1
|
Purkerson MM, Amend SR, Pienta KJ. Bystanders or active players: the role of extra centrosomes as signaling hubs. Cancer Metastasis Rev 2024; 44:1. [PMID: 39570514 PMCID: PMC11582193 DOI: 10.1007/s10555-024-10224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Centrosomes serve as microtubule-organizing organelles that function in spindle pole organization, cell cycle progression, and cilia formation. A non-canonical role of centrosomes that has gained traction in recent years is the ability to act as signal transduction centers. Centrosome amplification, which includes numerical and structural aberrations of centrosomes, is a candidate hallmark of cancer. The function of centrosomes as signaling centers in cancer cells with centrosome amplification is poorly understood. Establishing a model of how cancer cells utilize centrosomes as signaling platforms will help elucidate the role of extra centrosomes in cancer cell survival and tumorigenesis. Centrosomes act in a diverse array of cellular processes, including cell migration, cell cycle progression, and proteasomal degradation. Given that cancer cells with amplified centrosomes exhibit an increased number and larger area of these signaling platforms, extra centrosomes may be acting to promote tumor development by enhancing signaling kinetics in pathways that are essential for the formation and growth of cancer. In this review, we identify the processes centrosomes are involved in as signal transduction platforms and highlight ways in which cancer cells with centrosome amplification may be taking advantage of these mechanisms.
Collapse
Affiliation(s)
- Madison M Purkerson
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Horecka-Lewitowicz A, Lewitowicz W, Wawszczak-Kasza M, Lim H, Lewitowicz P. Autism Spectrum Disorder Pathogenesis-A Cross-Sectional Literature Review Emphasizing Molecular Aspects. Int J Mol Sci 2024; 25:11283. [PMID: 39457068 PMCID: PMC11508848 DOI: 10.3390/ijms252011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The etiology of autism spectrum disorder (ASD) has not yet been completely elucidated. Through time, multiple attempts have been made to uncover the causes of ASD. Different theories have been proposed, such as being caused by alterations in the gut-brain axis with an emphasis on gut dysbiosis, post-vaccine complications, and genetic or even autoimmune causes. In this review, we present data covering the main streams that focus on ASD etiology. Data collection occurred in many countries covering ethnically diverse subjects. Moreover, we aimed to show how the progress in genetic techniques influences the explanation of medical White Papers in the ASD area. There is no single evidence-based pathway that results in symptoms of ASD. Patient management has constantly only been symptomatic, and there is no ASD screening apart from symptom-based diagnosis and parent-mediated interventions. Multigene sequencing or epigenetic alterations hold promise in solving the disjointed molecular puzzle. Further research is needed, especially in the field of biogenetics and metabolomic aspects, because young children constitute the patient group most affected by ASD. In summary, to date, molecular research has confirmed multigene dysfunction as the causative factor of ASD, the multigene model with metabolomic influence would explain the heterogeneity in ASD, and it is proposed that ion channel dysfunction could play a core role in ASD pathogenesis.
Collapse
Affiliation(s)
- Agata Horecka-Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Wojciech Lewitowicz
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Monika Wawszczak-Kasza
- Institute of Health Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| | - Hyebin Lim
- Student Scientific Society at Collegium Medicum, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland; (W.L.); (H.L.)
