1
|
Lin H, Yin L, Liu W, Li R, Jiang T, Yang M, Cao Y, Wang S, Yu Y, Chen C, Guo X, Wang W, Liu H, Dai Y, Yan J, Lin Y, Ding Y, Ruan C, Yang L, Wu T, Tao J, Chen L. Muscle-Derived Small Extracellular Vesicles Mediate Exercise-Induced Cognitive Protection in Chronic Cerebral Hypoperfusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410209. [PMID: 40271743 DOI: 10.1002/advs.202410209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 04/06/2025] [Indexed: 04/25/2025]
Abstract
Physical exercise protects against cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, the mechanisms through which exercise sends signals from the periphery to the central nervous system remain incompletely understood. This study demonstrated that exercise promotes the secretion of muscle-derived small extracellular vesicles (sEVs), which facilitate interorgan communication between the muscle and the brain. Systematic delivery of muscle-derived sEVs enhances synaptic plasticity and alleviated cognitive impairment in CCH. Notably, miRNA sequencing reveal miR-17/20a-5p as key cargos in sEVs involved in the exercise-induced muscle-brain crosstalk. Muscle-derived sEVs are also identified as the primary source of swimming-induced miR-17/20a-5p in circulating sEVs. Mechanistically, miR-17/20a-5p binds to the DEP-domain containing mTOR-interacting protein (DEPTOR) and activates the mammalian target of rapamycin (mTOR) pathway in the hippocampus. Depletion of miR-17/20a-5p from muscle-derived sEVs impairs the exercise-induced enhancement of synaptic plasticity and cognitive function. Moreover, overexpression of DEPTOR in the hippocampus attenuates the cognitive benefits of exercise. Conversely, hippocampus-specific activation of mTOR reverses these effects, highlighting the crucial role of mTOR in mediating the positive effects of exercise. Collectively, these findings identify miR-17/20a-5p in muscle-derived sEVs as the exercise-induced myokine with potent effects on the brain, emphasizing the therapeutic potential of exercise in managing cognitive impairment.
Collapse
Affiliation(s)
- Huawei Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Lianhua Yin
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China
| | - Weilin Liu
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Rui Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Tao Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yajun Cao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sinuo Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yan Yu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Cong Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaoqin Guo
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wenju Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huanhuan Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yaling Dai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiamin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yanting Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yanyi Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Chendong Ruan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Lei Yang
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Tiecheng Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Lidan Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| |
Collapse
|
2
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Liu S, Zhang R, Hallajzadeh J. Role of exercise on ncRNAs and exosomal ncRNAs in preventing neurodegenerative diseases: a narrative review. Mol Med 2025; 31:51. [PMID: 39920595 PMCID: PMC11803956 DOI: 10.1186/s10020-025-01091-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Engaging in activity has proven to have beneficial effects on different facets of well-being, such as conditions related to the deterioration of the nervous system. Non-coding RNAs (ncRNAs) and exosomal ncRNAs associated with vesicles have been recognized as influencers of gene expression and cell signaling, potentially contributing to the positive impact of physical activity on neurodegenerative conditions. It is hypothesized that exercise-induced changes in ncRNA expression may regulate key processes involved in neuroprotection, including neuroinflammation, oxidative stress, protein aggregation, and synaptic function. Exercise has shown promise in preventing neurodegenerative diseases (NDs), and ncRNAs and exosomal ncRNAs are emerging as potential mediators of these benefits. In review, we explored how ncRNAs and exosomal ncRNAs play a role in enhancing the impacts of activity on neurodegenerative disorders for future treatments. Research studies, both preclinical and clinical, that have documented the use of various exercises and their effects on ncRNAs and exosomal ncRNAs for the treatment of NDs have been compiled and enlisted from the PubMed database, spanning the time period from the year 2000 up to the current time. Studies show that manipulating specific ncRNAs or harnessing exercise-induced changes in ncRNA expression and exosomal cargo could potentially be utilized as therapeutic strategies for preventing or treating NDs. In conclusion, studies suggest that various exercise modalities, including aerobic, resistance, and high-intensity interval training, can modulate the expression of ncRNAs and exosomal ncRNAs in the context of NDs. The altered ncRNA profiles may contribute to the neuroprotective and therapeutic effects observed with exercise interventions. However, more research is needed to fully understand the underlying mechanisms and to further explore the potential of exercise-induced ncRNA signatures as biomarkers and therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shangwu Liu
- Department of Physical Education, Lyuliang University, Lishi, 033000, Shanxi, China
| | - Runhong Zhang
- Department of Physical Education, Lyuliang University, Lishi, 033000, Shanxi, China.
| | - Jamal Hallajzadeh
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
4
|
Todorov H, Weißbach S, Schlichtholz L, Mueller H, Hartwich D, Gerber S, Winter J. Stage-specific expression patterns and co-targeting relationships among miRNAs in the developing mouse cerebral cortex. Commun Biol 2024; 7:1366. [PMID: 39433948 PMCID: PMC11493953 DOI: 10.1038/s42003-024-07092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
microRNAs are crucial regulators of brain development, however, miRNA regulatory networks are not sufficiently well characterized. By performing small RNA-seq of the mouse embryonic cortex at E14, E17, and P0 as well as in neural progenitor cells and neurons, here we detected clusters of miRNAs that were co-regulated at distinct developmental stages. miRNAs such as miR-92a/b acted as hubs during early, and miR-124 and miR-137 during late neurogenesis. Notably, validated targets of P0 hub miRNAs were enriched for downregulated genes related to stem cell proliferation, negative regulation of neuronal differentiation and RNA splicing, among others, suggesting that miRNAs are particularly important for modulating transcriptional programs of crucial factors that guide the switch to neuronal differentiation. As most genes contain binding sites for more than one miRNA, we furthermore constructed a co-targeting network where numerous miRNAs shared more targets than expected by chance. Using luciferase reporter assays, we demonstrated that simultaneous binding of miRNA pairs to neurodevelopmentally relevant genes exerted an enhanced transcriptional silencing effect compared to single miRNAs. Taken together, we provide a comprehensive resource of miRNA longitudinal expression changes during murine corticogenesis. Furthermore, we highlight several potential mechanisms through which miRNA regulatory networks can shape embryonic brain development.
Collapse
Affiliation(s)
- Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephan Weißbach
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Laura Schlichtholz
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program of Translational Neurosciences, University Medical Center Mainz, Mainz, Germany
| | - Hanna Mueller
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dewi Hartwich
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Jin M, Xie M, Liu Y, Song H, Zhang M, Li W, Li X, Jia N, Dong L, Lu Q, Xue F, Yan L, Yu Q. Circulating miR-30e-3p induces disruption of neurite development in SH-SY5Y cells by targeting ABI1, a novel biomarker for schizophrenia. J Psychiatr Res 2024; 174:84-93. [PMID: 38626565 DOI: 10.1016/j.jpsychires.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Schizophrenia (SCZ) represents a set of enduring mental illnesses whose underlying etiology remains elusive, posing a significant challenge to public health. Previous studies have shown that the neurodevelopmental process involving small molecules such as miRNA and mRNA is one of the etiological hypotheses of SCZ. We identified and verified that miR-30e-3p and ABI1 can be used as biomarkers in peripheral blood transcriptome sequencing data of patients with SCZ, and confirmed the regulatory relationship between them. To further explore their involvement, we employed retinoic acid (RA)-treated SH-SY5Y differentiated cells as a model system. Our findings indicate that in RA-induced SH-SY5Y cells, ABI1 expression is up-regulated, while miR-30e-3p expression is down-regulated. Functionally, both miR-30e-3p down-regulation and ABI1 up-regulation promote apoptosis and inhibit the proliferation of SH-SY5Y cells. Subsequently, the immunofluorescence assay detected the expression location and abundance of the neuron-specific protein β-tubulinIII. The expression levels of neuronal marker genes MAPT, TUBB3 and SYP were detected by RT-qPCR. We observed that these changes of miR-30e-3p and ABI1 inhibit the neurite growth of SH-SY5Y cells. Rescue experiments further support that ABI1 silencing can correct miR-30e-3p down-regulation-induced SH-SY5Y neurodevelopmental defects. Collectively, our results establish that miR-30e-3p's regulation of neurite development in SH-SY5Y cells is mediated through ABI1, highlighting a potential mechanism in SCZ pathogenesis.
