active IKK and Maspin in 56 metastasizing and 51 non-metastasizing primary cSCC to measure their association with cancer behaviour. We also determined the effect of inhibiting IKK activity in SCC cell growth and migration in vitro. We found that high levels of nuclear active IKK in the primary tumour are predictive of cSCC metastatic capacity, in particular when combined with poor tumour differentiation and a history of tumour recurrence. Active IKK inversely correlated with Maspin levels in cSCC tumours, and samples negative for Maspin are exclusively found in the metastatic group. Mechanistically, IKK activity regulates cellular motility and SCC cell survival. Our results indicate that nuclear active IKK is a robust biomarker to predict cSCC outcome, and suggest the possibility of targeting IKK activity as a future therapy for treating metastatic cSCC.
Collapse
Affiliation(s)
- Agusti Toll
- Department of Dermatology, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.
| | - Pol Margalef
- Stem Cells and Cancer Research Laboratory, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
- Francis Crick Institute, Clare Hall Laboratory, Blanche Lane, South Mimms, EN6 3LD, Hertfordshire, UK
| | - Emili Masferrer
- Department of Dermatology, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | | | - Javier Gimeno
- Pathology Department, Parc de Salut Mar. Hospital del Mar, Barcelona, Spain
| | - Ramon Maria Pujol
- Department of Dermatology, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, Institut Hospital del Mar Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
33
|
Margalef P, Colomer C, Villanueva A, Montagut C, Iglesias M, Bellosillo B, Salazar R, Martínez-Iniesta M, Bigas A, Espinosa L. BRAF-induced tumorigenesis is IKKα-dependent but NF-κB-independent. Sci Signal 2015; 8:ra38. [PMID: 25900832 DOI: 10.1126/scisignal.2005886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KRAS mutations contribute to cell proliferation and survival in numerous cancers, including colorectal cancers (CRC). One pathway through which mutant KRAS acts is an inflammatory pathway that involves the kinase IKK and activates the transcription factor NF-κB. BRAF, a kinase that is downstream of KRAS, is mutated in a subset of CRC and is predictive of poor prognosis and therapeutic resistance. We found that, in contrast to mutant KRAS, mutant BRAF (BRAF(V600E)) did not trigger NF-κB activation but instead triggered the phosphorylation of a proteolytic fragment of IKKα (p45-IKKα) in CRC cells. BRAF(V600E) CRC cells had a high abundance of phosphorylated p45-IKKα, which was decreased by a RAF inhibitor. However, the abundance and DNA binding of NF-κB in these cells were unaffected by the RAF inhibitor, and expression of BRAF(V600E) in human embryonic kidney-293T cells did not activate an NF-κB reporter. Moreover, BRAF-induced transformation of NIH-3T3 cells and BRAF-dependent transcription required phosphorylation of p45-IKKα. The kinase TAK1, which was associated with the endosomal compartment, phosphorylated p45-IKKα. Inhibition of endosomal vacuolar adenosine triphosphatase (V-ATPase) with chloroquine or bafilomycin A1 blocked p45-IKKα phosphorylation and induced apoptosis in BRAF-mutant CRC cells independent of autophagy. Treating mice with V-ATPase inhibitors reduced the growth and metastasis of BRAF(V600E) xenograft tumors in the cecum of mice.
Collapse
Affiliation(s)
- Pol Margalef
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Carlota Colomer
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Alberto Villanueva
- Laboratori de Recerca Translacional, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Institut Català d'Oncologia, Gran Via km 2.7, Hospitalet, Barcelona 08907, Spain
| | - Clara Montagut
- Department of Oncology, IMIM, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Mar Iglesias
- Department of Pathology, IMIM, Barcelona 08003, Spain
| | | | - Ramón Salazar
- Department of Oncology, Hospital de Bellvitge, Hospitalet, Barcelona 08907, Spain
| | - María Martínez-Iniesta
- Laboratori de Recerca Translacional, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Institut Català d'Oncologia, Gran Via km 2.7, Hospitalet, Barcelona 08907, Spain
| | - Anna Bigas
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Lluís Espinosa
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain.
| |
Collapse
|
34
|
Espinosa L, Margalef P, Bigas A. Non-conventional functions for NF-κB members: the dark side of NF-κB. Oncogene 2014; 34:2279-87. [DOI: 10.1038/onc.2014.188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023]
|
35
|
Göktuna SI, Canli O, Bollrath J, Fingerle AA, Horst D, Diamanti MA, Pallangyo C, Bennecke M, Nebelsiek T, Mankan AK, Lang R, Artis D, Hu Y, Patzelt T, Ruland J, Kirchner T, Taketo MM, Chariot A, Arkan MC, Greten FR. IKKα promotes intestinal tumorigenesis by limiting recruitment of M1-like polarized myeloid cells. Cell Rep 2014; 7:1914-25. [PMID: 24882009 DOI: 10.1016/j.celrep.2014.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 12/18/2022] Open
Abstract
The recruitment of immune cells into solid tumors is an essential prerequisite of tumor development. Depending on the prevailing polarization profile of these infiltrating leucocytes, tumorigenesis is either promoted or blocked. Here, we identify IκB kinase α (IKKα) as a central regulator of a tumoricidal microenvironment during intestinal carcinogenesis. Mice deficient in IKKα kinase activity are largely protected from intestinal tumor development that is dependent on the enhanced recruitment of interferon γ (IFNγ)-expressing M1-like myeloid cells. In IKKα mutant mice, M1-like polarization is not controlled in a cell-autonomous manner but, rather, depends on the interplay of both IKKα mutant tumor epithelia and immune cells. Because therapies aiming at the tumor microenvironment rather than directly at the mutated cancer cell may circumvent resistance development, we suggest IKKα as a promising target for colorectal cancer (CRC) therapy.
Collapse
Affiliation(s)
- Serkan I Göktuna
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Unit of Signal Transduction (GIGA-ST), GIGA-R, University of Liege and WELBIO, CHU, Sart-Tilman, 4000 Liege, Belgium
| | - Ozge Canli
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Julia Bollrath
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Alexander A Fingerle
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - David Horst
- Institute of Pathology, Ludwig-Maximilian-University, 80337 Munich, Germany
| | - Michaela A Diamanti
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Charles Pallangyo
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Moritz Bennecke
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Tim Nebelsiek
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Arun K Mankan
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - David Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yinling Hu
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21701, USA
| | - Thomas Patzelt
- Department of Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Jürgen Ruland
- Department of Clinical Chemistry, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Ludwig-Maximilian-University, 80337 Munich, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Alain Chariot
- Unit of Signal Transduction (GIGA-ST), GIGA-R, University of Liege and WELBIO, CHU, Sart-Tilman, 4000 Liege, Belgium
| | - Melek C Arkan
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Florian R Greten
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Hinz M, Scheidereit C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep 2013; 15:46-61. [PMID: 24375677 DOI: 10.1002/embr.201337983] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The IκB kinase (IKK) complex is the signal integration hub for NF-κB activation. Composed of two serine-threonine kinases (IKKα and IKKβ) and the regulatory subunit NEMO (also known as IKKγ), the IKK complex integrates signals from all NF-κB activating stimuli to catalyze the phosphorylation of various IκB and NF-κB proteins, as well as of other substrates. Since the discovery of the IKK complex components about 15 years ago, tremendous progress has been made in the understanding of the IKK architecture and its integration into signaling networks. In addition to the control of NF-κB, IKK subunits mediate the crosstalk with other pathways, thereby extending the complexity of their biological function. This review summarizes recent advances in IKK biology and focuses on emerging aspects of IKK structure, regulation and function.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|