| | - Piotr Lewitowicz
- Institute of Medical Sciences, Jan Kochanowski University, Al. IX Wiekow Kielc 19A, 25-516 Kielce, Poland
| |
Collapse
|
3
|
Zeng M, Tang Z, Ren L, Wang H, Wang X, Zhu W, Mao X, Li Z, Mo X, Chen J, Han J, Kong D, Ji J, Carr AM, Liu C. Hepatitis B virus infection disrupts homologous recombination in hepatocellular carcinoma by stabilizing resection inhibitor ADRM1. J Clin Invest 2023; 133:e171533. [PMID: 37815873 PMCID: PMC10688980 DOI: 10.1172/jci171533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus-bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8-dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zizhi Tang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Laifeng Ren
- Department of Immunology, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - Haibin Wang
- Department of Pediatric Surgery, Wuhan Children’s Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xiaobing Mao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Daochun Kong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Berruti G. Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:215-240. [PMID: 34453739 DOI: 10.1007/978-3-030-77779-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquitination is one of the most diverse forms of protein post-translational modification that changes the function of the landscape of substrate proteins in response to stimuli, without the need for "de novo" protein synthesis. Ubiquitination is involved in almost all aspects of eukaryotic cell biology, from the best-studied role in promoting the removal of faulty or unnecessary proteins by the way of the ubiquitin proteasome system and autophagy-lysosome pathway to the recruitment of proteins in specific non-proteolytic signaling pathways, as emerged by the more recent discoveries about the protein signature with peculiar types of ubiquitin chains. Spermatogenesis, on its own, is a complex cellular developmental process in which mitosis, meiosis, and cell differentiation coexist so to result in the continuous formation of haploid spermatozoa. Successful spermatogenesis is thus at the same time a mixed result of the precise expression and correct intracellular destination of structural proteins and enzymes, from one hand, and the fine removal by targeted degradation of unfolded or damaged proteins as well as of obsolete, outlived proteins, from the other hand. In this minireview, I will focus on the importance of the ubiquitin system all over the spermatogenic process, discussing both proteolytic and non-proteolytic functions of protein ubiquitination. Alterations in the ubiquitin system have been in fact implicated in pathologies leading to male infertility. Notwithstanding several aspects of the multifaceted world of the ubiquitin system have been clarified, the physiological meaning of the so-called ubiquitin code remains still partially elusive. The studies reviewed in this chapter provide information that could aid the investigators to pursue new promising discoveries in the understanding of human and animal reproductive potential.
Collapse
|
5
|
Vora SM, Fassler JS, Phillips BT. Centrosomes are required for proper β-catenin processing and Wnt response. Mol Biol Cell 2020; 31:1951-1961. [PMID: 32583737 PMCID: PMC7525817 DOI: 10.1091/mbc.e20-02-0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is central to metazoan development and routinely dysregulated in cancer. Wnt/β-catenin signaling initiates transcriptional reprogramming upon stabilization of the transcription factor β-catenin, which is otherwise posttranslationally processed by a destruction complex and degraded by the proteasome. Since various Wnt signaling components are enriched at centrosomes, we examined the functional contribution of centrosomes to Wnt signaling, β-catenin regulation, and posttranslational modifications. In HEK293 cells depleted of centrosomes we find that β-catenin synthesis and degradation rates are unaffected but that the normal accumulation of β-catenin in response to Wnt signaling is attenuated. This is due to accumulation of a novel high-molecular-weight form of phosphorylated β-catenin that is constitutively degraded in the absence of Wnt. Wnt signaling operates by inhibiting the destruction complex and thereby reducing destruction complex–phosphorylated β-catenin, but high-molecular-weight β-catenin is unexpectedly increased by Wnt signaling. Therefore these studies have identified a pool of β-catenin effectively shielded from regulation by Wnt. We present a model whereby centrosomes prevent inappropriate β-catenin modifications that antagonize normal stabilization by Wnt signals.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| |
Collapse
|
6
|
Evidence that melatonin downregulates Nedd4-1 E3 ligase and its role in cellular survival. Toxicol Appl Pharmacol 2019; 379:114686. [DOI: 10.1016/j.taap.2019.114686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023]
|
7
|
Araújo SJ. Centrosomes in Branching Morphogenesis. Results Probl Cell Differ 2019; 67:323-336. [PMID: 31435801 DOI: 10.1007/978-3-030-23173-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The centrosome, a major microtubule organizer, has important functions in regulating the cytoskeleton as well as the position of cellular structures and orientation of cells within tissues. The centrosome serves as the main cytoskeleton-organizing centre in the cell and is the classical site of microtubule nucleation and anchoring. For these reasons, centrosomes play a very important role in morphogenesis, not just in the early stages of cell divisions but also in the later stages of organogenesis. Many organs such as lung, kidney and blood vessels develop from epithelial tubes that branch into complex networks. Cells in the nervous system also form highly branched structures in order to build complex neuronal networks. During branching morphogenesis, cells have to rearrange within tissues though multicellular branching or through subcellular branching, also known as single-cell branching. For highly branched structures to be formed during embryonic development, the cytoskeleton needs to be extensively remodelled. The centrosome has been shown to play an important role during these events.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Rylaarsdam L, Guemez-Gamboa A. Genetic Causes and Modifiers of Autism Spectrum Disorder. Front Cell Neurosci 2019; 13:385. [PMID: 31481879 PMCID: PMC6710438 DOI: 10.3389/fncel.2019.00385] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is one of the most prevalent neurodevelopmental disorders, affecting an estimated 1 in 59 children. ASD is highly genetically heterogeneous and may be caused by both inheritable and de novo gene variations. In the past decade, hundreds of genes have been identified that contribute to the serious deficits in communication, social cognition, and behavior that patients often experience. However, these only account for 10-20% of ASD cases, and patients with similar pathogenic variants may be diagnosed on very different levels of the spectrum. In this review, we will describe the genetic landscape of ASD and discuss how genetic modifiers such as copy number variation, single nucleotide polymorphisms, and epigenetic alterations likely play a key role in modulating the phenotypic spectrum of ASD patients. We also consider how genetic modifiers can alter convergent signaling pathways and lead to impaired neural circuitry formation. Lastly, we review sex-linked modifiers and clinical implications. Further understanding of these mechanisms is crucial for both comprehending ASD and for developing novel therapies.