Collapse
Affiliation(s)
- Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Mengtong Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Haideng Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Min Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Weizhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Lin Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Qingxing Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Fengyu Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China
| | - Lijuan Yan
- Department of Psychology, Changchun Psychological Hospital, Changchun 130052, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Türk O, Demirel N, Yaltirik CK, Kaya M, Şahin ÖF, Yilmaz SG, Akdeniz FT, Isbir T. Unraveling the Impact of miRNA-17 in Glial Tumors and Cerebral Metastases: A Step Towards Enhanced Diagnosis and Prognosis. In Vivo 2024; 38:652-656. [PMID: 38418125 PMCID: PMC10905478 DOI: 10.21873/invivo.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND/AIM MicroRNAs (miRNAs) have been identified as key regulators in various cancer types, including brain tumors. This study aimed to investigate the differential expression of miRNA-17 in glial tumors, cerebral metastases, and normal glial tissues. MATERIALS AND METHODS A total of 42 patients were included in this cross-sectional study. Tissue samples were obtained from patients with glial tumors or cerebral metastases and from normal glial tissues. miRNA-17 expression levels were computed by using real-time polymerase chain reaction. Receiver operating characteristics analysis was used to determine the predictive potential of miRNA-17. RESULTS In this study, we demonstrated a statistically significant difference in miRNA-17 expression levels between glial tumors and the control group (p=0.001), with higher miRNA-17 expression observed in glial tumors. Similarly, there was statistically higher miRNA-17 expression in metastatic cases compared with the control group (p=0.007). CONCLUSION These findings suggest miRNA-17 might be a potential biomarker for differentiating glial tumors and cerebral metastases from normal glial tissue, although further research is necessary to validate these findings and investigate the potential role of miRNA-17 in the pathogenesis of these brain tumors.
Collapse
Affiliation(s)
- Okan Türk
- Department of Neurosurgery, İstanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey;
| | - Nail Demirel
- Department of Neurosurgery, İstanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Cumhur Kaan Yaltirik
- Department of Neurosurgery, Ümraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Kaya
- Department of Neurosurgery, Sakarya Training and Research Hospital, Sakarya University, Sakarya, Turkey
| | - Ömer Faruk Şahin
- Department of Neurosurgery, Ordu Training and Research Hospital, Ordu, Turkey
| | - Seda Güleç Yilmaz
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatma Tuba Akdeniz
- Department of Genetics and Bioengineering, Faculty of Engineering and Nature Sciences, Okan University, Istanbul, Turkey
| | - Turgay Isbir
- Department of Molecular Medicine, Institute of Health Sciences, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
7
|
Sharma H, Kaushik M, Goswami P, Sreevani S, Chakraborty A, Ashique S, Pal R. Role of miRNAs in Brain Development. Microrna 2024; 13:96-109. [PMID: 38571343 DOI: 10.2174/0122115366287127240322054519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
Non-coding RNAs that are small in size, called microRNAs (miRNAs), exert a consequence in neutralizing gene activity after transcription. The nervous system is a massively expressed organ, and an expanding body of research reveals the vital functions that miRNAs play in the brain's growth and neural activity. The significant benefit of miRNAs on the development of the central nervous system is currently shown through new scientific methods that concentrate on targeting and eradicating vital miRNA biogenesis pathways the elements involving Dicer and DGCR8. Modulation of miRNA has been associated with numerous essential cellular processes on neural progenitors, like differentiation, proliferation, and destiny determination. Current research discoveries that emphasize the significance of miRNAs in the complex process of brain development are included in this book. The miRNA pathway plays a major role in brain development, its operational dynamics, and even diseases. Recent studies on miRNA-mediated gene regulation within neural discrepancy, the circadian period and synaptic remodeling are signs of this. We also discussed how these discoveries may affect our comprehension of the fundamental processes behind brain diseases, highlighting the novel therapeutic opportunities miRNAs provide for treating various human illnesses.
Collapse
Affiliation(s)
- Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP), 244001, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Gwalior, 474005, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Maharashtra Educational Society's H. K. College of Pharmacy, Mumbai, Maharashtra, 400102, India
| | - Sanakattula Sreevani
- Department of Pharmacology, Vivekananda College of Pharmacy, Rajajinagar, Bengaluru, Karnataka, 560055, India
| | - Ananya Chakraborty
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, 700064, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Radheshyam Pal
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| |
Collapse
|
8
|
Ma YM, Zhao L. Mechanism and Therapeutic Prospect of miRNAs in Neurodegenerative Diseases. Behav Neurol 2023; 2023:8537296. [PMID: 38058356 PMCID: PMC10697780 DOI: 10.1155/2023/8537296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 08/30/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023] Open
Abstract
MicroRNAs (miRNAs) are the smallest class of noncoding RNAs, which widely exist in animals and plants. They can inhibit translation or overexpression by combining with mRNA and participate in posttranscriptional regulation of genes, resulting in reduced expression of target proteins, affecting the development, growth, aging, metabolism, and other physiological and pathological processes of animals and plants. It is a powerful negative regulator of gene expression. It mediates the information exchange between different cellular pathways in cellular homeostasis and stress response and regulates the differentiation, plasticity, and neurotransmission of neurons. In neurodegenerative diseases, in addition to the complex interactions between genetic susceptibility and environmental factors, miRNAs can serve as a promising diagnostic tool for diseases. They can also increase or reduce neuronal damage by regulating the body's signaling pathways, immune system, stem cells, gut microbiota, etc. They can not only affect the occurrence of diseases and exacerbate disease progression but also promote neuronal repair and reduce apoptosis, to prevent and slow down the development of diseases. This article reviews the research progress of miRNAs on the mechanism and treatment of neurodegenerative diseases in the nervous system. This trial is registered with NCT01819545, NCT02129452, NCT04120493, NCT04840823, NCT02253732, NCT02045056, NCT03388242, NCT01992029, NCT04961450, NCT03088839, NCT04137926, NCT02283073, NCT04509271, NCT02859428, and NCT05243017.
Collapse
Affiliation(s)
- Ya-Min Ma
- Acupuncture and Massage Department of Nanyang Traditional Chinese Medicine Hospital, Wo Long District, Nanyang City 473000, China
| | - Lan Zhao
- Tianjin Key Laboratory of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Xiqing District, Tianjin 300381, China
| |
Collapse
|
9
|
Li X, Jin H, Lv Y, Liu C, Luo X, Liu J, Zhang Q, Yu Y, Zhao Z. Analysis of microRNA expression profiles during the differentiation of chicken embryonic stem cells into male germ cells. Anim Biotechnol 2023; 34:1120-1131. [PMID: 35020556 DOI: 10.1080/10495398.2021.2013858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The differentiation of embryonic stem cells (ESCs) into germ cells in vitro could have very promising applications for infertility treatment and could provide an excellent model for uncovering the molecular mechanisms of germline generation. This study aimed to investigate the differentially expressed miRNAs (DEMs) during the differentiation of chicken ESCs (cESCs) into male germ cells and to establish a profile of the DEMs. Cells before and after induction were subjected to miRNA sequencing (miRNA-seq). A total of 113 DEMs were obtained, including 61 upregulated and 52 downregulated DEMs. GO and KEGG enrichment analyses showed that the target genes were enriched mainly in the MAPK signaling pathway, HTLV infection signaling pathway, cell adhesion molecule (CAM)-related pathways, viral myocarditis, Wnt signaling pathway, ABC transporters, TGF-β signaling pathways, Notch signaling pathways and insulin signaling pathway. The target genes of the miRNAs were related to cell binding, cell parts and biological regulatory processes. Six DEMs, let-7k-5p, miR-132c-5p, miR-193a-5p, miR-202-5p, miR-383-5p and miR-6553-3p, were assessed by qRT-PCR, and the results were consistent with the results of miRNA-seq. Based on qRT-PCR and western blot verification, miR-383-5p and its putative target gene STRN3 were selected to construct an STRN3 3'-UTR dual-luciferase gene reporter vector and its mutant vector. The double luciferase reporter activity of the cotransfected STRN3-WT + miR-383-5p mimics group was significantly lower (by approximately 46%) than that of the other five groups (p < 0.01). There was no significant difference in luciferase activity among the other 5 groups. This study establishes a DEM profile during the process of cESC differentiation into male germ cells; illustrates the mechanisms by which miRNAs regulate target genes; provides a theoretical basis for further research on the mechanisms of the formation and regulation of male germ cells; and provides an important strategy for gene editing, animal genetic resource protection and transgenic animal production.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Haiguo Jin
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Yang Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chen Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Xiaotong Luo
- Agricultural College, Yanbian University, Yanji, China
| | - Jianqiang Liu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Qi Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Yongsheng Yu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| | - Zhongli Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Gong Zhu Ling, China
| |
Collapse
|
10
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
12
|
Koo B, Lee KH, Ming GL, Yoon KJ, Song H. Setting the clock of neural progenitor cells during mammalian corticogenesis. Semin Cell Dev Biol 2023; 142:43-53. [PMID: 35644876 PMCID: PMC9699901 DOI: 10.1016/j.semcdb.2022.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Radial glial cells (RGCs) as primary neural stem cells in the developing mammalian cortex give rise to diverse types of neurons and glial cells according to sophisticated developmental programs with remarkable spatiotemporal precision. Recent studies suggest that regulation of the temporal competence of RGCs is a key mechanism for the highly conserved and predictable development of the cerebral cortex. Various types of epigenetic regulations, such as DNA methylation, histone modifications, and 3D chromatin architecture, play a key role in shaping the gene expression pattern of RGCs. In addition, epitranscriptomic modifications regulate temporal pre-patterning of RGCs by affecting the turnover rate and function of cell-type-specific transcripts. In this review, we summarize epigenetic and epitranscriptomic regulatory mechanisms that control the temporal competence of RGCs during mammalian corticogenesis. Furthermore, we discuss various developmental elements that also dynamically regulate the temporal competence of RGCs, including biochemical reaction speed, local environmental changes, and subcellular organelle remodeling. Finally, we discuss the underlying mechanisms that regulate the interspecies developmental tempo contributing to human-specific features of brain development.