Collapse
Affiliation(s)
| | - Alicia Guemez-Gamboa
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
E3 Ubiquitin Ligase TRIM Proteins, Cell Cycle and Mitosis. Cells 2019; 8:cells8050510. [PMID: 31137886 PMCID: PMC6562728 DOI: 10.3390/cells8050510] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is a series of events by which cellular components are accurately segregated into daughter cells, principally controlled by the oscillating activities of cyclin-dependent kinases (CDKs) and their co-activators. In eukaryotes, DNA replication is confined to a discrete synthesis phase while chromosome segregation occurs during mitosis. During mitosis, the chromosomes are pulled into each of the two daughter cells by the coordination of spindle microtubules, kinetochores, centromeres, and chromatin. These four functional units tie chromosomes to the microtubules, send signals to the cells when the attachment is completed and the division can proceed, and withstand the force generated by pulling the chromosomes to either daughter cell. Protein ubiquitination is a post-translational modification that plays a central role in cellular homeostasis. E3 ubiquitin ligases mediate the transfer of ubiquitin to substrate proteins determining their fate. One of the largest subfamilies of E3 ubiquitin ligases is the family of the tripartite motif (TRIM) proteins, whose dysregulation is associated with a variety of cellular processes and directly involved in human diseases and cancer. In this review we summarize the current knowledge and emerging concepts about TRIMs and their contribution to the correct regulation of cell cycle, describing how TRIMs control the cell cycle transition phases and their involvement in the different functional units of the mitotic process, along with implications in cancer progression.
Collapse
|
10
|
Ramirez J, Lectez B, Osinalde N, Sivá M, Elu N, Aloria K, Procházková M, Perez C, Martínez-Hernández J, Barrio R, Šašková KG, Arizmendi JM, Mayor U. Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome. Hum Mol Genet 2019; 27:1955-1971. [PMID: 29788202 DOI: 10.1093/hmg/ddy103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Angelman syndrome is a complex neurodevelopmental disorder caused by the lack of function in the brain of a single gene, UBE3A. The E3 ligase coded by this gene is known to build K48-linked ubiquitin chains, a modification historically considered to target substrates for degradation by the proteasome. However, a change in protein abundance is not proof that a candidate UBE3A substrate is indeed ubiquitinated by UBE3A. We have here used an unbiased ubiquitin proteomics approach, the bioUb strategy, to identify 79 proteins that appear more ubiquitinated in the Drosophila photoreceptor cells when Ube3a is over-expressed. We found a significantly high number of those proteins to be proteasomal subunits or proteasome-interacting proteins, suggesting a wide proteasomal perturbation in the brain of Angelman patients. We focused on validating the ubiquitination by Ube3a of Rngo, a proteasomal component conserved from yeast (Ddi1) to humans (DDI1 and DDI2), but yet scarcely characterized. Ube3a-mediated Rngo ubiquitination in fly neurons was confirmed by immunoblotting. Using human neuroblastoma SH-SY5Y cells in culture, we also observed that human DDI1 is ubiquitinated by UBE3A, without being targeted for degradation. The novel observation that DDI1 is expressed in the developing mice brain, with a significant peak at E16.5, strongly suggests that DDI1 has biological functions not yet described that could be of relevance for Angelman syndrome clinical research.
Collapse
Affiliation(s)
- Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Benoit Lectez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Monika Sivá
- Department of Genetics and Microbiology, Charles University, 12843 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.,First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Nagore Elu
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Michaela Procházková
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Coralia Perez
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Jose Martínez-Hernández
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Rosa Barrio
- Functional Genomics Unit, CIC bioGUNE, 48160 Derio, Spain
| | - Klára Grantz Šašková
- Department of Genetics and Microbiology, Charles University, 12843 Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jesus M Arizmendi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Jiang TX, Zhao M, Qiu XB. Substrate receptors of proteasomes. Biol Rev Camb Philos Soc 2018; 93:1765-1777. [DOI: 10.1111/brv.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Tian-Xia Jiang
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Mei Zhao
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| | - Xiao-Bo Qiu
- State Key Laboratory of Cognitive Neuroscience & Learning and Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences; Beijing Normal University, 19 Xinjiekouwai Avenue; Beijing 100875 China
| |
Collapse
|
12
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Yi JJ, Paranjape SR, Walker MP, Choudhury R, Wolter JM, Fragola G, Emanuele MJ, Major MB, Zylka MJ. The autism-linked UBE3A T485A mutant E3 ubiquitin ligase activates the Wnt/β-catenin pathway by inhibiting the proteasome. J Biol Chem 2017; 292:12503-12515. [PMID: 28559284 PMCID: PMC5535025 DOI: 10.1074/jbc.m117.788448] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2017] [Indexed: 02/02/2023] Open
Abstract
UBE3A is a HECT domain E3 ubiquitin ligase whose dysfunction is linked to autism, Angelman syndrome, and cancer. Recently, we characterized a de novo autism-linked UBE3A mutant (UBE3AT485A) that disrupts phosphorylation control of UBE3A activity. Through quantitative proteomics and reporter assays, we found that the UBE3AT485A protein ubiquitinates multiple proteasome subunits, reduces proteasome subunit abundance and activity, stabilizes nuclear β-catenin, and stimulates canonical Wnt signaling more effectively than wild-type UBE3A. We also found that UBE3AT485A activates Wnt signaling to a greater extent in cells with low levels of ongoing Wnt signaling, suggesting that cells with low basal Wnt activity are particularly vulnerable to UBE3AT485A mutation. Ligase-dead UBE3A did not stimulate Wnt pathway activation. Overexpression of several proteasome subunits reversed the effect of UBE3AT485A on Wnt signaling. We also observed that subunits that interact with UBE3A and affect Wnt signaling are located along one side of the 19S regulatory particle, indicating a previously unrecognized spatial organization to the proteasome. Altogether, our findings indicate that UBE3A regulates Wnt signaling in a cell context-dependent manner and that an autism-linked mutation exacerbates these signaling effects. Our study has broad implications for human disorders associated with UBE3A gain or loss of function and suggests that dysfunctional UBE3A might affect additional proteins and pathways that are sensitive to proteasome activity.
Collapse
Affiliation(s)
- Jason J Yi
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Smita R Paranjape
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Matthew P Walker
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rajarshi Choudhury
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Justin M Wolter
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Giulia Fragola
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael B Major
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Mark J Zylka
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599; UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
14
|
E2-25K SUMOylation inhibits proteasome for cell death during cerebral ischemia/reperfusion. Cell Death Dis 2016; 7:e2573. [PMID: 28032866 PMCID: PMC5261013 DOI: 10.1038/cddis.2016.428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) causes brain damage accompanied by ubiquitin accumulation and impairment of proteasome activity. In this study, we report that E2-25K, an E2-conjugating enzyme, is SUMOylated during oxidative stress and regulates cerebral I/R-induced damage. Knockdown of E2-25K expression protects against oxygen/glucose deprivation and reoxygenation (OGD/R)-induced neuronal cell death, whereas ectopic expression of E2-25K stimulates it. Compared with the control mice, cerebral infarction lesions and behavioral/neurological disorders are ameliorated in E2-25K knockout mice during middle cerebral artery occlusion and reperfusion. In particular, E2-25K is SUMOylated at Lys14 under oxidative stress, OGD/R and I/R to prompt cell death. Further, E2-25K downregulates the proteasome subunit S5a to impair proteasome complex and thus restrain proteasome activity under oxidative stress. This proteasome inhibitory activity of E2-25K is dependent on its SUMOylation. These results suggest that E2-25K has a crucial role in oxidative stress and cerebral I/R-induced damage through inhibiting proteasome via its SUMOylation.