Collapse
Affiliation(s)
- Bonsang Koo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Heon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Piscopo P, Grasso M, Manzini V, Zeni A, Castelluzzo M, Fontana F, Talarico G, Castellano AE, Rivabene R, Crestini A, Bruno G, Ricci L, Denti MA. Identification of miRNAs regulating MAPT expression and their analysis in plasma of patients with dementia. Front Mol Neurosci 2023; 16:1127163. [PMID: 37324585 PMCID: PMC10266489 DOI: 10.3389/fnmol.2023.1127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Background Dementia is one of the most common diseases in elderly people and hundreds of thousand new cases per year of Alzheimer's disease (AD) are estimated. While the recent decade has seen significant advances in the development of novel biomarkers to identify dementias at their early stage, a great effort has been recently made to identify biomarkers able to improve differential diagnosis. However, only few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been described so far. Methods We searched for miRNAs regulating MAPT translation. We employed a capture technology able to find the miRNAs directly bound to the MAPT transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls (HCs) (n = 42) by using qRT-PCR. Results Firstly, we found all miRNAs that interact with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau levels increasing or reducing miRNA levels by using cell transfections with plasmids expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex. Respect to HC, the only difference is showed in men with AD who have reduced levels of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients with FTD maintain this trend in both genders. Conclusions Our results seem to identify miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC, while miR-320b to discriminate FTD from HC, particularly in males. Combining three miRNAs improves the accuracy only in females, particularly for differential diagnosis (FTD vs. AD) and to distinguish FTD from HC.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome “Sapienza”, Rome, Italy
| | - Andrea Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Francesca Fontana
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | | | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
14
|
Fedorova V, Amruz Cerna K, Oppelt J, Pospisilova V, Barta T, Mraz M, Bohaciakova D. MicroRNA Profiling of Self-Renewing Human Neural Stem Cells Reveals Novel Sets of Differentially Expressed microRNAs During Neural Differentiation In Vitro. Stem Cell Rev Rep 2023:10.1007/s12015-023-10524-2. [PMID: 36918496 PMCID: PMC10366325 DOI: 10.1007/s12015-023-10524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The involvement of microRNAs (miRNAs) in orchestrating self-renewal and differentiation of stem cells has been revealed in a number of recent studies. And while in human pluripotent stem cells, miRNAs have been directly linked to the core pluripotency network, including the cell cycle regulation and the maintenance of the self-renewing capacity, their role in the onset of differentiation in other contexts, such as determination of neural cell fate, remains poorly described. To bridge this gap, we used three model cell types to study miRNA expression patterns: human embryonic stem cells (hESCs), hESCs-derived self-renewing neural stem cells (NSCs), and differentiating NSCs. The comprehensive miRNA profiling presented here reveals novel sets of miRNAs differentially expressed during human neural cell fate determination in vitro. Furthermore, we report a miRNA expression profile of self-renewing human NSCs, which has been lacking to this date. Our data also indicates that miRNA clusters enriched in NSCs share the target-determining seed sequence with cell cycle regulatory miRNAs expressed in pluripotent hESCs. Lastly, our mechanistic experiments confirmed that cluster miR-17-92, one of the NSCs-enriched clusters, is directly transcriptionally regulated by transcription factor c-MYC.
Collapse
Affiliation(s)
- Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
15
|
Sullivan G, Vaher K, Blesa M, Galdi P, Stoye DQ, Quigley AJ, Thrippleton MJ, Norrie J, Bastin ME, Boardman JP. Breast Milk Exposure is Associated With Cortical Maturation in Preterm Infants. Ann Neurol 2023; 93:591-603. [PMID: 36412221 DOI: 10.1002/ana.26559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Breast milk exposure is associated with improved neurocognitive outcomes following preterm birth but the neural substrates linking breast milk with outcome are uncertain. We tested the hypothesis that high versus low breast milk exposure in preterm infants results in cortical morphology that more closely resembles that of term-born infants. METHODS We studied 135 preterm (<32 weeks' gestation) and 77 term infants. Feeding data were collected from birth until hospital discharge and brain magnetic resonance imaging (MRI) was performed at term-equivalent age. Cortical indices (volume, thickness, surface area, gyrification index, sulcal depth, and curvature) and diffusion parameters (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], axial diffusivity [AD], neurite density index [NDI], and orientation dispersion index [ODI]) were compared between preterm infants who received exclusive breast milk for <75% of inpatient days, preterm infants who received exclusive breast milk for ≥75% of inpatient days and term-born controls. To investigate a dose response effect, we performed linear regression using breast milk exposure quartile weighted by propensity scores. RESULTS In preterm infants, high breast milk exposure was associated with reduced cortical gray matter volume (d = 0.47, 95% confidence interval [CI] = 0.14 to 0.94, p = 0.014), thickness (d = 0.42, 95% CI = 0.08 to 0.84, p = 0.039), and RD (d = 0.38, 95% CI = 0.002 to 0.77, p = 0.039), and increased FA (d = -0.38, 95% CI = -0.74 to -0.01, p = 0.037) after adjustment for age at MRI, which was similar to the cortical phenotype observed in term-born controls. Breast milk exposure quartile was associated with cortical volume (ß = -0.192, 95% CI = -0.342 to -0.042, p = 0.017), FA (ß = 0.223, 95% CI = 0.075 to 0.372, p = 0.007), and RD (ß = -0.225, 95% CI = -0.373 to -0.076, p = 0.007) following adjustment for age at birth, age at MRI, and weighted by propensity scores, suggesting a dose effect. INTERPRETATION High breast milk exposure following preterm birth is associated with a cortical imaging phenotype that more closely resembles the brain morphology of term-born infants and effects appear to be dose-dependent. ANN NEUROL 2023;93:591-603.
Collapse
Affiliation(s)
- Gemma Sullivan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kadi Vaher
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Manuel Blesa
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Paola Galdi
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David Q Stoye
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Children and Young People, Edinburgh, UK
| | - Michael J Thrippleton
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| | - John Norrie
- Usher Institute, Edinburgh Clinical Trials Unit, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Cremisi F, Vignali R. Translational control in cortical development. Front Neuroanat 2023; 16:1087949. [PMID: 36699134 PMCID: PMC9868627 DOI: 10.3389/fnana.2022.1087949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Differentiation of specific neuronal types in the nervous system is worked out through a complex series of gene regulation events. Within the mammalian neocortex, the appropriate expression of key transcription factors allocates neurons to different cortical layers according to an inside-out model and endows them with specific properties. Precise timing is required to ensure the proper sequential appearance of key transcription factors that dictate the identity of neurons within the different cortical layers. Recent evidence suggests that aspects of this time-controlled regulation of gene products rely on post-transcriptional control, and point at micro-RNAs (miRs) and RNA-binding proteins as important players in cortical development. Being able to simultaneously target many different mRNAs, these players may be involved in controlling the global expression of gene products in progenitors and post-mitotic cells, in a gene expression framework where parallel to transcriptional gene regulation, a further level of control is provided to refine and coordinate the appearance of the final protein products. miRs and RNA-binding proteins (RBPs), by delaying protein appearance, may play heterochronic effects that have recently been shown to be relevant for the full differentiation of cortical neurons and for their projection abilities. Such heterochronies may be the base for evolutionary novelties that have enriched the spectrum of cortical cell types within the mammalian clade.
Collapse
Affiliation(s)
- Federico Cremisi
- Laboratory of Biology, Department of Sciences, Scuola Normale Superiore, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| |
Collapse
|
17
|
Favaloro F, DeLeo AM, Delgado AC, Doetsch F. miR-17∼92 exerts stage-specific effects in adult V-SVZ neural stem cell lineages. Cell Rep 2022; 41:111773. [PMID: 36476846 DOI: 10.1016/j.celrep.2022.111773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 06/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) in the adult ventricular-subventricular zone (V-SVZ) generate neurons and glia throughout life. MicroRNAs are important post-transcriptional regulators frequently acting in a context-dependent manner. Here, microRNA profiling defines cohorts of miRNAs in quiescent and activated NSCs, with miR-17∼92 highly upregulated in activated NSCs and transit amplifying cells (TACs) versus quiescent NSCs. Conditional miR-17∼92 deletion in the adult V-SVZ results in stage-specific effects. In NSCs, it reduces proliferation in vitro and in vivo, whereas in TACs, it selectively shifts neurogenic OLIG2- DLX2+ toward oligodendrogenic OLIG2+ DLX2- TACs, due to de-repression of an oligodendrogenic program, leading to increased oligodendrogenesis in vivo. This differential regulation of TAC subpopulations highlights the importance of TAC heterogeneity. Finally, in the NSC lineage for intraventricular oligodendrocyte progenitors, miR-17∼92 deletion decreases proliferation and maturation. Together, these findings reveal multiple stage-specific functions of the miR-17∼92 cluster within different adult V-SVZ lineages.
Collapse
Affiliation(s)
| | - Annina M DeLeo
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Ana C Delgado
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
18
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
19
|
Wagner NR, Sinha A, Siththanandan V, Kowalchuk AM, MacDonald JL, Tharin S. miR-409-3p represses Cited2 to refine neocortical layer V projection neuron identity. Front Neurosci 2022; 16:931333. [PMID: 36248641 PMCID: PMC9558290 DOI: 10.3389/fnins.2022.931333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary emergence of the corticospinal tract and corpus callosum are thought to underpin the expansion of complex motor and cognitive abilities in mammals. Molecular mechanisms regulating development of the neurons whose axons comprise these tracts, the corticospinal and callosal projection neurons, remain incompletely understood. Our previous work identified a genomic cluster of microRNAs (miRNAs), Mirg/12qF1, that is unique to placental mammals and specifically expressed by corticospinal neurons, and excluded from callosal projection neurons, during development. We found that one of these, miR-409-3p, can convert layer V callosal into corticospinal projection neurons, acting in part through repression of the transcriptional regulator Lmo4. Here we show that miR-409-3p also directly represses the transcriptional co-regulator Cited2, which is highly expressed by callosal projection neurons from the earliest stages of neurogenesis. Cited2 is highly expressed by intermediate progenitor cells (IPCs) in the embryonic neocortex while Mirg, which encodes miR-409-3p, is excluded from these progenitors. miR-409-3p gain-of-function (GOF) in IPCs results in a phenocopy of established Cited2 loss-of-function (LOF). At later developmental stages, both miR-409-3p GOF and Cited2 LOF promote the expression of corticospinal at the expense of callosal projection neuron markers in layer V. Taken together, this work identifies previously undescribed roles for miR-409-3p in controlling IPC numbers and for Cited2 in controlling callosal fate. Thus, miR-409-3p, possibly in cooperation with other Mirg/12qF1 miRNAs, represses Cited2 as part of the multifaceted regulation of the refinement of neuronal cell fate within layer V, combining molecular regulation at multiple levels in both progenitors and post-mitotic neurons.
Collapse
Affiliation(s)
- Nikolaus R. Wagner
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Ashis Sinha
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Verl Siththanandan
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States
| | - Angelica M. Kowalchuk
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L. MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States,*Correspondence: Jessica L. MacDonald,
| | - Suzanne Tharin
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States,Division of Neurosurgery, Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, United States,Suzanne Tharin,
| |
Collapse
|
20
|
Arzhanov I, Sintakova K, Romanyuk N. The Role of miR-20 in Health and Disease of the Central Nervous System. Cells 2022; 11:cells11091525. [PMID: 35563833 PMCID: PMC9100679 DOI: 10.3390/cells11091525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022] Open
Abstract
Current understanding of the mechanisms underlying central nervous system (CNS) injury is limited, and traditional therapeutic methods lack a molecular approach either to prevent acute phase or secondary damage, or to support restorative mechanisms in the nervous tissue. microRNAs (miRNAs) are endogenous, non-coding RNA molecules that have recently been discovered as fundamental and post-transcriptional regulators of gene expression. The capacity of microRNAs to regulate the cell state and function through post-transcriptionally silencing hundreds of genes are being acknowledged as an important factor in the pathophysiology of both acute and chronic CNS injuries. In this study, we have summarized the knowledge concerning the pathophysiology of several neurological disorders, and the role of most canonical miRNAs in their development. We have focused on the miR-20, the miR-17~92 family to which miR-20 belongs, and their function in the normal development and disease of the CNS.
Collapse
Affiliation(s)
- Ivan Arzhanov
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Department of Neuroscience, 2nd Medical Faculty, Charles University, 150 00 Prague, Czech Republic
| | - Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Department of Neuroscience, 2nd Medical Faculty, Charles University, 150 00 Prague, Czech Republic
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (I.A.); (K.S.)
- Correspondence:
| |
Collapse
|
21
|
Magner E, Sandoval-Sanchez P, Kramer AC, Thummel R, Hitchcock PF, Taylor SM. Disruption of miR-18a Alters Proliferation, Photoreceptor Replacement Kinetics, Inflammatory Signaling, and Microglia/Macrophage Numbers During Retinal Regeneration in Zebrafish. Mol Neurobiol 2022; 59:2910-2931. [PMID: 35246819 PMCID: PMC9018604 DOI: 10.1007/s12035-022-02783-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), photoreceptor loss reprograms Müller glia to function as stem cells, producing progenitors that regenerate photoreceptors. MicroRNAs (miRNAs) regulate CNS neurogenesis, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. In the embryonic zebrafish retina, miR-18a regulates photoreceptor differentiation. The purpose of the current study was to determine, in zebrafish, the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in situ hybridization, and immunohistochemistry showed that miR-18a expression increases throughout the retina between 1 and 5 days post-injury (dpi). To test miR-18a function during photoreceptor regeneration, we used homozygous miR-18a mutants (miR-18ami5012), and knocked down miR-18a with morpholino oligonucleotides. During photoreceptor regeneration, miR-18ami5012 retinas have fewer mature photoreceptors than WT at 7 and 10 dpi, but there is no difference at 14 dpi, indicating that photoreceptor regeneration is delayed. Labeling dividing cells with 5-bromo-2'-deoxyuridine (BrdU) showed that at 7 and 10 dpi, there are excess dividing progenitors in both mutants and morphants, indicating that miR-18a negatively regulates injury-induced proliferation. Tracing 5-ethynyl-2'-deoxyuridine (EdU) and BrdU-labeled cells showed that in miR-18ami5012 retinas excess progenitors migrate to other retinal layers in addition to the photoreceptor layer. Inflammation is critical for photoreceptor regeneration, and RT-qPCR showed that in miR-18ami5012 retinas, inflammatory gene expression and microglia activation are prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that in the injured zebrafish retina, disruption of miR-18a alters proliferation, inflammation, the microglia/macrophage response, and the timing of photoreceptor regeneration.
Collapse
Affiliation(s)
- Evin Magner
- Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Pamela Sandoval-Sanchez
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Ashley C Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, W. K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Scott M Taylor
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA.
| |
Collapse
|
22
|
Gao YN, Zhang YQ, Wang H, Deng YL, Li NM. A New Player in Depression: MiRNAs as Modulators of Altered Synaptic Plasticity. Int J Mol Sci 2022; 23:ijms23094555. [PMID: 35562946 PMCID: PMC9101307 DOI: 10.3390/ijms23094555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
Depression is a psychiatric disorder that presents with a persistent depressed mood as the main clinical feature and is accompanied by cognitive impairment. Changes in neuroplasticity and neurogenesis greatly affect depression. Without genetic changes, epigenetic mechanisms have been shown to function by regulating gene expression during the body’s adaptation to stress. Studies in recent years have shown that as important regulatory factors in epigenetic mechanisms, microRNAs (miRNAs) play important roles in the development and progression of depression through the regulation of protein expression. Herein, we review the mechanisms of miRNA-mediated neuroplasticity in depression and discus synaptic structural plasticity, synaptic functional plasticity, and neurogenesis. Furthermore, we found that miRNAs regulate neuroplasticity through several signalling pathways to affect cognitive functions. However, these pathways do not work independently. Therefore, we try to identify synergistic correlations between miRNAs and multiple signalling pathways to broaden the potential pathogenesis of depression. In addition, in the future, dual-function miRNAs (protection/injury) are promising candidate biomarkers for the diagnosis of depression, and their regulated genes can potentially be used as target genes for the treatment of depression.
Collapse
Affiliation(s)
- Ya-Nan Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yong-Qian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Nuo-Min Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
- Correspondence:
| |
Collapse
|
23
|
Zhou S, Chen R, She Y, Liu X, Zhao H, Li C, Jia Y. A new perspective on depression and neuroinflammation: Non-coding RNA. J Psychiatr Res 2022; 148:293-306. [PMID: 35193033 DOI: 10.1016/j.jpsychires.2022.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022]
Abstract
The high incidence and relapse rate of depression, as well comorbidity with other diseases, has made depression one of the primary causes of years of life lived with disability. Moreover, the unknown biological mechanism of depression has made treatment difficult. Neuroinflammation is important in the pathogenesis of depression. Neuroinflammation may affect depression by regulating the production of immune factors, immune cell activation, neuron generation, synaptic plasticity, and neurotransmission. Non-coding RNAs (ncRNAs) may be a breakthrough link between depression and neuroinflammation, as ncRNAs participate in these biological changes. We summarize the functions and mechanisms of ncRNAs in neuroinflammation and depression, and predict ncRNAs that may regulate the occurrence and progression of depression through neuritis. These findings not only broaden our understanding of the genetic regulation of depression and neuroinflammation but also provide a new perspective of the underlying mechanism and aid in the design of novel prevention, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China.