Collapse
|
15
|
Vertii A, Hehnly H, Doxsey S. The Centrosome, a Multitalented Renaissance Organelle. Cold Spring Harb Perspect Biol 2016; 8:8/12/a025049. [PMID: 27908937 DOI: 10.1101/cshperspect.a025049] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The centrosome acts as a microtubule-organizing center (MTOC) from the G1 to G2 phases of the cell cycle; it can mature into a spindle pole during mitosis and/or transition into a cilium by elongating microtubules (MTs) from the basal body on cell differentiation or cell cycle arrest. New studies hint that the centrosome functions in more than MT organization. For instance, it has recently been shown that a specific substructure of the centrosome-the mother centriole appendages-are required for the recycling of endosomes back to the plasma membrane. This alone could have important implications for a renaissance in our understanding of the development of primary cilia, endosome recycling, and the immune response. Here, we review newly identified roles for the centrosome in directing membrane traffic, the immunological synapse, and the stress response.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
16
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
17
|
The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res 2016; 26:869-85. [PMID: 27444871 PMCID: PMC4973335 DOI: 10.1038/cr.2016.86] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 26S proteasome is a large, ∼2.5 MDa, multi-catalytic ATP-dependent protease complex that serves as the degrading arm of the ubiquitin system, which is the major pathway for regulated degradation of cytosolic, nuclear and membrane proteins in all eukaryotic organisms.
Collapse
|
18
|
Vora SM, Phillips BT. The benefits of local depletion: The centrosome as a scaffold for ubiquitin-proteasome-mediated degradation. Cell Cycle 2016; 15:2124-2134. [PMID: 27294844 DOI: 10.1080/15384101.2016.1196306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The centrosome is the major microtubule-organizing center in animal cells but is dispensable for proper microtubule spindle formation in many biological contexts and is thus thought to fulfill additional functions. Recent observations suggest that the centrosome acts as a scaffold for proteasomal degradation in the cell to regulate a variety of biological processes including cell fate acquisition, cell cycle control, stress response, and cell morphogenesis. Here, we review the body of studies indicating a role for the centrosome in promoting proteasomal degradation of ubiquitin-proteasome substrates and explore the functional relevance of this system in different biological contexts. We discuss a potential role for the centrosome in coordinating local degradation of proteasomal substrates, allowing cells to achieve stringent spatiotemporal control over various signaling processes.
Collapse
Affiliation(s)
- Setu M Vora
- a Department of Biological Sciences, University of Iowa , Iowa City , IA , USA
| | - Bryan T Phillips
- a Department of Biological Sciences, University of Iowa , Iowa City , IA , USA
| |
Collapse
|
19
|
Abstract
In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens.
Collapse
Affiliation(s)
- Anastassiia Vertii
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Hui-Fang Hung
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Heidi Hehnly
- />Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY USA
| | - Stephen Doxsey
- />Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
20
|
TOPORS, a Dual E3 Ubiquitin and Sumo1 Ligase, Interacts with 26 S Protease Regulatory Subunit 4, Encoded by the PSMC1 Gene. PLoS One 2016; 11:e0148678. [PMID: 26872363 PMCID: PMC4752349 DOI: 10.1371/journal.pone.0148678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS.
Collapse
|
21
|
Bal’ NV, Balaban PM. Ubiquitin-dependent protein degradation is necessary for long-term plasticity and memory. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2015; 41:156-82. [DOI: 10.1007/s11064-015-1752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
23
|
Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem J 2015; 472:353-65. [PMID: 26450923 DOI: 10.1042/bj20150609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
Despite the progress made in understanding the roles of proteasome polyubiquitin receptors, such as the subunits Rpn10 (regulatory particle non-ATPase 10) and Rpn13, and the transient interactors Rad23 (radiation sensitivity abnormal 23) and Dsk2 (dual-specificity protein kinase 2), the mechanisms involved in their regulation are virtually unknown. Rpn10, which is found in the cell in proteasome-bound and -unbound pools, interacts with Dsk2, and this interaction has been proposed to regulate the amount of Dsk2 that gains access to the proteasome. Rpn10 monoubiquitination has emerged as a conserved mechanism with a strong effect on Rpn10 function. In the present study, we show that functional yeast proteasomes have the capacity to associate and dissociate with Rpn10 and that Rpn10 monoubiquitination decreases the Rpn10-proteasome and Rpn10-Dsk2 associations. Remarkably, this process facilitates the formation of Dsk2-proteasomes in vivo. Therefore, Rpn10 monoubiquitination acts as mechanism that serves to switch the proteasome from an 'Rpn10 high/Dsk2 low' state to an 'Rpn10 low/Dsk2 high' state. Interestingly, Rpn10-ubiquitin, with an inactivated ubiquitin-interacting motif (UIM), and Dsk2(I45S), with an inactive ubiquitin-like domain (UBL), show temperature-dependent phenotypes with multiple functional interactions.