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China
| | - Xuanjun Liu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
24
|
Polonio CM, Peron JPS. ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses 2021; 13:v13101992. [PMID: 34696422 PMCID: PMC8541119 DOI: 10.3390/v13101992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Over the years, viral infections have caused severe illness in humans. Zika Virus (ZIKV) is a flavivirus transmitted by mosquito vectors that leads to notable neurological impairment, whose most dramatic impact is the Congenital ZIKV Syndrome (CZS). ZIKV targets neuronal precursor cells leading to apoptosis and further impairment of neuronal development, causing microcephaly, lissencephaly, ventriculomegaly, and calcifications. Several regulators of biological processes are involved in CZS development, and in this context, microRNAs (miRNAs) seem to have a fundamental role. miRNAs are important regulators of protein translation, as they form the RISC silencing complex and interact with complementary mRNA target sequences to further post-transcriptional repression. In this context, little is known about their participation in the pathogenesis of viral infections. In this review, we discuss how miRNAs could relate to ZIKV and other flavivirus infections.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil
- Correspondence:
| |
Collapse
|
25
|
Samoilova EM, Belopasov VV, Baklaushev VP. Transcription Factors of Direct Neuronal Reprogramming in Ontogenesis and Ex Vivo. Mol Biol 2021; 55:645-669. [DOI: 10.1134/s0026893321040087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 03/07/2025]
|
26
|
Martins M, Galfrè S, Terrigno M, Pandolfini L, Appolloni I, Dunville K, Marranci A, Rizzo M, Mercatanti A, Poliseno L, Morandin F, Pietrosanto M, Helmer-Citterich M, Malatesta P, Vignali R, Cremisi F. A eutherian-specific microRNA controls the translation of Satb2 in a model of cortical differentiation. Stem Cell Reports 2021; 16:1496-1509. [PMID: 34019815 PMCID: PMC8190598 DOI: 10.1016/j.stemcr.2021.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 10/25/2022] Open
Abstract
Cerebral cortical development is controlled by key transcription factors that specify the neuronal identities in the different layers. The mechanisms controlling their expression in distinct cells are only partially known. We investigated the expression and stability of Tbr1, Bcl11b, Fezf2, Satb2, and Cux1 mRNAs in single developing mouse cortical cells. We observe that Satb2 mRNA appears much earlier than its protein and in a set of cells broader than expected, suggesting an initial inhibition of its translation, subsequently released during development. Mechanistically, Satb2 3'UTR modulates protein translation of GFP reporters during mouse corticogenesis. We select miR-541, a eutherian-specific miRNA, and miR-92a/b as the best candidates responsible for SATB2 inhibition, being strongly expressed in early and reduced in late progenitor cells. Their inactivation triggers robust and premature SATB2 translation in both mouse and human cortical cells. Our findings indicate RNA interference as a major mechanism in timing cortical cell identities.
Collapse
Affiliation(s)
- Manuella Martins
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | - Silvia Galfrè
- Scuola Normale, Pisa, Italy; Dipartimento di Biologia, Università Roma Tor Vergata, Roma, Italy
| | - Marco Terrigno
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | | | - Irene Appolloni
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Keagan Dunville
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy
| | - Andrea Marranci
- Istituto di Fisiologia Clinica CNR, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
| | | | | | - Laura Poliseno
- Istituto di Fisiologia Clinica CNR, Pisa, Italy; Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
| | - Francesco Morandin
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | | | | | - Paolo Malatesta
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy; Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genova, Italy
| | - Robert Vignali
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Federico Cremisi
- Scuola Normale, Pisa, Italy; Istituto di Biofisica CNR, Pisa, Italy.
| |
Collapse
|
27
|
Prieto-Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 2021; 43:e2100073. [PMID: 33998002 DOI: 10.1002/bies.202100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The size and organization of the brain are determined by the activity of progenitor cells early in development. Key mechanisms regulating progenitor cell biology involve miRNAs. These small noncoding RNA molecules bind mRNAs with high specificity, controlling their abundance and expression. The role of miRNAs in brain development has been studied extensively, but their involvement at early stages remained unknown until recently. Here, recent findings showing the important role of miRNAs in the earliest phases of brain development are reviewed, and it is discussed how loss of specific miRNAs leads to pathological conditions, particularly adult and pediatric brain tumors. Let-7 miRNA downregulation and the initiation of embryonal tumors with multilayered rosettes (ETMR), a novel link recently discovered by the laboratory, are focused upon. Finally, it is discussed how miRNAs may be used for the diagnosis and therapeutic treatment of pediatric brain tumors, with the hope of improving the prognosis of these devastating diseases.
Collapse
Affiliation(s)
- Anna Prieto-Colomina
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Virginia Fernández
- Neurobiology of miRNA, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Kaviya Chinnappa
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
28
|
Xin H, Liu Z, Buller B, Li Y, Golembieski W, Gan X, Wang F, Lu M, Ali MM, Zhang ZG, Chopp M. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke. J Cereb Blood Flow Metab 2021; 41:1131-1144. [PMID: 32811262 PMCID: PMC8054728 DOI: 10.1177/0271678x20950489] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MiR-17-92 cluster enriched exosomes derived from multipotent mesenchymal stromal cells (MSCs) increase functional recovery after stroke. Here, we investigate the mechanisms underlying this recovery. At 24 h (h) post transient middle cerebral artery occlusion, rats received control liposomes or exosomes derived from MSCs infected with pre-miR-17-92 expression lentivirus (Exo-miR-17-92+) or control lentivirus (Exo-Con) intravenously. Compared to the liposomes, exosomes significantly reduced the intracortical microstimulation threshold current of the contralateral cortex for evoking impaired forelimb movements (day 21), increased the neurite and myelin density in the ischemic boundary area, and contralesional axonal sprouting into the caudal forelimb area of ipsilateral side and in the denervated spinal cord (day 28), respectively. The Exo-miR-17-92+ further enhanced axon-myelin remodeling and electrophysiological recovery compared with the EXO-Con. Ex vivo cultured rat brain slice data showed that myelin and neuronal fiber density were significantly increased by Exo-miR-17-92+, while significantly inhibited by application of the PI3K/Akt/mTOR pathway inhibitors. Our studies suggest that the miR-17-92 cluster enriched MSC exosomes enhanced neuro-functional recovery of stroke may be attributed to an increase of axonal extension and myelination, and this enhanced axon-myelin remodeling may be mediated in part via the activation of the PI3K/Akt/mTOR pathway induced by the downregulation of PTEN.
Collapse
Affiliation(s)
- Hongqi Xin
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Benjamin Buller
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Yanfeng Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Xinling Gan
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Fengjie Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Mei Lu
- Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Meser M Ali
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Zheng G Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.,Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
29
|
MicroRNA regulation of prefrontal cortex development and psychiatric risk in adolescence. Semin Cell Dev Biol 2021; 118:83-91. [PMID: 33933350 DOI: 10.1016/j.semcdb.2021.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
In this review, we examine the role of microRNAs in the development of the prefrontal cortex (PFC) in adolescence and in individual differences in vulnerability to mental illness. We describe results from clinical and preclinical research indicating that adolescence coincides with drastic changes in local microRNA expression, including microRNAs that control gene networks involved in PFC and cognitive refinement. We highlight that altered levels of microRNAs in the PFC are associated with psychopathologies of adolescent onset, notably depression and schizophrenia. We show that microRNAs can be measured non-invasively in peripheral samples and could serve as longitudinal physiological readouts of brain expression and psychiatric risk in youth.
Collapse
|
30
|
Fishman ES, Louie M, Miltner AM, Cheema SK, Wong J, Schlaeger NM, Moshiri A, Simó S, Tarantal AF, La Torre A. MicroRNA Signatures of the Developing Primate Fovea. Front Cell Dev Biol 2021; 9:654385. [PMID: 33898453 PMCID: PMC8060505 DOI: 10.3389/fcell.2021.654385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
Rod and cone photoreceptors differ in their shape, photopigment expression, synaptic connection patterns, light sensitivity, and distribution across the retina. Although rods greatly outnumber cones, human vision is mostly dependent on cone photoreceptors since cones are essential for our sharp visual acuity and color discrimination. In humans and other primates, the fovea centralis (fovea), a specialized region of the central retina, contains the highest density of cones. Despite the vast importance of the fovea for human vision, the molecular mechanisms guiding the development of this region are largely unknown. MicroRNAs (miRNAs) are small post-transcriptional regulators known to orchestrate developmental transitions and cell fate specification in the retina. Here, we have characterized the transcriptional landscape of the developing rhesus monkey retina. Our data indicates that non-human primate fovea development is significantly accelerated compared to the equivalent retinal region at the other side of the optic nerve head, as described previously. Notably, we also identify several miRNAs differentially expressed in the presumptive fovea, including miR-15b-5p, miR-342-5p, miR-30b-5p, miR-103-3p, miR-93-5p as well as the miRNA cluster miR-183/-96/-182. Interestingly, miR-342-5p is enriched in the nasal primate retina and in the peripheral developing mouse retina, while miR-15b is enriched in the temporal primate retina and increases over time in the mouse retina in a central-to-periphery gradient. Together our data constitutes the first characterization of the developing rhesus monkey retinal miRNome and provides novel datasets to attain a more comprehensive understanding of foveal development.