Collapse
|
24
|
Gerhardt C, Lier JM, Burmühl S, Struchtrup A, Deutschmann K, Vetter M, Leu T, Reeg S, Grune T, Rüther U. The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. J Cell Biol 2015; 210:115-33. [PMID: 26150391 PMCID: PMC4494006 DOI: 10.1083/jcb.201408060] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rpgrip1l regulates proteasomal activity at the basal body via Psmd2 and thereby controls ciliary signaling. Mutations in RPGRIP1L result in severe human diseases called ciliopathies. To unravel the molecular function of RPGRIP1L, we analyzed Rpgrip1l−/− mouse embryos, which display a ciliopathy phenotype and die, at the latest, around birth. In these embryos, cilia-mediated signaling was severely disturbed. Defects in Shh signaling suggested that the Rpgrip1l deficiency causes an impairment of protein degradation and protein processing. Indeed, we detected a cilia-dependent decreased proteasomal activity in the absence of Rpgrip1l. We found different proteasomal components localized to cilia and identified Psmd2, a component of the regulatory proteasomal 19S subunit, as an interaction partner for Rpgrip1l. Quantifications of proteasomal substrates demonstrated that Rpgrip1l regulates proteasomal activity specifically at the basal body. Our study suggests that Rpgrip1l controls ciliary signaling by regulating the activity of the ciliary proteasome via Psmd2.
Collapse
Affiliation(s)
- Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johanna Maria Lier
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephan Burmühl
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Struchtrup
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kathleen Deutschmann
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maik Vetter
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tristan Leu
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sandra Reeg
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University Jena, 07743 Jena, Germany
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Vertii A, Zimmerman W, Ivshina M, Doxsey S. Centrosome-intrinsic mechanisms modulate centrosome integrity during fever. Mol Biol Cell 2015; 26:3451-63. [PMID: 26269579 PMCID: PMC4591690 DOI: 10.1091/mbc.e15-03-0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/04/2015] [Indexed: 12/23/2022] Open
Abstract
The centrosome is critical for cell division. Heat stress (HS) causes degradation of all centrosome substructures by centrosome-bound proteasomes. HS-activated degradation is centrosome specific and can be rescued by targeting Hsp70 to the centrosome. Centrosome inactivation is a physiological event, as centrosomes in leukocytes of febrile patients are disrupted. The centrosome is critical for cell division, ciliogenesis, membrane trafficking, and immunological synapse function. The immunological synapse is part of the immune response, which is often accompanied by fever/heat stress (HS). Here we provide evidence that HS causes deconstruction of all centrosome substructures primarily through degradation by centrosome-associated proteasomes. This renders the centrosome nonfunctional. Heat-activated degradation is centrosome selective, as other nonmembranous organelles (midbody, kinetochore) and membrane-bounded organelles (mitochondria) remain largely intact. Heat-induced centrosome inactivation was rescued by targeting Hsp70 to the centrosome. In contrast, Hsp70 excluded from the centrosome via targeting to membranes failed to rescue, as did chaperone inactivation. This indicates that there is a balance between degradation and chaperone rescue at the centrosome after HS. This novel mechanism of centrosome regulation during fever contributes to immunological synapse formation. Heat-induced centrosome inactivation is a physiologically relevant event, as centrosomes in leukocytes of febrile patients are disrupted.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wendy Zimmerman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Maria Ivshina
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
26
|
An intrinsically disordered region of RPN10 plays a key role in restricting ubiquitin chain elongation in RPN10 monoubiquitination. Biochem J 2015. [DOI: 10.1042/bj20141571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proteasomal ubiquitin receptor Rpn10 (regulatory particle non-ATPase 10) is monoubiquitinated by Rsp5 (reverses SPT-phenotype protein 5). We show that a disordered region flanking the ubiquitin-interacting motif of Rpn10 is required for restricting polyubiquitination in the process of Rpn10 monoubiquitination. A novel role of an unstructured protein domain in controlling ubiquitin chain elongation is proposed.