Collapse
Affiliation(s)
- Elizabeth S Fishman
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Mikaela Louie
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Adam M Miltner
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Simranjeet K Cheema
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Joanna Wong
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Nicholas M Schlaeger
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Ala Moshiri
- Department of Ophthalmology, University of California, Davis, Davis, CA, United States
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Alice F Tarantal
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, CA, United States.,California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
32
|
Bsat S, Halaoui A, Kobeissy F, Moussalem C, El Houshiemy MN, Kawtharani S, Omeis I. Acute ischemic stroke biomarkers: a new era with diagnostic promise? Acute Med Surg 2021; 8:e696. [PMID: 34745637 PMCID: PMC8552525 DOI: 10.1002/ams2.696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023] Open
Abstract
Stroke is considered as the first cause of neurological dysfunction and second cause of death worldwide. Recombinant tissue plasminogen activator is the only chemical treatment for ischemic stroke approved by the US Food and Drug Administration. It was the only standard of care for a long time with a very narrow therapeutic window, which usually ranges from 3 to 4.5 h of stroke onset; until 2015, when multiple trials demonstrated the benefit of mechanical thrombectomy during the first 6 h. In addition, recent trials showed that mechanical thrombectomy can be beneficial up to 24 h if the patients meet certain criteria including the presence of magnetic resonance imaging/computed tomography perfusion mismatch, which allows better selectivity and higher recruitment of eligible stroke patients. However, magnetic resonance imaging/computed tomography perfusion is not available in all stroke centers. Hence, physicians need other easy and available diagnostic tools to select stroke patients eligible for mechanical thrombectomy. Moreover, stroke management is still challenging for physicians, particularly those dealing with patients with "wake-up" stroke. The resulting brain tissue damage of ischemic stroke and the subsequent pathological processes are mediated by multiple molecular pathways that are modulated by inflammatory markers and post-transcriptional activity. A considerable number of published works suggest the role of inflammatory and cardiac brain-derived biomarkers (serum matrix metalloproteinase, thioredoxin, neuronal and glial markers, and troponin proteins) as well as different biomarkers including the emerging roles of microRNAs. In this review, we assess the accumulating evidence regarding the current status of acute ischemic stroke diagnostic biomarkers that could guide physicians for better management of stroke patients. Our review could give an insight into the roles of the different emerging markers and microRNAs that can be of high diagnostic value in patients with stroke. In fact, the field of stroke research, similar to the field of traumatic brain injury, is in immense need for novel biomarkers that can stratify diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Shadi Bsat
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Adham Halaoui
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular GeneticsFaculty of MedicineAmerican University of BeirutBeirutLebanon
| | - Charbel Moussalem
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | | | - Sarah Kawtharani
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
| | - Ibrahim Omeis
- Division of NeurosurgeryDepartment of SurgeryAmerican University of Beirut Medical CenterBeirutLebanon
- Department of NeurosurgeryBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
33
|
Zhang HT, Zhang Z, Hong K, Tang WH, Liu DF, Mao JM, Yang YZ, Lin HC, Jiang H. Altered microRNA profiles of testicular biopsies from patients with nonobstructive azoospermia. Asian J Androl 2020; 22:100-105. [PMID: 31134916 PMCID: PMC6958976 DOI: 10.4103/aja.aja_35_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many studies have shown that microRNAs (miRNAs) play vital roles during the spermatogenesis. However, little is known about the altered miRNA profiles of testicular tissues in nonobstructive azoospermia (NOA). Using microarray technology, the miRNA expression profiles of testicular biopsies from patients with NOA and of normal testicular tissues were determined. Bioinformatics analyses were conducted to predict the enriched biological processes and functions of identified miRNAs. The microarray data were validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), the results of which were then validated with a larger sample size. Correlations between the miRNA expression levels and clinical characteristics were analyzed. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic ability of miRNAs for azoospermia. Hierarchical clustering showed that 129 miRNAs were significantly differentially expressed between the NOA and control groups. Bioinformatics analysis indicated that the differentially expressed miRNAs were involved in spermatogenesis, cell cycle, and mitotic prometaphase. In the subsequent qRT-PCR assays, the selected miRNA expression levels were consistent with the microarray results, and similar validated results were obtained with a larger sample size. Some clinical characteristics were significantly associated with the expression of certain miRNAs. In particular, we identified a combination of two miRNAs (miR-10b-3p and miR-34b-5p) that could serve as a predictive biomarker of azoospermia. This study provides altered miRNA profiles of testicular biopsies from NOA patients and examines the roles of miRNAs in spermatogenesis. These profiles may be useful for predicting and diagnosing the presence of testicular sperm in individuals with azoospermia.
Collapse
Affiliation(s)
- Hai-Tao Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-Hao Tang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - De-Feng Liu
- Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Jia-Ming Mao
- Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Zhuo Yang
- Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Cheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China.,Department of Andrology, Peking University Third Hospital, Beijing 100191, China.,Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
34
|
An evolutionarily acquired microRNA shapes development of mammalian cortical projections. Proc Natl Acad Sci U S A 2020; 117:29113-29122. [PMID: 33139574 PMCID: PMC7682328 DOI: 10.1073/pnas.2006700117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mammalian central nervous system contains unique projections from the cerebral cortex thought to underpin complex motor and cognitive skills, including the corticospinal tract and corpus callosum. The neurons giving rise to these projections—corticospinal and callosal projection neurons—develop from the same progenitors, but acquire strikingly different fates. The broad evolutionary conservation of known genes controlling cortical projection neuron fates raises the question of how the more narrowly conserved corticospinal and callosal projections evolved. We identify a microRNA cluster selectively expressed by corticospinal projection neurons and exclusive to placental mammals. One of these microRNAs promotes corticospinal fate via regulation of the callosal gene LMO4, suggesting a mechanism whereby microRNA regulation during development promotes evolution of neuronal diversity. The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians’ increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.
Collapse
|
35
|
Xia X, Wang Y, Zheng JC. The microRNA-17 ~ 92 Family as a Key Regulator of Neurogenesis and Potential Regenerative Therapeutics of Neurological Disorders. Stem Cell Rev Rep 2020; 18:401-411. [PMID: 33030674 PMCID: PMC8930872 DOI: 10.1007/s12015-020-10050-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
AbstractmiR-17 ~ 92, an miRNA family containing three paralogous polycistronic clusters, was initially considered as an oncogene and was later demonstrated to trigger various physiological and pathological processes. Emerging evidence has implicated miR-17 ~ 92 family as a master regulator of neurogenesis. Through targeting numerous genes that affect cell cycle arrest, stemness deprivation, and lineage commitment, miR-17 ~ 92 family controls the proliferation and neuronal differentiation of neural stem/progenitor cells in both developmental and adult brains. Due to the essential roles of miR-17 ~ 92 family, its misexpression is widely associated with acute and chronic neurological disorders by attenuating neurogenesis and facilitating neuronal apoptosis. The promising neurogenic potential of miR-17 ~ 92 family also makes it a promising “medicine” to activate the endogenous and exogenous regenerative machinery, thus enhance tissue repair and function recovery after brain injury. In this review, we focus on the recent progress made toward understanding the involvement of miR-17 ~ 92 family in regulating both developmental and adult neurogenesis, and discuss the regenerative potential of miR-17 ~ 92 family in treating neurological disorders.
Collapse
|
36
|
Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2020; 114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
The control of mRNA translation has key roles in the regulation of gene expression and biological processes such as mammalian cellular differentiation and identity. Methodological advances in the last decade have resulted in considerable progress towards understanding how translational control contributes to the regulation of diverse biological phenomena. In this review, we discuss recent findings in the involvement of translational control in the mammalian neocortex development and neuronal biology. We focus on regulatory mechanisms that modulate translational efficiency during neural stem cells self-renewal and differentiation, as well as in neuronal-related processes such as synapse, plasticity, and memory.
Collapse
Affiliation(s)
- Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; PhD Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
37
|
McElhinney JMWR, Hasan A, Sajini AA. The epitranscriptome landscape of small noncoding RNAs in stem cells. Stem Cells 2020; 38:1216-1228. [PMID: 32598085 PMCID: PMC7586957 DOI: 10.1002/stem.3233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Stem cells (SCs) are unique cells that have an inherent ability to self‐renew or differentiate. Both fate decisions are strongly regulated at the molecular level via intricate signaling pathways. The regulation of signaling networks promoting self‐renewal or differentiation was thought to be largely governed by the action of transcription factors. However, small noncoding RNAs (ncRNAs), such as vault RNAs, and their post‐transcriptional modifications (the epitranscriptome) have emerged as additional regulatory layers with essential roles in SC fate decisions. RNA post‐transcriptional modifications often modulate RNA stability, splicing, processing, recognition, and translation. Furthermore, modifications on small ncRNAs allow for dual regulation of RNA activity, at both the level of biogenesis and RNA‐mediated actions. RNA post‐transcriptional modifications act through structural alterations and specialized RNA‐binding proteins (RBPs) called writers, readers, and erasers. It is through SC‐context RBPs that the epitranscriptome coordinates specific functional roles. Small ncRNA post‐transcriptional modifications are today exploited by different mechanisms to facilitate SC translational studies. One mechanism readily being studied is identifying how SC‐specific RBPs of small ncRNAs regulate fate decisions. Another common practice of using the epitranscriptome for regenerative applications is using naturally occurring post‐transcriptional modifications on synthetic RNA to generate induced pluripotent SCs. Here, we review exciting insights into how small ncRNA post‐transcriptional modifications control SC fate decisions in development and disease. We hope, by illustrating how essential the epitranscriptome and their associated proteome are in SCs, they would be considered as novel tools to propagate SCs for regenerative medicine.
Collapse
Affiliation(s)
- James M W R McElhinney
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Abdulrahim A Sajini
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
miR-92a Suppresses Mushroom Body-Dependent Memory Consolidation in Drosophila. eNeuro 2020; 7:ENEURO.0224-20.2020. [PMID: 32737186 PMCID: PMC7642123 DOI: 10.1523/eneuro.0224-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) fine tune gene expression to regulate many aspects of nervous system physiology. Here, we show that miR-92a suppresses memory consolidation that occurs in the αβ and γ mushroom body neurons (MBns) of Drosophila, making miR-92a a memory suppressor miRNA. Bioinformatics analyses suggested that mRNAs encoding kinesin heavy chain 73 (KHC73), a protein that belongs to Kinesin-3 family of anterograde motor proteins, may be a functional target of miR-92a. Behavioral studies that employed expression of khc73 with and without its 3' untranslated region (UTR) containing miR-92a target sites, luciferase assays in HEK cells with reporters containing wild-type and mutant target sequences in the khc73 3'UTR, and immunohistochemistry experiments involving KHC73 expression with and without the wild-type khc73 3'UTR, all point to the conclusion that khc73 is a major target of miR-92a in its functional role as a miRNA memory suppressor gene.
Collapse
|
39
|
Miao N, Lai X, Zeng Z, Cai W, Chen W, Sun T. Differential expression of microRNAs in the human fetal left and right cerebral cortex. Mol Biol Rep 2020; 47:6573-6586. [PMID: 32808117 DOI: 10.1007/s11033-020-05708-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/02/2020] [Indexed: 11/25/2022]
Abstract
Human brain is anatomically and functionally asymmetric. How brain asymmetry is initiated and established during fetal development is poorly understood. Accumulating evidence has shown that microRNAs (miRNAs) play crucial roles in brain development and function. In this study, we investigate miRNA expression profiles in left and right hemispheres of human fetal brains at 12 weeks post conception (PC), and identify 42 miRNAs showing differential expression between two hemispheres using Affymetrix microarray analyses. Target genes for left- and right-biased miRNAs are largely involved in developmental and functional regulations in the cortex such as axon guidance, GABAergic synapse and dopaminergic synapse pathways. Moreover, we find that predicted targets associated with canonical and non-canonical WNT signaling pathway show variations and differential expression between two hemispheres in response to left- and right-biased miRNAs. Our results highlight a potential role of miRNAs in regulating asymmetric development of human fetal brains.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, Fujian, China
| | - Xiaodong Lai
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, Fujian, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Wanhua Chen
- Department of Clinical Laboratory, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, Fujian, China.
| |
Collapse
|
40
|
Adam MA, Harwell CC. Epigenetic regulation of cortical neurogenesis; orchestrating fate switches at the right time and place. Curr Opin Neurobiol 2020; 63:146-153. [PMID: 32428815 PMCID: PMC7483903 DOI: 10.1016/j.conb.2020.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Over the last several decades the field has made tremendous progress in understanding the proliferative behavior of cortical progenitors and the lineage relationships of their clonal progeny. The genetic and epigenetic mechanisms that control the dynamic patterns of gene expression during cortical development are only beginning to be characterized. In this review we highlight the most well characterized epigenetic modifications and their influence on progenitor proliferation and cortical neuron cell fate.
Collapse
Affiliation(s)
- Manal A Adam
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
41
|
Mazzelli M, Maj C, Mariani N, Mora C, Begni V, Pariante CM, Riva MA, Cattaneo A, Cattane N. The Long-Term Effects of Early Life Stress on the Modulation of miR-19 Levels. Front Psychiatry 2020; 11:389. [PMID: 32499725 PMCID: PMC7243913 DOI: 10.3389/fpsyt.2020.00389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs), one of the major small non-coding RNA classes, have been proposed as regulatory molecules in neurodevelopment and stress response. Although alterations in miRNAs profiles have been implicated in several psychiatric and neurodevelopmental disorders, the contribution of individual miRNAs in brain development and function is still unknown. Recent studies have identified miR-19 as a key regulator of brain trajectories, since it drives the differentiation of neural stem cells into mature neurons. However, no findings are available on how vulnerability factors for these disorders, such as early life stress (ELS), can modulate the expression of miR-19 and its target genes. To reach our aim, we investigated miR-19 modulation in human hippocampal progenitor stem cells (HPCs) treated with cortisol during 3 days of proliferation and harvested immediately after the end of the treatment or after 20 days of differentiation into mature neurons. We also analyzed the long-term expression changes of miR-19 and of its validated target genes, involved in neurodevelopment and inflammation, in the hippocampus of adult rats exposed or not to prenatal stress (PNS). Interestingly, we observed a significant downregulation of miR-19 levels both in proliferating (FC = −1.59, p-value = 0.022 for miR-19a; FC = −1.79, p-value = 0.016 for miR-19b) as well as differentiated HPCs (FC = −1.28, p-value = 0.065 for miR-19a; FC = −1.75, p-value = 0.047 for miR-19b) treated with cortisol. Similarly, we found a long-term decrease of miR-19 levels in the hippocampus of adult PNS rats (FC = −1.35, p-value = 0.025 for miR-19a; FC = −1.43, p-value = 0.032 for miR-19b). Among all the validated target genes, we observed a significant increase of NRCAM (FC = 1.20, p-value = 0.027), IL4R (FC = 1.26, p-value = 0.046), and RAPGEF2 (FC = 1.23, p-value = 0.020).We suggest that ELS can cause a long-term downregulation of miR-19 levels, which may be responsible of alterations in neurodevelopmental pathways and in immune/inflammatory processes, leading to an enhanced risk for mental disorders later in life. Intervention strategies targeting miR-19 may prevent alterations in these pathways, reducing the ELS-related effects.
Collapse
Affiliation(s)
- Monica Mazzelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cristina Mora
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
42
|
Brinkmann K, Ng AP, de Graaf CA, Di Rago L, Hyland CD, Morelli E, Rautela J, Huntington ND, Strasser A, Alexander WS, Herold MJ. miR17~92 restrains pro-apoptotic BIM to ensure survival of haematopoietic stem and progenitor cells. Cell Death Differ 2019; 27:1475-1488. [PMID: 31591473 DOI: 10.1038/s41418-019-0430-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
The miR17~92 cluster plays important roles in haematopoiesis. However, it is not clear at what stage of differentiation and through which targets miR17~92 exerts this function. Therefore, we generated miR17~92fl/fl; RosaCreERT2 mice for inducible deletion of miR17~92 in haematopoietic cells. Bone marrow reconstitution experiments revealed that miR17~92-deleted cells were not capable to contribute to mature haematopoietic lineages, which was due to defects in haematopoietic stem/progenitor cells (HSPCs). To identify the critical factor targeted by miR17~92 we performed gene expression analysis in HSPCs, demonstrating that mRNA levels of pro-apoptotic Bim inversely correlated with the expression of the miR17~92 cluster. Strikingly, loss of pro-apoptotic BIM completely prevented the loss of HSPCs caused by deletion of miR17~92. The BIM/miR17~92 interaction is conserved in human CD34+ HSPCs, as miR17~92 inhibition or blockade of its binding to the BIM 3'UTR reduced the survival and growth of these cells. Despite the prediction that miR17~92 functions by impacting a plethora of different targets, the absence of BIM alone is sufficient to prevent all defects caused by deletion of miR17~92 in haematopoietic cells.