Collapse
|
27
|
Valnegri P, Puram SV, Bonni A. Regulation of dendrite morphogenesis by extrinsic cues. Trends Neurosci 2015; 38:439-47. [PMID: 26100142 DOI: 10.1016/j.tins.2015.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/19/2023]
Abstract
Dendrites play a central role in the integration and flow of information in the nervous system. The morphogenesis and maturation of dendrites is hence an essential step in the establishment of neuronal connectivity. Recent studies have uncovered crucial functions for extrinsic cues in the development of dendrites. We review the contribution of secreted polypeptide growth factors, contact-mediated proteins, and neuronal activity in distinct phases of dendrite development. We also highlight how extrinsic cues influence local and global intracellular mechanisms of dendrite morphogenesis. Finally, we discuss how these studies have advanced our understanding of neuronal connectivity and have shed light on the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pamela Valnegri
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Azad Bonni
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Garbarino VR, Orr ME, Rodriguez KA, Buffenstein R. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys 2015; 576:8-16. [PMID: 25841340 PMCID: PMC4843805 DOI: 10.1016/j.abb.2015.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/31/2015] [Indexed: 01/09/2023]
Abstract
The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel's second axiom that "evolution is smarter than we are" and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Miranda E Orr
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Karl A Rodriguez
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Rochelle Buffenstein
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
29
|
Vora S, Phillips BT. Centrosome-Associated Degradation Limits β-Catenin Inheritance by Daughter Cells after Asymmetric Division. Curr Biol 2015; 25:1005-16. [PMID: 25819561 DOI: 10.1016/j.cub.2015.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/02/2015] [Accepted: 02/04/2015] [Indexed: 01/01/2023]
Abstract
Caenorhabditis elegans embryos rapidly diversify cell fate using a modified Wnt/β-catenin signaling strategy to carry out serial asymmetric cell divisions (ACDs). Wnt-dependent ACDs rely on nuclear asymmetry of the transcriptional coactivator SYS-1/β-catenin between daughter cells to differentially activate Wnt-responsive target genes. Here, we investigate how dynamic localization of SYS-1 to mitotic centrosomes influences SYS-1 inheritance in daughter cells and cell-fate outcomes after ACD. Through yeast two-hybrid screening, we identify the centrosomal protein RSA-2 as a SYS-1 binding partner and show that localization of SYS-1 to mitotic centrosomes is dependent on RSA-2. Uncoupling SYS-1 from the centrosome by RSA-2 depletion increases SYS-1 inheritance after ACD and promotes Wnt-dependent cell fate. Photobleaching experiments reveal that centrosome-bound SYS-1 turns over rapidly. Interestingly, disruption of the proteasome leads to an increased accumulation of SYS-1 at the centrosome but disrupts its dynamic turnover. We conclude that centrosomal targeting of SYS-1 promotes its degradation during asymmetric cell division. We propose a model whereby centrosome-associated SYS-1 degradation couples negative regulation with cell-division timing to facilitate SYS-1 clearance from the mother cell at the time of asymmetric division. Based on our observations of centrosomal SYS-1 dynamics, we discuss the possibility that the centrosome may coordinate various cell-cycle-dependent processes by synchronizing mitosis and protein regulation.
Collapse
Affiliation(s)
- Setu Vora
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
30
|
Sinha A, Datta SP, Ray A, Sarkar S. A reduced VWA domain-containing proteasomal ubiquitin receptor of Giardia lamblia localizes to the flagellar pore regions in microtubule-dependent manner. Parasit Vectors 2015; 8:120. [PMID: 25888841 PMCID: PMC4352536 DOI: 10.1186/s13071-015-0737-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/13/2015] [Indexed: 11/22/2022] Open
Abstract
Background Giardia lamblia switches its lifecycle between trophozoite and cyst forms and the proteasome plays a pivotal role in this switching event. Compared to most model eukaryotes, the proteasome of this parasite has already been documented to have certain variations. This study was undertaken to characterize the ubiquitin receptor, GlRpn10, of the 19S regulatory particle of the Giardia proteasome and determine its cellular localization in trophozoites, encysting trophozoites and cysts. Method Sequence alignment and domain architecture analyses were performed to characterize GlRpn10. In vitro ubiquitin binding assay, functional complementation and biochemical studies verified the protein’s ability to function as ubiquitin receptor in the context of the yeast proteasome. Immunofluorescence localization was performed with