Collapse
Affiliation(s)
- Kerstin Brinkmann
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ashley P Ng
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Carolyn A de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Ladina Di Rago
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Craig D Hyland
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Eugenio Morelli
- Jerome Lipper Multiple Myeloma Centre, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jai Rautela
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
43
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
44
|
Xia X, Lu H, Li C, Huang Y, Wang Y, Yang X, Zheng JC. miR-106b regulates the proliferation and differentiation of neural stem/progenitor cells through Tp53inp1-Tp53-Cdkn1a axis. Stem Cell Res Ther 2019; 10:282. [PMID: 31547867 PMCID: PMC6755702 DOI: 10.1186/s13287-019-1387-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/28/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
Abstract
Background Recent studies suggested that miR-17~106 family was involved in the regulation of neural stem/progenitor cells (NPCs). However, distinct function of each family member was reported in regulating stem cells within and without the brain. Hence, to investigate the roles of individual miRNAs in miR-17~106 family and mechanisms underlying their effects on neurogenesis is important to extend our understanding in the CNS development. Methods Here, we examined the influence of miR-106a/b on the proliferation, differentiation, and survival of embryonic NPCs using specific mimics and inhibitor. The targets of miR-106a/b were identified from miRNA target prediction database and confirmed by luciferase assay. Specific siRNAs were utilized to erase the effects of miR-106a/b on the expression levels of target genes. Results A positive correlation was observed between the temporal reduction of miR-106a/b expression levels and the decline of NPC pools in vivo and in vitro. The perturbation of miR-106’s function approaches revealed that miR-106b, but not miR-106a, facilitated the maintenance of NPCs and repressed the generation of both neuronal and glial cells, without preference to a particular lineage. No effect was observed for miR-106a/b in NPCs’ survival. The influence of miR-106b on NPCs’ proliferation and differentiation is likely achieved by directly inhibiting the expression of Tp53inp1 and Cdkn1a, key components of Tp53inp1-Tp53-Cdkn1a axis. Conclusion Our study demonstrated a novel axis, miR-106b-Tp53inp1-Tp53-Cdkn1a, in regulating the proliferation and differentiation of NPCs. Electronic supplementary material The online version of this article (10.1186/s13287-019-1387-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongfang Lu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China.,Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoyu Yang
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, 200065, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China. .,Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
45
|
Smith CM, Catchpoole D, Hutvagner G. Non-Coding RNAs in Pediatric Solid Tumors. Front Genet 2019; 10:798. [PMID: 31616462 PMCID: PMC6764412 DOI: 10.3389/fgene.2019.00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.
Collapse
Affiliation(s)
- Christopher M Smith
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Daniel Catchpoole
- School of Software, University of Technology Sydney, Sydney, Australia.,The Tumour Bank-CCRU, Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
46
|
Guo Q, Zhang J, Zheng Z, Li X, Wang F, Liu S. Lentivirus-mediated microRNA-26a-modified neural stem cells improve brain injury in rats with cerebral palsy. J Cell Physiol 2019; 235:1274-1286. [PMID: 31264214 DOI: 10.1002/jcp.29043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
This study is launched to investigate the effect of lentivirus-mediated microRNA-26a (miR-26a)-modified neural stem cells (NSCs) in brain injury in rats with cerebral palsy (CP). The successfully constructed miR-26a lentivirus expression vector and empty vector virus were used to modify NSCs. The model of CP with ischemia and anoxia was established in rats. NSCs and miR-26a-NSCs were stereoscopically injected into the cerebral cortex of the modeled rats, respectively. The survival and migration of NSCs infected with recombinant lentivirus expressing green fluorescence in vivo was observed under a light microscope. The neurobehavioral functions, morphology, and ultrastructure of cerebral cortex and hippocampus, apoptosis of brain cells, expression of apoptosis-related protein caspase-3 and Bax, together with the expression of the glial fibrillary acidic protein (GFAP) in cerebral cortex and hippocampus were determined. Expression of miR-26a in NSCs infected with plVTHM-miR-26a increased significantly. After NSCs transplantation, the neurobehavioral status of CP rats was improved, the degree of brain pathological injury was alleviated, the apoptotic index of cells in cerebral cortex and hippocampus and the expression of the apoptotic protein (caspase-3 and Bax) were decreased, the expression of GFAP were significantly decreased. After miR-26a-NSCs transplantation, these aforementioned results further improved or decreased. Our study suggests that miR-26a-modified NSCs mediated by lentivirus can improve brain injury, inhibit apoptosis of brain cells and activation of astrocytes in CP rats.
Collapse
Affiliation(s)
- Qi Guo
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jing Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhaoshi Zheng
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xinxin Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fuli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
47
|
Gao Y, Li J, Zhang Z, Zhang R, Pollock A, Sun T. MicroRNA miR-7 and miR-17-92 in the Arcuate Nucleus of Mouse Hypothalamus Regulate Sex-Specific Diet-Induced Obesity. Mol Neurobiol 2019; 56:7508-7521. [DOI: 10.1007/s12035-019-1618-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
|
48
|
Wheway G, Nazlamova L, Turner D, Cross S. 661W Photoreceptor Cell Line as a Cell Model for Studying Retinal Ciliopathies. Front Genet 2019; 10:308. [PMID: 31024622 PMCID: PMC6459963 DOI: 10.3389/fgene.2019.00308] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
The retina contains several ciliated cell types, including the retinal pigment epithelium (RPE) and photoreceptor cells. The photoreceptor cilium is one of the most highly modified sensory cilia in the human body. The outer segment of the photoreceptor is a highly elaborate primary cilium, containing stacks or folds of membrane where the photopigment molecules are located. Perhaps unsurprisingly, defects in cilia often lead to retinal phenotypes, either as part of syndromic conditions involving other organs, or in isolation in the so-called retinal ciliopathies. The study of retinal ciliopathies has been limited by a lack of retinal cell lines. RPE1 retinal pigment epithelial cell line is commonly used in such studies, but the existence of a photoreceptor cell line has largely been neglected in the retinal ciliopathy field. 661W cone photoreceptor cells, derived from mouse, have been widely used as a model for studying macular degeneration, but not described as a model for studying retinal ciliopathies such as retinitis pigmentosa. Here, we characterize the 661W cell line as a model for studying retinal ciliopathies. We fully characterize the expression profile of these cells, using whole transcriptome RNA sequencing, and provide this data on Gene Expression Omnibus for the advantage of the scientific community. We show that these cells express the majority of markers of cone cell origin. Using immunostaining and confocal microscopy, alongside scanning electron microscopy, we show that these cells grow long primary cilia, reminiscent of photoreceptor outer segments, and localize many cilium proteins to the axoneme, membrane and transition zone. We show that siRNA knockdown of cilia genes Ift88 results in loss of cilia, and that this can be assayed by high-throughput screening. We present evidence that the 661W cell line is a useful cell model for studying retinal ciliopathies.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Liliya Nazlamova
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Human Development and Health, Southampton General Hospital, Southampton, United Kingdom
| | - Dann Turner
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| | - Stephen Cross
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
49
|
Lin D, Shi Y, Hu Y, Du X, Tu G. miR‑329‑3p regulates neural stem cell proliferation by targeting E2F1. Mol Med Rep 2019; 19:4137-4146. [PMID: 30942449 PMCID: PMC6472110 DOI: 10.3892/mmr.2019.10096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022] Open
Abstract
Neural stem cells (NSCs) are a class of self‑renewing and undifferentiated progenitor cells that retain the ability to differentiate to neurons, astrocytes and oligodendrocytes. MicroRNAs (miRNAs) are small noncoding RNAs that serve crucial roles in regulating a number of cellular processes, including cell proliferation, differentiation and apoptosis. Our previous GeneChip data indicated that the expression of miR‑329‑3p was increased in neurons compared with NSCs. However, whether miRNA‑329‑3p participates in regulating NSC function remains to be elucidated. In the present study, it was identified that the expression of miR‑329‑3p was upregulated in NSCs during neuronal differentiation, whereas expression of transcription factor E2F1 (E2F1), a putative target gene of miR‑329‑3p, was downregulated. Using luciferase reporter assays, it was confirmed that miR‑329‑3p regulated E2F1 expression. As differentiation has been demonstrated to limit the proliferative capacity of NSCs, the effects of miR‑329‑3p and E2F1 modulation on NSC proliferation were examined. Forced overexpression of miR‑329‑3p or RNA‑mediated silencing of E2F1 inhibited NSC proliferation, and overexpression of miR‑329‑3p also inhibited E2F1 expression. Notably, ectopic expression of E2F1 reversed the inhibition of NSC proliferation induced by miR‑329‑3p overexpression. These results indicated that miR‑329‑3p may serve crucial roles in regulating the proliferation of NSCs, at least in part via inhibition of E2F1 expression. These data improve the understanding of the microRNA‑mRNA regulatory network that controls NSC proliferation.
Collapse
Affiliation(s)
- Dapeng Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yao Shi
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yiwen Hu
- Department of Orthopedic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaowen Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guanjun Tu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
50
|
Labi V, Schoeler K, Melamed D. miR-17∼92 in lymphocyte development and lymphomagenesis. Cancer Lett 2019; 446:73-80. [PMID: 30660648 DOI: 10.1016/j.canlet.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 01/07/2023]
Abstract
microRNAs (miRNAs) down-modulate the levels of proteins by sequence-specific binding to their respective target mRNAs, causing translational repression or mRNA degradation. The miR-17∼92 cluster encodes for six miRNAs whose target recognition specificities are determined by their distinct sequence. In mice, the four miRNA families generated from the miR-17∼92 cluster coordinate to allow for proper lymphocyte development and effective adaptive immune responses following infection or immunization. Lymphocyte development and homeostasis rely on tight regulation of PI3K signaling to avoid autoimmunity or immunodeficiency, and the miR-17∼92 miRNAs appear as key mediators to appropriately tune PI3K activity. On the other hand, in lymphoid tumors overexpression of the miR-17∼92 miRNAs is a common oncogenic event. In this review, we touch on what we have learned so far about the miR-17∼92 miRNAs, particularly with respect to their role in lymphocyte development, homeostasis and pathology.
Collapse
Affiliation(s)
- Verena Labi
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria.
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Doron Melamed
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|