antibody against GlRpn10 to determine its distribution in trophozoites, encysting trophozoites and cysts. Real-time PCR and Western blotting were performed to monitor the expression pattern of GlRpn10 during encystation. Result GlRpn10 contained a functional ubiquitin interacting motif, which was capable of binding to ubiquitin. Although it contained a truncated VWA domain, it was still capable of partially complementing the function of the yeast Rpn10 orthologue. Apart from localizing to the nucleus and cytosol, GlRpn10 was also present at flagellar pores of trophozoites and this localization was microtubule-dependent. Although there was no change in the cellular levels of GlRpn10 during encystation, its selective distribution at the flagellar pores was absent. Conclusion GlRpn10 contains a noncanonical VWA domain that is partially functional in yeast. Besides the expected nuclear and cytosolic distribution, the protein displays microtubule-dependent flagellar pore localization in trophozoites. While the protein remained in the nucleus and cytosol in encysting trophozoites, it could no longer be detected at the flagellar pores. This absence at the flagellar pore regions in encysting trophozoites is likely to involve redistribution of the protein, rather than decreased gene expression or selective protein degradation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0737-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhishek Sinha
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Shankari Prasad Datta
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Atrayee Ray
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P 1/12, C. I. T. Road, Scheme - VII M, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
31
|
Izumi H, Kaneko Y. Trim32 Facilitates Degradation of MYCN on Spindle Poles and Induces Asymmetric Cell Division in Human Neuroblastoma Cells. Cancer Res 2014; 74:5620-30. [DOI: 10.1158/0008-5472.can-14-0169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Lee SY, Ramirez J, Franco M, Lectez B, Gonzalez M, Barrio R, Mayor U. Ube3a, the E3 ubiquitin ligase causing Angelman syndrome and linked to autism, regulates protein homeostasis through the proteasomal shuttle Rpn10. Cell Mol Life Sci 2014; 71:2747-58. [PMID: 24292889 PMCID: PMC11113982 DOI: 10.1007/s00018-013-1526-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/15/2013] [Indexed: 01/31/2023]
Abstract
Ubiquitination, the covalent attachment of ubiquitin to a target protein, regulates most cellular processes and is involved in several neurological disorders. In particular, Angelman syndrome and one of the most common genomic forms of autism, dup15q, are caused respectively by lack of or excess of UBE3A, a ubiquitin E3 ligase. Its Drosophila orthologue, Ube3a, is also active during brain development. We have now devised a protocol to screen for substrates of this particular ubiquitin ligase. In a neuronal cell system, we find direct ubiquitination by Ube3a of three proteasome-related proteins Rpn10, Uch-L5, and CG8209, as well as of the ribosomal protein Rps10b. Only one of these, Rpn10, is targeted for degradation upon ubiquitination by Ube3a, indicating that degradation might not be the only effect of Ube3a on its substrates. Furthermore, we report the genetic interaction in vivo between Ube3a and the C-terminal part of Rpn10. Overexpression of these proteins leads to an enhanced accumulation of ubiquitinated proteins, further supporting the biochemical evidence of interaction obtained in neuronal cells.
Collapse
Affiliation(s)
- So Young Lee
- CIC bioGUNE, Bizkaia Teknologia Parkea, Building 801-A, Derio, 48160 Derio, Basque Country Spain
| | - Juanma Ramirez
- CIC bioGUNE, Bizkaia Teknologia Parkea, Building 801-A, Derio, 48160 Derio, Basque Country Spain
| | - Maribel Franco
- CIC bioGUNE, Bizkaia Teknologia Parkea, Building 801-A, Derio, 48160 Derio, Basque Country Spain
- Present Address: Instituto de Neurociencias CSIC/UMH, 03550 Sant Joan d’Alacant, Spain
| | - Benoît Lectez
- CIC bioGUNE, Bizkaia Teknologia Parkea, Building 801-A, Derio, 48160 Derio, Basque Country Spain
| | - Monika Gonzalez
- CIC bioGUNE, Bizkaia Teknologia Parkea, Building 801-A, Derio, 48160 Derio, Basque Country Spain
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Teknologia Parkea, Building 801-A, Derio, 48160 Derio, Basque Country Spain
| | - Ugo Mayor
- CIC bioGUNE, Bizkaia Teknologia Parkea, Building 801-A, Derio, 48160 Derio, Basque Country Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
33
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Caldeira MV, Salazar IL, Curcio M, Canzoniero LMT, Duarte CB. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Prog Neurobiol 2013; 112:50-69. [PMID: 24157661 DOI: 10.1016/j.pneurobio.2013.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 11/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review.
Collapse
Affiliation(s)
- Margarida V Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|